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Abstract. We present an example of a σ-product that is not countably para-

compact but all of whose finite subproducts are countably paracompact. This
example also shows that countable paracompactness of a σ-product may de-
pend on the choice of base point. We also show that normal non-trivial σ-
products are countably paracompact, improving a result of Chiba. Finally we

give a new proof that σ-products of ordinals at base point 0 are κ-normal and
strongly zero-dimensional.

1. Introduction

Throughout the paper, spaces are regular topological spaces. Let Xi be a space
for each i ∈ κ and κ a cardinal.

∏
i∈κ Xi denotes the product space with the usual

Tychonoff product topology. For x ∈
∏

i∈κ Xi, x(i) denotes the i-th coordinate of
x.

A σ-product of Xi’s (i ∈ κ) with a base point s ∈
∏

i∈κ Xi is the subspace

σ(
∏
i∈κ

Xi, s) = {x ∈
∏
i∈κ

Xi : |{i ∈ κ : x(i) ̸= s(i)}| < ω}.

For x in a σ-product with a base point s, we let supt(x) denote the set {i ∈ κ :
x(i) ̸= s(i)}.

A finite subproduct of σ(
∏

i∈κ Xi, s) means a product
∏

i∈B Xi for some finite
B ⊂ κ.

Similarly a Σ-product is defined by

Σ(
∏
i∈κ

Xi, s) = {x ∈
∏
i∈κ

Xi : |{i ∈ κ : x(i) ̸= s(i)}| ≤ ω}.

For a subset B ⊂ κ, pB : σ(
∏

i∈κ Xi, s) → σ(
∏

i∈B Xi, s ¹ B) denotes the
projection map. For a basic open set U of a product space

∏
i∈κ Xi, supt(U)

denotes the finite set {i ∈ κ : p{i}(U) ̸= Xi}.
A general problem about σ-products is whether the full σ-product has a property

P assuming that each finite subproduct has P . For example, Kombarov [12] Theo-
rem 3 (Teng [16] Theorem 1) proved that if every finite subproduct of a σ-product
is paracompact (metacompact, resp.), then it is also paracompact (metacompact,
resp.). It is not difficult to improve the Teng’s proof in order to show that if every
finite subproduct of a σ-product is λ-metacompact, then it is also λ-metacompact,
where λ is an infinite cardinal. So it is natural to ask whether such cardinal restric-
tions also hold for paracompactness.
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In particular the following are known:
(a) If every finite subproduct of a σ-product is countably metacompact, then

it is countably metacompact ([16]).
(b) If every finite subproduct of a normal σ-product is countably paracompact,

then it is countably paracompact ([2]).
(c) σ products of ordinals at base point 0 are countably paracompact([9]).

Note that the general problem for σ-products also has a negative answer for
normality: if X is Dowker, then σ(X × 2ω) is not normal. Related to normal
σ-products, in addition to the Chiba result cited above, the following is known

(d) if every finite subproduct of a normal σ-product is expandable, then it is
expandable ([16]).

In section 2 we show that the assumption that finite subproducts are countably
paracompact in (b) is not needed: non-trivial normal σ-products are countably
paracompact (in fact, if there are κ many factors, then the space is κ-expandable).
In addition, the proof can be modified to give a new proof of Teng’s result (d)
concerning expandable σ-products.

On the other hand, the authors proved in [9] that countable products of ordinals
and Σ-products of ordinals with arbitrary base points are countably paracompact,
κ-normal and strongly zero-dimensional. Recall that a space is κ-normal (strongly
zero-dimensional) if two disjoint regular closed sets (zero-sets, resp.) are separated
by disjoint open sets (clopen sets, resp.). Morever in the same paper, the authors
proved the following

(e) Each σ-product of ordinals at base point 0 (= the constant function taking
value 0) is countably paracompact, κ-normal and strongly zero-dimensional.

In section 2 we present an example of a σ-product of ordinals (at a base point
different from 0) which is not countably paracompact (nor is it κ-normal). Since
finite products of ordinals are countably paracompact, this example shows that the
general problem for σ-products fails for countable paracompactness. In addition,
it shows that countable paracompactness (as well as κ-normality) of a σ-product
may depend on the choice of the base point. While properties of σ-products and Σ-
products often do not depend on the choice of the base points, some pathologies do
exist: For example, Corson pointed out a family of spaces such that the Σ-product
at one base point is not homeomorphic to the Σ-product at a different base point
[4]. Also, Chiba gave an example of a family of spaces whose σ-product about one
base point is starcompact, and about another base point is not [2]. Van Douwen
asked whether normality of a Σ-product may depend on the base point (problem
P18 in [14] [15]).

In section 3 we revisit (e): The authors’ proofs of (e) involved the use of elemen-
tary submodels. We give a new proof, not involving elementary submodels, that
σ-products of ordinals at base point 0 are κ-normal and strongly zero-dimensional
(in fact, it will suffice to assume that each coordinate of the base point has countable
cofinality).

2. Countable paracompactness

Example 2.1. A family of spaces {Xi : i ∈ ω} with all finite subproducts countably
paracompact such that for some base point s, the σ-product of the family at base
point s is not countably paracompact.
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For i ∈ ω, let

Xi =
{

ω1, if i = 0,
ω1 + 1, if i ≥ 1.

Now we define a base point s ∈
∏

i∈ω Xi by

s(i) =
{

0, if i = 0,
ω1, if i ≥ 1.

Then finite subproducts of X = σ(
∏

i∈ω Xi, s) are countably paracompact. We
will show that X is not countably paracompact. To do this, let Dn = {x ∈ X : x ¹
n is constant } for each 1 ≤ n ∈ ω. Obviously {Dn : 1 ≤ n ∈ ω} is a decreasing
sequence of closed sets in X with the empty intersection. Let Un be an open set
containing Dn for each 1 ≤ n ∈ ω.

Now fix 1 ≤ n ∈ ω and define xαn ∈ X for each α ∈ ω1 by

xαn(i) =
{

α, if i < n,
ω1, if i ≥ n.

Then for each α ∈ ω1, by xαn ∈ Dn ⊂ Un, we can find β(α) < α, m(α) > n
and γ(α) ∈ ω1 such that the basic open set p−1

m(α)((β(α), α]n × (γ(α), ω1]m(α)−n) is
contained in Un, where pB : X → X(B) =

∏
i∈B Xi denotes the projection map.

By the Pressing Down Lemma, we find a stationary set Sn ⊂ ω1, βn ∈ ω1 and
mn > n such that β(α) = βn and m(α) = mn hold for each α ∈ Sn.

Moving n, take δ ∈ ω1 with sup{βn : 1 ≤ n ∈ ω} < δ and define x ∈ X by

x(i) =
{

δ, if i = 0,
ω1, if i ≥ 1.

Again fix 1 ≤ n ∈ ω and let W be a basic open neighborhood of x in X. We may
assume W = p−1

m ((β, δ]× (γ, ω1]m−1), where sup{βn : 1 ≤ n ∈ ω} ≤ β < δ and m >
mn. Take α ∈ Sn with max{δ, γ} < α. Then p−1

mn
((βn, α]n × (γ(α), ω1]mn−n) ⊂ Un.

Define y ∈ X by

y(i) =

 δ, if i = 0,
α, if 0 < i < n,
ω1, if i ≥ n.

Then we have y ∈ W ∩Un, thus x ∈ clXUn. Therefore x ∈
∩

1≤n∈ω clXUn holds,
this shows that X is not countably paracompact. ¤

Recall that the space σ(ω1 × (ω1 + 1)ω,0) is countably paracompact. Thus we
can recognize that the space X above is a delicate example and that countable
paracompactness of σ-products can depend on the choice of base point. In addition
σ(ω1×(ω1 +1)ω,0) is κ-normal and strongly zero-dimensional. Note that the space
X above is of cardinality ω1. So, if CH fails, X must be strongly zero-dimensional.
On the other hand, we have the following:

Claim 2.2. X is not κ-normal.

Proof. Since X × (ω + 1) embeds as a clopen subset of X, it suffices to prove that
X×(ω+1) is not κ-normal. To see this, note that the sets Dn in X are regular closed
(the subset In = {x ∈ X : x ¹ n is constant with value a successor ordinal} is open
and dense in Dn). Let H =

∪
n∈ω(Dn×{2n}) and let K = X×({ω}∪{2n+1 : n ∈

ω}). Then both H and K are regular closed in Y and since the Dn’s witness the
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failure of countable paracompactness in X, it follows as in the proof of Dowker’s
theorem that H and K cannot be separated in Y .

The following proposition, which includes the result [3] above, says that the
assumption of the normality of σ-products is quite strong. Also note the result of
[16] that if every finite subproduct of a normal σ-product is expandable, then it is
expandable. Our approach below is different from the proof of this result and some
simple improvements of our approach below give a direct proof of this result.

Proposition 2.3. Let κ be an infinite cardinal, Xi be a space with |Xi| ≥ 2 for each
i ∈ κ and s ∈

∏
i∈κ Xi. If X = σ(

∏
i∈κ Xi, s) is normal, then X is κ-expandable

therefore it is countably paracompact and κ-collectionwise normal.

Proof. Recall that a space is κ-expandable (κ-collectionwise normal) if for every
locally finite (discrete, resp.) collection F of closed sets with |F| ≤ κ, there is
a locally finite (discrete, resp.) collection {U(F ) : F ∈ F} of open sets such
that F ⊂ U(F ) for each F ∈ F . A space is expandable if it is κ-expandable for
each infinite cardinal κ. Recall that a space X is normal and κ-expandable iff X
is countably paracompact and κ-collectionwise normal iff X × A(κ), where A(κ)
denotes the one point compactification of the discrete space of size κ, is normal,
see [1] and [7].

Let B ⊂ κ. We use here the following notation: X(B) = σ(
∏

i∈B Xi, s ¹ B),
Z(B) = {x ∈ X : supt(x) ⊂ B}, Xn = {x ∈ X : |supt(x)| ≤ n} for each
n ∈ ω and pB : X → X(B) denotes the projection. Note that pB ¹ Z(B) is a
homeomorphism between Z(B) and X(B) and that X0 = {s}, each Xn is closed
in X and X =

∪
n∈ω Xn. For x ∈ X, xB is the element in X defined by

xB(i) =
{

x(i), if i ∈ B,
s(i), otherwise.

Also note pB(x) = pB(xB).

Claim 1. X contains a copy of A(κ).
Proof. For each i ∈ κ, fix t(i) ∈ Xi with t(i) ̸= s(i) and define xi ∈ X by

xi(j) =
{

t(j), if i = j,
s(j), otherwise.

Then {xi : i ∈ κ} ∪ {s} is homeomorphic to A(κ).

Claim 2. For each finite subset B of κ, X(B) is κ-expandable.
Proof. Since X is homeomorphic to X(B) × X(κ \ B), by the argument of Claim
1, X(κ \ B) contains a copy of A(κ). It follows from the normality of X that
X(B) × A(κ) is normal, therefore X(B) is κ-expandable.

Let F be a locally finite collection of closed sets of X with |F| ≤ κ. First set
U−1 = W−1 = ∅ and V−1(F ) = G−1(F ) = ∅ for each F ∈ F . We will define open
sets Un, Wn, Vn(F ) and Gn(F ) for each n ∈ ω and F ∈ F such that

(a) Xn ∪ clWn−1 ⊂ Wn ⊂ clWn ⊂ Un ⊂ clUn ⊂ X \
∪

F∈F (F \ Gn(F )),
(b) F ∩ Un ⊂ Gn(F ) = Gn−1(F ) ∪ Vn(F ) and Vn(F ) ∩ Wn−1 = ∅ for each

F ∈ F ,
(c) Vn = {Vn(F ) : F ∈ F} and Gn = {Gn(F ) : F ∈ F} are locally finite.



COUNTABLE PARACOMPACTNESS OF σ-PRODUCTS 5

Assume that Uk, Wk, Vk(F ) and Gk(F ) are defined for k ≤ n and F ∈ F . For
each B ∈ [κ]n+1, since H(B) = {(F \ Un) ∩ Z(B) : F ∈ F} is locally finite in the
closed subspace Z(B) that is homeomorphic (by pB ¹ Z(B)) to the κ-expandable
space X(B), we can find a locally finite collection V(B) = {V (F,B) : F ∈ F} of
open sets in X(B) such that for each F ∈ F ,

(1) V (F,B) ⊃ pB((F \ Un) ∩ Z(B)),
(2) V (F,B) ∩ pB(clWn ∩ Z(B)) = ∅.

Let Vn+1(F ) =
∪
{p−1

B (V (F,B)) : B ∈ [κ]n+1} \ clWn for each F ∈ F . Then
obviously Vn+1(F ) ∩ Wn = ∅.
Claim 3. Vn+1 = {Vn+1(F ) : F ∈ F} is locally finite in X.
Proof. Let y ∈ X. We may assume y /∈ Wn ⊃ Xn, thus |supt(y)| ≥ n + 1. For each
A ∈ [supt(y)]≤n, by yA ∈ Xn ⊂ Wn, we can find a basic open neighborhood O(A)
of yA in X with O(A) ⊂ Wn. We may assume yA ∈ O(A) = p−1

B(A)(
∏

i∈B(A) Oi(A))
for some finite set B(A) ⊂ κ with supt(y) ⊂ B(A) and some open set Oi(A) in Xi,
i ∈ B(A). Let C =

∪
{B(A) : A ∈ [supt(y)]≤n}, moreover define for each i ∈ C,

Oi =
{ ∩

{Oi(A) : i ∈ A ∈ [supt(y)]≤n}, if i ∈ supt(y),∩
{Oi(A) : A ∈ [supt(y)]≤n, i ∈ B(A)}, if i ∈ C \ supt(y)

Then p−1
C (

∏
i∈C Oi) is a neighborhood of y.

On the other hand, for each B ∈ [supt(y)]n+1, it follows from pB(y) ∈ X(B) and
the local finiteness of V(B) in X(B) that we can find a basic open neighborhood∏

i∈B O′
i(B) of pB(y) such that FB = {F ∈ F :

∏
i∈B O′

i(B)∩V (F,B) ̸= ∅} is finite.
We will show that the neighborhood O = p−1

C (
∏

i∈C Oi) ∩
∩
{p−1

B (
∏

i∈B O′
i(B)) :

B ∈ [supt(y)]n+1} of y witnesses the local finiteness of Vn+1 at y. It suffice to show
{F ∈ F : O∩Vn+1(F ) ̸= ∅} ⊂

∪
{FB : B ∈ [supt(y)]n+1}. Assume O∩Vn+1(F ) ̸= ∅

and pick a point x ∈ O∩Vn+1(F ). Then x ∈ O∩p−1
B (V (F,B)) for some B ∈ [κ]n+1.

Now we have B ∈ [supt(y)]n+1. To show this, assume B ̸⊂ supt(y). Then A = B ∩
supt(y) ∈ [supt(y)]≤n. It follows from xB ∈ Z(B) and pB(x) = pB(xB) ∈ V (F,B)
that by (2), xB /∈ clWn. Now we will show xB ∈ O(A). Let i ∈ B(A).

By x ∈ O ⊂ p−1
C (

∏
i∈C Oi), if i ∈ A, then xB(i) = x(i) ∈ Oi ⊂ Oi(A). If

i ∈ B \ A, then it follows from i ∈ C \ supt(y), i ∈ B(A) and A ∈ [supt(y)]≤n that
xB(i) = x(i) ∈ Oi ⊂ Oi(A). Finally if i ∈ B(A) \ B, then xB(i) = s(i) = yA(i) ∈
Oi(A). So we have xB ∈ O(A) ⊂ Wn, this contradicts xB /∈ clWn. Therefore we
have B ⊂ supt(y).

Since
x ∈ O ∩ p−1

B (V (F,B))

⊂ p−1
B (

∏
i∈B

O′
i(B)) ∩ p−1

B (V (F,B)) = p−1
B (

∏
i∈B

O′
i(B) ∩ V (F,B)),

we have F ∈ FB . This completes the proof of Claim 3.

Let Gn+1(F ) = Gn(F ) ∪ Vn+1(F ) for each F ∈ F . By (c) and the Claim above,
Gn+1 = {Gn+1(F ) : F ∈ F} is also locally finite.

Claim 4. (F \ Un) ∩ Xn+1 ⊂ Vn+1(F ) for each F ∈ F .
Proof. Let x ∈ (F \ Un) ∩ Xn+1. It follows from x /∈ Un ⊃ Xn that B = supt(x) ∈
[κ]n+1. Therefore by (1), we have

x ∈ (F \ Un) ∩ Z(B) ⊂ p−1
B (V (F,B)).
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Moreover by x /∈ Un ⊃ clWn, we have x ∈ Vn+1(F ).

Now fix F ∈ F . By (b) and Claim 4, we have

F ∩Xn+1 ⊂ [F ∩ (Xn+1∩Un)]∪ [F ∩ (Xn+1 \Un)] ⊂ Gn(F )∪Vn+1(F ) = Gn+1(F ).

Therefore

F ∩ (Xn+1 ∪ clWn) ⊂ (F ∩ Xn+1) ∪ (F ∩ clWn) ⊂ (F ∩ Xn+1) ∪ (F ∩ Un))

⊂ Gn+1(F ) ∪ Gn(F ) = Gn+1(F ).
So we have

(F \ Gn+1(F )) ∩ (Xn+1 ∪ clWn) = ∅.
Now since H =

∪
F∈F (F \ Gn+1(F )) is a closed set disjoint from Xn+1 ∪ clWn,

by the normality of X, we can find open sets Wn+1 and Un+1 such that

Xn+1 ∪ clWn ⊂ Wn+1 ⊂ clWn+1 ⊂ Un+1 ⊂ clUn+1 ⊂ X \ H.

Obviously we have F ∩ Un+1 ⊂ Gn+1(F ) for each F ∈ F . This completes the
construction of Un+1, Wn+1, Vn+1(F )’s and Gn+1(F )’s.

Finally for each F ∈ F define G(F ) =
∪

n∈ω Gn(F ) =
∪

n∈ω Vn(F ). It follows
from (a) and (b) that F ⊂ G(F ) for each F ∈ F . The following claim completes
the proof.

Claim 5. G = {G(F ) : F ∈ F} is locally finite.
Proof. Let x ∈ X. Since by (a), {Wn : n ∈ ω} is an increasing open cover of X,
we can find n ∈ ω with x ∈ Wn. By (b), we have Vm(F ) ∩ Wn = ∅ for each m > n
and F ∈ F . Since G(F ) = Gn(F ) ∪

∪
m>n Vm(F ) and Gn is locally finite, G is also

locally finite. ¤

3. κ-normality and strong zero-dimensionality

First we fix notations throughout this section: Let κ be a cardinal and let ⟨αi :
i ∈ κ⟩ be a sequence of ordinals. For each i ∈ κ, let Yi = {β < αi : cfβ ≤ ω} and
fix a point s ∈

∏
i∈κ Yi. Moreover let X = σ(

∏
i∈κ αi, s) and Y = σ(

∏
i∈κ Yi, s).

Observe that Yi is ω-bounded (i.e., each countable subset has a compact closure)
whenever cfαi ̸= ω and that each Yi is first countable hence Y has countable
tightness (i.e., for each point x and subset A with x ∈ clA, there is a countable
subset A′ ⊂ A such that x ∈ clA′, see [10] Proposition 1).

For each subset B ⊂ κ, let X(B) = σ(
∏

i∈B αi, s ¹ B) and Y (B) = σ(
∏

i∈B Yi, s ¹
B), moreover let pB : X → X(B) and πB : Y → Y (B) denote the projection maps.
For x ∈ X, define xB ∈ X by

xB(i) =
{

x(i), if i ∈ B,
s(i), otherwise.

For each n ∈ ω, Y n denotes the set {y ∈ Y : |supt(y)| ≤ n}. Similarly Y (B)n

denotes the set {y ∈ Y (B) : |supt(y)| ≤ n}.
For notational conveniences, −1 is considered as the immediate successor of the

ordinal 0.
We will use the facts: For each finite subset B of κ,

• Y (B) is normal, see [8] Theorem 5-Claim 4,
• Y (B) is strongly zero-dimensional, see [6] Theorem 5.1.

The following lemma is a modification of Theorem 1 of [13].
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Lemma 3.1. Y is normal and strongly zero-dimensional.

Proof. First we show the following claim.

Claim 1. For each n ∈ ω, the following statement (Sn) hold.
(Sn): If F is closed subset of Y which is disjoint from Y n, then there is a clopen

set U in Y such that Y n ⊂ U and U ∩ F = ∅.

Proof. We will prove this claim by induction on n ∈ ω. Since Y is a subspace
of the product space

∏
i∈κ Yi of the zero-dimensional spaces Yi’s, it is also zero-

dimensional. Therefore (S0) holds.
Assume that (Sn) holds for every such a space Y and that F is closed and disjoint

from Y n+1. Since s /∈ F , there are a finite set B ⊂ κ and t ∈
∏

i∈B(s(i) ∪ {−1})
such that π−1

B (
∏

i∈B(t(i), s(i)])∩F = ∅. Observe that Y = Y (κ \ {i})×Yi for each
i ∈ B. Fix i ∈ B. Now we will prove:

Fact. There is a clopen set Ui in Y such that π−1
κ\{i}(Y (κ \ {i})n) ⊂ Ui and

Ui ∩ F = ∅.
Proof. We divide into two cases.

Case 1. cfαi ̸= ω.

It is known from [11] Lemma 3 that if A has countable tightness and B is ω-
bounded, then the projection π : A × B → A is closed. Therefore the projection
πk\{i} : Y = Y (κ \ {i}) × Yi → Y (κ \ {i}) is closed. It follows from F ∩ Y n+1 = ∅
that πk\{i}(F ) ∩ Y (κ \ {i})n = ∅. By the inductive assumption, there is a clopen
set U ′

i of Y (κ \ {i}) such that Y (κ \ {i})n ⊂ U ′
i and U ′

i ∩ πk\{i}(F ) = ∅. Then
Ui = π−1

k\{i}(U
′
i) is the desired one.

Case 2. cfαi = ω.

Let ⟨αi(k) : k ∈ ω⟩ be a strictly increasing sequence cofinal in αi with s(i) < α0(i)
and set Yi(k) = Yi∩(αi(k−1), αi(k)] for each k ∈ ω, where αi(−1) = −1. Then each
Yi(k) is ω bounded and Y = Y (κ \ {i}) × Yi =

⊕
k∈ω Y (κ \ {i}) × Yi(k). Applying

the argument in Case 1, we can find a clopen set Ui(k) ⊂ Y (κ \ {i}) × Yi(k) such
that π−1

κ\{i}(Y (κ \ {i})n) ∩ Y (κ \ {i}) × Yi(k) ⊂ Ui(k) and Ui(k) ∩ F = ∅ for each
k ∈ ω. Then Ui =

∪
k∈ω Ui(k) is the desired one. This completes the proof of the

fact.

Now consider the clopen set U = π−1
B (

∏
i∈B(t(i), s(i)]) ∪

∪
i∈B Ui. F ∩ U = ∅ is

evident. Assume y ∈ Y n+1 \ π−1
B (

∏
i∈B(t(i), s(i)]). Then there is i ∈ B such that

y(i) ̸= s(i). Therefore πκ\{i}(y) ∈ Y (κ \ {i})n, thus y ∈ Ui. This shows Y n+1 ⊂ U
and completes the proof of Claim 1.

To show normality and strong zero-dimensionality simultaneously, let F0 and
F1 be disjoint closed sets in Y . It suffices to find disjoint clopen sets V0 and V1

including F0 and F1 respectively. We may assume s /∈ F1. Fix a clopen set V00

such that s ∈ V00 and V00 ∩ F1 = ∅. Set V10 = ∅. Now by induction on n ∈ ω, we
will define clopen sets V0n and V1n in Y such that

(a) Y n ⊂ V0n ∪ V1n,
(b) Vjn ∩ F1−j = ∅ for each j ∈ 2.

Assume that Vjk has been defined for each j ∈ 2 and k ≤ n. Let Vn = V0n ∪ V1n

and Z(B) = {y ∈ Y : supt(y) ⊂ B} for each B ∈ [κ]n+1. Observe that πB ¹
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Z(B) is a homeomorphism between the closed subspace Z(B) of Y and the σ-
subproduct Y (B). Since πB(F0 ∩ Z(B) \ Vn) and πB(F1 ∩ Z(B) \ Vn) are disjoint
closed sets in the clopen subspace πB(Z(B) \ Vn) of the normal strongly zero-
dimensional space Y (B), there are disjoint clopen sets W0(B) and W1(B) of Y (B)
such that F0 ∩ Z(B) \ Vn ⊂ π−1

B (W0(B)), F1 ∩ Z(B) \ Vn ⊂ π−1
B (W1(B)) and

π−1
B (W0(B)∪W1(B))∩Z(B) = Z(B)\Vn. Set Wj =

∪
{π−1

B (Wj(B)) : B ∈ [κ]n+1}
for each j ∈ 2.

Claim 2. Wj is clopen in Y for each j ∈ 2.
Proof. By the continuity of πB , Wj is evidently open. Let y ∈ clY Wj and let
A ∈ [supt(y)]≤n. Then yA, as defined above, is an element of Z(A). Thus yA ∈
Y n ⊂ Vn. Take a basic clopen neighborhood V (A) of yA in Y with V (A) ⊂ Vn. We
may assume that there is a finite subset B(A) of κ with supt(y) ⊂ B(A) such that
yA ∈ V (A) = π−1

B(A)(
∏

i∈B(A) Vi(A)), where Vi(A) is clopen in Yi for each i ∈ B(A).
Set C =

∪
{B(A) : A ∈ [supt(y)]≤n} and for each i ∈ C, set

Vi =
{ ∩

{Vi(A) : i ∈ A ∈ [supt(y)]≤n}, if i ∈ supt(y),∩
{Vi(A) : A ∈ [supt(y)]≤n, i ∈ B(A)}, if i ∈ C \ supt(y).

Then V = π−1
C (

∏
i∈C Vi) is a neighborhood of y in Y . Since π−1

B (Wj(B))’s are
clopen, it suffices to show that V meets π−1

B (Wj(B)) for at most finitely many
B ∈ [κ]n+1. To show this, assume that there is B ∈ [κ]n+1 such that B ̸⊂ supt(y)
and V ∩ π−1

B (Wj(B)) ̸= ∅. Fix x ∈ V ∩ π−1
B (Wj(B)) and let A = B ∩ supt(y) ∈

[supt(y)]≤n. The xB defined above is in Z(B) and πB(xB) = πB(x) ∈ Wj(B) ⊂
πB(Z(B) \ Vn). Since πB ¹ Z(B) is a homeomorphism between Z(B) and Y (B),
we have xB /∈ Vn. Now we will show xB ∈ V (A), let i ∈ B(A). By x ∈ V ,
if i ∈ A, then xB(i) = x(i) ∈ Vi ⊂ Vi(A). If i ∈ B \ A, then it follows from
i ∈ C \ supt(y), i ∈ B(A) and A ∈ [supt(y)]≤n that xB(i) = x(i) ∈ Vi ⊂ Vi(A).
Finally if i ∈ B(A) \B, then xB(i) = s(i) = yA(i) ∈ Vi(A). Thus xB ∈ V (A) ⊂ Vn,
a contradiction. Therefore V meets π−1

B (Wj(B)) only for B ⊂ supt(y). This
completes the proof of Claim 2.

Let W ′
j = Wj \ Vn for each j ∈ 2. By Claim 2, W ′

j is clopen.

Claim 3. W ′
j ∩ (F1−j ∩ Y n+1) = ∅ for each j ∈ 2.

Proof. Let y ∈ W ′
j ∩ (F1−j ∩ Y n+1). Since y ∈ Y n+1 \ Vn ⊂ Y n+1 \ Y n, we have

B = supt(y) ∈ [κ]n+1. Then y ∈ (F1−j∩Z(B))\Vn ⊂ π−1
B (W1−j(B)). On the other

hand, by y ∈ Wj , there is B′ ∈ [κ]n+1 such that y ∈ π−1
B′ (Wj(B′)). Since W0(B)

and W1(B) are disjoint, we have B ̸= B′. Since πB′(yB′) = πB′(y) ∈ Wj(B′),
we have yB′ ∈ π−1

B′ (Wj(B′)) ∩ Z(B′) ⊂ Z(B′) \ Vn. It follows from Y n ⊂ Vn

that |supt(yB′)| = |B′| = n + 1. But this is a contradiction, because by B ̸= B′,
|supt(yB′)| ≤ |B ∩ B′| ≤ n. The proof of Claim 3 is complete.

Claim 4. Y n+1 \ Vn ⊂ W ′
0 ∪ W ′

1.
Proof. Let y ∈ Y n+1 \ Vn and B = supt(y) ∈ [κ]n+1. Then y ∈ Z(B) \ Vn ⊂
π−1

B (W0(B) ∪ W1(B)) ⊂ W0 ∪ W1, therefore y ∈ W ′
0 ∪ W ′

1.

Now let F = (F0 ∩W ′
1)∪ (F1 ∩W ′

0). By Claims 3 and 4, we have F ∩ Y n+1 = ∅.
Applying Claim 1 for (Sn+1), we can find a clopen set W such that Y n+1 ⊂ W
and W ∩ F = ∅. Then obviously we have that Vjn+1 = Vjn ∪ (W ′

j ∩ W )’s satisfy
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the conditions (a) and (b) for n + 1. It is straightforward to show that V0 =∪
n∈ω(V0n\

∪
m≤n V1m) and V1 =

∪
n∈ω(V1n\

∪
m≤n V0m) are clopen sets separating

F0 and F1 respectively. Hence Y is normal and strongly zero-dimensional. ¤
Theorem 3.2. If Y = σ(

∏
i∈κ Yi, s) ⊂ Z ⊂ X = σ(

∏
i∈κ αi, s), where Yi = {β <

αi : cfβ ≤ ω} and s ∈
∏

i∈κ Yi, then Z is κ-normal and strongly zero-dimensional.

Proof. Remember that if a space has a dense C∗-embedded κ-normal (strongly
zero-dimensional) subspace, then it is also κ-normal (strongly zero-dimensional,
see [5] 7.1.17). So it suffices to show that Y is C∗-embedded in X. Let F0 and F1

be disjoint zero-sets in Y . We will show that F0 and F1 have disjoint closures in
X, see [5] 3.2.1. By Lemma 3.1, we can find disjoint clopen sets U0 and U1 in Y
separating F0 and F1 with U0 ∪ U1 = Y .

Claim 1. B = {i ∈ κ : ∃y0, y1 ∈ Y (πκ\{i}(y0) = πκ\{i}(y1), y0 ∈ U0, y1 ∈ U1)} is
countable.
Proof. Assume that B is uncountable. For each i ∈ B, fix yi

0, y
i
1 ∈ Y such that

πκ\{i}(yi
0) = πκ\{i}(yi

1), y
i
0 ∈ U0 and yi

1 ∈ U1. Since each finite subproduct of Y is
ω1-compact ([9] Corollary 2.2), Y is also ω1-compact (apply △-system lemma to
{supt(xα) : α ∈ ω1} assuming the existence of a closed discrete subspace {xα : α ∈
ω1}), where a space is ω1-compact if there does not exist an uncountable closed
discrete subspace.

So there is a cluster point y of {yi
0 : i ∈ B} in Y . By y ∈ clY {yi

0 : i ∈ B} ⊂
U0, we may fix a basic open neighborhood W of y in Y with W ⊂ U0. Since
C = {i ∈ B : yi

0 ∈ W} is infinite, we can pick i ∈ C \ supt(W ). It follows from
πκ\{i}(yi

0) = πκ\{i}(yi
1) that yi

1 ∈ W ⊂ U0, a contradiction.

Claim 2. πB(U0) ∩ πB(U1) = ∅.
Proof. Assume x ∈ πB(U0) ∩ πB(U1) and fix yj ∈ Uj with x = πB(yj) for each
j ∈ 2. Then A = {i ∈ κ : y0(i) ̸= y1(i)} is finite and disjoint from B. Order A as
A = {i(k) : 0 ≤ k < l} and for every m with 0 ≤ m ≤ l, define zm ∈ Y by

zm(i) =
{

y1(i), if i ∈ {i(k) : k < m},
y0(i), otherwise.

Then y0 = z0, y1 = zl, moreover πκ\{i(m)}(zm) = πκ\{i(m)}(zm+1) and i(m) /∈ B
for each m < l. Since z0 = y0 ∈ U0, πκ\{i(0)}(z0) = πκ\{i(0)}(z1) and i(0) /∈ B,
it follows, by definition of B, that z1 ∈ U0. By induction we can show y0 =
z0, z1, .., zl = y1 ∈ U0, a contradiction.

Since πB is an open map, {πB(U0), πB(U1)} is a disjoint clopen cover of Y (B).

Claim 3. clX(B)πB(U0) ∩ clX(B)πB(U1) = ∅.
Proof. Assume z ∈ clX(B)πB(U0)∩ clX(B)πB(U1) and let A = {i ∈ B : cfz(i) > ω}.
Note A ⊂ supt(z). For each i ∈ B − A, since cfz(i) ≤ ω, one can fix a strictly
increasing sequence {zn(i) : n ∈ ω} cofinal in z(i) when cfz(i) = ω, and set zn(i) =
z(i)−1 when cfz(i) < ω. Moreover fix an increasing sequence {Hn : n ∈ ω} of finite
sets with B \ A =

∪
n∈ω Hn. Inductively we will define {xn

j : n ∈ ω} ⊂ πB(Uj) for
each j ∈ 2 as follows. Since

V0 = {x ∈ X(B) : ∀i ∈ A(x(i) ≤ z(i)),∀i ∈ H0(z0(i) < x(i) ≤ z(i))}
is a neighborhood of z in X(B), we can fix, for j ∈ 2, x0

j ∈ πB(Uj) ∩ V0. Observe
that for i ∈ A, x0

j (i) < z(i) holds, because of cfx0
j (i) ≤ ω and cfz(i) > ω. Now
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assume that points xk
j ’s and open neighborhoods Vk’s for k < n and j ∈ 2 are

defined such that xk
j (i) < z(i) for each i ∈ A. Set

Vn = {x ∈ X(B) : ∀i ∈ A(max{xn−1
0 (i), xn−1

1 (i)} < x(i) ≤ z(i)),

∀i ∈ Hn(zn(i) < x(i) ≤ z(i))}
and fix xn

j ∈ πB(Uj) ∩ Vn for each j ∈ 2. Define x ∈
∏

i∈B αi by

x(i) =
{

sup{xn
0 (i) : n ∈ ω}, if i ∈ A,

z(i), if i ∈ B \ A.

Then obviously x ∈ Y (B) and x ∈ clY (B){xn
0 : n ∈ ω} ∩ clY (B){xn

1 : n ∈ ω} ⊂
clY (B)πB(U0) ∩ clY (B)πB(U1) = πB(U0) ∩ πB(U1) = ∅, a contradiction.

Clearly F0 ⊆ U0 ⊆ p−1
B (πB(U0)). Thus

clXF0 ⊆ clXp−1
B (πB(U0)) ⊆ p−1

B (clX(B)πB(U0)).

Similarly, we have that

clXF1 ⊆ p−1
B (clX(B)πB(U1)).

Now by Claim 3,

p−1
B (clX(B)πB(U0)) ∩ p−1

B (clX(B)πB(U1)) = ∅.

Therefore, F0 and F1 have disjoint closures in X. Thus, Y is C∗-embedded in
X. ¤

Finding a proof, which does not depend on elementary submodel techniques or
some kind of closing off argument, of countable paracompactness of σ-product of
ordinals with the base point 0 seems to be strangely difficult.

4. Problems

Recall that the space X of Example 2.1 is strongly zero-dimensional assuming
the negation of CH. So we ask:

Question 4.1. Is every σ-product of ordinals at arbitrary base point strongly zero-
dimensional? In particular, is the space in Example 2.1 strongly zero-dimensional
in ZFC?

Question 4.2. Can normality of a σ-product depend on the base point?

[9] Corollary 1.11 shows that in the notation of section 3, if Σ(
∏

i∈κ Yi, s) ⊂ Z ⊂∏
i∈κ αi, then Z is κ-normal and strongly zero-dimensional. In contrast to Theorem

3.2:

Question 4.3. Is a space Z satisfying σ(
∏

i∈κ Yi, s) ⊂ Z ⊂
∏

i∈κ αi, where s ∈∏
i∈κ Yi, κ-normal and strongly zero-dimensional?

In connection with Proposition 2.3:

Question 4.4. Let κ be an uncountable cardinal, Xi be a space with |Xi| ≥ 2 for
each i ∈ κ and s ∈

∏
i∈κ Xi. If X = σ(

∏
i∈κ Xi, s) is κ-expandable and each finite

subproduct of X is normal, then is X normal?
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