$\sigma\text{-}\mathrm{COLLECTIONWISE}$ HAUSDORFFNESS AT SINGULAR STRONG LIMIT CARDINALS

NOBUYUKI KEMOTO

ABSTRACT. Assuming the Singular Cardinals Hypothesis, we prove the following property:

 σ -CWH : For every singular strong limit cardinal κ and \nearrow -normal space X such that for some $\chi < \kappa$, every $x \in X$ has a neighborhood base of size $\leq \chi$, if every closed discrete subspace of size $< \kappa$ is σ -separated, then so is every closed discrete subspace of size κ .

So for getting a model of the negation of σ -CWH, we require a large cardinal.

Throughout the paper, spaces are regular T_1 topological spaces and generally $\alpha, \beta, \gamma, \dots(\kappa, \lambda, \mu, \dots, k, l, m, \dots)$ stand for ordinals (infinite cardinals, natural numbers). A closed discrete subspace Y of a space X is said to be separated if there is a pairwise disjoint collection $\{U(y) : y \in Y\}$ of open sets such that $y \in U(y)$ for each $y \in Y$. A closed discrete subspace Y of a space X is said to be σ -separated if Y can be represented as the countable sum $Y = \bigcup_{n \in \omega} Y_n$, where each Y_n is separated. For a cardinal κ , a space X is κ -collectionwise Hausdorff (κ - σ -collectionwise Hausdorff) if every closed discrete subspace $Y \subset X$ of size κ is separated (σ -separated). For short, CollectionWise Hausdorff is abbreviated as CWH. A space is $< \kappa$ -CWH ($< \kappa$ - σ -CWH) if it is λ -CWH (λ - σ -CWH) for every cardinal $\lambda < \kappa$. For a cardinal κ , we consider the following inductive type properties:

 $CWH(\kappa)$: If X is $< \kappa$ -CWH, then it is κ -CWH.

 σ -CWH(κ) : If X is $< \kappa$ - σ -CWH, then it is κ - σ -CWH.

For a regular cardinal κ (i.e., $cf\kappa = \kappa$), Fleissner [2] proved:

• Under a \diamond -like assumption that is a consequence of V = L, if X is normal and each point $x \in X$ has a neighborhood base of size $\leq \kappa$, then X has $\text{CWH}(\kappa)$.

Balogh and Burke [1] generalized this result as:

• Under the same assumption, if X is \nearrow -normal and each point $x \in X$ has a neighborhood base of size $\leq \kappa$, then X has σ -CWH(κ).

Here a space is \nearrow -normal if for every pair of disjoint closed sets H and K, there are sequences $\{U_n : n \in \omega\}$ and $\{V_n : n \in \omega\}$ of open sets such that $U_n \cap V_n = \emptyset$ for every $n \in \omega$, $\{H \cap U_n : n \in \omega\} \nearrow H$ and $\{K \cap V_n : n \in \omega\} \nearrow K$, where for a well-ordered set A, $\{B_\alpha : \alpha \in A\} \nearrow B$ means that $\bigcup_{\alpha \in A} B_\alpha = B$ and $B_\alpha \subset B_{\alpha'}$ whenever $\alpha < \alpha'$. For later use, $\{B_\alpha : \alpha \in A\} \nearrow$ means that $B_\alpha \subset B_{\alpha'}$ whenever $\alpha < \alpha'$.

For a singular cardinal κ (i.e., $cf\kappa < \kappa$), these papers also showed:

¹⁹⁹¹ Mathematics Subject Classification. 54D15, 03E55.

Key words and phrases. σ -collectionwise Hausdorff, \nearrow -normal, Singular Cardinals Hypothesis.

NOBUYUKI KEMOTO

• Assuming the Generalized Continuum Hypothesis (GCH), that is, $2^{\lambda} = \lambda^{+}$ for every cardinal λ , if X is normal (\nearrow -normal) and for some $\chi < \kappa$, each point $x \in X$ has a neighborhood base of size $\leq \chi$, then X has CWH(κ) (σ -CWH(κ)), see [2] ([1], respectively).

Obviously assuming GCH, every singular cardinal κ is strong limit, i.e., $2^{\lambda} < \kappa$ for each cardinal $\lambda < \kappa$. As a weakening of GCH, the following is well-known:

The Singular Cardinals Hypothesis (SCH): For every singular cardinal κ , if $2^{cf\kappa} < \kappa$, then $\kappa^{cf\kappa} = \kappa^+$.

For SCH, see [3]. The author proved in [4]:

• Assuming SCH, for every singular strong limit cardinal κ , if X is normal and for some $\chi < \kappa$, each point $x \in X$ has a neighborhood base of size $\leq \chi$, then X has $\text{CWH}(\kappa)$.

In this paper, we will prove:

Theorem 1. Assuming SCH, for every singular strong limit cardinal κ , if X is \nearrow -normal and for some $\chi < \kappa$, each point $x \in X$ has a neighborhood base of size $\leq \chi$, then X has σ -CWH(κ).

However, the proof here is necessarily tedious and does not always follow predictable modifications of the proofs listed above. Now we prepare some notions.

Definition 2. Let Y be a closed discrete subspace of a space X with $\omega_1 \leq cf\kappa \leq \kappa = |Y|$ and $\mathcal{Y} = \{Y_\alpha : \alpha < cf\kappa\}$ a partition of Y, that is, \mathcal{Y} is a disjoint cover of Y. Fix a neighborhood base \mathcal{B}_y of y for each $y \in Y$. Define

$$\mathcal{F} = \{ \langle f_n : n \in \omega \rangle : \forall n \in \omega (\operatorname{dom} f_n \subset Y), f_n \in \prod_{y \in \operatorname{dom} f_n} \mathcal{B}_y, \{\operatorname{dom} f_n : n \in \omega\} \nearrow \},$$
$$\mathcal{F}_\alpha = \{ \langle f_n : n \in \omega \rangle \in \mathcal{F} : \{\operatorname{dom} f_n : n \in \omega\} \nearrow \bigcup_{\beta < \alpha} Y_\beta \},$$

for each $\alpha \leq cf\kappa$.

For each $\alpha < \mathrm{cf}\kappa$ and $f \in \prod_{y \in \mathrm{dom}\, f} \mathcal{B}_y$ with $\mathrm{dom} f \subset Y$, let

$$C(f, \mathcal{Y}, \alpha) = \operatorname{Cl}(\bigcup \{f(y) : y \in \operatorname{dom} f \cap (\bigcup_{\beta < \alpha} Y_{\beta})\}).$$

Then obviously dom $f \cap (\bigcup_{\beta < \alpha} Y_{\beta}) \subset C(f, \mathcal{Y}, \alpha)$. Moreover for each $\mathbf{f} = \langle f_n : n \in \omega \rangle \in \mathcal{F}$ and $\alpha < \operatorname{cf} \kappa$, let

$$S(\mathbf{f}, \mathcal{Y}, \alpha) = \{ y \in Y : \{ C(f_n, \mathcal{Y}, \alpha) : n \in \omega \} \text{ is not point-finite at } y \}.$$

If $\mathbf{f} = \langle f_n : n \in \omega \rangle \in \mathcal{F}_{\mathrm{cf}\kappa}$, then by $\{ \mathrm{dom} f_n : n \in \omega \} \nearrow Y$, we have $\bigcup_{\beta < \alpha} Y_\beta \subset S(\mathbf{f}, \mathcal{Y}, \alpha)$ for each $\alpha < \mathrm{cf}\kappa$, and $\{ S(\mathbf{f}, \mathcal{Y}, \alpha) : \alpha < \mathrm{cf}\kappa \} \nearrow Y$.

Definition 3. Let Y be a closed discrete subspace of a space X with $\omega_1 \leq cf\kappa \leq \kappa = |Y|$. Y has good partitions if there is a sequence $\{\mathcal{Y}^m : m \in \omega\}$ of partitions of Y, where $\mathcal{Y}^m = \{Y^m_\alpha : \alpha < cf\kappa\}$, such that

- (a) $|Y_{\alpha}^{m}| < \kappa$ for each $m \in \omega$ and $\alpha < cf\kappa$,
- (b) for each $m \in \omega$, there is $\mathbf{f}^m = \langle f_n^m : n \in \omega \rangle \in \mathcal{F}_{\mathrm{cf}\kappa}$ such that $\{\alpha < \mathrm{cf}\kappa : S(\mathbf{f}^m, \mathcal{Y}^m, \alpha) \subset \bigcup_{\beta < \alpha} Y_{\beta}^{m+1}\}$ contains a closed unbounded (cub) set in cf κ .

 $\mathbf{2}$

Lemma 4. Let Y be a closed discrete subspace of a space X with $\omega_1 \leq cf\kappa \leq$ $\kappa = |Y|$ such that every subset $Y' \subset Y$ of size $< \kappa$ is σ -separated. If Y has good partitions $\{\mathcal{Y}^m : m \in \omega\}$, then Y is σ -separated.

Proof. Let $\{\mathcal{Y}^m : m \in \omega\}$ be good partitions and $\mathbf{f}^m \in \mathcal{F}_{\mathrm{cf}\kappa}$ and a cub set $C_m \subset \mathrm{cf}\kappa$ $(m \in \omega)$ ensure the clause (b) of the definition above. For notational simplicity, let $S^m_{\alpha} = S(\mathbf{f}^m, \mathcal{Y}^m, \alpha)$ for each $m \in \omega$ and $\alpha < \mathrm{cf}\kappa$. Let $C = \{0\} \cup \bigcap_{m \in \omega} C_m$ and enumerate C as $C = \{\alpha(\gamma) : \gamma < cf\kappa\}$ with the increasing order. For each $m \in \omega$ and $\gamma < cf\kappa$, set $Y(m, \gamma) = \bigcup \{Y_{\beta}^m : \alpha(\gamma) \leq \beta < \alpha(\gamma+1)\}$. Since C is cub, $\{Y(m,\gamma) : \gamma < cf\kappa\}$ is also a partition of Y. So for each $y \in Y$ and $m \in \omega$, let $\gamma(m, y) < cf\kappa$ be the unique γ with $y \in Y(m, \gamma)$. Since $\bigcup_{\beta < \alpha(\gamma)} Y_{\beta}^m \subset S_{\alpha(\gamma)}^m \subset Y_{\beta}^m \subset Y_{\beta$ $\bigcup_{\beta < \alpha(\gamma)} Y_{\beta}^{m+1}$ for each $\gamma < cf\kappa$ and $m \in \omega$, we have $\gamma(m, y) \ge \gamma(m+1, y)$ for each $m \in \omega$ and $y \in Y$. Therefore for each $y \in Y$, one can fix $m(y) \in \omega$ such that $\gamma(m(y), y) = \gamma(m, y)$ for each $m \ge m(y)$. Set for each $m, n \in \omega$,

$$D_n^m = \{ y \in \operatorname{dom} f_n^m : y \notin C(f_n^m, \mathcal{Y}^m, \alpha(\gamma(m, y))) \}.$$

Claim. $Y = \bigcup_{n \in \omega} D_n^m$.

Proof. Let $y \in Y$ and $\gamma = \gamma(m(y), y)$. It follows from $\gamma = \gamma(m(y) + 1, y)$ that $y \in Y(m(y)+1,\gamma)$. Since $Y(m(y)+1,\gamma)$ is disjoint from $\bigcup_{\beta < \alpha(\gamma)} Y_{\beta}^{m(y)+1} \supset S_{\alpha(\gamma)}^{m(y)}$, we have $y \notin S_{\alpha(\gamma)}^{m(y)}$. Therefore $\{C(f_n^{m(y)}, \mathcal{Y}^{m(y)}, \alpha(\gamma)) : n \in \omega\}$ is point-finite at y. So by $\{\dim f_n^{m(y)} : n \in \omega\} \nearrow Y$, one can fix $n \in \omega$ with $y \in \operatorname{dom} f_n^{m(y)}$ and $y \notin C(f_n^{m(y)}, \mathcal{Y}^{m(y)}, \alpha(\gamma)), \text{ thus } y \in D_n^{m(y)}.$

Now it suffices to show that D_n^m 's are σ -separated. For each $\gamma < cf\kappa$, set $D_n^m(\gamma) = D_n^m \cap Y(m,\gamma)$, then obviously $D_n^m(\gamma) \cap C(f_n^m,\mathcal{Y}^m,\alpha(\gamma)) = \emptyset$. It follows from $|D_n^m(\gamma)| < \kappa$ and the assumption that we get a partition $\{D_n^m(\gamma, k) : k \in \omega\}$ of $D_n^m(\gamma)$, where each $D_n^m(\gamma, k)$ is separated. By induction on $\gamma < cf\kappa$, one can define $g \in \prod_{y \in D_m^m} \mathcal{B}_y$ satisfying:

- (a) $g(y) \subset f_n^m(y)$ for each $y \in D_n^m$,
- (b) $\{g(y): y \in D_n^m(\gamma, k)\}$ is pairwise disjoint for each $\gamma < \operatorname{cf} \kappa$ and $k \in \omega$, (c) $g(y) \cap C(f_n^m, \mathcal{Y}^m, \alpha(\gamma)) = \emptyset$ for each $\gamma < \operatorname{cf} \kappa$ and $y \in D_n^m(\gamma)$.

Then $\bigcup_{\gamma < cf\kappa} D_n^m(\gamma, k)$ is separated for each $k \in \omega$, thus D_n^m is σ -separated. \Box

For a limit cardinal κ , we can always fix a normal sequence $\{\kappa_{\alpha} : \alpha < cf\kappa\}$ of cardinals, that is, it is strictly increasing and cofinal in κ and $\kappa_{\alpha} = \sup\{\kappa_{\gamma} : \gamma < \alpha\}$ whenever α is limit. Moreover if κ is strong limit, then we may fix a normal sequence $\{\kappa_{\alpha} : \alpha < cf\kappa\}$ so that $2^{\kappa_{\alpha}} \leq \kappa_{\alpha+1}$ for each $\alpha < cf\kappa$.

Lemma 5. Let κ be a strong limit cardinal with $\omega_1 \leq cf\kappa$ and $\{\kappa_\alpha : \alpha < cf\kappa\}$ a normal sequence for κ satisfying $2^{\kappa_{\alpha}} \leq \kappa_{\alpha+1}$ for each $\alpha < cf\kappa$. Moreover, let Y be a closed discrete subspace of a \nearrow -normal space X such that $|Y| = \kappa$, and each $y \in Y$ has a neighborhood base \mathcal{B}_y at y with $|\mathcal{B}_y| \leq \chi$, where $\chi < \kappa$. Then for every partition $\mathcal{Y} = \{Y_\alpha : \alpha < \mathrm{cf}\kappa\}$ of Y with $|Y_\alpha| < \kappa$ ($\alpha < \mathrm{cf}\kappa$), there is $\mathbf{f} = \langle f_n : n \in \omega \rangle \in \mathcal{F}_{\mathrm{cf}\kappa} \text{ such that } \{ \alpha < \mathrm{cf}\kappa : |S(\mathbf{f}, \mathcal{Y}, \alpha)| < 2^{\kappa_\alpha} \} \text{ contains a cub set}$ in $cf\kappa$.

Proof. Let $\mathcal{Y} = \{Y_{\alpha} : \alpha < \mathrm{cf}\kappa\}$ be a partition of Y with $|Y_{\alpha}| < \kappa$ for each $\alpha < \mathrm{cf}\kappa$. Set $Z_{\alpha} = \bigcup_{\beta < \alpha} Y_{\beta}$ for each $\alpha < cf\kappa$. Obviously for each $\alpha < cf\kappa$, $|Z_{\alpha}| < \kappa$, so one can fix $h(\alpha) < cf\kappa$ with $|Z_{\alpha}| \leq \kappa_{h(\alpha)}$. Now we consider the cub set

$$C = \{ \alpha < \operatorname{cf} \kappa : \forall \beta < \alpha(h(\beta) < \alpha), \alpha \text{ is limit}, \chi < \kappa_{\alpha} \}$$

Let $\alpha \in C$. Since α is limit, we have $Z_{\alpha} = \bigcup_{\beta < \alpha} Z_{\beta}$. Moreover since $|Z_{\beta}| \le \kappa_{h(\beta)} < \kappa_{\alpha}$ for each $\beta < \alpha$, we have $|Z_{\alpha}| \le |\alpha| \cdot \kappa_{\alpha} = \kappa_{\alpha}$. Noting $|\mathcal{F}_{\alpha}| \le (\chi^{\kappa_{\alpha}})^{\omega} = 2^{\kappa_{\alpha}}$, we can enumerate $\mathcal{F}_{\alpha} \times^{Z_{\alpha}} 2$ as

$$\mathcal{F}_{\alpha} \times^{Z_{\alpha}} 2 = \{ \langle \mathbf{f}_{\alpha\delta}, g_{\alpha\delta} \rangle : 1 \le \delta < 2^{\kappa_{\alpha}} \}$$

Now enumerate the cub set C as $\{\alpha(\gamma) : \gamma < cf\kappa\}$ with the increasing order.

By induction on $\gamma < cf\kappa$ and $\delta < 2^{\kappa_{\alpha(\gamma)}}$, we will define a partial function $G_{\gamma\delta}$ from Y to $2 = \{0, 1\}$ such that :

- (1) $G_{\gamma\delta} \subset G_{\gamma\delta'}$ for each $\gamma < cf\kappa$ and $\delta < \delta' < 2^{\kappa_{\alpha(\gamma)}}$,
- (2) $G_{\gamma 0} = \bigcup \{ G_{\gamma' \delta'} : \gamma' < \gamma, \delta' < 2^{\kappa_{\alpha(\gamma')}} \} \text{ for each } \gamma < \mathrm{cf}\kappa,$
- (3) $|G_{\gamma\delta}| \leq |\kappa_{\alpha(\gamma)} + \delta|$ for each $\gamma < cf\kappa$ and $\delta < 2^{\kappa_{\alpha(\gamma)}}$.

First let $G_{00} = \emptyset$. We can show that, using the inductive assumption, the $G_{\gamma 0}$ defined by the clause (2) also satisfies the clause (3). So it remains to define $G_{\gamma \delta}$ assuming that $G_{\gamma \delta'}$ has been defined for all $\delta' < \delta$, where $\gamma < cf\kappa$ and $0 < \delta < 2^{\kappa_{\alpha}(\gamma)}$. Since $\mathbf{f}_{\alpha(\gamma)\delta} = \langle f_{\alpha(\gamma)\delta n} : n \in \omega \rangle \in \mathcal{F}_{\alpha(\gamma)}, S(\mathbf{f}_{\alpha(\gamma)\delta}, \mathcal{Y}, \alpha(\gamma))$ is defined. We consider two cases.

Case 1. $S(\mathbf{f}_{\alpha(\gamma)\delta}, \mathcal{Y}, \alpha(\gamma)) \setminus (\bigcup_{\delta' < \delta} \operatorname{dom} G_{\gamma\delta'} \cup Z_{\alpha(\gamma)}) \neq \emptyset.$

In this case, fix a point $y(\gamma, \delta)$ in this set. Set

$$K = \{ n \in \omega : y(\gamma, \delta) \in C(f_{\alpha(\gamma)\delta n}, \mathcal{Y}, \alpha(\gamma)) \}.$$

 $K = \{n \in \omega : y(\gamma, \delta) \}$ Then K is infinite. For each $i \in 2$, set

 $C_i(f_{\alpha(\gamma)\delta n}, \mathcal{Y}, \alpha(\gamma)) = \operatorname{Cl}(\bigcup \{f_{\alpha(\gamma)\delta n}(y) : y \in \operatorname{dom} f_{\alpha(\gamma)\delta n} \cap g_{\alpha(\gamma)\delta}^{-1}(i)\}).$

Then $C(f_{\alpha(\gamma)\delta n}, \mathcal{Y}, \alpha(\gamma)) = \bigcup_{i \in 2} C_i(f_{\alpha(\gamma)\delta n}, \mathcal{Y}, \alpha(\gamma))$, therefore for each $n \in K$, one can fix $i_n \in 2$ such that $y(\gamma, \delta) \in C_{i_n}(f_{\alpha(\gamma)\delta n}, \mathcal{Y}, \alpha(\gamma))$. Since K is infinite, there are an infinite subset $K(\gamma, \delta) \subset K$ and $i(\gamma, \delta) \in 2$ such that $i(\gamma, \delta) = i_n$ for each $n \in K(\gamma, \delta)$. Define

$$G_{\gamma\delta} = (\bigcup_{\delta' < \delta} G_{\gamma\delta'}) \cup \{ \langle y(\gamma, \delta), 1 - i(\gamma, \delta) \rangle \}.$$

Case 2. Otherwise.

In this case, let define

$$G_{\gamma\delta} = \bigcup_{\delta' < \delta} G_{\gamma\delta'}.$$

In either cases, obviously $G_{\gamma\delta}$ satisfies the clause (3). Let G be a full function on Y to 2 extending all $G_{\gamma\delta}$'s. Since X is \nearrow -normal, there is $\mathbf{f} = \langle f_n : n \in \omega \rangle \in \mathcal{F}_{\mathrm{cf}\kappa}$ such that for each $n \in \omega$,

(*)
$$\bigcup \{ f_n(y) : y \in \text{dom} f_n \cap G^{-1}(0) \} \cap \bigcup \{ f_n(y) : y \in \text{dom} f_n \cap G^{-1}(1) \} = \emptyset.$$

The following claim completes the proof.

Claim.
$$C \subset \{\alpha < \operatorname{cf} \kappa : |S(\mathbf{f}, \mathcal{Y}, \alpha)| < 2^{\kappa_{\alpha}}\}.$$

Proof. Assume not, then $|S(\mathbf{f}, \mathcal{Y}, \alpha(\gamma))| \ge 2^{\kappa_{\alpha(\gamma)}}$ for some $\gamma < cf\kappa$. Fix $\delta < 2^{\kappa_{\alpha(\gamma)}}$ with $1 \le \delta$ such that

$$\langle\langle f_n \upharpoonright Z_{\alpha(\gamma)} : n \in \omega \rangle, G \upharpoonright Z_{\alpha(\gamma)} \rangle = \langle \mathbf{f}_{\alpha(\gamma)\delta}, g_{\alpha(\gamma)\delta} \rangle.$$

It follows from $C(f_n, \mathcal{Y}, \alpha(\gamma)) = C(f_{\alpha(\gamma)\delta n}, \mathcal{Y}, \alpha(\gamma)), 2^{\kappa_{\alpha(\gamma)}} \leq |S(\mathbf{f}, \mathcal{Y}, \alpha(\gamma))| = |S(\mathbf{f}_{\alpha(\gamma)\delta}, \mathcal{Y}, \alpha(\gamma))|$ and $|\bigcup_{\delta' < \delta} \operatorname{dom} G_{\gamma\delta'} \cup Z_{\alpha(\gamma)}| < 2^{\kappa_{\alpha(\gamma)}}$ that Case 1 happens. Fix $n \in K(\gamma, \delta)$ with $y(\gamma, \delta) \in \operatorname{dom} f_n$. Then

$$y(\gamma,\delta) \in C_{i(\gamma,\delta)}(f_{\alpha(\gamma)\delta n},\mathcal{Y},\alpha(\gamma)) =$$

Cl($\bigcup \{f_{\alpha(\gamma)\delta n}(y) : y \in \mathrm{dom} f_{\alpha(\gamma)\delta n} \cap g_{\alpha(\gamma)\delta}^{-1}(i(\gamma,\delta))\}) \subset$
Cl($\bigcup \{f_n(y) : y \in \mathrm{dom} f_n \cap G^{-1}(i(\gamma,\delta))\}).$

Since $f_n(y(\gamma, \delta))$ is a neighborhood of $y(\gamma, \delta)$, we have $f_n(y(\gamma, \delta)) \cap f_n(y) \neq \emptyset$ for some $y \in \text{dom} f_n \cap G^{-1}(i(\gamma, \delta))$, this contradicts (*).

The following is an improvement of Lemma 2.5 in [4] and can be proved by some easy modifications.

Lemma 6. Let Y be a set (need not be a (sub)space) with $\omega_1 \leq cf\kappa < \kappa = |Y|$, $\mathcal{Y} = \{Y_\alpha : \alpha < cf\kappa\}$ a partition of Y and $\{\kappa_\alpha : \alpha < cf\kappa\}$ a normal sequence for κ . If $\{S_\alpha : \alpha < cf\kappa\} \nearrow$, $\bigcup_{\beta < \alpha} Y_\beta \subset S_\alpha$ for each $\alpha < cf\kappa$ and $\{\alpha < cf\kappa : |S_\alpha| \le \kappa_\alpha\}$ contains a club set in cf κ , then there is a partition $\mathcal{Y}' = \{Y'_\alpha : \alpha < cf\kappa\}$ of Y such that $|Y'_\alpha| < \kappa$ for each $\alpha < cf\kappa$ and $\{\alpha < cf\kappa : S_\alpha \subset \bigcup_{\beta < \alpha} Y'_\beta\}$ contains a cub set in cf κ .

Lemma 7. Let κ be a singular strong limit cardinal of uncountable cofinality, and Y a closed discrete subspace of a \nearrow -normal space X such that $|Y| = \kappa$ and for some $\chi < \kappa$, each $y \in Y$ has a neighborhood base \mathcal{B}_y of size $\leq \chi$. If there is a normal sequence $\{\kappa_\alpha : \alpha < \operatorname{cf}\kappa\}$ for κ such that $\{\alpha < \operatorname{cf}\kappa : 2^{\kappa_\alpha} = \kappa_\alpha^+\}$ contains a cub set in $\operatorname{cf}\kappa$, then Y has good partitions (therefore Y is σ -separated if every subset $Y' \subset Y$ of size $< \kappa$ is σ -separated).

Proof. We may assume $2^{\kappa_{\alpha}} \leq \kappa_{\alpha+1}$ for each $\alpha < \mathrm{cf}\kappa$. First fix a 1-1 onto function $f: Y \to \kappa$ and set $Y^0_{\alpha} = f^{-1}(\kappa_{\alpha} \setminus \sup_{\beta < \alpha} \kappa_{\beta})$ for each $\alpha < \mathrm{cf}\kappa$. Then $\mathcal{Y}^0 = \{Y^0_{\alpha}: \alpha < \mathrm{cf}\kappa\}$ is a partition of Y. Assume that a partition $\mathcal{Y}^m = \{Y^m_{\alpha}: \alpha < \mathrm{cf}\kappa\}$ with $|Y^m_{\alpha}| < \kappa$ for each $\alpha < \mathrm{cf}\kappa$ is defined. By Lemma 5, there is $\mathbf{f}^m \in \mathcal{F}_{\mathrm{cf}\kappa}$ such that $\{\alpha < \mathrm{cf}\kappa : |S(\mathbf{f}^m, \mathcal{Y}^m, \alpha)| < 2^{\kappa_{\alpha}}\}$ contains a cub set, therefore by the assumption, $\{\alpha < \mathrm{cf}\kappa : |S(\mathbf{f}^m, \mathcal{Y}^m, \alpha)| \leq \kappa_{\alpha}\}$ also contains a cub set. Since $\bigcup_{\beta < \alpha} Y^m_{\beta} \subset S(\mathbf{f}^m, \mathcal{Y}^m, \alpha)$ for each $\alpha < \mathrm{cf}\kappa$ and $\{S(\mathbf{f}^m, \mathcal{Y}^m, \alpha) : \alpha < \mathrm{cf}\kappa\} \not\nearrow$, by Lemma 6, we get a partition $\mathcal{Y}^{m+1} = \{Y^{m+1}_{\alpha} : \alpha < \mathrm{cf}\kappa\}$ of Y such that $|Y^{m+1}_{\alpha}| < \kappa$ for each $\alpha < \mathrm{cf}\kappa : S(\mathbf{f}^m, \mathcal{Y}^m, \alpha) \subset \bigcup_{\beta < \alpha} Y^{m+1}_{\beta}$ contains a cub set in cf κ . By repeatedly applications, we have good partitions.

Proof of Theorem 1. Whenever $cf\kappa = \omega$, Theorem 1 is obviously true without assuming SCH or \nearrow -normality of X. So let $cf\kappa \ge \omega_1$. Since assuming SCH, $\{\alpha < cf\kappa : 2^{\kappa_\alpha} = \kappa_\alpha^+\}$ contains a cub set (see Lemma 2.11 of [4]), Lemma 7 completes the proof.

References

- [1] Z.T. Balogh and D.K. Burke On /-normal spaces, Top. Appl.. 57 (1994) 71-85.
- W.G. Fleissner Separating closed discrete collections of singular cardinality, in: Set Theoretic Topology (ed. G.M. Reed), Academic Press, 1977, 135–140.
- [3] T. Jech, Set Theory Academic Press, 1978.
- [4] N. Kemoto, Collectionwise Hausdorffness at limit cardinals, Fund. Math., 138 (1991) 59–67.

DEPARTMENT OF MATHEMATICS, FACULTY OF EDUCATION, OITA UNIVERSITY, DANNOHARU, OITA, 870-1192, JAPAN