SUBNORMALITY IN ω_1^2

Nobuyuki Kemoto

ABSTRACT. A space X is said to be subnormal (= δ -normal) if every pair of disjoint closed sets can be separated by disjoint G_{δ} -sets. It is known that the product space $(\omega_1 + 1) \times \omega_1$ is neither normal nor subnormal, moreover the subspace $A \times B$ of ω_1^2 is not normal whenever A and B are disjoint stationary sets in ω_1 . We will discuss on subnormality of subspaces of ω_1^2 .

All spaces considered in this paper are regular and T_1 . A space X is said to be subnormal (= δ -normal) if every pair of disjoint closed sets can be separated by disjoint G_{δ} -sets, see [Bu] and [Ya]. It is well known that all subspaces of ordinals, more generally all GO-spaces, are shrinking, so normal and countably paracompact. But, as is well known, the product space $(\omega_1 + 1) \times \omega_1$ is countably paracompact but not normal. Indeed, first the product space $(\omega_1 + 1) \times \omega_1$ is the perfect preimage of the countably paracompact space ω_1 , so it is countably paracompact. Second, the Pressing Down Lemma (abbreviated as PDL) shows that the diagonal $\triangle = \{ \langle \alpha, \alpha \rangle \in (\omega_1 + 1) \times \omega_1 : \alpha < \omega_1 \}$ and the closed set $\{ \omega_1 \} \times \omega_1$ cannot be separated by disjoint open sets. Moreover similarly, we can show that these two disjoint closed subsets cannot be separated by disjoint G_{δ} sets, so $(\omega_1 + 1) \times \omega_1$ is not subnormal ([Kr]). A space X is said to be countably subparacompact if every countable open cover has a σ -locally finite closed refinement, equivalently every countable open cover has a countable closed refinement. Note that countable subparacompactness implies subnormality, therefore $(\omega_1 + 1) \times \omega_1$ is, strangely, not countably subparacompact. On the other hand, it is known that all subspaces of two ordinals are always countably metacompact ([KS]) and that $X = A \times B$ is neither normal nor countably paracompact whenever A and B are disjoint stationary sets in $\omega_1([KOT])$. So it is natural to ask whether the above space $X = A \times B$ is subnormal (or countably subparacompact) or not. In this paper, we will see that all subspaces of ω_1^2 are countably subparacompact, therefore subnormal.

For $A \subset \omega_1$, put $\operatorname{Lim}(A) = \{\alpha < \omega_1 : \sup(A \cap \alpha) = \alpha\}$, where $\sup \emptyset = -1$, Succ $(A) = A \setminus \operatorname{Lim}(A)$, Lim = Lim (ω_1) and Succ = Succ (ω_1) . Observe that Lim(A) is closed and unbounded (cub) in ω_1 whenever A is unbounded in ω_1 . For a cub set $C \subset \omega_1$ and $\alpha \in C$, put $p_C(\alpha) = \sup(C \cap \alpha)$. Observe that $p_C(\alpha) \in C \cup \{-1\}$, and $p_C(\alpha) = \alpha$ iff $\alpha \in \operatorname{Lim}(C)$, and $p_C(\alpha)$ is the immediate predecessor of α in $C \cup \{-1\}$ whenever $\alpha \in \operatorname{Succ}(C)$. It is easy to show that $\omega_1 \setminus C = \bigcup_{\alpha \in \operatorname{Succ}(C)} (p_C(\alpha), \alpha)$ and $\omega_1 \setminus \operatorname{Lim}(C) = \bigcup_{\alpha \in \operatorname{Succ}(C)} (p_C(\alpha), \alpha]$, where (α, β) and $(\alpha, \beta]$ denote the usual open and half open, respectively, interval.

AMS subject Classification: 54B10, 54D15, 54D20.

Key words and phrases: subnormal, subshrinking, collectionwise subnormal

Assume that a cub set C_{α} is defined for each $\alpha \in A$, where $A \subset \omega_1$. Then the diagonal intersection $\triangle_{\alpha \in A} C_{\alpha} = \{\beta \in \omega_1 : \forall \alpha \in A \cap \beta(\beta \in C_{\alpha})\}$ of C_{α} 's, $\alpha \in A$, is a cub set in ω_1 (see [Ku Lemma II 6.14]).

We use the following specific notation: Let $X \subset \omega_1^2$, $\alpha < \omega_1$ and $\beta < \omega_1$. Let $V_{\alpha}(X) = \{\beta < \omega_1 : \langle \alpha, \beta \rangle \in X\}$, $H_{\beta}(X) = \{\alpha < \omega_1 : \langle \alpha, \beta \rangle \in X\}$ and $\Delta(X) = \{\alpha < \omega_1 : \langle \alpha, \alpha \rangle \in X\}$. For subsets C and D of ω_1 , let $X_C = X \cap C \times \omega_1$, $X^D = X \cap \omega_1 \times D$ and $X_C^D = X \cap C \times D$.

Let \mathcal{U} be an open cover of a space X. A collection $\mathcal{F} = \{F(U) : U \in \mathcal{U}\}$ indexed by \mathcal{U} is said to be a *shrinking* (*subshrinking*) of \mathcal{U} in X if $F(U) \subset U$ and F(U) is closed (F_{σ} , respectively) in X for each $U \in \mathcal{U}$, and \mathcal{F} covers X. A space is said to be *shrinking* (*subshrinking*, see [Ya]) if every open cover has a shrinking (subshrinking). Note that countable subparacompactness is equivalent to the assertion that every countable open cover has a subshrinking. Therefore subshrinking implies countable subparacompactness and countable subparacompactness implies subnormality.

Theorem A. All subspaces of ω_1^2 are subshrinking.

To prove this, we need several Lemmas. The following is easy.

Lemma 1. If X_n is a closed substrinking subspace of a space X for each $n \in \omega$, then the subspace $\bigcup_{n \in \omega} X_n$ of X is also substrinking.

So we have:

Lemma 2. $\alpha \times \omega_1$ and $\omega_1 \times \alpha$ are hereditarily subshrinking for each $\alpha < \omega_1$. In particular, for each subspace X of ω_1^2 , $X_{[0,\alpha]}$ and $X^{[0,\alpha]}$ are subshrinking clopen subspaces of X for each $\alpha < \omega_1$.

This Lemma shows that, for each cub set $C \subset \omega_1$ and $X \subset \omega_1^2$, $X_{\omega_1 \setminus \text{Lim}(C)} = \bigoplus_{\alpha \in \text{Succ}(C)} X_{(p_C(\alpha),\alpha]}$ and $X^{\omega_1 \setminus \text{Lim}(C)} = \bigoplus_{\alpha \in \text{Succ}(C)} X^{(p_C(\alpha),\alpha]}$ are also subshrinking.

Let $X \subset \omega_1^2$, $Y = \{\langle \alpha, \beta \rangle \in X : \alpha \leq \beta\}$ and $Z = \{\langle \alpha, \beta \rangle \in X : \alpha \geq \beta\}$. Then X is the union of the two closed subspaces Y and Z. So by Lemma 1, to show the subshrinking property of X, it suffices to show that both Y and Z are subshrinking. Since the two cases are similar, we may assume $X \subset \{\langle \alpha, \beta \rangle \in \omega_1^2 : \alpha \leq \beta\}$ and we will show X is subshrinking. The following is routine.

Lemma 3. Let \mathcal{G} be a collection of G_{δ} -sets of a space X. If there is a point-finite collection $\mathcal{U} = \{U(G) : G \in \mathcal{G}\}$ of open sets with $G \subset U(G)$, then $\bigcup \mathcal{G}$ is also a G_{δ} -set in X.

Lemma 4. Let $X \subset \{ \langle \alpha, \beta \rangle \in \omega_1^2 : \alpha \leq \beta \}$ be such that $X \cap C^2 = \emptyset$ for some cub set $C \subset \omega_1$. Then X is subshrinking.

Proof. Let $\beta \in \operatorname{Succ}(C)$. Since $X^{(p_C(\beta),\beta)}$ is a countable open subspace of X and $X_C^{(p_C(\beta),\beta]} \subset X^{(p_C(\beta),\beta)}, X_C^{(p_C(\beta),\beta]}$ is G_{δ} in X. Moreover since $\{X^{(p_C(\beta),\beta)} : \beta \in \operatorname{Succ}(C)\}$ is a pairwise disjoint collection of open sets with $X_C^{(p_C(\beta),\beta]} \subset X^{(p_C(\beta),\beta)}$, by Lemma 3, $X_C = \bigoplus_{\beta \in \operatorname{Succ}(C)} X_C^{(p_C(\beta),\beta]}$ is also G_{δ} in X. Say $X_C = \bigcap_{n \in \omega} V_n$, where V_n 's are open in X. Since $X_{\omega_1 \setminus \operatorname{Lim}(C)}$ is subshrinking and $X \setminus V_n \subset X \setminus X_C = X_{\omega_1 \setminus C} \subset X_{\omega_1 \setminus \operatorname{Lim}(C)}$ is subshrinking subspaces of X. On the other hand, since $X^{\omega_1 \setminus \operatorname{Lim}(C)}$ is subshrinking and $X_C \subset X \setminus X^C = X^{\omega_1 \setminus C} \subset X^{\omega_1 \setminus \operatorname{Lim}(C)}$, $X \setminus V_n$'s are closed subshrinking subspaces of X. On the other hand, since $X^{\omega_1 \setminus \operatorname{Lim}(C)}$ is subshrinking and $X_C \subset X \setminus X^C = X^{\omega_1 \setminus C} \subset X^{\omega_1 \setminus \operatorname{Lim}(C)}$, X_C is a closed subshrinking subspace of X. Then X is covered by the countable

collection $\{X_C\} \cup \{X \setminus V_n : n \in \omega\}$ of closed subshrinking subspaces of X. Therefore X is itself subshrinking. \Box

Lemma 5. Let $X \subset \{\langle \alpha, \beta \rangle \in \omega_1^2 : \alpha \leq \beta\}$ and $\alpha_0 < \omega_1$. Assume that there are a cub set $D \subset \omega_1$ with $X \cap \{\langle \alpha, \alpha \rangle : \alpha \in D\} = \emptyset$, an uncountable subset S of D and a function $g: S \to \omega_1$ such that, for each $\alpha \in S$,

(1)
$$\alpha \leq g(\alpha)$$

(2) $g(\alpha') < \alpha$ for each $\alpha' \in S \cap \alpha$.

Then $Z(\alpha_0, D, S, g) = \bigcup_{\alpha \in S} X^{(g(\alpha), \omega_1)}_{(\alpha_0, \alpha]}$ is an open F_{σ} subset of X and there is a cub set $C \subset \omega_1$ such that $X \cap C^2 \subset Z(\alpha_0, D, S, g)$.

Proof. Let $Z = Z(\alpha_0, D, S, g)$. It is evident that Z is open in X. For each $\gamma \in \text{Lim}$, fix a strictly increasing cofinal sequence $\{\gamma(n) : n \in \omega\}$ in γ . For each $\gamma \in \text{Lim}(S)$ and $n \in \omega$, let $\alpha(\gamma) = \min\{\alpha \in S : \gamma \leq \alpha\}$ and $V_n(\gamma) = X_{(\gamma(n),\gamma]}^{(\gamma,g(\alpha(\gamma)))}$. Note that $V_n(\gamma)$ is clopen in X.

Claim 1. The collection $\{(\gamma, g(\alpha(\gamma))] : \gamma \in \text{Lim}(S)\}$ is pairwise disjoint.

Proof. Let $\gamma', \gamma \in \text{Lim}(S)$ with $\gamma' < \gamma$. It follows from $\gamma' < \gamma \in \text{Lim}(S)$ that there are $\alpha', \alpha \in S$ with $\gamma' < \alpha' < \alpha < \gamma$. By the minimality of $\alpha(\gamma')$ and $\alpha(\gamma)$, we have $\gamma' \leq \alpha(\gamma') \leq \alpha' < \alpha < \gamma \leq \alpha(\gamma)$. Moreover by (1), (2) and $\alpha \in S$, we have $\gamma' \leq \alpha(\gamma') \leq g(\alpha(\gamma')) < \alpha < \gamma \leq \alpha(\gamma) \leq g(\alpha(\gamma))$. Therefore $(\gamma', g(\alpha(\gamma'))] \cap (\gamma, g(\alpha(\gamma))) = \emptyset$

So note that $\{X^{(\gamma,g(\alpha(\gamma))]} : \gamma \in \operatorname{Lim}(S)\}\$ is a pairwise disjoint collection of clopen sets and $V_n(\gamma) \subset X^{(\gamma,g(\alpha(\gamma)))}$ for each $\gamma \in \operatorname{Lim}(S)$ and $n \in \omega$. Let $V_n = \bigcup_{\gamma \in \operatorname{Lim}(S)} V_n(\gamma)$ and $F_n = Z \setminus V_n$ for each $n \in \omega$.

Claim 2. F_n is closed in X for each $n \in \omega$.

Proof. Let $\langle \mu, \nu \rangle \in X \setminus F_n$. We will find a neighborhood of $\langle \mu, \nu \rangle$ disjoint from F_n . Since V_n is an open set disjoint from F_n , we may assume $\langle \mu, \nu \rangle \notin Z \cup V_n$. When $\mu \leq \alpha_0, X_{[0,\alpha_0]}$ is a neighborhood of $\langle \mu, \nu \rangle$ disjoint from F_n . So let $\alpha_0 < \mu$ and take the minimal $\gamma \in \text{Lim}(S)$ with $\mu \leq \gamma$. Assume $\mu = \gamma$. Then since $\text{Lim}(S) \subset D$ and X is disjoint from $\{\langle \alpha, \alpha \rangle : \alpha \in D\}$, we have $\mu = \gamma < \nu$. If $\nu \leq g(\alpha(\gamma))$, then $\langle \mu, \nu \rangle \in \langle \gamma, \nu \rangle \in X_{(\gamma(n), \gamma)}^{(\gamma, g(\alpha(\gamma)))} = V_n(\gamma) \subset V_n$, a contradiction. If $g(\alpha(\gamma)) < \nu$, then $\langle \mu, \nu \rangle \in X_{(\alpha_0, \alpha(\gamma))}^{(g(\alpha(\gamma)), (\omega_1)} \subset Z$, a contradiction. Therefore we have $\mu < \gamma$. Take the minimal $\alpha \in S$ with $\mu \leq \alpha$. It follows from $\mu < \gamma \in \text{Lim}(S)$ that $\mu \leq \alpha < \gamma$. By the minimality of γ , we have $\alpha \notin \text{Lim}(S)$. It follows from $\langle \mu, \nu \rangle \notin Z \supset X_{(\alpha_0, \alpha)}^{(g(\alpha), (\omega_1)}$ that $\nu \leq g(\alpha)$. On the other hand, by the minimality of α , we have $S \cap \alpha \subset \mu$, so $\sup(S \cap \alpha) \leq \mu$. Assume $\sup(S \cap \alpha) = \mu$. Then we have $X_{(\mu_0, \mu)}^{[0,\nu]} \cap Z = \emptyset$. Indeed let $\alpha' \in S$. If $\alpha \leq \alpha'$, then by $\nu \leq g(\alpha) \leq g(\alpha')$, we have $X_{(\mu_0, \mu)}^{[0,\nu]} \cap X_{(\alpha_0, \alpha')}^{(g(\alpha'), (\omega_1)} = \emptyset$. If $\alpha' < \alpha$, then by $\alpha' \leq \mu_0$, we have $X_{(\mu_0, \mu)}^{[0,\nu]} \cap X_{(\alpha_0, \alpha')}^{(g(\alpha'), (\omega_1)} = \emptyset$. Finally, by $F_n \subset Z$, $X_{(\mu_0, \mu)}^{[0,\nu]}$ is a neighborhood of $\langle \mu, \nu \rangle$ disjoint from F_n . Therefore F_n is closed.

Claim 3.
$$Z = \bigcup_{n \in \omega} F_n$$
.

Proof. $\bigcup_{n \in \omega} F_n \subset Z$ is evident. Let $\langle \mu, \nu \rangle \in Z$. Since $V_n = \bigcup_{\gamma \in \text{Lim}(S)} V_n(\gamma) \subset \bigcup_{\gamma \in \text{Lim}(S)} X^{(\gamma, g(\alpha(\gamma))]}$ for each $n \in \omega$, we may assume $\langle \mu, \nu \rangle \in X^{(\gamma, g(\alpha(\gamma))]}$ for

some $\gamma \in \text{Lim}(S)$. Then $\gamma < \nu \leq g(\alpha(\gamma))$. It follows from $\langle \mu, \nu \rangle \in Z$ that $\langle \mu, \nu \rangle \in X_{(\alpha_0,\alpha_1)}^{(g(\alpha),\omega_1)}$ for some $\alpha \in S$, in particular, $g(\alpha) < \nu$ and $\mu \leq \alpha$. Assume $\gamma \leq \alpha$. Then, by the minimality of $\alpha(\gamma)$, we have $\alpha(\gamma) \leq \alpha$. Therefore $\nu \leq g(\alpha(\gamma)) \leq g(\alpha)$, a contradiction. So we have $\alpha < \gamma$. Since $\alpha < \gamma \in \text{Lim}(S) \subset \text{Lim}$, there is $n \in \omega$ with $\alpha \leq \gamma(n) < \gamma$. By $\mu \leq \alpha$, we have $\langle \mu, \nu \rangle \notin V_n(\gamma)$. By Claim 1 and $\langle \mu, \nu \rangle \in X^{(\gamma, g(\alpha(\gamma))]}, \langle \mu, \nu \rangle \notin V_n(\gamma')$ for each $\gamma' \in \text{Lim}(S)$ with $\gamma' \neq \gamma$. Therefore we have $\langle \mu, \nu \rangle \notin V_n$, so $\langle \mu, \nu \rangle \in F_n$.

Finally we will find a cub set $C \subset \omega_1$ such that $X \cap C^2 \subset Z$. For each $\alpha < \omega_1$ with $\alpha_0 < \alpha$, take the minimal $\gamma \in S$ with $\alpha \leq \gamma$ and set $h(\alpha) = g(\gamma)$. Then by the definition of Z, $X_{\{\alpha\}}^{(h(\alpha),\omega_1)} \subset Z$. Let $C = (\alpha_0,\omega_1) \cap D \cap \triangle_{\alpha \in (\alpha_0,\omega_1)}(h(\alpha),\omega_1)$. Then C is cub. Let $\langle \alpha, \beta \rangle \in X \cap C^2$. Since $C \subset D$ and $X \cap \{\langle \alpha, \alpha \rangle : \alpha \in D\} = \emptyset$, we have $\alpha < \beta$, so $\alpha \in (\alpha_0,\omega_1) \cap \beta$. On the other hand, by $\beta \in \triangle_{\alpha \in (\alpha_0,\omega_1)}(h(\alpha),\omega_1)$, we have $\beta \in (h(\alpha),\omega_1)$. Therefore by $\alpha_0 < \alpha$, $\langle \alpha, \beta \rangle \in X_{\{\alpha\}}^{(h(\alpha),\omega_1)} \subset Z$, and so $X \cap C^2 \subset Z$. \Box

Proof of Theorem A. Assume $X \subset \{ \langle \alpha, \beta \rangle \in \omega_1^2 : \alpha \leq \beta \}$. Let \mathcal{U} be an open cover of X.

Case 1. $\triangle(X) = \{ \alpha < \omega_1 : \langle \alpha, \alpha \rangle \in X \}$ is stationary in ω_1 .

In this case, for each $\alpha \in \Delta(X)$, fix $f(\alpha) < \alpha$ and $U(\alpha) \in \mathcal{U}$ such that $X_{(f(\alpha),\alpha]}^{(f(\alpha),\alpha]} \subset U(\alpha)$. By the PDL, there are $\alpha_0 < \omega_1$ and a stationary set $S \subset \Delta(X)$ such that $f(\alpha) = \alpha_0$ for each $\alpha \in S$. For each pair $\alpha, \beta \in S$, define $\alpha \simeq \beta$ by $U(\alpha) = U(\beta)$. Then obviously \simeq is an equivalence relation on S. For each equivalence class E in the quotient $S/_{\simeq}$, define $U(E) = U(\alpha)$ for some (equivalently, arbitrary) $\alpha \in E$. Note that

(*)
$$X_{(\alpha_0,\alpha]}^{(\alpha_0,\alpha]} \subset U(E) \text{ for each } \alpha \in E.$$

There are two subcases to consider.

Case 1-1. There is $E_0 \in {}^S/_{\simeq}$ such that E_0 is unbounded in ω_1 .

By (*), we have $X_{(\alpha_0,\omega_1)}^{(\alpha_0,\omega_1)} \subset U(E_0)$. Note that $X = X_{[0,\alpha_0]} \bigoplus X_{(\alpha_0,\omega_1)}^{(\alpha_0,\omega_1)}$ and $X_{[0,\alpha_0]}$ is subshrinking by Lemma 2. So we can find a subshrinking $\mathcal{H} = \{H(U) : U \in \mathcal{U}\}$ of $\{U \cap X_{[0,\alpha_0]} : U \in \mathcal{U}\}$ in $X_{[0,\alpha_0]}$. For each $U \in \mathcal{U}$, let

$$F(U) = \begin{cases} H(U) \cup X^{(\alpha_0,\omega_1)}_{(\alpha_0,\omega_1)}, & \text{if } U = U(E_0), \\ H(U), & \text{otherwise.} \end{cases}$$

Then $\mathcal{F} = \{F(U) : U \in \mathcal{U}\}$ is a subshrinking of \mathcal{U} in X.

Case 1-2. *E* is bounded for each $E \in {}^{S}/_{\simeq}$.

By induction on $\gamma < \omega_1$, we can find a strictly increasing sequence $\{\alpha(\gamma) : \gamma < \omega_1\} \subset S$ and a sequence $\{E(\gamma) : \gamma < \omega_1\} \subset S'_{\simeq}$ as follows. Assume that $\gamma < \omega_1$, $\{\alpha(\gamma') : \gamma' < \gamma\}$ and $\{E(\gamma') : \gamma' < \gamma\}$ are already defined. Pick $\alpha(\gamma) \in S$ with $\alpha(\gamma) > \sup(\bigcup_{\gamma' < \gamma} E(\gamma')) + \gamma$ and $E(\gamma) \in S'_{\simeq}$ with $\alpha(\gamma) \in E(\gamma)$. Then by the construction, all $E(\gamma)$'s are distinct and $X^{(\alpha_0,\alpha(\gamma)]}_{(\alpha_0,\alpha(\gamma)]} \subset U(E(\gamma))$ for each $\gamma < \omega_1$.

Let, as above, $\mathcal{H} = \{H(U) : U \in \mathcal{U}\}$ be a subshrinking of $\{U \cap X_{[0,\alpha_0]} : U \in \mathcal{U}\}$ in $X_{[0,\alpha_0]}$.

For each $U \in \mathcal{U}$, let

$$F(U) = \begin{cases} H(U) \cup X^{(\alpha_0,\alpha(\gamma)]}_{(\alpha_0,\alpha(\gamma)]}, & \text{if } U = U(E(\gamma)) \text{ for some } \gamma < \omega_1, \\ H(U), & \text{otherwise.} \end{cases}$$

Then $\mathcal{F} = \{F(U) : U \in \mathcal{U}\}$ is a subshrinking of \mathcal{U} in X.

Case 2. $\triangle(X)$ is not stationary in ω_1 .

Let $A = \{ \alpha < \omega_1 : V_{\alpha}(X) \text{ is stationary in } \omega_1 \}$ and let D be a cub set disjoint from $\Delta(X)$.

Case 2-1. A is not stationary in ω_1 .

Let C' be a cub set with $C' \subset D$ and $C' \cap A = \emptyset$. For each $\alpha \in C'$, fix a cub set C_{α} disjoint from $V_{\alpha}(X)$. Let $C = C' \cap \triangle_{\alpha \in C'} C_{\alpha}$. Assume $\langle \alpha, \beta \rangle \in X \cap C^2$. It follows from $C \subset C' \subset D$ that $\alpha < \beta$, so $\alpha \in C \cap \beta \subset C' \cap \beta$. Moreover by $\beta \in C \subset \triangle_{\alpha \in C'} C_{\alpha}$, we have $\beta \in C_{\alpha}$, so $\beta \notin V_{\alpha}(X)$. This contradicts $\langle \alpha, \beta \rangle \in X$. Therefore $X \cap C^2 = \emptyset$. Then, by Lemma 4, X is subshrinking.

Case 2-2. A is stationary in ω_1 .

Let $\alpha \in A \cap D$ and $\beta \in V_{\alpha}(X)$. Since \mathcal{U} is an open cover of X, fix $f(\alpha, \beta) < \alpha$, $g(\alpha, \beta) < \beta$ and $U(\alpha, \beta) \in \mathcal{U}$ such that $X_{(f(\alpha, \beta), \alpha]}^{(g(\alpha, \beta), \beta]} \subset U(\alpha, \beta)$. By $\alpha \in D$, we have $\alpha < \beta$, so we may assume $\alpha \leq g(\alpha, \beta)$. Since $V_{\alpha}(X)$ is stationary and $|\alpha| \leq \omega$, by applying the PDL, we can find a stationary set $T_{\alpha} \subset V_{\alpha}(X)$, $f(\alpha) < \alpha$ and $g(\alpha) < \omega_1$ such that $f(\alpha, \beta) = f(\alpha)$ and $\alpha \leq g(\alpha, \beta) = g(\alpha)$ for each $\beta \in T_{\alpha}$. For convenience, let $g(\alpha) = 0$ for each $\alpha \in \omega_1 \setminus (A \cap D)$. Then $D' = \{\alpha < \omega_1 : \forall \alpha' < \alpha(g(\alpha') < \alpha)\}$ is cub. Since $A \cap D \cap D'$ is stationary, applying the PDL again, we find a stationary set $S \subset A \cap D \cap D'$ and $\alpha_0 < \omega_1$ such that $f(\alpha) = \alpha_0$ for each $\alpha \in S$. Then, for each $\alpha \in S$ and $\beta \in T_{\alpha}$, we have $X_{(\alpha_0,\alpha]}^{(g(\alpha),\beta]} \subset U(\alpha,\beta)$. Now note that α_0, D, S and g satisfy all assumptions of Lemma 5. Let $H = \bigcup_{\alpha \in S} \{\alpha\} \times T_{\alpha}$. For $\langle \alpha', \beta' \rangle, \langle \alpha, \beta \rangle \in H$, define $\langle \alpha', \beta' \rangle \simeq \langle \alpha, \beta \rangle$ by $U(\alpha', \beta') = U(\alpha, \beta)$. For each equivalence class E in the quotient $H_{/\infty}$, define $U(E) = U(\alpha, \beta)$ for some (equivalently, arbitrary) $\langle \alpha, \beta \rangle \in E$. Then

(+)
$$\bigcup_{\langle \alpha,\beta\rangle\in E} X^{(g(\alpha),\beta]}_{(\alpha_0,\alpha]} \subset U(E)$$

and the U(E)'s are distinct. For each $\alpha \in S$ and $E \in {}^{H}/_{\simeq}$, let $j(E, \alpha) = \sup V_{\alpha}(E)$, $S(E) = \{\alpha \in S : j(E, \alpha) = \omega_1\}$ and $k(E) = \sup S(E)$.

Case 2-2-1. There is $E_0 \in {}^H/_{\simeq}$ such that $k(E_0) = \omega_1$.

Note that $S(E_0)$ is unbounded in ω_1 and $S(E_0) \subset S \subset D \cap D' \subset D$. By Lemma 5, $Z = Z(\alpha_0, D, S(E_0), g)$ is an open F_{σ} set in $X, (X \setminus Z) \cap C^2 = \emptyset$ for some cub set C and $Z = Z(\alpha_0, D, S(E_0), g) = \bigcup_{\alpha \in S(E_0)} X^{(g(\alpha), \omega_1)}_{(\alpha_0, \alpha]} \subset \bigcup_{\langle \alpha, \beta \rangle \in E_0} X^{(g(\alpha), \beta]}_{(\alpha_0, \alpha]} \subset U(E_0)$. By Lemma 4, $X \setminus Z$ is a closed subshrinking subspace of X. So there is a subshrinking $\mathcal{H} = \{H(U) : U \in \mathcal{U}\}$ of $\{U \cap (X \setminus Z) : U \in \mathcal{U}\}$ in $X \setminus Z$. For each $U \in \mathcal{U}$, let

$$F(U) = \begin{cases} H(U) \cup Z, & \text{if } U = U(E_0), \\ H(U), & \text{otherwise.} \end{cases}$$

Then $\mathcal{F} = \{F(U) : U \in \mathcal{U}\}$ is a subshrinking of \mathcal{U} in X.

Case 2-2-2. $k(E) < \omega_1$ for each $E \in {}^H/_{\simeq}$.

There are two subcases.

Case 2-2-2-1. $\sup\{k(E) : E \in {}^{H}/_{\simeq}\} = \omega_1.$

In this case, by induction, we can find a strictly increasing sequence $\{\alpha(\gamma) : \gamma < \omega_1\} \subset S$ and a sequence $\{E(\gamma) : \gamma < \omega_1\} \subset {}^H/_{\simeq}$ such that $\sup(\bigcup_{\gamma' < \gamma} S(E(\gamma))) + \gamma < \alpha(\gamma) \in S(E(\gamma))$. Let $S' = \{\alpha(\gamma) : \gamma < \omega_1\}$. Then $S' \subset S \subset D$, S' is unbounded in ω_1 and $X^{(g(\alpha(\gamma)),\omega_1)}_{(\alpha_0,\alpha(\gamma)]} = \bigcup_{\beta \in V_{\alpha(\gamma)}(E(\gamma))} X^{(g(\alpha(\gamma)),\beta]}_{(\alpha_0,\alpha(\gamma)]} \subset U(E(\gamma))$ for each $\gamma < \omega_1$. By Lemma 5, $Z = Z(\alpha_0, D, S', g) = \bigcup_{\alpha \in S'} X^{(g(\alpha),\omega_1)}_{(\alpha_0,\alpha]} = \bigcup_{\gamma < \omega_1} X^{(g(\alpha(\gamma)),\omega_1)}_{(\alpha_0,\alpha(\gamma)]}$ is an open F_{σ} set in X and $(X \setminus Z) \cap C^2 = \emptyset$ for some cub set C. By Lemma 4, there is a subshrinking $\mathcal{H} = \{H(U) : U \in \mathcal{U}\}$ of $\{U \cap (X \setminus Z) : U \in \mathcal{U}\}$ in $X \setminus Z$. For each $U \in \mathcal{U}$, let

$$F(U) = \begin{cases} H(U) \cup X_{(\alpha_0,\alpha(\gamma)]}^{(g(\alpha),\omega_1)]}, & \text{if } U = U(E(\gamma)) \text{ for some } \gamma < \omega_1, \\ H(U), & \text{otherwise.} \end{cases}$$

Then $\mathcal{F} = \{F(U) : U \in \mathcal{U}\}$ is a subshrinking of \mathcal{U} in X.

Case 2-2-2-2. $\sup\{k(E) : E \in {}^{H}/_{\simeq}\} < \omega_{1}.$

Fix $\alpha_1 < \omega_1$ with $\sup\{k(E) : E \in {}^{H}/_{\simeq}\} + \alpha_0 < \alpha_1$. Note that $\sup V_{\alpha}(E) < \omega_1$ for each $\alpha \in S$ with $\alpha_1 < \alpha$ and $E \in {}^{H}/_{\simeq}$. Let $S' = \{\alpha \in S : \alpha_1 < \alpha\}$ and $H' = \bigcup_{\alpha \in S'} \{\alpha\} \times T_{\alpha}$. Consider the co-lexicographic order \prec on H', that is, $\langle \gamma', \delta' \rangle \prec \langle \gamma, \delta \rangle$ iff $\delta' < \delta$ or $(\delta' = \delta$ and $\gamma' < \gamma)$ for each $\langle \gamma', \delta' \rangle, \langle \gamma, \delta \rangle \in H'$. Since $H' \subset X \subset \{\langle \alpha, \beta \rangle \in \omega_1^2 : \alpha \leq \beta\}$, for each $\langle \gamma, \delta \rangle \in H'$, the \prec -initial segument $\{\langle \gamma', \delta' \rangle \in H' : \langle \gamma', \delta' \rangle \prec \langle \gamma, \delta \rangle\}$ of $\langle \gamma, \delta \rangle$ is contained in the countable set $\{\langle \alpha, \beta \rangle \in \omega_1^2 : \alpha \leq \beta \leq \delta\}$. So by $|H'| = \omega_1$, the order type of the well-ordered set $\langle H', \prec \rangle$ is exactly ω_1 . By \prec -induction on H', we will construct a strictly \prec -increasing sequence $\{\beta(\gamma, \delta) : \langle \gamma, \delta \rangle \in H'\} \subset \omega_1$ and a sequence $\{E(\gamma, \delta) : \langle \gamma, \delta \rangle \in H'\} \subset H'_{\simeq}$ such that

(1)
$$\langle \gamma, \beta(\gamma, \delta) \rangle \in E(\gamma, \delta),$$

(2)
$$\sup\{j(E(\gamma',\delta'),\gamma): \langle \gamma',\delta' \rangle \prec \langle \gamma,\delta \rangle\} + \sup\{\beta(\gamma',\delta'): \langle \gamma',\delta' \rangle \prec \langle \gamma,\delta \rangle\} + \delta$$

 $< \beta(\gamma,\delta) \in T_{\gamma}.$

Assume that $\beta(\gamma', \delta')$ and $E(\gamma', \delta')$ have been defined for each $\langle \gamma', \delta' \rangle \prec \langle \gamma, \delta \rangle$, where $\langle \gamma, \delta \rangle \in H'$. It follows from $\alpha_1 < \gamma$ that $j(E, \gamma) < \omega_1$ for each $E \in {}^{H}/{\sim}$. So, since the \prec -initial segment of $\langle \gamma, \delta \rangle$ is countable and T_{γ} is stationary in ω_1 , we can find $\beta(\gamma, \delta) \in T_{\gamma}$ with $\sup\{j(E(\gamma', \delta'), \gamma) : \langle \gamma', \delta' \rangle \prec \langle \gamma, \delta \rangle\} + \sup\{\beta(\gamma', \delta') :$ $\langle \gamma', \delta' \rangle \prec \langle \gamma, \delta \rangle \} + \delta < \beta(\gamma, \delta)$. Then take $E(\gamma, \delta) \in {}^{H}/_{\simeq}$ with $\langle \gamma, \beta(\gamma, \delta) \rangle \in E(\gamma, \delta)$. By the construction, members of $\{E(\gamma, \delta) : \langle \gamma, \delta \rangle \in H'\}$ are distinct and

(3)
$$\{\beta(\gamma, \delta) : \delta \in T_{\gamma}\}$$
 is unbounded in ω_1 for each $\gamma \in S'$.

Therefore by (3),

(4)
$$X_{(\alpha_0,\gamma]}^{(g(\gamma),\omega_1)} = \bigcup_{\delta \in T_{\gamma}} X_{(\alpha_0,\gamma]}^{(g(\gamma),\beta(\gamma,\delta)]}$$

Moreover by Lemma 5 and (4),

$$Z = Z(\alpha_0, D, S', g) = \bigcup_{\gamma \in S'} X^{(g(\gamma), \omega_1)}_{(\alpha_0, \gamma]}$$
$$= \bigcup_{\gamma \in S'} (\bigcup_{\delta \in T_{\gamma}} X^{(g(\gamma), \beta(\gamma, \delta)]}_{(\alpha_0, \gamma]}) = \bigcup_{\langle \gamma, \delta \rangle \in H'} X^{(g(\gamma), \beta(\gamma, \delta)]}_{(\alpha_0, \gamma]}$$

is an open F_{σ} set in X and $(X \setminus Z) \cap C^2 = \emptyset$ for some cub set C. Note that $\{X_{(\alpha_0,\gamma]}^{(g(\gamma),\beta(\gamma,\delta)]} : \langle \gamma, \delta \rangle \in H'\}$ is a collection of clopen set whose union is exactly Z and that by $(+), X_{(\alpha_0,\gamma]}^{(g(\gamma),\beta(\gamma,\delta)]} \subset U(E(\gamma,\delta))$ for each $\langle \gamma, \delta \rangle \in H'$. Let, by Lemma $4, \mathcal{H} = \{H(U) : U \in \mathcal{U}\}$ be a subshrinking of $\{U \cap (X \setminus Z) : U \in \mathcal{U}\}$ in $X \setminus Z$.

For each $U \in \mathcal{U}$, let

$$F(U) = \begin{cases} H(U) \cup X^{(g(\gamma),\beta(\gamma,\delta)]}_{(\alpha_0,\gamma]}, & \text{if } U = U(E(\gamma,\delta)) \text{ for some } \langle \gamma,\delta \rangle \in H', \\ H(U), & \text{otherwise.} \end{cases}$$

Then $\mathcal{F} = \{F(U) : U \in \mathcal{U}\}$ is a subshrinking of \mathcal{U} in X. The proof of Theorem A is complete. \Box

In the rest of this paper, we consider collectionwise subnormality of subspaces of ω_1^2 . A space X is collectionwise subnormal (abbreviated as CWSN), see [Ya], if for every discrete collection \mathcal{F} of closed sets, there is a sequence $\{\mathcal{G}_n : n \in \omega\}$ of collections of open sets, where \mathcal{G}_n is represented as $\{G_n(F) : F \in \mathcal{F}\}$ with $F \subset$ $G_n(F)$, such that for each $x \in X$, there is $n \in \omega$ with $|\{F \in \mathcal{F} : x \in G_n(F)\}| \leq 1$. In this situation, $\{\mathcal{G}_n : n \in \omega\}$ is said to be a θ -expansion of \mathcal{F} . Moreover a space X is collectionwise δ -normal (CW δ N), see [Bu], if every discrete collection \mathcal{F} of closed sets can be separated by G_{δ} -sets, that is, there is a pairwise disjoint collection $\mathcal{G} = \{G(F) : F \in \mathcal{F}\}$ of G_{δ} -sets with $F \subset G(F)$. It is easy to verify that CWSN implies CW δ N. The following is known.

Proposition 6. [Ju] Every discrete collection \mathcal{F} of closed sets in a subnormal space X with $|\mathcal{F}| \leq 2^{\omega}$ is separated by G_{δ} -sets.

So, by $|\omega_1^2| \leq \omega_1 \leq 2^{\omega}$ and Theorem A, we have:

Proposition 7. All subspaces of ω_1^2 are $CW\delta N$.

But the author does not know whether $CW\delta N$ implies CWSN or not, so hereafter we present a direct proof of the following theorem.

Theorem B. All subspaces of ω_1^2 are CWSN.

The proof of Theorem B is somewhat similar to that of Theorem A. It is straightforward to show:

Lemma 1'. If X_n is a closed CWSN subspace of a space X for each $n \in \omega$, then the subspace $\bigcup_{n \in \omega} X_n$ of X is also CWSN.

Applying Lemma 1', we can similarly show:

Lemma 2'. $\alpha \times \omega_1$ and $\omega_1 \times \alpha$ are hereditarily CWSN for each $\alpha < \omega_1$. In particular, for each subspace X of ω_1^2 , $X_{[0,\alpha]}$ and $X^{[0,\alpha]}$ are CWSN clopen subspaces of X for each $\alpha < \omega_1$.

Lemma 4'. Let $X \subset \{ \langle \alpha, \beta \rangle \in \omega_1^2 : \alpha \leq \beta \}$ such that $X \cap C^2 = \emptyset$ for some cub set $C \subset \omega_1$. Then X is CWSN.

Proof of Theorem B. Let $X \subset \{ \langle \alpha, \beta \rangle \in \omega_1^2 : \alpha \leq \beta \}$. It suffices to show that X is CWSN. Let \mathcal{F} be a discrete collection of closed sets in X.

Case 1. $\triangle(X)$ is stationary in ω_1 .

For each $\alpha \in \Delta(X)$, fix $f(\alpha) < \alpha$ such that $|\{F \in \mathcal{F} : X_{(f(\alpha),\alpha]}^{(f(\alpha),\alpha]} \cap F \neq \emptyset\}| \leq 1$. Then by the PDL, there are $\alpha_0 < \omega_1$ and a stationary set $S \subset \Delta(X)$ such that $f(\alpha) = \alpha_0$ for each $\alpha \in S$. Observe that $|\{F \in \mathcal{F} : X_{(\alpha_0,\omega_1)}^{(\alpha_0,\omega_1)} \cap F \neq \emptyset\}| \leq 1$. Since $X = X_{[0,\alpha_0]} \bigoplus X_{(\alpha_0,\omega_1)}^{(\alpha_0,\omega_1)}$ and $X_{[0,\alpha_0]}$ is CWSN by Lemma 2', we can easily construct a θ -expansion of \mathcal{F} .

Case 2. $\triangle(X)$ is not stationary in ω_1 .

Let $A = \{\alpha < \omega_1 : V_\alpha(X) \text{ is stationary in } \omega_1\}$ and D be a cub set disjoint from $\triangle(X).$

Case 2-1. A is not stationary in ω_1 .

In this case, as in Case 2-1 in the proof of Theorem A, $X \cap C^2 = \emptyset$ for some cub set C. Then apply Lemma 4'.

Case 2-2. A is stationary in ω_1 .

Let $A_0 = \{ \alpha \in A \cap D : V_{\alpha}(\bigcup \mathcal{F}) \text{ is unbounded in } \omega_1 \}$. Since \mathcal{F} is discrete, applying the PDL, for each $\alpha \in A \cap D$, we can find $f(\alpha) < \alpha$ and $g(\alpha) < \omega_1$ with $\alpha \leq g(\alpha)$ such that

(1) if $\alpha \in A_0$, then $|\{F \in \mathcal{F} : X_{(f(\alpha),\alpha]}^{(g(\alpha),\omega_1)} \cap F \neq \emptyset\}| = 1$, (2) if $\alpha \in (A \cap D) \setminus A_0$, then $\{F \in \mathcal{F} : X_{(f(\alpha),\alpha]}^{(g(\alpha),\omega_1)} \cap F \neq \emptyset\} = \emptyset$.

Again applying the PDL to $A \cap D$ as in Case 2-2 in the proof of Theorem A, we can find $\alpha_0 < \omega_1$ and a stationary set $S \subset A \cap D$ such that, for each $\alpha \in S$, $f(\alpha) = \alpha_0$, $g(\alpha') < \alpha$ for each $\alpha' \in S \cap \alpha$. Then observe that

- (1') if $\alpha \in S \cap A_0$, then $|\{F \in \mathcal{F} : X_{(\alpha_0,\alpha]}^{(g(\alpha),\omega_1)} \cap F \neq \emptyset\}| = 1$, (2') if $\alpha \in S \setminus A_0$, then $\{F \in \mathcal{F} : X_{(\alpha_0,\alpha]}^{(g(\alpha),\omega_1)} \cap F \neq \emptyset\} = \emptyset$.

Let $Z = \bigcup_{\alpha \in S} X^{(g(\alpha),\omega_1)}_{(\alpha_0,\alpha]}$ and $\mathcal{F}_0 = \{F \in \mathcal{F} : Z \cap F \neq \emptyset\}.$

Claim. $|\mathcal{F}_0| \leq 1$.

Proof. Assume that there are $F', F \in \mathcal{F}_0$ with $F' \neq F$. Then there are $\alpha', \alpha \in S$ such that $X_{(\alpha_0,\alpha']}^{(g(\alpha'),\omega_1)} \cap F' \neq \emptyset$ and $X_{(\alpha_0,\alpha]}^{(g(\alpha),\omega_1)} \cap F \neq \emptyset$. By (1') and (2'), we have $\alpha', \alpha \in S \cap A_0$ and $\alpha' \neq \alpha$. We may assume $\alpha' < \alpha$. Since $\alpha' \in A_0$ and \mathcal{F} is discrete, by (1'), $V_{\alpha'}(F')$ is unbounded in ω_1 . Take $\beta \in V_{\alpha'}(F')$ with $\beta > g(\alpha)$. Then $\langle \alpha', \beta \rangle \in X_{(\alpha_0,\alpha]}^{(g(\alpha),\omega_1)} \cap F'$. Therefore $X_{(\alpha_0,\alpha]}^{(g(\alpha),\omega_1)} \cap F' \neq \emptyset$ and $X_{(\alpha_0,\alpha]}^{(g(\alpha),\omega_1)} \cap F \neq \emptyset$. By $\alpha \in S \cap A_0$ and $F' \neq F$, this contradicts (1'). This completes the proof of Claim.

By Lemma 5, Z is an open F_{σ} set of X and $(X \setminus Z) \cap C^2 = \emptyset$ for some cub set C. By Lemma 4', $Y = X \setminus Z$ is a closed G_{δ} CWSN subspace of X, say $Y = \bigcap_{n \in \omega} G_n$, where G_n is open in X. Let $\{\mathcal{U}_n : n \in \omega\}$ be a θ -expansion of $\{F \cap Y : F \in \mathcal{F}\}$ in Y, say $\mathcal{U}_n = \{U_n(F) : F \in \mathcal{F}\}$ with $F \cap Y \subset U_n(F)$ and $U_n(F)$ is open in Y. For each $F \in \mathcal{F}$ and $n \in \omega$ let

For each $F \in \mathcal{F}$ and $n \in \omega$, let

$$V_n(F) = \begin{cases} U_n(F) \cup Z, & \text{if } F \in \mathcal{F}_0, \\ U_n(F) \cup (G_n \setminus Y), & \text{otherwise.} \end{cases}$$

Then $V_n(F)$'s are open in X and $F \subset V_n(F)$. Set $\mathcal{V}_n = \{V_n(F) : F \in \mathcal{F}\}$ for each $n \in \omega$. To show that $\{\mathcal{V}_n : n \in \omega\}$ is a desired θ -expansion of \mathcal{F} in X, let $x \in X$. If $x \in Z$, then there is $n \in \omega$ such that $x \notin G_n$, so $x \notin V_n(F)$ whenever $F \in \mathcal{F} \setminus \mathcal{F}_0$. If $x \in Y = X \setminus Z$, then for some $n \in \omega$, $x \in U_n(F)$ for at most one $F \in \mathcal{F}$. So $x \in V_n(F)$ for at most one $F \in \mathcal{F}$. The proof is complete. \Box

The author conjectures that the answer of the following problem is, of course, "yes". But it seems to be somewhat complicated to handle the induction.

Problem. Are all subspaces of ω_1^n subnormal for each $n \in \omega$?

Acknowledgement. The author would like to thank Ken-iti Tamano for his helpful suggestions. He pointed out that Lemma 1' can be proved in a usual way.

References

- [Bu] D. K. Burke, *Covering properties*, in Handbook of Set Theoretic Topology (ed. K. Kunen and J. E. Vaughan) (1984), North-Holland, Amsterdam, 349-422.
- [Ju] H. J. K. Junnila, *Three covering properties*, in Surveys in General Topology (ed. G. M. Reed) (1980), Academic Press, New York, 195-245.
- [KOT] N. Kemoto, H.Ohta and K. Tamano, Products of spaces of ordinal numbers, Top. Appl. 45 (1992), 245-260.
- [KS] N. Kemoto and K. D. Smith, The product of two ordinals is hereditarily countably metacompact, Top. Appl. 74 (1996), 91-96.
- [Kr] T. R. Kramer, A note on countably subparacompact spaces, Pacific J. Math. 46 (1973), 209-213.
- [Ku] K. Kunen, Set Theory, An Introduction to Independence Proofs, North-Holland, Amsterdam, 1980.
- [Ya] Y. Yajima, Subnormality of $X \times \kappa$ and Σ -products, Top. Appl. 54 (1993), 111-122.

DEPARTMENT OF MATHEMATICS, OITA UNIVERSITY, DANNOHARU, OITA, 870-1192, JAPAN *E-mail address:* nkemoto@cc.oita-u.ac.jp