
SUBNORMALITY IN ω2
1

Nobuyuki Kemoto

Abstract. A space X is said to be subnormal (= δ-normal) if every pair of disjoint
closed sets can be separated by disjoint Gδ-sets. It is known that the product space

(ω1 + 1) × ω1 is neither normal nor subnormal, moreover the subspace A × B of ω2
1

is not normal whenever A and B are disjoint stationary sets in ω1. We will discuss
on subnormality of subspaces of ω2

1 .

All spaces considered in this paper are regular and T1. A space X is said to be
subnormal (= δ-normal) if every pair of disjoint closed sets can be separated by
disjoint Gδ-sets, see [Bu] and [Ya]. It is well known that all subspaces of ordinals,
more generally all GO-spaces, are shrinking, so normal and countably paracom-
pact. But, as is well known, the product space (ω1 +1)×ω1 is countably paracom-
pact but not normal. Indeed, first the product space (ω1 + 1) × ω1 is the perfect
preimage of the countably paracompact space ω1, so it is countably paracompact.
Second, the Pressing Down Lemma (abbreviated as PDL) shows that the diagonal
△ = {⟨α, α⟩ ∈ (ω1 + 1) × ω1 : α < ω1} and the closed set {ω1} × ω1 cannot be
separated by disjoint open sets. Moreover similarly, we can show that these two
disjoint closed subsets cannot be separated by disjoint Gδ sets, so (ω1 + 1) × ω1 is
not subnormal([Kr]). A space X is said to be countably subparacompact if every
countable open cover has a σ-locally finite closed refinement, equivalently every
countable open cover has a countable closed refinement. Note that countable sub-
paracompactness implies subnormality, therefore (ω1 + 1) × ω1 is, strangely, not
countably subparacompact. On the other hand, it is known that all subspaces of
two ordinals are always countably metacompact([KS]) and that X = A × B is nei-
ther normal nor countably paracompact whenever A and B are disjoint stationary
sets in ω1([KOT]). So it is natural to ask whether the above space X = A × B is
subnormal (or countably subparacompact) or not. In this paper, we will see that
all subspaces of ω2

1 are countably subparacompact, therefore subnormal.
For A ⊂ ω1, put Lim(A) = {α < ω1 : sup(A ∩ α) = α}, where sup ∅ = −1,

Succ(A) = A\Lim(A), Lim = Lim(ω1) and Succ = Succ(ω1). Observe that Lim(A)
is closed and unbounded (cub) in ω1 whenever A is unbounded in ω1. For a cub set
C ⊂ ω1 and α ∈ C, put pC(α) = sup(C ∩α). Observe that pC(α) ∈ C ∪ {−1}, and
pC(α) = α iff α ∈ Lim(C), and pC(α) is the immediate predecessor of α in C∪{−1}
whenever α ∈ Succ(C). It is easy to show that ω1\C =

∪
α∈Succ(C)(pC(α), α) and

ω1\Lim(C) =
∪

α∈Succ(C)(pC(α), α], where (α, β) and (α, β] denote the usual open
and half open, respectively, interval.
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Assume that a cub set Cα is defined for each α ∈ A, where A ⊂ ω1. Then the
diagonal intersection △α∈ACα = {β ∈ ω1 : ∀α ∈ A ∩ β(β ∈ Cα)} of Cα’s, α ∈ A, is
a cub set in ω1 (see [Ku Lemma II 6.14]).

We use the following specific notation: Let X ⊂ ω2
1 , α < ω1 and β < ω1.

Let Vα(X) = {β < ω1 : ⟨α, β⟩ ∈ X}, Hβ(X) = {α < ω1 : ⟨α, β⟩ ∈ X} and
△(X) = {α < ω1 : ⟨α, α⟩ ∈ X}. For subsets C and D of ω1, let XC = X ∩C × ω1,
XD = X ∩ ω1 × D and XD

C = X ∩ C × D.
Let U be an open cover of a space X. A collection F = {F (U) : U ∈ U} indexed

by U is said to be a shrinking (subshrinking) of U in X if F (U) ⊂ U and F (U) is
closed (Fσ, respectively) in X for each U ∈ U , and F covers X. A space is said to be
shrinking (subshrinking, see [Ya]) if every open cover has a shrinking (subshrinking).
Note that countable subparacompactness is equivalent to the assertion that every
countable open cover has a subshrinking. Therefore subshrinking implies countable
subparacompactness and countable subparacompactness implies subnormality.

Theorem A. All subspaces of ω2
1 are subshrinking.

To prove this, we need several Lemmas. The following is easy.

Lemma 1. If Xn is a closed subshrinking subspace of a space X for each n ∈ ω,
then the subspace

∪
n∈ω Xn of X is also subshrinking.

So we have:

Lemma 2. α × ω1 and ω1 × α are hereditarily subshrinking for each α < ω1. In
particular, for each subspace X of ω2

1, X[0,α] and X [0,α] are subshrinking clopen
subspaces of X for each α < ω1.

This Lemma shows that, for each cub set C ⊂ ω1 and X ⊂ ω2
1 , Xω1\Lim(C) =⊕

α∈Succ(C) X(pC(α),α] and Xω1\Lim(C) =
⊕

α∈Succ(C) X(pC(α),α] are also subshrink-
ing.

Let X ⊂ ω2
1 , Y = {⟨α, β⟩ ∈ X : α ≤ β} and Z = {⟨α, β⟩ ∈ X : α ≥ β}. Then

X is the union of the two closed subspaces Y and Z. So by Lemma 1, to show the
subshrinking property of X, it suffices to show that both Y and Z are subshrinking.
Since the two cases are similar, we may assume X ⊂ {⟨α, β⟩ ∈ ω2

1 : α ≤ β} and we
will show X is subshrinking. The following is routine.

Lemma 3. Let G be a collection of Gδ-sets of a space X. If there is a point-finite
collection U = {U(G) : G ∈ G} of open sets with G ⊂ U(G), then

∪
G is also a

Gδ-set in X.

Lemma 4. Let X ⊂ {⟨α, β⟩ ∈ ω2
1 : α ≤ β} be such that X ∩ C2 = ∅ for some cub

set C ⊂ ω1. Then X is subshrinking.

Proof. Let β ∈ Succ(C). Since X(pC(β),β) is a countable open subspace of X and
X

(pC(β),β]
C ⊂ X(pC(β),β), X

(pC(β),β]
C is Gδ in X. Moreover since {X(pC(β),β) : β ∈

Succ(C)} is a pairwise disjoint collection of open sets with X
(pC(β),β]
C ⊂ X(pC(β),β),

by Lemma 3, XC =
⊕

β∈Succ(C) X
(pC(β),β]
C is also Gδ in X. Say XC =

∩
n∈ω Vn,

where Vn’s are open in X. Since Xω1\Lim(C) is subshrinking and X\Vn ⊂ X\XC =
Xω1\C ⊂ Xω1\Lim(C), X\Vn’s are closed subshrinking subspaces of X. On the other
hand, since Xω1\Lim(C) is subshrinking and XC ⊂ X\XC = Xω1\C ⊂ Xω1\Lim(C),
XC is a closed subshrinking subspace of X. Then X is covered by the countable
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collection {XC}∪{X\Vn : n ∈ ω} of closed subshrinking subspaces of X. Therefore
X is itself subshrinking. ¤
Lemma 5. Let X ⊂ {⟨α, β⟩ ∈ ω2

1 : α ≤ β} and α0 < ω1. Assume that there are a
cub set D ⊂ ω1 with X ∩ {⟨α, α⟩ : α ∈ D} = ∅, an uncountable subset S of D and
a function g : S → ω1 such that, for each α ∈ S,

(1) α ≤ g(α),
(2) g(α′) < α for each α′ ∈ S ∩ α.

Then Z(α0, D, S, g) =
∪

α∈S X
(g(α),ω1)
(α0,α] is an open Fσ subset of X and there is a

cub set C ⊂ ω1 such that X ∩ C2 ⊂ Z(α0, D, S, g).

Proof. Let Z = Z(α0, D, S, g). It is evident that Z is open in X. For each γ ∈ Lim,
fix a strictly increasing cofinal sequence {γ(n) : n ∈ ω} in γ. For each γ ∈ Lim(S)
and n ∈ ω, let α(γ) = min{α ∈ S : γ ≤ α} and Vn(γ) = X

(γ,g(α(γ))]
(γ(n),γ] . Note that

Vn(γ) is clopen in X.

Claim 1. The collection {(γ, g(α(γ))] : γ ∈ Lim(S)} is pairwise disjoint.

Proof. Let γ′, γ ∈ Lim(S) with γ′ < γ. It follows from γ′ < γ ∈ Lim(S) that
there are α′, α ∈ S with γ′ < α′ < α < γ. By the minimality of α(γ′) and
α(γ), we have γ′ ≤ α(γ′) ≤ α′ < α < γ ≤ α(γ). Moreover by (1), (2) and
α ∈ S, we have γ′ ≤ α(γ′) ≤ g(α(γ′)) < α < γ ≤ α(γ) ≤ g(α(γ)). Therefore
(γ′, g(α(γ′))] ∩ (γ, g(α(γ))] = ∅

So note that {X(γ,g(α(γ))] : γ ∈ Lim(S)} is a pairwise disjoint collection of
clopen sets and Vn(γ) ⊂ X(γ,g(α(γ))] for each γ ∈ Lim(S) and n ∈ ω. Let Vn =∪

γ∈Lim(S) Vn(γ) and Fn = Z\Vn for each n ∈ ω.

Claim 2. Fn is closed in X for each n ∈ ω.

Proof. Let ⟨µ, ν⟩ ∈ X\Fn. We will find a neighborhood of ⟨µ, ν⟩ disjoint from Fn.
Since Vn is an open set disjoint from Fn, we may assume ⟨µ, ν⟩ /∈ Z ∪ Vn. When
µ ≤ α0, X[0,α0] is a neighborhood of ⟨µ, ν⟩ disjoint from Fn. So let α0 < µ and
take the minimal γ ∈ Lim(S) with µ ≤ γ. Assume µ = γ. Then since Lim(S) ⊂ D
and X is disjoint from {⟨α, α⟩ : α ∈ D}, we have µ = γ < ν. If ν ≤ g(α(γ)), then
⟨µ, ν⟩ = ⟨γ, ν⟩ ∈ X

(γ,g(α(γ))]
(γ(n),γ] = Vn(γ) ⊂ Vn, a contradiction. If g(α(γ)) < ν, then

⟨µ, ν⟩ ∈ X
(g(α(γ)),ω1)
(α0,α(γ)] ⊂ Z, a contradiction. Therefore we have µ < γ. Take the

minimal α ∈ S with µ ≤ α. It follows from µ < γ ∈ Lim(S) that µ ≤ α < γ. By
the minimality of γ, we have α /∈ Lim(S). It follows from ⟨µ, ν⟩ /∈ Z ⊃ X

(g(α),ω1)
(α0,α]

that ν ≤ g(α). On the other hand, by the minimality of α, we have S ∩ α ⊂ µ, so
sup(S ∩ α) ≤ µ. Assume sup(S ∩ α) = µ. Then we have S ∩ α = S ∩ µ. Therefore
sup(S ∩ µ) = µ, so µ ∈ Lim(S). This contradicts the minimality of γ and µ < γ.
So we have µ0 = sup(S ∩ α) < µ. We will show X

[0,ν]
(µ0,µ] ∩Z = ∅. Indeed let α′ ∈ S.

If α ≤ α′, then by ν ≤ g(α) ≤ g(α′), we have X
[0,ν]
(µ0,µ] ∩ X

(g(α′),ω1)
(α0,α′] = ∅. If α′ < α,

then by α′ ≤ µ0, we have X
[0,ν]
(µ0,µ] ∩ X

(g(α′),ω1)
(α0,α′] = ∅. Finally, by Fn ⊂ Z, X

[0,ν]
(µ0,µ] is

a neighborhood of ⟨µ, ν⟩ disjoint from Fn. Therefore Fn is closed.

Claim 3. Z =
∪

n∈ω Fn.

Proof.
∪

n∈ω Fn ⊂ Z is evident. Let ⟨µ, ν⟩ ∈ Z. Since Vn =
∪

γ∈Lim(S) Vn(γ) ⊂∪
γ∈Lim(S) X(γ,g(α(γ))] for each n ∈ ω, we may assume ⟨µ, ν⟩ ∈ X(γ,g(α(γ))] for
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some γ ∈ Lim(S). Then γ < ν ≤ g(α(γ)). It follows from ⟨µ, ν⟩ ∈ Z that
⟨µ, ν⟩ ∈ X

(g(α),ω1)
(α0,α] for some α ∈ S, in particular, g(α) < ν and µ ≤ α. Assume

γ ≤ α. Then, by the minimality of α(γ), we have α(γ) ≤ α. Therefore ν ≤
g(α(γ)) ≤ g(α), a contradiction. So we have α < γ. Since α < γ ∈ Lim(S) ⊂ Lim,
there is n ∈ ω with α ≤ γ(n) < γ. By µ ≤ α, we have ⟨µ, ν⟩ /∈ Vn(γ). By Claim
1 and ⟨µ, ν⟩ ∈ X(γ,g(α(γ))], ⟨µ, ν⟩ /∈ Vn(γ′) for each γ′ ∈ Lim(S) with γ′ ̸= γ.
Therefore we have ⟨µ, ν⟩ /∈ Vn, so ⟨µ, ν⟩ ∈ Fn.

Finally we will find a cub set C ⊂ ω1 such that X ∩ C2 ⊂ Z. For each α < ω1

with α0 < α, take the minimal γ ∈ S with α ≤ γ and set h(α) = g(γ). Then by the
definition of Z, X

(h(α),ω1)
{α} ⊂ Z. Let C = (α0, ω1)∩D∩△α∈(α0,ω1)(h(α), ω1). Then

C is cub. Let ⟨α, β⟩ ∈ X ∩ C2. Since C ⊂ D and X ∩ {⟨α, α⟩ : α ∈ D} = ∅, we
have α < β, so α ∈ (α0, ω1) ∩ β. On the other hand, by β ∈ △α∈(α0,ω1)(h(α), ω1),
we have β ∈ (h(α), ω1). Therefore by α0 < α, ⟨α, β⟩ ∈ X

(h(α),ω1)
{α} ⊂ Z, and so

X ∩ C2 ⊂ Z. ¤
Proof of Theorem A. Assume X ⊂ {⟨α, β⟩ ∈ ω2

1 : α ≤ β}. Let U be an open cover
of X.

Case 1. △(X) = {α < ω1 : ⟨α, α⟩ ∈ X} is stationary in ω1.

In this case, for each α ∈ △(X), fix f(α) < α and U(α) ∈ U such that X
(f(α),α]
(f(α),α] ⊂

U(α). By the PDL, there are α0 < ω1 and a stationary set S ⊂ △(X) such that
f(α) = α0 for each α ∈ S. For each pair α, β ∈ S, define α ≃ β by U(α) = U(β).
Then obviously ≃ is an equivalence relation on S. For each equivalence class E in
the quotient S/≃, define U(E) = U(α) for some (equivalently, arbitrary) α ∈ E.
Note that

(*) X
(α0,α]
(α0,α] ⊂ U(E) for each α ∈ E.

There are two subcases to consider.

Case 1-1. There is E0 ∈ S/≃ such that E0 is unbounded in ω1.

By (*), we have X
(α0,ω1)
(α0,ω1)

⊂ U(E0). Note that X = X[0,α0]

⊕
X

(α0,ω1)
(α0,ω1)

and X[0,α0]

is subshrinking by Lemma 2. So we can find a subshrinking H = {H(U) : U ∈ U}
of {U ∩ X[0,α0] : U ∈ U} in X[0,α0]. For each U ∈ U , let

F (U) =

{
H(U) ∪ X

(α0,ω1)
(α0,ω1)

, if U = U(E0),

H(U), otherwise.

Then F = {F (U) : U ∈ U} is a subshrinking of U in X.

Case 1-2. E is bounded for each E ∈ S/≃.

By induction on γ < ω1, we can find a strictly increasing sequence {α(γ) : γ <
ω1} ⊂ S and a sequence {E(γ) : γ < ω1} ⊂ S/≃ as follows. Assume that γ < ω1,
{α(γ′) : γ′ < γ} and {E(γ′) : γ′ < γ} are already defined. Pick α(γ) ∈ S with
α(γ) > sup(

∪
γ′<γ E(γ′)) + γ and E(γ) ∈ S/≃ with α(γ) ∈ E(γ). Then by the

construction, all E(γ)’s are distinct and X
(α0,α(γ)]
(α0,α(γ)] ⊂ U(E(γ)) for each γ < ω1.
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Let, as above, H = {H(U) : U ∈ U} be a subshrinking of {U ∩ X[0,α0] : U ∈ U}
in X[0,α0].

For each U ∈ U , let

F (U) =

{
H(U) ∪ X

(α0,α(γ)]
(α0,α(γ)] , if U = U(E(γ)) for some γ < ω1,

H(U), otherwise.

Then F = {F (U) : U ∈ U} is a subshrinking of U in X.

Case 2. △(X) is not stationary in ω1.

Let A = {α < ω1 : Vα(X) is stationary in ω1} and let D be a cub set disjoint
from △(X).

Case 2-1. A is not stationary in ω1.

Let C ′ be a cub set with C ′ ⊂ D and C ′ ∩ A = ∅. For each α ∈ C ′, fix a cub
set Cα disjoint from Vα(X). Let C = C ′ ∩ △α∈C′Cα. Assume ⟨α, β⟩ ∈ X ∩ C2.
It follows from C ⊂ C ′ ⊂ D that α < β, so α ∈ C ∩ β ⊂ C ′ ∩ β. Moreover by
β ∈ C ⊂ △α∈C′Cα, we have β ∈ Cα, so β /∈ Vα(X). This contradicts ⟨α, β⟩ ∈ X.
Therefore X ∩ C2 = ∅. Then, by Lemma 4, X is subshrinking.

Case 2-2. A is stationary in ω1.

Let α ∈ A ∩ D and β ∈ Vα(X). Since U is an open cover of X, fix f(α, β) < α,
g(α, β) < β and U(α, β) ∈ U such that X

(g(α,β),β]
(f(α,β),α] ⊂ U(α, β). By α ∈ D, we

have α < β, so we may assume α ≤ g(α, β). Since Vα(X) is stationary and
|α| ≤ ω, by applying the PDL, we can find a stationary set Tα ⊂ Vα(X), f(α) <
α and g(α) < ω1 such that f(α, β) = f(α) and α ≤ g(α, β) = g(α) for each
β ∈ Tα. For convenience, let g(α) = 0 for each α ∈ ω1\(A ∩ D). Then D′ =
{α < ω1 : ∀α′ < α(g(α′) < α)} is cub. Since A ∩ D ∩ D′ is stationary, applying
the PDL again, we find a stationary set S ⊂ A ∩ D ∩ D′ and α0 < ω1 such
that f(α) = α0 for each α ∈ S. Then, for each α ∈ S and β ∈ Tα, we have
X

(g(α),β]
(α0,α] ⊂ U(α, β). Now note that α0, D, S and g satisfy all assumptions of Lemma

5. Let H =
∪

α∈S{α} × Tα. For ⟨α′, β′⟩, ⟨α, β⟩ ∈ H, define ⟨α′, β′⟩ ≃ ⟨α, β⟩ by
U(α′, β′) = U(α, β). For each equivalence class E in the quotient H/≃, define
U(E) = U(α, β) for some (equivalently, arbitrary) ⟨α, β⟩ ∈ E. Then

(+)
∪

⟨α,β⟩∈E

X
(g(α),β]
(α0,α] ⊂ U(E)

and the U(E)’s are distinct. For each α ∈ S and E ∈ H/≃, let j(E,α) = sup Vα(E),
S(E) = {α ∈ S : j(E,α) = ω1} and k(E) = sup S(E).

Case 2-2-1. There is E0 ∈ H/≃ such that k(E0) = ω1.

Note that S(E0) is unbounded in ω1 and S(E0) ⊂ S ⊂ D ∩D′ ⊂ D. By Lemma
5, Z = Z(α0, D, S(E0), g) is an open Fσ set in X, (X\Z) ∩ C2 = ∅ for some cub
set C and Z = Z(α0, D, S(E0), g) =

∪
α∈S(E0)

X
(g(α),ω1)
(α0,α] ⊂

∪
⟨α,β⟩∈E0

X
(g(α),β]
(α0,α] ⊂

U(E0). By Lemma 4, X\Z is a closed subshrinking subspace of X. So there is a
subshrinking H = {H(U) : U ∈ U} of {U ∩ (X\Z) : U ∈ U} in X\Z.
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For each U ∈ U , let

F (U) =
{

H(U) ∪ Z, if U = U(E0),
H(U), otherwise.

Then F = {F (U) : U ∈ U} is a subshrinking of U in X.

Case 2-2-2. k(E) < ω1 for each E ∈ H/≃.

There are two subcases.

Case 2-2-2-1. sup{k(E) : E ∈ H/≃} = ω1.

In this case, by induction, we can find a strictly increasing sequence {α(γ) : γ <
ω1} ⊂ S and a sequence {E(γ) : γ < ω1} ⊂ H/≃ such that sup(

∪
γ′<γ S(E(γ))) +

γ < α(γ) ∈ S(E(γ)). Let S′ = {α(γ) : γ < ω1}. Then S′ ⊂ S ⊂ D, S′ is unbounded
in ω1 and X

(g(α(γ)),ω1)
(α0,α(γ)] =

∪
β∈Vα(γ)(E(γ)) X

(g(α(γ)),β]
(α0,α(γ)] ⊂ U(E(γ)) for each γ < ω1.

By Lemma 5, Z = Z(α0, D, S′, g) =
∪

α∈S′ X
(g(α),ω1)
(α0,α] =

∪
γ<ω1

X
(g(α(γ)),ω1)
(α0,α(γ)] is an

open Fσ set in X and (X\Z) ∩ C2 = ∅ for some cub set C. By Lemma 4, there is
a subshrinking H = {H(U) : U ∈ U} of {U ∩ (X\Z) : U ∈ U} in X\Z. For each
U ∈ U , let

F (U) =

{
H(U) ∪ X

(g(α),ω1)]
(α0,α(γ)] , if U = U(E(γ)) for some γ < ω1,

H(U), otherwise.

Then F = {F (U) : U ∈ U} is a subshrinking of U in X.

Case 2-2-2-2. sup{k(E) : E ∈ H/≃} < ω1.

Fix α1 < ω1 with sup{k(E) : E ∈ H/≃} + α0 < α1. Note that supVα(E) < ω1

for each α ∈ S with α1 < α and E ∈ H/≃. Let S′ = {α ∈ S : α1 < α}
and H ′ =

∪
α∈S′{α} × Tα. Consider the co-lexicographic order ≺ on H ′, that is,

⟨γ′, δ′⟩ ≺ ⟨γ, δ⟩ iff δ′ < δ or (δ′ = δ and γ′ < γ) for each ⟨γ′, δ′⟩, ⟨γ, δ⟩ ∈ H ′. Since
H ′ ⊂ X ⊂ {⟨α, β⟩ ∈ ω2

1 : α ≤ β}, for each ⟨γ, δ⟩ ∈ H ′, the ≺-initial segument
{⟨γ′, δ′⟩ ∈ H ′ : ⟨γ′, δ′⟩ ≺ ⟨γ, δ⟩} of ⟨γ, δ⟩ is contained in the countable set {⟨α, β⟩ ∈
ω2

1 : α ≤ β ≤ δ}. So by |H ′| = ω1, the order type of the well-ordered set ⟨H ′,≺⟩
is exactly ω1. By ≺-induction on H ′, we will construct a strictly ≺-increasing
sequence {β(γ, δ) : ⟨γ, δ⟩ ∈ H ′} ⊂ ω1 and a sequence {E(γ, δ) : ⟨γ, δ⟩ ∈ H ′} ⊂ H/≃
such that

(1) ⟨γ, β(γ, δ)⟩ ∈ E(γ, δ),

(2) sup{j(E(γ′, δ′), γ) : ⟨γ′, δ′⟩ ≺ ⟨γ, δ⟩} + sup{β(γ′, δ′) : ⟨γ′, δ′⟩ ≺ ⟨γ, δ⟩} + δ

< β(γ, δ) ∈ Tγ .

Assume that β(γ′, δ′) and E(γ′, δ′) have been defined for each ⟨γ′, δ′⟩ ≺ ⟨γ, δ⟩,
where ⟨γ, δ⟩ ∈ H ′. It follows from α1 < γ that j(E, γ) < ω1 for each E ∈ H/≃.
So, since the ≺-initial segment of ⟨γ, δ⟩ is countable and Tγ is stationary in ω1, we
can find β(γ, δ) ∈ Tγ with sup{j(E(γ′, δ′), γ) : ⟨γ′, δ′⟩ ≺ ⟨γ, δ⟩} + sup{β(γ′, δ′) :
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⟨γ′, δ′⟩ ≺ ⟨γ, δ⟩}+δ < β(γ, δ). Then take E(γ, δ) ∈ H/≃ with ⟨γ, β(γ, δ)⟩ ∈ E(γ, δ).
By the construction, members of {E(γ, δ) : ⟨γ, δ⟩ ∈ H ′} are distinct and

(3) {β(γ, δ) : δ ∈ Tγ} is unbounded in ω1 for each γ ∈ S′.

Therefore by (3),

(4) X
(g(γ),ω1)
(α0,γ] =

∪
δ∈Tγ

X
(g(γ),β(γ,δ)]
(α0,γ] .

Moreover by Lemma 5 and (4),

Z = Z(α0, D, S′, g) =
∪

γ∈S′

X
(g(γ),ω1)
(α0,γ]

=
∪

γ∈S′

(
∪

δ∈Tγ

X
(g(γ),β(γ,δ)]
(α0,γ] ) =

∪
⟨γ,δ⟩∈H′

X
(g(γ),β(γ,δ)]
(α0,γ]

is an open Fσ set in X and (X\Z) ∩ C2 = ∅ for some cub set C. Note that
{X(g(γ),β(γ,δ)]

(α0,γ] : ⟨γ, δ⟩ ∈ H ′} is a collection of clopen set whose union is exactly Z

and that by (+), X
(g(γ),β(γ,δ)]
(α0,γ] ⊂ U(E(γ, δ)) for each ⟨γ, δ⟩ ∈ H ′. Let, by Lemma

4, H = {H(U) : U ∈ U} be a subshrinking of {U ∩ (X\Z) : U ∈ U} in X\Z.
For each U ∈ U , let

F (U) =

{
H(U) ∪ X

(g(γ),β(γ,δ)]
(α0,γ] , if U = U(E(γ, δ)) for some ⟨γ, δ⟩ ∈ H ′,

H(U), otherwise.

Then F = {F (U) : U ∈ U} is a subshrinking of U in X. The proof of Theorem A
is complete. ¤

In the rest of this paper, we consider collectionwise subnormality of subspaces
of ω2

1 . A space X is collectionwise subnormal (abbreviated as CWSN), see [Ya], if
for every discrete collection F of closed sets, there is a sequence {Gn : n ∈ ω} of
collections of open sets, where Gn is represented as {Gn(F ) : F ∈ F} with F ⊂
Gn(F ), such that for each x ∈ X, there is n ∈ ω with |{F ∈ F : x ∈ Gn(F )}| ≤ 1.
In this situation, {Gn : n ∈ ω} is said to be a θ-expansion of F . Moreover a space X
is collectionwise δ-normal (CWδN), see [Bu], if every discrete collection F of closed
sets can be separated by Gδ-sets, that is, there is a pairwise disjoint collection
G = {G(F ) : F ∈ F} of Gδ-sets with F ⊂ G(F ). It is easy to verify that CWSN
implies CWδN. The following is known.

Proposition 6. [Ju] Every discrete collection F of closed sets in a subnormal space
X with |F| ≤ 2ω is separated by Gδ-sets.

So, by |ω2
1 | ≤ ω1 ≤ 2ω and Theorem A, we have:

Proposition 7. All subspaces of ω2
1 are CWδN.

But the author does not know whether CWδN implies CWSN or not, so hereafter
we present a direct proof of the following theorem.
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Theorem B. All subspaces of ω2
1 are CWSN.

The proof of Theorem B is somewhat similar to that of Theorem A. It is straight-
forward to show:

Lemma 1’. If Xn is a closed CWSN subspace of a space X for each n ∈ ω, then
the subspace

∪
n∈ω Xn of X is also CWSN.

Applying Lemma 1’, we can similarly show:

Lemma 2’. α × ω1 and ω1 × α are hereditarily CWSN for each α < ω1. In
particular, for each subspace X of ω2

1, X[0,α] and X [0,α] are CWSN clopen subspaces
of X for each α < ω1.

Lemma 4’. Let X ⊂ {⟨α, β⟩ ∈ ω2
1 : α ≤ β} such that X ∩C2 = ∅ for some cub set

C ⊂ ω1. Then X is CWSN.

Proof of Theorem B. Let X ⊂ {⟨α, β⟩ ∈ ω2
1 : α ≤ β}. It suffices to show that X is

CWSN. Let F be a discrete collection of closed sets in X.

Case 1. △(X) is stationary in ω1.

For each α ∈ △(X), fix f(α) < α such that |{F ∈ F : X
(f(α),α]
(f(α),α] ∩ F ̸= ∅}| ≤ 1.

Then by the PDL, there are α0 < ω1 and a stationary set S ⊂ △(X) such that
f(α) = α0 for each α ∈ S. Observe that |{F ∈ F : X

(α0,ω1)
(α0,ω1)

∩ F ̸= ∅}| ≤ 1. Since

X = X[0,α0]

⊕
X

(α0,ω1)
(α0,ω1)

and X[0,α0] is CWSN by Lemma 2’, we can easily construct
a θ-expansion of F .

Case 2. △(X) is not stationary in ω1.

Let A = {α < ω1 : Vα(X) is stationary in ω1} and D be a cub set disjoint from
△(X).

Case 2-1. A is not stationary in ω1.

In this case, as in Case 2-1 in the proof of Theorem A, X ∩C2 = ∅ for some cub
set C. Then apply Lemma 4’.

Case 2-2. A is stationary in ω1.

Let A0 = {α ∈ A ∩ D : Vα(
∪

F) is unbounded in ω1 }. Since F is discrete,
applying the PDL, for each α ∈ A ∩ D, we can find f(α) < α and g(α) < ω1 with
α ≤ g(α) such that

(1) if α ∈ A0, then |{F ∈ F : X
(g(α),ω1)
(f(α),α] ∩ F ̸= ∅}| = 1,

(2) if α ∈ (A ∩ D)\A0, then {F ∈ F : X
(g(α),ω1)
(f(α),α] ∩ F ̸= ∅} = ∅.

Again applying the PDL to A∩D as in Case 2-2 in the proof of Theorem A, we can
find α0 < ω1 and a stationary set S ⊂ A∩D such that, for each α ∈ S, f(α) = α0,
g(α′) < α for each α′ ∈ S ∩ α. Then observe that

(1’) if α ∈ S ∩ A0, then |{F ∈ F : X
(g(α),ω1)
(α0,α] ∩ F ̸= ∅}| = 1,

(2’) if α ∈ S\A0, then {F ∈ F : X
(g(α),ω1)
(α0,α] ∩ F ̸= ∅} = ∅.

Let Z =
∪

α∈S X
(g(α),ω1)
(α0,α] and F0 = {F ∈ F : Z ∩ F ̸= ∅}.
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Claim. |F0| ≤ 1.

Proof. Assume that there are F ′, F ∈ F0 with F ′ ̸= F . Then there are α′, α ∈ S

such that X
(g(α′),ω1)
(α0,α′] ∩ F ′ ̸= ∅ and X

(g(α),ω1)
(α0,α] ∩ F ̸= ∅. By (1’) and (2’), we have

α′, α ∈ S ∩ A0 and α′ ̸= α. We may assume α′ < α. Since α′ ∈ A0 and F is
discrete, by (1’), Vα′(F ′) is unbounded in ω1. Take β ∈ Vα′(F ′) with β > g(α).
Then ⟨α′, β⟩ ∈ X

(g(α),ω1)
(α0,α] ∩F ′. Therefore X

(g(α),ω1)
(α0,α] ∩F ′ ̸= ∅ and X

(g(α),ω1)
(α0,α] ∩F ̸= ∅.

By α ∈ S∩A0 and F ′ ̸= F , this contradicts (1’). This completes the proof of Claim.

By Lemma 5, Z is an open Fσ set of X and (X\Z)∩C2 = ∅ for some cub set C.
By Lemma 4’, Y = X\Z is a closed Gδ CWSN subspace of X, say Y =

∩
n∈ω Gn,

where Gn is open in X. Let {Un : n ∈ ω} be a θ-expansion of {F ∩ Y : F ∈ F} in
Y , say Un = {Un(F ) : F ∈ F} with F ∩ Y ⊂ Un(F ) and Un(F ) is open in Y .

For each F ∈ F and n ∈ ω, let

Vn(F ) =
{

Un(F ) ∪ Z, if F ∈ F0,

Un(F ) ∪ (Gn\Y ), otherwise.

Then Vn(F )’s are open in X and F ⊂ Vn(F ). Set Vn = {Vn(F ) : F ∈ F} for each
n ∈ ω. To show that {Vn : n ∈ ω} is a desired θ-expansion of F in X, let x ∈ X.
If x ∈ Z, then there is n ∈ ω such that x /∈ Gn, so x /∈ Vn(F ) whenever F ∈ F\F0.
If x ∈ Y = X\Z, then for some n ∈ ω, x ∈ Un(F ) for at most one F ∈ F . So
x ∈ Vn(F ) for at most one F ∈ F . The proof is complete. ¤

The author conjectures that the answer of the following problem is, of course,
”yes”. But it seems to be somewhat complicated to handle the induction.

Problem. Are all subspaces of ωn
1 subnormal for each n ∈ ω?

Acknowledgement. The author would like to thank Ken-iti Tamano for his helpful
suggestions. He pointed out that Lemma 1’ can be proved in a usual way.
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