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Abstract. It is known that for a GO-space X, there is the small-
est LOTS X∗ containing X as a dense subspace, that is, if a LOTS
L contains X as a dense subspace, then L contains X∗.

Also lexicographic products of LOTS’, which is called lexico-
graphic LOTS’, have been well-discussed. Recently, the notion of
lexicographic products of GO-spaces was defined as follows:

for a sequence {Xα : α < γ} of GO-spaces, the lexicographic
GO-space X =

∏
α<γ Xα means the subspace X of the lexico-

graphic LOTS X̂ =
∏

α<γ X
∗
α.

It is known that for a GO-space X, there is a well-known LOTS
X⋄ containing X as a closed subspace. In this paper, first we show
the LOTS X⋄ has the following nice property:
• if a LOTS L contains X as a closed subspace, then L contains

X⋄.
Using this property, it is natural to define another notion of

lexicographic GO-spaces as follows:
for a sequence {Xα : α < γ} of GO-spaces, the lexicographic

GO-space X =
∏

α<γ Xα means the subspace X of the lexico-

graphic LOTS X̌ =
∏

α<γ X
⋄
α.

We will see:
• the GO-space X as a subspace of X̂ coincides with the GO-

space X as a subspace of X̌,
• X⋄ is contained in X̌.
• we characterize that the lexicographic GO-space X is closed

in X̌.

1. Introduction

Lexicographic products of LOTS’, which is called lexicographic LOTS’,
have been well-discussed, for instance see [2]. Recently, the notion of
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lexicographic products of GO-spaces, which is called lexicographic GO
spaces, was defined in [7] and has been developed in [3, 4, 5, 6, 8, 9,
10, 11]. For instance, the following strange result has been known:
• whenever γ is limit and all Xα’s have a minimal element but not

have maximal elements, “if the lexicographic product
∏

α<γ Xα is con-

nected, then all Xα’s are non-connected” [11].
In this paper, as in the abstract above, we will give another new

approach for getting lexicographic GO-spaces and discuss relationships
between these two notions.

We assume that all topological spaces have cardinality at least 2. A
linearly ordered set ⟨X,<X⟩ (see [1]) has a natural T2-topology denoted
by λX so called the order topology which is the topology generated by
{(←, x)X : x ∈ X} ∪ {(x,→)X : x ∈ X} as a subbase, where (x,→)X
= {w ∈ X : x <X w}, (x, y]X = {w ∈ X : x <X w ≤X y}, ..., etc.
Here w ≤X x means w <X x or w = x. If the contexts are clear, we
simply write < and (x, y] instead of <X and (x, y]X respectively. The
triple ⟨X,<X , λX⟩ is called a LOTS (= Linearly Ordered Topological
Space) and simply denoted by LOTS X. In particular, an ordinal with
the usual order is considered as a LOTS. The symbol ω denotes the set
{0, 1, 2, 3, · · · } which is an ordinal, moreover the symbol N denotes the
set of natural numbers, that is, {1, 2, 3, · · · }. Note that for every x ∈ X,
(←, x] /∈ λX iff (x,→) is non-empty and has no minimal elements, also
analogously [x,→) /∈ λX iff (←, x) is non-empty and has no maximal
elements. Let

XR = {x ∈ X : (←, x] /∈ λX} and XL = {x ∈ X : [x,→) /∈ λX}.

A generalized ordered space (= GO-space ) is a triple ⟨X,<X , τX⟩,
where <X is linear order on X and τX is a T1 topology on X which has
a base consisting of convex sets, also simply denoted by a GO-space
X, where a subset B of X is convex if for every x, y ∈ B with x <X y,
[x, y]X ⊂ B holds. Such a topology τX is called a GO-topology on
a linearly ordered set ⟨X,<X⟩ and it is easy to verify that the GO-
topology τX is stronger than the order topology λX , that is, τX ⊃ λX .
Also let

X+
τX

= {x ∈ X : (←, x]X ∈ τX \ λX},

X−
τX

= {x ∈ X : [x,→)X ∈ τX \ λX}.
Obviously X+

τX
⊂ XR and X−

τX
⊂ XL. When contexts are clear, we

usually simply write X+ and X− instead of X+
τX

and X−
τX
, respectively.

Note that X is a LOTS iff X+ ∪X− = ∅. For A ⊂ XR and B ⊂ XL,
let τ(A,B) be the GO-topology generated by {(←, x)X : x ∈ X} ∪
{(x,→)X : x ∈ X} ∪ {(←, x]X : x ∈ A} ∪ {[x,→)X : x ∈ B} as a
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subbase. Obviously τX = τ(X+, X−) whenever X is a GO-space, and
also τ(A,B) defines a GO-topology on X whenever X is a LOTS with
A ⊂ XR and B ⊂ XL. The Sorgenfrey line S is ⟨R, <R, τ(∅,R)⟩, where
<R is the usual order on the real line R.

Let X = ⟨X,<X , τX⟩ be a GO-space and Y ⊂ X, then “the subspace
Y of a GO-space X” means the GO-space ⟨Y,<X↾ Y, τX ↾ Y ⟩, where
<X↾ Y is the restricted order of <X on Y and τX ↾ Y := {U ∩ Y : U ∈
τX}, that is, τX ↾ Y is the subspace topology of τX .

Let X and Y be LOTS’ with the orders <X and <Y respectively.
A map f : X → Y is said to be order preserving if, f(x) <Y f(x′)
whenever x <X x′, in this case, f is 1-1. Moreover, f is said to be an
order isomorphism if f is order preserving and onto, in this case f−1 is
also order preserving. Obviously an oder isomorphism f between two
LOTS’ is a homeomorphism, that is, both f and f−1 are continuous.
However, an oder isomorphism between two GO-spaces need not be
a homeomorphism. For example, the identity map between the Sor-
genfley line S and the real line R is an order isomorphism but not a
homeomorphism. When there is an order isomorphism between two
GO-spaces X and Y which is also a homeomorphism, then we can
identify these GO-spaces and usually identify as X = Y . If there is an
order preserving map f on a GO-space X onto a subspace Y of a GO-
space Z which is homeomorphism, then we say that f is an embedding
of a GO-space X into a GO-space Z or a GO-space X is embeddable
in a GO-space Z.

Now for a given GO-space X, let consider the following well-known
LOTS

X∗ = X− × {−1} ∪X × {0} ∪X+ × {1}
with the lexicographic order <X∗ on X∗ induced by the lexicographic
order on X×{−1, 0, 1}, here of course −1 < 0 < 1. We usually identify
X as X = X × {0} in the obvious way (i.e., x = ⟨x, 0⟩), moreover for
x ∈ X+ (x ∈ X−), put x+ := ⟨x, 1⟩ ∈ X+ × {1} (x− := ⟨x,−1⟩ ∈
X− × {−1}, respectively). Then note that X∗ can be identified as

X∗ = {x− : x ∈ X−} ∪X ∪ {x+ : x ∈ X+}.
Note (←, x]X = (←, x+)X∗ ∩ X ∈ λX∗ ↾ X whenever x ∈ X+,

and also its analogy. Then the GO-space X is a dense subspace of
the LOTS X∗, and X has a maximal element maxX iff X∗ has a
maximal element maxX∗, in this case, maxX = maxX∗ (and similarly
for minimal elements). Note that X∗ satisfies the property that if a
LOTS L contains the GO-space X as a dense subspace, then there
are a subspace Y of L which is a LOTS and an order isomorphism
f : X∗ → Y such that the restriction of f on X is the identity map
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on X, i.e., f ↾ X = 1X , see [12]. Since X is dense in X∗, such a pair
of Y and f is uniquely determined, so we can identify as Y = X∗. A
LOTS L containing X as a dense subspace is called a d-extension of a
GO-space X, where “d-” means “dense”. So X∗ is called the minimal
d-extension of X.

Definition 1.1 (A lexicographic GO-space by d-extensions [7]). Let
Xα be a LOTS for every α < γ and X =

∏
α<γ Xα, where γ is an

ordinal. When γ = 0, we consider as
∏

α<γ Xα = {∅}, which is a
trivial LOTS, for notational conveniences. When γ > 0, every element
x ∈ X is identified with the sequence ⟨x(α) : α < γ⟩. Recall that the
lexicographic order <X on X is defined as follows:
for x, x′ ∈ X,

x <X x′ iff for some α < γ, x ↾ α = x′ ↾ α and x(α) <Xα x′(α),

where x ↾ α = ⟨x(β) : β < α⟩ and <Xα denotes the order on Xα. Then
X = ⟨X,<X , λX⟩ is a LOTS and called the lexicographic product of
LOTS’ Xα’s.

Now let Xα be a GO-space for every α < γ and X =
∏

α<γ Xα.

Then the lexicographic product X̂ =
∏

α<γ X
∗
α, which is a LOTS, can

be defined. The lexicographic product of GO-spaces Xα’s defined by
d-extensions is the GO-space ⟨X,<X̂↾ X,λX̂ ↾ X⟩. Obviously this def-
inition extends the lexicographic product of LOTS’, and is reasonable
because each X∗

α is the smallest LOTS which contains Xα as a dense
subspace. When n ∈ ω, then

∏
i<nXi is denoted by X0 × · · · ×Xn−1.

If all Xα’s are X, then
∏

α<γ Xα is denoted by Xγ. From now on,

when we consider a lexicographic GO-space X =
∏

α<γ Xα, we assume
γ ≥ 2.

Next for a given GO-space X, let consider the following well-known
LOTS

X⋄ = X− × {−n : n ∈ N} ∪
(
X × {0}

)
∪X+ × {n : n ∈ N}

with the lexicographic order <X⋄ on X⋄ induced by the lexicographic
order onX×Z, where Z denotes the set of integers with the usual order,
that is, Z = {· · · ,−3,−2,−1−, 0, 1, 2, 3, · · · }. We usually identify X
as X = X × {0} in the obvious way (i.e., x = ⟨x, 0⟩), moreover for
x ∈ X+ (x ∈ X−) and n ∈ N, put x+n := ⟨x, n⟩ (x−n := ⟨x,−n⟩,
respectively). Then note that X⋄ can be represented as

X⋄ = {x−n : x ∈ X−, n ∈ N} ∪X ∪ {x+n : x ∈ X+, n ∈ N}.
For notational conveniences, we let x+0 = x−0 = x. Note (←, x]X =
(←, x+1)X⋄ ∩ X ∈ λX⋄ ↾ X whenever x ∈ X+, and also its analogy.
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Then the GO-space X is a closed subspace of the LOTS X⋄, and X
has a maximal element maxX iff X⋄ has a maximal element maxX⋄,
in this case, maxX = maxX⋄ (and similarly for minimal elements).
In the next section, we will see that X⋄ satisfies the property that if
a LOTS L contains the GO-space X as a closed subspace, then there
are a subspace Y of L which is a LOTS and an order isomorphism
f : X⋄ → Y such that f ↾ X = 1X . Unlike the case X∗, such a
pair Y and f cannot be uniquely determined in this case, because, for
example, {x−2n : x ∈ X−, n ∈ N} ∪ X ∪ {x+2n : x ∈ X+, n ∈ N}
is a proper subspace of X⋄ which is also order isomorphic to X⋄. A
LOTS L containing X as a closed subspace is called a c-extension
of a GO-space X, where “c-” means “closed”. Although there are no
minimal c-extensions, by the above property of a c-extension which will
be proved in the next section, it is reasonable to define the following
new notion of a lexicographic GO-space using c-extensions.

Definition 1.2 (A lexicographic GO-space by c-extensions). LetXα be
a GO-space for every α < γ andX =

∏
α<γ Xα. Then the lexicographic

product X̌ =
∏

α<γ X
⋄
α, which is a LOTS, can be defined. The lexico-

graphic product of GO-spaces Xα’s defined by c-extensions is the GO-
space ⟨X,<X̌↾ X,λX̌ ↾ X⟩. Note that both orders <X̂↾ X and <X̌↾ X
on X coincide with the lexicographic order <X on X =

∏
α<γ Xα. So

we can write these lexicographic GO-spaces ⟨X,<X̂↾ X,λX̂ ↾ X⟩ and
⟨X,<X̌↾ X,λX̌ ↾ X⟩ as ⟨X,<X , λX̂ ↾ X⟩ and ⟨X,<X , λX̌ ↾ X⟩, respec-
tively.

We frequently use the following notation. For instance (general cases
are similarly defined ), let x0 ∈

∏
α<α0

Xα, u ∈ Xα0 , x1 ∈
∏

α0<α<γ Xα

with α0 < γ, then the symbol x0
∧⟨u⟩∧x1 denotes the element y ∈∏

α<γ Xα defined by

y(α) =


x0(α) if α < α0,

u if α = α0,

x1(α) if α0 < α < γ.

2. X⋄ can be embeddable into a LOTS containing X as a
closed subspace

Since a GO-space X is dense in X∗ and closed in X⋄, the following
properties on a GO-space X which is not a LOTS are obvious:

• there is no embedding f : X∗ → X⋄ with f ↾ X = 1X ,
• there is no embedding f : X⋄ → X∗ with f ↾ X = 1X .
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In this section, we prove that if a GO-space X is contained in a
LOTS L as a closed subspace, then there is an embedding f : X⋄ → L
with f ↾ X = 1X . To do this, we need the following lemma.

Lemma 2.1. If X is a GO-space, then the following hold.

(1) if x ∈ X+, then the sequence {x+n : n ∈ ω} is strictly increasing
in X⋄ such that for every n ∈ N, x+n /∈ X and x+n is the imme-
diate successor of x+(n−1) in X⋄, that is, (x+(n−1), x+n))X⋄ = ∅,
therefore x+n is an isolated point of the LOTS X⋄,

(2) if x ∈ X−, then the sequence {x−n : n ∈ ω} is strictly decreasing
in X⋄ such that for every n ∈ N, x−n /∈ X and x−n is the imme-
diate predecessor of x−(n−1) in X⋄, that is, (x−n, x−(n−1))X⋄ = ∅,
therefore x−n is an isolated point of the LOTS X⋄,

(3) if x ∈ X+, y ∈ X and n ∈ N, then x <X y iff x+n <X⋄ y iff
there is z ∈ X with x+n <X⋄ z <X y,

(4) if x ∈ X−, y ∈ X and n ∈ N, then y <X x iff y <X⋄ x−n iff
there is z ∈ X with y <X z <X⋄ x−n,

(5) if x ∈ X+, y ∈ X− and n,m ∈ N, then x <X y iff x+n <X⋄ y−m

iff there is z ∈ X with x+n <X⋄ z <X⋄ y−m,
(6) for every a ∈ X⋄, there are x, y ∈ X with x ≤X⋄ a ≤X⋄ y.
(7) if x, y ∈ X with x <X y and (x, y)X = ∅, then (x, y)X⋄ = ∅.

Proof. (7) Let x, y ∈ X with x <X y and (x, y)X = ∅. Assuming
(x, y)X⋄ ̸= ∅, take a ∈ (x, y)X⋄ . We may assume that a = z+n for some
z ∈ X+ and n ∈ N. Then obviously we have x ≤X z. When x <X z, we
have z ∈ (x, y)X , a contradiction. When x = z, since (z,→)X is non-
empty and has no minimal elements, we can take z′ ∈ (z, y)X = (x, y)X ,
a contradiction.

Proofs of other clauses are left to the readers.
□

Now we will show that if a LOTS L contains a closed subspace X,
then X⋄ is also contained in L, more precisely:

Theorem 2.2. If a LOTS L contains a closed subspace X, then there
are a subspace Y of L and an order isomorphism f : X⋄ → Y which is
a homeomorphism with f ↾ X = 1X .

Proof. Let L = ⟨L,<L, λL⟩, X = ⟨X,<X , τX⟩ and X⋄ = ⟨X⋄, <X⋄

, λX⋄⟩. Then by the assumptions, note that <X=<L↾ X =<X⋄↾ X,
τX = λL ↾ X = λX⋄ ↾ X and X is closed in both topological spaces
⟨L, λL⟩ and ⟨X⋄, λX⋄⟩. Let λX denote the order topology on the ordered
set ⟨X,<X⟩. First we show the following claim.
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Claim 1. If x ∈ X+ (= X+
τX
), that is, (←, x]X ∈ τX \ λX , then there

is a strictly increasing sequence {xn : n ∈ ω} in L such that x0 = x
and for every n ∈ ω, xn <L (x,→)X holds, i.e., xn <L y for every
y ∈ (x,→)X .

Proof. Let x ∈ X+, then it follows from (←, x]X ∈ τX \ λX that
(x,→)X is non-empty closed in X (i.e., in the space ⟨X, τX⟩) and has
no minimal elements in X (i.e., in the ordered set ⟨X,<X⟩). Note that
(x,→)X is also closed in L, because X is closed in L.

First let x0 = x. Since (x,→)X is closed in L with x /∈ (x,→)X , we
can find x1 ∈ L with x = x0 <L x1 and (x, x1)L ∩ (x,→)X = ∅. Note
x1 /∈ X. Assume that a sequence x0, x1, x2 · · · , xn ∈ L with n ≥ 1 and
x = x0 <L x1 <L x2 <L · · · <L xn <L (x,→)X has been defied. Since
xn /∈ X and X is closed in L, there is xn+1 ∈ L with xn <L xn+1 such
that (xn, xn+1)L∩X = ∅. Then obviously xn+1 <L (x,→)X . The proof
of Claim 1 is complete.

Similarly we see:

Claim 2. If x ∈ X− (= X−
τX
), then there is a strictly decreasing

sequence {xn : n ∈ ω} in L such that x0 = x and for every n ∈ ω,
(←, x)X <L xn holds.

By Claim 1 (Claim 2), we can fix such a sequence {xn : n ∈ ω} ⊂ L for
x ∈ X+ (x ∈ X−, respectively). Using these sequences, define a map
f on X⋄ as follows: for a ∈ X⋄,

f(a) =


a if a ∈ X,

xn if ∃x ∈ X+∃n ∈ N(a = x+n),

xn if ∃x ∈ X−∃n ∈ N(a = x−n),

Now letting Y = f [X⋄], we will prove that f and Y are the desired. By
the construction of f and Lemma 2.1, obviously by case-by-case, we
can see f : X⋄ → Y is an order isomorphism, so it suffices to see that f
is an homeomorphism between X⋄ and Y , therefore the following claim
completes the proof of this theorem.

Claim 3. Y = ⟨Y,<L↾ Y, λL ↾ Y ⟩ is a LOTS.

Proof. Let <Y=<L↾ Y , τY = λL ↾ Y and λY be the order topology on
Y , of course, with respect to the order <Y . To see that Y is a LOTS, it
suffices to see Y + = ∅ and Y − = ∅. Since the remaining is similar, we
will only see Y − = ∅, where Y − = {y ∈ Y : [y,→)Y ∈ τY \ λY }. So it
suffices to see that for every y ∈ Y , if [y,→)Y ∈ τY , then [y,→)Y ∈ λY .
Let [y,→)Y ∈ τY , i.e., (←, y)Y is closed in Y . We may assume (←
, y)Y ̸= ∅, otherwise obvious. Then it suffices to see that (←, y)Y has
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a maximal element, say z, in Y , because of [y,→)Y = (z,→)Y ∈ λY .
Let y = f(a) with a ∈ X⋄. We consider 3 cases.

Case 1. a ∈ X.

In this case, note y = f(a) = a ∈ X. Since (←, y)Y is non-empty
closed in ⟨Y, τY ⟩, y /∈ (←, y)Y and τY = λL ↾ Y , we can find t ∈ L with
t <L y and

(∗) (t, y)L ∩ (←, y)Y = ∅,
where (t, y)L denotes the interval in L. Whenever t ∈ Y , the element
t is a maximal element of (←, y)Y . Therefore we may assume t /∈ Y .
Since X is closed in L and t /∈ Y ⊃ X, we can find s ∈ L with s <L t
and (s, t)L ∩ X = ∅. Now by t /∈ Y and (∗) , we see (←, y)L ∩ X ⊂
(←, s]L. Note (←, y)L ∩X = (←, y)X because of y ∈ X. We consider
further 2 subcases.

Subcase 1 in Case 1. (←, y)L ∩X has a maximal element x.

It follows from x <X y, (x, y)X = ∅ and Lemma 2.1 (7) that (x, y)X⋄ =
∅. Since f is an order isomorphism between X⋄ and Y , we see (x, y)Y =
(f(x), f(y))Y = ∅, which means that x is a maximal element of (←, y)Y .

Subcase 2 in Case 1. (←, y)L ∩X has no maximal elements.

In this case, since (t,→)L is a neighborhood of y disjoint from (←
, y)Y ⊃ (←, y)X , we see that (←, y)X is closed in X. If (←, y)X =
∅ were true, then by y = minX = minX⋄, we see (←, y)Y = (←
, f(y))Y = ∅, a contradiction. Thus (←, y)X is non-empty and has no
maximal elements, which shows y ∈ X−. Then y−1 is the immediate
predecessor of y in X⋄, therefore f(y−1) is the immediate predecessor
of f(y) = y in Y , which means that f(y−1) is a maximal element of
(←, y)Y .

Case 2. a = x+n for some x ∈ X+ and n ∈ N.

In this case, y = f(a) = f(x+n) = xn holds, where {xn : n ∈ N} is
the fixed sequence given in Claim 1. Then we see that (←, y)Y = (←
, xn)Y = (←, xn−1]Y , therefore xn−1 is a maximal element of (←, y)Y .

Case 3. a = x−n for some x ∈ X− and n ∈ N.

In this case, y = f(a) = f(x−n) = xn holds, where {xn : n ∈ N} is
the fixed sequence given in Claim 2. Then xn+1 is a maximal element
of (←, y)Y .

This completes the proof of Claim 3.
□
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3. Two lexicographic GO-spaces

Let {Xα : α < γ} be a sequence of GO-spaces, set X =
∏

α<γ Xα

and let <X be the lexicographic order on X. Definitions 1.1 and 1.2
give two lexicographic GO-topologies λX̂ ↾ X and λX̌ ↾ X on ⟨X,<X⟩,
where X̂ =

∏
α<γ X

∗
α and X̌ =

∏
α<γ X

⋄
α. In this section, we will see

that these two topologies on X coincide.
The following lemma is proved in [7, Lemma1.2].

Lemma 3.1. ([7, Lemma 1.2]) Let {Xα : α < γ} be a sequence of
GO-spaces and x ∈ X =

∏
α<γ Xα. The following are equivalent:

(1) x ∈ X+
λX̂↾X , where X̂ =

∏
α<γ X

∗
α and λX̂ ↾ X is the subspace

topology of the order topology λX̂ ,
(2) there is α0 < γ such that:

(i) x(α0) ∈ X+
α0
,

(ii) for every α < γ with α0 < α, Xα has a maximal element
maxXα and x(α) = maxXα.

Also changing + by − in the lemma above, we get the analogous
result Lemma 1.3 of [7], we refer this as an analogous lemma of Lemma

3.1. Now we will see that in Lemma 3.1, X̂ and X∗
α can be changed by

X̌ and X⋄
α, respectively. Its proof is similar to Lemma 3.1, but since

there are some difficulty in this case, we write down its proof.

Lemma 3.2. Let {Xα : α < γ} be a sequence of GO-spaces and x ∈
X =

∏
α<γ Xα. The following are equivalent:

(1) x ∈ X+
λX̌↾X , where X̌ =

∏
α<γ X

⋄
α and λX̌ ↾ X is the subspace

topology of the order topology λX̌ ,
(2) there is α0 < γ such that:

(i) x(α0) ∈ X+
α0
,

(ii) for every α < γ with α0 < α, Xα has a maximal element
maxXα and x(α) = maxXα.

Proof. Let <X and <X̌ be the lexicographic orders on X =
∏

α<γ Xα

and X̌ =
∏

α<γ X
⋄
α respectively, moreover λX and λX̌ the order topolo-

gies on the ordered sets ⟨X,<X⟩ and ⟨X̌, <X̌⟩ respectively. Further-
more let τX = λX̌ ↾ X and for notational simplicity, put X+ = X+

τX
=

X+
λX̌↾X .

(1)⇒ (2) Let x ∈ X+, then by (←, x]X ∈ τX\λX , (x,→)X is non-empty
and has no minimal elements with respect the order <X . Moreover by
(←, x]X ∈ τX = λX̌ ↾ X, we can find y ∈ X̌ with x <X̌ y such
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that (x, y)X̌ ∩ X = ∅. It follows from x <X̌ y that for some α0 < γ,
x ↾ α0 = y ↾ α0 and x(α0) <X⋄

α0
y(α0) hold.

Claim 1. For every α < γ with α0 < α, a maximal element maxXα

exists and x(α) = maxXα.

Proof. Assuming that there is α < γ with α0 < α such that (x(α),→
)X is not empty, let α1 = min{α > α0 : (x(α),→)X ̸= ∅}. Taking
v ∈ (x(α1),→)X , let a = (x ↾ α1)

∧⟨v⟩∧(x ↾ (α1, γ)). Then we have
a ∈ (x, y)X̌ ∩X, a contradiction. This completes the proof of Claim 1.

Claim 2. (x(α0), y(α0))X⋄
α0
∩Xα0 = ∅ holds.

Proof. Assuming that there is u ∈ (x(α0), y(α0))X⋄
α0
∩Xα0 , let a = (x ↾

α0)
∧⟨u⟩∧(x ↾ (α0, γ)). Then we have a ∈ (x, y)X̌ ∩X, a contradiction.

This completes the proof of Claim 2.

From Claim 2, we see (←, x(α0)]Xα0
= (←, y(α0))X⋄

α0
∩Xα0 ∈ λX⋄

α0
↾

Xα0 = τXα0
, where τXα0

is the original GO-topology on Xα0 and λX⋄
α0

is the order topology on X⋄
α0
.

Claim 3. (←, x(α0)]Xα0
/∈ λXα0

holds, where λXα0
is the order topology

on Xα0 .

Proof. Assume (←, x(α0)]Xα0
∈ λXα0

, then there is u ∈ Xα0 with
x(α0) <Xα0

u such that (x(α0), u)Xα0
= ∅. Then by Lemma 2.1 (7), we

have (x(α0), u)X⋄
α0

= ∅, thus by Claim 2, we see y(α0) = u.

We check the following fact.

Fact. For every α < γ with α0 < α, (←, y(α))X⋄
α
= ∅, that is, y(α) =

minX⋄
α = minXα.

Proof. Assuming (←, y(α))X⋄
α
̸= ∅ for some α < γ with α0 < α, let

α1 = min{α > α0 : (←, y(α))X⋄
α
̸= ∅}.

When Xα1 has a minimal element, let v = minXα1 , then v ∈ (←
, y(α1))X⋄

α1
∩Xα1 . WhenXα1 have no minimal elements, then by Lemma

2.1 (6), we can find v′ ∈ Xα1 with v′ ≤X⋄
α1

y(α1). Then taking v ∈ Xα1

with v <Xα1
v′, we see v ∈ (←, y(α1))X⋄

α1
∩ Xα1 . In either cases, we

see v ∈ (←, y(α1))X⋄
α1
∩Xα1 . It follows from x ∈ X, y(α0) = u ∈ Xα0 ,

y(α) = x(α) for every α < α0 and y(α) = minXα for every α < γ with
α0 < α < α1 that a = (y ↾ α1)

∧⟨v⟩∧(x ↾ (α1, γ)) ∈ X. Then obviously
a ∈ (x, y)X̌ ∩X, a contradiction. This completes the proof of Fact.

This fact shows that y(α) = minXα for every α < γ with α0 < α. It
follows from x ∈ X, x ↾ α0 = y ↾ α0, y(α0) = u ∈ Xα0 and y ↾ (α0, γ) =
⟨minXα : α > α0⟩ that x <X y ∈ X. Since by x ∈ X+, (x,→)X
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has no minimal elements, we can find z ∈ (x, y)X = (x, y)X̌ ∩ X, a
contradiction.

This completes the proof of Claim 3.

Thus we have seen (←, x(α0)]Xα0
∈ τXα0

\λXα0
, that is, x(α0) ∈ X+

α0
.

The proof of (1) ⇒ (2) is complete.

(2) ⇒ (1) Assume (2). We will see x ∈ X+, i.e., (←, x]X ∈ τX \ λX .
It follows from (i) of (2) that x(α0) <X⋄

α0
x(α0)

+1 ∈ X⋄
α0
\Xα0 . Letting

y = (x ↾ α0)
∧⟨x(α0)

+1⟩∧(x ↾ (α0, γ)), we see x <X̌ y ∈ X̌ \ X. It
follows from x ↾ α0 = y ↾ α0, x(α0) <Xα⋄

0
x(α0)

+1 = y(α0) /∈ Xα0 and

x ↾ (α0, γ) = y ↾ (α0, γ) = ⟨maxXα : α > α0⟩ that (←, x]X = (←
, y)X̌ ∩X ∈ λX̌ ↾ X = τX . Therefore the following claim completes the
proof of the lemma.

Claim 4. (←, x]X /∈ λX .

Proof. Assume (←, x]X ∈ λX . By (←, x(α0)]Xα0
/∈ λXα0

, (x(α0),→
)Xα0

is non-empty, so take u ∈ Xα0 with x(α0) <Xα0
u. By letting

a = (x ↾ α0)
∧⟨u⟩∧(x ↾ (α0, γ)), we see a ∈ (x,→)X , so (x,→)X is non-

empty. Therefore by (←, x]X ∈ λX , there is x′ ∈ X with x <X x′ and
(x, x′)X = ∅. Take α1 < γ with x ↾ α1 = x′ ↾ α1 and x(α1) <Xα1

x′(α1).
Because of x(α) = maxXα for every α < γ with α0 < α, we see α1 ≤
α0. If α1 < α0 were true, then (x ↾ α0)

∧⟨u⟩∧(x ↾ (α0, γ)) ∈ (x, x′)X , a
contradiction. Thus we have α1 = α0, so x(α0) <Xα1

x′(α0). Since by
x(α0) ∈ X+

α0
, (x(α0),→)Xα0

is non-empty and has no minimal elements,
we can take v ∈ (x(α0), x

′(α0))Xα0
. Then we see (x ↾ α0)

∧⟨v⟩∧(x ↾
(α0, γ)) ∈ (x, x′)X , a contradiction. □

In Lemma 3.2, changing + and maxXα by − and minXα respec-
tively, we get an analogeous lemma of Lemma 3.2. Remark that (2)
of Lemma 3.1 is the same as to (2) of Lemma 3.2, therefore we see
that (1) of Lemma 3.1 is equivalent to (1) of Lemma 3.2, that is,
X+

λX̂↾X = X+
λX̌↾X . Similarly we see X−

λX̂↾X = X−
λX̌↾X . Since a GO-

topology τX on a ordered set X is determined by its order, X+
τX

and

X−
τX
, that is, τX = τ(X+

τX
, X−

τX
), we have λX̌ ↾ X = τ(X+

λX̌↾X , X
−
λX̌↾X) =

τ(X+
λX̂↾X , X

−
λX̂↾X) = λX̂ ↾ X. We have shown the following theorem.

Theorem 3.3. Let {Xα : α < γ} be a sequence of GO-spaces and
consider X =

∏
α<γ Xα as an ordered set with the lexicographic order

<X . Moreover let consider the two lexicographic LOTS’ X̂ =
∏

α<γ X
∗
α

and X̌ =
∏

α<γ X
⋄
α.
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Then the subspace X of X̂ is same as to the subspace X of X̌, that
is, the GO-topology on X defined in Definition 1.1 is equal to the GO-
topology on X defined in Definition 1.2.

4. X⋄ can be embedded in X̌

In this section, we shall prove that for a lexicographic GO-space
X =

∏
α<γ Xα, X

⋄ can be embedded in X̌, more precisely:
.

Theorem 4.1. Let X =
∏

α<γ Xα be a lexicographic GO-space. Then

there are a subspace Y of the lexicographic LOTS X̌ =
∏

α<γ X
⋄
α with

X ⊂ Y and an order isomorphism f on X⋄ onto Y which is a homeo-
morphism satisfying f ↾ X = 1X .

Proof. It follows from Lemma 3.2 that for x ∈ X+, we can fix αx < γ
such that x(αx) ∈ X+

αx
and for every α < γ with αx < α, x(α) =

maxXα hold. Analogously for x ∈ X−, we can fix αx < γ such that
x(αx) ∈ X−

αx
and for every α < γ with αx < α, x(α) = minXα hold.

For a ∈ X⋄, define f(a) ∈ X̌ as follows:
a if a ∈ X,

(x ↾ αx)
∧⟨x(αx)

+n⟩∧(x ↾ (αx, γ)) if ∃x ∈ X+∃n ∈ N(a = x+n),

(x ↾ αx)
∧⟨x(αx)

−n⟩∧(x ↾ (αx, γ)) if ∃x ∈ X−∃n ∈ N(a = x−n),

Now letting Y = f [X⋄], we will prove that f and Y are the desired.

Claim 1. The following hold.

(1) if a = x+n for some x ∈ X+ and n ∈ N, then x = f(x) <X̌ f(a)
and (f(x), f(a))X̌ ∩X = ∅,

(2) if a = x−n for some x ∈ X− and n ∈ N, then f(a) <X̌ f(x) = x
and (f(a), f(x))X̌ ∩X = ∅,

Proof. (1) Let a = x+n for some x ∈ X+ and n ∈ N. By the definition of
f , f(x) <X̌ f(a) is obvious. Assuming that there is y ∈ (f(x), f(a))X̌∩
X, let α0 = min{α < γ : y(α) ̸= f(x)(α)}. By x ↾ αx = f(x) ↾ αx =
f(a) ↾ αx and f(x) ↾ (αx, γ) = x ↾ (αx, γ) = ⟨maxXα : αx < α < γ⟩,
we see α0 = αx and x(αx) <X y(αx) ∈ Xαx . Now it follows from
Lemma 2.1 (3) that x(αx)

+n <X⋄
αx

y(αx). This says f(a) <X̌ y, a
contradiction. Thus we see (f(x), f(a))X̌ ∩X = ∅.

(2) is similar.
This completes the proof of Claim 1.

Claim 2. f : X⋄ → Y is order preserving.
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Proof. Assuming a, b ∈ X⋄ with a <X⋄ b, we will show f(a) <X̌ f(b)
by case-by-case.

Case 1. a, b ∈ X⋄.

This case is obvious because of f(a) = a <X b = f(b).

Case 2. a = x+n for some x ∈ X+ and n ∈ N, and b ∈ X.

By x+n = a <X⋄ b, x ∈ X+ ⊂ X and b ∈ X, applying Lemma 2.1
(3), we see x <X b. Then there is α0 < γ with x ↾ α0 = b ↾ α0 and
x(α0) <Xα0

b(α0). It follows from x ↾ (αx, γ) = ⟨maxXα : αx < α < γ⟩
that α0 ≤ αx.

If α0 < αx holds, then by f(a) = f(x+n) = (x ↾ αx)
∧⟨x(αx)

+n⟩∧(x ↾
(αx, γ)), we have f(a) ↾ α0 = x ↾ α0 = b ↾ α0 = f(b) ↾ α0 and
f(a)(α0) = x(α0) <Xα0

b(α0), therefore we see f(a) <X̌ b = f(b).
Let consider the remaining case “α0 = αx”. It follows from X+

α0
∋

x(α0) <Xα0
b(α0) ∈ Xα0 and Lemma 2.1 (3) that f(a)(α0) = x(α0)

+n

<Xα⋄
0
b(α0). Therefore by f(a) ↾ α0 = x ↾ α0 = b ↾ α0, we see

f(a) <X̌ b = f(b).

Using Lemma 2.1, we can also see other cases, so we leave it to the
readers. This completes the proof Claim 2.

Since f is order preserving and onto Y , it is an order isomorphism.
To see that f is homeomorphism, it suffices to see the subspace Y =
⟨Y,<Y , τY ⟩, where <Y=<X̌↾ Y and τY = λX̌ ↾ Y , is, in fact, a LOTS.

Claim 3. The subspace Y = ⟨Y,<Y , τY ⟩ is a LOTS.

Proof. It suffices to see Y +
τY

= ∅ and Y −
τY

= ∅. We only show Y −
τY

= ∅.
For short, let Y − = Y −

τY
. Assume that an element y ∈ Y − exists, then

note [y,→)Y ∈ τY \λY , where λY denotes the order topology on Y with
respect to the order <Y . So the following properties hold.

[A] (←, y)Y is non-empty and has no-maximal elements.

[B] there is z ∈ X̌ such that z <X̌ y and (z, y)X̌ ∩ Y = ∅.

We consider 3 cases.

Case 1. f(x) = y for some x ∈ X, i.e., x = y.

In this case, from [B], take α0 < γ, z ↾ α0 = y ↾ α0 and z(α0) <X⋄
α0

y(α0). We will prove several facts.

Fact 1. (z(α0), y(α0))X⋄
α0
∩Xα0 = ∅.



14 NOBUYUKI KEMOTO

Proof. If there were u ∈ (z(α0), y(α0))X⋄
α0
∩Xα0 , then letting a = (y ↾

α0)
∧⟨u⟩∧(y ↾ (α0, γ)), we see a ∈ (z, y)X̌ ∩ X ⊂ (z, y)X̌ ∩ Y , which

contradicts [B]. This completes the proof of Fact 1.

Fact 2. z /∈ Y .

Proof. If z ∈ Y were true, then by (z, y)X̌ ∩ Y = ∅, we see z = max(←
, y)Y , which contradicts [A]. This completes the proof of Fact 2.

Fact 3. For every α < γ with α0 < α, (←, y(α))Xα = ∅, that is,
y(α) = minXα (= minX⋄

α).

Proof. Assuming (←, y(α))Xα ̸= ∅ for some α < γ with α0 < α, let
α1 = min{α > α0 : ∃u ∈ Xα(u <Xα y(α))} and take u ∈ Xα1 with
u <Xα1

y(α1). Then letting a = (y ↾ α1)
∧⟨u⟩∧(y ↾ (α1, γ)), we see

a ∈ (z, y)X̂ ∩ X ⊂ (z, y)X̂ ∩ Y , which contradicts [B]. This completes
the proof of Fact 3.

Fact 4. z(α0) /∈ Xα0 .

Proof. Assuming z(α0) ∈ Xα0 , by z /∈ Y ⊃ X, let α1 = min{α <
γ : z(α) /∈ Xα}. It follows from y = x ∈ X, y ↾ α0 = z ↾ α0 and
z(α0) ∈ Xα0 that α1 > α0. Also it follows from y(α1) = minXα1 and
z(α1) /∈ Xα1 that y(α1) <X⋄

α1
z(α1). Because of z(α1) ∈ X⋄

α1
\Xα1 , we

consider 2 cases in this fact.

Case 1 in Fact 4. There are u ∈ X+
α1

and n ∈ N with z(α1) = u+n.

In this case, by (u,→)Xα1
̸= ∅, take v ∈ (u,→)Xα1

. From Lemma
2.1 (3), we see z(α1) = u+n <X⋄

α1
v. By letting a = (z ↾ α1)

∧⟨v⟩∧(y ↾
(α1, γ)). Then we see a ∈ (z, y)X̌ ∩X ⊂ (z, y)X̌ ∩ Y , which contradicts
[B].

Case 2 in Fact 4. There are u ∈ X−
α1

and n ∈ N with z(α1) = u−n.

In this case, let a = (z ↾ α1)
∧⟨u⟩∧(y ↾ (α1, γ)). Then we see a ∈

(z, y)X̌ ∩X ⊂ (z, y)X̌ ∩ Y , which contradicts [B].

This completes the proof of Fact 4.

Fact 5. There are u ∈ X−
α0

and n ∈ N with z(α0) = u−n.

Proof. From Fact 4, in the following, either (a) or (b) holds:
(a) there are u ∈ X−

α0
and n ∈ N with z(α0) = u−n,

(b) there are u ∈ X+
α0

and n ∈ N with z(α0) = u+n.
Assume (b) holds, then since (u,→)Xα0

has no minimal elements and
y(α0) ∈ (u,→)Xα0

, we can take v ∈ (u, y(α0))Xα0
. Then by Lemma
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2.1 (3), we see v ∈ (z(α0), y(α0))Xα0⋄ ∩Xα0 , which contradicts Fact 1.
Therefore (a) holds. This completes the proof of Fact 5.

Take u and n in Fact 5, then by Fact 1, we see u = y(α0) and z(α0) =
y(α0)

−n. Thus α0 = αy, where αy is the ordinal with y(αy) ∈ X−
αy

and y(α) = minXα for every α > αy, given in the analogous lemma
of Lemma 3.2. Now by the definition of f , we have f(y−n) = (y ↾
α0)

∧⟨z(α0)⟩∧(y ↾ (α0, γ)). Whenever n ≥ 2, we see f(y−1) ∈ (z, y)X̌∩Y
which contradicts [B]. Whenever n = 1, f(y−1) is a maximal element
of (←, y)Y (= (←, f(y))Y ), which contradicts [A].

Case 1 is finished.

Case 2. f(x+n) = y for some x ∈ X+ and n ∈ N.
Let αx be the ordinal with x(αx) ∈ X+

αx
and x(α) = maxXα for

every α > αx, given in Lemma 3.2. Then obviously f(x+(n−1)) is a
maximal element of (←, y)Y (= (←, f(x+n))Y ) which contradicts [A].
Case 2 is finished.

Case 3. f(x−n) = y for some x ∈ X− and n ∈ N.
As in Case 2, similarly we see that f(x−(n+1)) is a maximal element

of (←, y)Y (= (←, f(x−n))Y ) which contradicts [A]. Case 3 is finished.
□

5. “dense” versus “closed”

Remember that every GO-space is dense (closed) in X∗ (X⋄, respec-
tively). When X =

∏
α<γ Xα is a lexicographic GO-space, that X is

dense in X̂ =
∏

α<γ X
∗
α was characterized as follows.

Lemma 5.1. [7, Theorem 3.2] Let X =
∏

α<γ Xα be a lexicographic

GO-space. Then X is dense in X̂ =
∏

α<γ X
∗
α if and only if for every

α < γ with α + 1 < γ, Xα is a LOTS.

For instance, the lexicographic Sorgenfrey square S× S is not dense
in S∗ × S∗. It is natural to ask whether that a lexicographic GO-
space X =

∏
α<γ Xα is dense in X̂ =

∏
α<γ X

∗
α is equivalent that X is

closed in X̌ =
∏

α<γ X
⋄
α, or not. In this section, we characterize that a

lexicographic GO-space X =
∏

α<γ Xα is closed in X̌ =
∏

α<γ X
⋄
α.

Theorem 5.2. Let X =
∏

α<γ Xα be a lexicographic GO-space and

X̌ =
∏

α<γ X
⋄
α. Then the following are equivalent:

(1) Y is closed in X̌, where Y = f [X⋄] is the one given in Theorem
4.1.
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(2) X is closed in X̌,
(3) the following hold:

(a) if sup J− < sup J+, then for every α < γ with sup J− ≤
α < sup J+, X+

α = ∅ holds,
(b) if sup J+ < sup J−, then for every α < γ with sup J+ ≤

α < sup J−, X−
α = ∅ holds,

where J− = {α < γ : Xα has no minimal elements.}, J+ =
{α < γ : Xα has no maximal elements.} and for notational
conveniences, we let sup ∅ = −1 (= the immediate predecessor
of 0).

Proof. (1) ⇒ (2) Assume that Y is closed in X̌. Since f is a homeo-
morphism with f ↾ X = 1X and X is closed in X⋄, X is also closed in
X̌.

(2) ⇒ (3) Assume that X is closed in X̌. Since (b) is similar, we
only show (a). On the contrary, assume that sup J− < sup J+ holds
but there is α0 < γ with sup J− ≤ α0 < sup J+ with X+

α0
̸= ∅. We

will get a contradiction. Take u ∈ X+
α0

and let α1 = min{α > α0 :
Xα has no maximal elements.}, where note that the existence of α1 is
due to α0 < sup J+. Fix t ∈

∏
α<α0

Xα, then note that by sup J− ≤ α0,
for every α < γ with α0 < α, Xα has a minimal element minXα. Let
b = t∧⟨u+1⟩∧⟨minXα : α > α0⟩, then by u+1 /∈ Xα0 , we see b /∈ X. The
following claim contradicts that X is closed in X̌.

Claim 1. b ∈ ClX̌ X, where ClX̌ denotes the closure in X̌.

Proof. Let c ∈ X̌ with c <X̌ b. It suffices to see (c, b)X̌ ∩X ̸= ∅. Take
α2 < γ with c ↾ α2 = b ↾ α2 and c(α2) <X⋄

α2
b(α2). Since b(α) = minXα

for every α > α0, we see α2 ≤ α0. We consider 2 cases.

Case 1. α2 < α0.

Letting a = t∧⟨u⟩∧(b ↾ (α0, γ)), we see a ∈ (c, b)X̌ ∩X.

Case 2. α2 = α0.

In this case, by t = b ↾ α0 = c ↾ α0 and c(α0) <X⋄
α0

b(α0) = u+1,

we see c(α0) ≤X⋄
α0

u. Whenever c(α0) <X⋄
α0

u, letting a = t∧⟨u⟩∧(b ↾
(α0, γ)), we see a ∈ (c, b)X̌ ∩ X. So assume c(α0) = u. Then by
α0 < α1, we can take v ∈ Xα1 with c(α1) <X⋄

α1
v. Then letting a =

t∧⟨u⟩∧⟨maxXα : α0 < α < α1⟩∧⟨v⟩∧(b ↾ (α1, γ)), we see a ∈ (c, b)X̌∩X.

(3) ⇒ (1) Assume (3). To see that Y is closed in X̌, let z ∈ X̌ \
Y . We will find a neighborhood of z in X̌ disjoint from Y . If for
some x ∈ X+ and n ∈ N, the point z belongs to the interval U :=
(f(x+(n−1)), f(x+n))X̌ , then U is a neighborhood of z in X̌ disjoint
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from Y . Similarly if for some x ∈ X− and n ∈ N, the point z belongs
to the interval (f(x−n), f(x−(n−1)))X̌ , then it is a neighborhood of z in
X̌ disjoint from Y . Therefore we may assume the following property
[C],

[C] z /∈
∪

x∈X+,n∈N

(f(x+(n−1)), f(x+n)))X̌∪
∪

x∈X+,n∈N

(f(x−n), f(x−(n−1)))X̌ .

Now by z /∈ Y ⊃ X, let α0 = min{α < γ : z(α) /∈ Xα}. Then from
z(α0) /∈ Xα0 , we may assume that there are u ∈ X+

α0
and n ∈ N with

z(α0) = u+n.

Claim 2. There is α < γ with α0 < α such that Xα has no maximal
elements.

Proof. Assume that for every α < γ with α0 < α, Xα has a max-
imal element maxXα. Let x = (z ↾ α0)

∧⟨u⟩∧⟨maxXα : α > α0⟩.
Then by Lemma 3.2, we see x ∈ X+, where X+ means X+

λX̌↾X . It

follows from the definition f in Theorem 4.1 that f(x+n) = (z ↾
α0)

∧⟨z(α0)⟩∧⟨maxXα : α > α0⟩. Now we see z ∈ (f(x+(n−1)), f(x+n))X̌
by z /∈ Y , which contradicts [C]. This completes the proof of Claim 2.

Using Claim2, let α1 = min{α > α0 : Xα has no maximal elements.}
(= min{α ∈ J+ : α > α0}) and fix u1 ∈ Xα1 with z(α1) <X⋄

α1
u1.

Claim 3. α0 < sup J−.

Proof. If sup J− ≤ α0 were true, then we have α0 < α1 ∈ J+ and
X+

α0
= ∅, which contradicts (a). This completes the proof of Claim 3.

Using Claimn 3, let α2 = min{α ∈ J− : α > α0}. Fix u2 ∈ Xα2

with u2 <X⋄
α2

z(α2). Let z1 = (z ↾ α1)
∧⟨u1⟩∧(z ↾ (α1, γ)) and z2 = (z ↾

α2)
∧⟨u2⟩∧(z ↾ (α2, γ)). Then we see z ∈ (z2, z1)X̌ .

Claim 4. (z2, z1)X̌ ⊂
∏

α<α0
X⋄

α × {u+n} ×
∏

α0<α X
⋄
α.

Proof. This Claim is obvious because of z1 ↾ α0 = z2 ↾ α0 and z1(α0) =
z2(α0) = z(α0) = u+n. This completes the proof of Claim 4.

The following claim with Claim 4 shows that (z2, z1)X̌ is a neigh-
borhood of z in X̌ disjoint from Y , thus the proof of (3) ⇒ (1) is
finished.

Claim 5. Y ∩
∏

α<α0
X⋄

α × {u+n} ×
∏

α0<α X
⋄
α = ∅.

Proof. Assume that there is a ∈ X⋄ with f(a) ∈
∏

α<α0
X⋄

α × {u+n} ×∏
α0<α X

⋄
α. We consider 3 cases, and in each case, we will get a contra-

diction.
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Case 1. a ∈ X.

In this case, by f(a) = a, we see Xα0 ̸∋ u+n = f(a)(α0) = a(α0) ∈
Xα0 , a contradiction.

Case 2. a = x+m for some x ∈ X+ and m ∈ N.
It follows from Lemma 3.2 that there is αx < γ such that x(αx) ∈

X+
αx

and for every α < γ with αx < α, x(α) = maxXα holds, which
says sup J+ ≤ αx. By α0 < α1 ∈ J+, we see α0 < α1 ≤ αx. It
follows from f(a) = f(x+m) = (x ↾ αx)

∧⟨x(αx)
+m⟩∧(x ↾ (αx, γ)), we

see Xα0 ̸∋ u+n = f(a)(α0) = x(α0) ∈ Xα0 , a contradiction.

Case 3. a = x−m for some x ∈ X− and m ∈ N.
As in Case 2, there is αx < γ such that x(αx) ∈ X−

αx
and for every α <

γ with αx < α, x(α) = minXα holds, which says α0 < α2 ≤ sup J− ≤
αx. It follows from f(a) = f(x−m) = (x ↾ αx)

∧⟨x(αx)
−m⟩ ∧(x ↾ (αx, γ))

that Xα0 ̸∋ u+n = f(a)(α0) = x(α0) ∈ Xα0 , a contradiction. This
completes the proof of Claim 4

. □
Applying the theorem above, we immediately see:

Corollary 5.3. Let X =
∏

α<γ Xα be a lexicographic GO-space. If

sup J− = sup J+ holds, then X is closed in X̌ =
∏

α<γ X
⋄
α. In particu-

lar, the following hold.

(1) if all Xα’s have both a minimal element and a maximal element,
then X is closed in X̌.

(2) if all Xα’s have neither minimal elements nor maximal ele-
ments, then X is closed in X̌.

For instance, let X = S× S be the lexicographic Sorgenfrey square.
Then X is closed in X̌ = S⋄×S⋄, where remember that X is not dense
in X̂ = S∗×S∗. This shows that the reverse implication in the following
corollary does not hold.

Corollary 5.4. Let X =
∏

α<γ Xα be a lexicographic GO-space. If X

is dense in X̂ =
∏

α<γ X
∗
α, then X is closed in X̌ =

∏
α<γ X

⋄
α.

Proof. Assume that X is dense in X̂ =
∏

α<γ X
∗
α, then by Lemma 5.1,

for every α < γ with α+ 1 < γ, Xα is a LOTS, that is, X+
α ∪X−

α = ∅.
Case 1. γ is limit.

In this case, all Xα’s are LOTS, therefore X = X̌.

Case 2. γ = δ + 1 for some ordinal δ.
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It suffices to see (a) and (b) of Theorem 5.2 (3). To see (a), assume
sup J− < sup J+. Note sup J+ ≤ δ < γ. Now for every α < γ with
sup J− ≤ α < sup J+, it follows from α + 1 ≤ δ < γ that X+

α = ∅
holds, thus (a) holds. (b) is similar. □

Example 5.5. Let [0, 1)R be the interval in R and < its usual order.
Moreover let X0 be the GO-space ⟨[0, 1)R, <, τ(∅, {1

2
})⟩, X1 the usual

LOTS [0, 1)R and consider lexicographic GO-space X = X0×X1. Then
X+

0 = ∅, X−
0 = {1

2
}, X+

1 = X−
1 = ∅, J− = ∅ and J+ = {0, 1}, therefore

sup J− = −1 and sup J+ = 1. Obviously (b) of Theorem 5.2 (3) holds.
Let α < γ satisfy sup J− ≤ α < sup J+, then α has to be 0 and
X+

0 = ∅, this shows that (a) of Theorem 5.2 (3) holds. Therefore X is

closed in X̌ = X⋄
0 ×X⋄

1 . Note that X is not dense in X̂ = X∗
0 ×X∗

1 by
Lemma 5.1. On the other hand, remark that Y = X1 ×X0 is dense in
Ŷ = X∗

1 ×X∗
0 and closed in Y̌ = X⋄

1 ×X⋄
0

Example 5.6. In the above example, changeX0 = ⟨[0, 1)R, <, τ(∅, {1
2
})⟩

by X0 = ⟨[0, 1)R, <, τ({1
2
}, ∅)⟩. Then we can easily check that X is not

closed in X̌ = X⋄
0 ×X⋄

1 .
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