ORDERABILITY OF SPACES HAVING ORDERED DECOMPOSITIONS

NOBUYUKI KEMOTO

ABSTRACT. The following may be well-known:

• the subspace $(0, 1) \cup \{2\}$ of the usual real numbers \mathbb{R} is the topological sum of two linearly ordered spaces, and well-known that there is no linear ordering of X whose open interval topology coincides with the topology of X.

In this paper, we consider when the topological sum of a pairwise disjoint collection \mathcal{X} of ordered spaces are orderable. As corollaries, we see:

- whenever \mathcal{X} contains infinitely many singletons or contains an infinite discrete space, its topological sum is orderable,
- whenever \mathcal{X} contains at least one ordered space with a maximal element but without minimal elements, its topological sum is orderable,
- whenever \mathcal{X} does not contain ordered spaces with both a maximal element and a minimal element, its topological sum is orderable,
- whenever \mathcal{X} contains infinitely many ordered spaces with both a maximal element and a minimal element, its topological sum is orderable,
- whenever \mathcal{X} consists of suborderable spaces, its topological sum is suborderable.

Let < be a linear order on a set X, see [3, page 4]. The pair $\langle X, < \rangle$ is said to be a linearly ordered set or an ordered set, and usually simply denoted by X. So when we say "let X be an ordered set", we mean that $X \neq \emptyset$ and a linear order < on X is already given is tacit understanding. An ordered set $\langle X, < \rangle$ has a natural topology $\lambda_<$, which is called an interval topology, generated by $\{(\leftarrow, x)_< : x \in X\} \cup \{(x, \rightarrow)_< : x \in X\}$ as a subbase, that is, the smallest topology containing it, where $(\leftarrow, x)_< = \{y \in X : y < x\}$, also $(x, \rightarrow)_<$ is similarly defined. So we can also consider an ordered set as a topological space with the interval

Date: September 27, 2024.

²⁰²⁰ Mathematics Subject Classification. Primary 54F05, 54A10 Secondary 54D05.

Key words and phrases. orderable, suborderable, topological sum, ordered set.

This research was supported by Grant-in-Aid for Scientific Research (C) 21K03339.

NOBUYUKI KEMOTO

topology, we say that the triple $\langle X, <, \lambda_{<} \rangle$ is an ordered space and denoted simply by X. A topological space X with a topology τ , which is also simply denoted by X, is said to be orderable if there is an order < on X with $\tau = \lambda_{<}$, and such an order < is called a compatible order of τ . Note that an orderable space can have many compatible orders. A topological space X is said to be suborderable if it is a subspace (in the topological sense) of some orderable spaces.

Let \mathcal{X} be a pairwise disjoint collection of topological spaces, that is, $X \cap Y = \emptyset$ whenever $X \neq Y \in \mathcal{X}$. The topological space $\bigcup \mathcal{X}$ with the topology $\bigoplus_{X \in \mathcal{X}} \tau_X$ generated by $\bigcup_{X \in \mathcal{X}} \tau_X$ as a subbase is said to be the topological sum of \mathcal{X} , where τ_X is the topology on X. In this case, the topological sum is simply denoted by $\bigoplus \mathcal{X}$, or $\bigoplus_{\alpha \in A} X_\alpha$ when \mathcal{X} is written as $\mathcal{X} = \{X_\alpha : \alpha \in A\}$. Because we consider the topological sum of a collection \mathcal{X} of spaces, throughout the paper, we assume that \mathcal{X} is non-empty and pairwise disjoint.

We will consider both collections of orderable spaces and collections of ordered spaces. A collection of ordered spaces naturally can be considered as a collection of orderable spaces. On the other hand, a collection of orderable spaces can be considered as a collection of ordered spaces by giving compatible orders. In this case, it will be important how to choose compatible orders.

When a topological space X is represented as a topological sum $X = \bigoplus \mathcal{X}$ for some collection \mathcal{X} of ordered spaces, we say " \mathcal{X} is an ordered decomposition of X". Obviously, if X is an orderable space, then considering X as an ordered space having a compatible order, the singleton $\{X\}$ is one of ordered decompositions of X. Thus an orderable space has at least one ordered decomposition.

It may be well-known that the topological sum $X = (0,1)_{\mathbb{R}} \oplus \{2\}$ (that is, the subspace $(0,1) \cup \{2\}$ in \mathbb{R}) is not orderable. For a proof, see Corollary 14. With the usual order, $\{(0,1)_{\mathbb{R}}, \{2\}\}$ is an ordered decomposition of X.

Also it is well-known that whenever \mathcal{X} is a collection of ordered spaces having minimal elements or maximal elements, its topological sum is orderable, see [6, Lemma 5]. In this paper, we will consider when the topological sum of orderable/ordered spaces are orderable.

Definition 1. An ordered set X is said to be type 0 if it has neither minimal elements nor maximal elements with respect to the given order. An ordered set X is said to be type 1 if either it has a minimal element but not have maximal elements, or it has a maximal element but not have minimal elements. An ordered set X is said to be type 2 if it has both a minimal element and a maximal element. When X is a singleton, X is considered to be type 2. Note that the interval $(0,1)_{\mathbb{R}}$ above is type 0 and the singleton $\{2\}$ is type 2.

For a collection \mathcal{X} of ordered spaces and $i \in \mathcal{I} = [0, 1, 2]$, let

$$\mathcal{X}^i = \{ X \in \mathcal{X} : X \text{ is type } i \}.$$

Then \mathcal{X} is decomposed into \mathcal{X}^0 , \mathcal{X}^1 and \mathcal{X}^2 .

For an order < on X, $<^{-1}$ denotes the reverse order on X, that is, $x <^{-1} y$ iff y < x. Note that the reverse order has the same type as the original type and does not change its interval topology.

Definition 2. Let \mathcal{X} be a (pairwise disjoint, of course) collection of ordered spaces indexed as $\mathcal{X} = \{X_{\alpha} : \alpha < \kappa\}$ with a cardinal κ with $\kappa \geq 1$ and let $X = \bigcup_{\alpha < \kappa} X_{\alpha}$. Moreover let $<_{\alpha}$ be the order on X_{α} and $\lambda_{<_{\alpha}}$ its interval topology for each $\alpha < \kappa$. For each $x \in X$, let $\alpha(x)$ be the unique $\alpha < \kappa$ with $x \in X_{\alpha}$.

The symbol $\sum_{\alpha < \kappa} <_{\alpha}$ denotes the order < on X defined by the following rule:

$$x < y \text{ iff } \begin{cases} x <_{\alpha(x)} y & \text{ if } \alpha(x) = \alpha(y), \\ \alpha(x) < \alpha(y) & \text{ otherwise.} \end{cases}$$

If $\kappa < \omega$, then $\Sigma_{\alpha < \kappa} <_{\alpha}$ is denoted by $<_0 + <_1 + \cdots + <_{\kappa-1}$. In particular, $<_0 + <_1$ denotes the resulting order on $X_0 \cup X_1$ adding the ordered space X_1 after the ordered space X_0 . Similarly if $\kappa = \omega$, then $\Sigma_{\alpha < \kappa} <_{\alpha}$ is denoted by $<_0 + <_1 + <_2 + \cdots$. Moreover the ordered space $\langle X, \Sigma_{\alpha < \kappa} <_{\alpha} \rangle$ is also simply denoted by $\Sigma_{\alpha < \kappa} X_{\alpha}$ if contexts are clear.

The following lemma gives an equivalent condition of $\bigoplus_{\alpha < \kappa} X_{\alpha} = \sum_{\alpha < \kappa} X_{\alpha}$.

Lemma 3. Let $\{X_{\alpha} : \alpha < \kappa\}$ be a collection of ordered spaces indexed by a cardinal κ with $\kappa \geq 1$. Let < be the order $\sum_{\alpha < \kappa} <_{\alpha}$ defined above, where $<_{\alpha}$'s are orders on X_{α} 's. Then $\lambda_{<} = \bigoplus_{\alpha < \kappa} \lambda_{<_{\alpha}}$, that is, the topological sum $\bigoplus_{\alpha < \kappa} \lambda_{<_{\alpha}}$ is orderable by <, if and only if for every $\alpha < \kappa$, $X_{\alpha} \in \lambda_{<}$ holds.

Proof. If $\lambda_{\leq} = \bigoplus_{\alpha < \kappa} \lambda_{<\alpha}$, then for every $\alpha < \kappa$, $X_{\alpha} \in \lambda_{<\alpha} \subset \lambda_{<}$ holds. Conversely assume that for every $\alpha < \kappa$, $X_{\alpha} \in \lambda_{<}$ holds. Note that the restriction $<\upharpoonright X_{\alpha}$ of < on X_{α} coincides with $<_{\alpha}$. To see $\lambda_{<} \subset \bigoplus_{\alpha < \kappa} \lambda_{<\alpha}$, let $x \in X$, where $X = \bigcup_{\alpha < \kappa} X_{\alpha}$. Then $(\leftarrow, x)_{<} = \bigcup_{\beta < \alpha(x)} X_{\beta} \cup (\leftarrow, x)_{<\alpha(x)} \in \bigoplus_{\alpha < \kappa} \lambda_{<\alpha}$ and $(x, \rightarrow)_{<} = (x, \rightarrow)_{<\alpha(x)} \cup \bigcup_{\alpha(x) < \beta} X_{\beta} \in \bigoplus_{\alpha < \kappa} \lambda_{<\alpha}$ hold. To see $\lambda_{<} \supset \bigoplus_{\alpha < \kappa} \lambda_{<\alpha}$, it suffices to see $\lambda_{<} \supset \lambda_{<\alpha}$ for every $\alpha < \kappa$. Fix $x \in X_{\alpha}$. Then $(\leftarrow, x)_{<\alpha} = (\leftarrow, x)_{<} \cap X_{\alpha} \in \lambda_{<}$ and $(x, \rightarrow)_{<\alpha} = (x, \rightarrow)_{<} \cap X_{\alpha} \in \lambda_{<}$ hold. Lemma 4. The following hold.

- (1) if X_0 and X_1 are two type 0 ordered spaces, then the topological sum $X_0 \oplus X_1$ is orderable by a type 0 order,
- (2) if X_0 and X_1 are two type 1 ordered spaces, then the topological sum $X_0 \oplus X_1$ is orderable by a type 0 order,
- (3) if X_0 and X_1 are two type 2 ordered spaces, then the topological sum $X_0 \oplus X_1$ is orderable by a type 2 order,
- (4) if X_0 is a type 0 ordered space and X_1 is a type 1 ordered space, then the topological sum $X_0 \oplus X_1$ is orderable by a type 1 order,
- (5) if X_0 is a type 1 ordered space and X_1 is a type 2 ordered space, then the topological sum $X_0 \oplus X_1$ is orderable by a type 1 order.

Proof. (1) Let $<_0$ and $<_1$ be type 0 orders on X_0 and X_1 respectively, and let < be the order $<_0 + <_1$. Obviously < is type 0. By $X_0 = \bigcup_{x \in X_0} (\leftarrow, x)_< \in \lambda_<$ and $X_1 = \bigcup_{x \in X_1} (x, \rightarrow)_< \in \lambda_<$, we see that the topological sum $X_0 \oplus X_1$ is orderable by <.

(2) Let $<_0$ and $<_1$ be type 1 orders on X_0 and X_1 respectively. We consider $<_i^{-1}$ instead of $<_i$ if necessary, we may assume that both X_0 and X_1 have no minimal elements but has a maximal element. Let < be the order $<_0 + <_1^{-1}$, then obviously < is type 0. It follows from $X_0 = (\leftarrow, <_1^{-1} - \min X_1)_< \in \lambda_<$ and $X_1 = (<_0 - \max X_0, \rightarrow)_< \in \lambda_<$ that the topological sum $X_0 \oplus X_1$ is orderable by <, where $<_1^{-1} - \min X_1$ and $<_0 - \max X_0$ are the minimal element of X_1 with respect to the order $<_0$, respectively.

The remaining are similar, so we leave them to the reader.

Remark 5. About (2) of the lemma, let $<_0$ be the usual order on the half open interval $X_0 = (0, 1]_{\mathbb{R}}$ in \mathbb{R} and $<_1$ be the usual order on $X_1 = (2, 3]_{\mathbb{R}}$. Then both $<_0$ and $<_1$ are type 1, moreover the order < defined by $<_0 + <_1$ is also type 1. However the order topology $\lambda_<$ does not induce the topological sum $X_0 \oplus X_1$, because the ordered space $\langle X_0 \cup X_1, < \rangle$ is homeomorphic to the interval $(0, 2]_{\mathbb{R}}$ in \mathbb{R} .

Note that the type 2 order $<_0^{-1} + <_1$ also induces the topological sum $X_0 \oplus X_1$, but in our discussion below, this order will not be so important.

Some pattern of the above lemma can be extended for further length.

Lemma 6. Let $\{X_{\alpha} : \alpha < \kappa\}$ be a collection of type 0 ordered spaces indexed by a cardinal κ with $\kappa \geq 1$. Then the topological sum $\bigoplus_{\alpha < \kappa} X_{\alpha}$ is orderable by a type 0 order. *Proof.* Let < be the order $\Sigma_{\alpha < \kappa} <_{\alpha}$, where $<_{\alpha}$ is the type 0 order on X_{α} . Then as in (1) of Lemma 4, we see $X_{\alpha} \in \lambda_{<}$ for every $\alpha < \kappa$ which shows $\lambda_{<} = \bigoplus_{\alpha < \kappa} \lambda_{<\alpha}$.

Lemma 7. Let $\{X_{\alpha} : \alpha < \kappa\}$ be a collection of type 1 ordered spaces indexed by a cardinal κ with $\kappa \geq 1$. Then the following hold.

- (1) if $\kappa = 2n+1$ for some $n \in \omega$, then the topological sum $\bigoplus_{\alpha < \kappa} X_{\alpha}$ is orderable by a type 1 order,
- (2) otherwise, the topological sum $\bigoplus_{\alpha < \kappa} X_{\alpha}$ is orderable by a type 0 order,

Proof. Let $<_{\alpha}$ be the type 1 order on X_{α} for each $\alpha < \kappa$, we may assume that each X_{α} has a $<_{\alpha}$ -maximal element but not have $<_{\alpha}$ -minimal elements.

(1) Let < be the order $<_0 + <_1^{-1} + <_2 + \dots + <_{2n-1}^{-1} + <_{2n-1}$ Since $<_{2k} + <_{2k+1}^{-1}$ is a type 0 order which induce the topological sum $X_{2k} \oplus X_{2k+1}$ for every k < n, the type 0 order $<_0 + <_1^{-1} + <_2$ $+ \dots + <_{2n-1}^{-1}$ induces the topological sum $X_0 \oplus X_1 \oplus \dots \oplus X_{2n-1}$ by Lemma 6. Now by Lemma 4 (4), < is a type 1 order which induces the topological sum $X_0 \oplus X_1 \oplus \dots \oplus X_{2n}$.

(2) When $\kappa = \omega$, by Lemma 6, the type 0 order $\Sigma_{k < \omega}(<_{2k} + <_{2k+1}^{-1})$ induces the topological sum $\bigoplus_{\alpha < \kappa} X_{\alpha}$.

Assume $\kappa > \omega$. Note that every ordinal α can be represented as $\alpha = \omega \cdot \beta + n$ for a unique pair of ordinal β and $n \in \omega$, where $\omega \cdot \beta$ is the ordinal multiplication, that is, the order type of the lexicographic ordered set $\beta \times \omega$, see [5, I, Exercises (3)]. Obviously for each $\beta < \kappa$, the type 0 order $\sum_{k < \omega} (<_{\omega \cdot \beta + 2k} + <_{\omega \cdot \beta + 2k+1}^{-1})$ induces the topological sum $\bigoplus_{n \in \omega} X_{\omega \cdot \beta + n}$. Now it follows from Lemma 6 that the type 0 order $\sum_{\beta < \kappa} (\sum_{k < \omega} (<_{\omega \cdot \beta + 2k} + <_{\omega \cdot \beta + 2k+1}^{-1}))$ induces the topological sum $\bigoplus_{\alpha < \kappa} X_{\alpha}$.

Lemma 8. Let $\{X_{\alpha} : \alpha < \kappa\}$ be a collection of type 2 ordered spaces indexed by a cardinal κ with $\kappa \geq 1$. Then the following hold.

- (1) if κ is finite, then the topological sum $\bigoplus_{\alpha < \kappa} X_{\alpha}$ is orderable by a type 2 order,
- (2) otherwise, the topological sum $\bigoplus_{\alpha < \kappa} X_{\alpha}$ is orderable by a type 0 order, also is orderable by a type 1 order.

Proof. (1) is similar to Lemma 4 (3).

(2) When $\kappa = \omega$, both the type 0 order $(\Sigma_{k < \omega} <_{2k})^{-1} + (\Sigma_{k < \omega} <_{2k+1})$ and the type 1 order $\Sigma_{n < \omega} <_n$ induce the topological sum $\bigoplus_{\alpha < \kappa} X_{\alpha}$.

Assume $\kappa > \omega$. As above, the type 0 order $(\Sigma_{k < \omega} <_{\omega \cdot \beta + 2k})^{-1} + (\Sigma_{k < \omega} <_{\omega \cdot \beta + 2k+1})$ induces the topological sum $\bigoplus_{n \in \omega} X_{\omega \cdot \beta + n}$ for each

 $\beta < \kappa$. Now from Lemma 6 and Lemma 4, both the type 0 order $\Sigma_{\beta < \kappa}((\Sigma_{k < \omega} <_{\omega \cdot \beta + 2k})^{-1} + (\Sigma_{k < \omega} <_{\omega \cdot \beta + 2k+1}))$ and the type 1 order $\Sigma_{n < \omega} <_n + \Sigma_{1 \le \beta < \kappa}((\Sigma_{k < \omega} <_{\omega \cdot \beta + 2k})^{-1} + (\Sigma_{k < \omega} <_{\omega \cdot \beta + 2k+1}))$ induce the topological sum $\bigoplus_{\alpha < \kappa} X_{\alpha}$.

Lemma 9. Let \mathcal{X} be a non-empty collection of type 0 or 1 ordered spaces. Then the topological sum $\bigoplus \mathcal{X}$ is ordered by a type 0 or 1 order.

Proof. For each $i \in 2 = \{0, 1\}$, let enumerate \mathcal{X}^i by a cardinal κ_i . If $\kappa_0 = 0$ or $\kappa_1 = 0$, then the conclusion is immediate, so we may assume $\kappa_0 \geq 1$ and $\kappa_1 \geq 1$. By Lemma 6, the topological sum $\bigoplus \mathcal{X}^0$ is ordered by a type 0 order. Moreover by Lemma 7, the topological sum $\bigoplus \mathcal{X}^1$ is ordered by a type 0 or 1 order. Now by Lemma 4 (1) or (4), the topological sum $\bigoplus \mathcal{X} = \bigoplus \mathcal{X}^0 \oplus \bigoplus \mathcal{X}^1$ is ordered by a type 0 or 1 order. \Box

Theorem 10. Let a space X can be written as a topological sum $X = \bigoplus \mathcal{Y}$ for some collection \mathcal{Y} of orderable spaces. If \mathcal{Y} satisfies either (1) or (2) below, then X is orderable,

- (1) there are $Y \in \mathcal{Y}$ and an ordered decomposition \mathcal{Z}_Y of Y such that $\mathcal{Z}_Y^1 \neq \emptyset$,
- (2) there is a sequence $\langle \mathcal{Z}_Y : Y \in \mathcal{Y} \rangle$ of ordered decompositions \mathcal{Z}_Y 's of Y's such that $\bigcup_{Y \in \mathcal{Y}} \mathcal{Z}_Y^0 = \emptyset$, or $\bigcup_{Y \in \mathcal{Y}} \mathcal{Z}_Y^2$ is empty or infinite.

Proof. Let \mathcal{Y} be as above satisfying (1) or (2). For every $Y \in \mathcal{Y}$, by orderability of Y, one can fix a compatible order $<_Y$ on Y. Now \mathcal{Y} can be considered as an ordered decomposition of X.

First assuming (1), take such $Y \in \mathcal{Y}$ and \mathcal{Z}_Y with $\mathcal{Z}_Y^1 \neq \emptyset$ in (1). Fix $Z^* \in \mathcal{Z}_Y^1$ and let $\mathcal{X} = (\mathcal{Y} \setminus \{Y\}) \cup (\mathcal{Z}_Y \setminus \{Z^*\})$. Then $\mathcal{X} \cup \{Z^*\}$ is an ordered decomposition of X. For each $i \in 3$, enumerate \mathcal{X}^i by some cardinal. Lemmas 6, 7 and 8 show the following,

- $\bigoplus \mathcal{X}^0$ can be ordered by a type 0 order,
- $\bigoplus \mathcal{X}^1$ can be ordered by a type 0 order or a type 1 order,
- $\bigoplus \mathcal{X}^2$ can be ordered by a type 0 order or a type 2 order.

Then it follows from Lemma 4 (1) and (4) that $(\bigoplus \mathcal{X}^0) \oplus (\bigoplus \mathcal{X}^1)$ can be ordered by a type 0 order or a type 1 order.

Claim. $(\bigoplus \mathcal{X}^2) \oplus Z^*$ can be ordered by a type 1 order,

Proof. We may assume that Z^* has no minimal elements but has a maximal element. When $\bigoplus \mathcal{X}^2$ is type 0, add Z^* after $\bigoplus \mathcal{X}^2$. When $\bigoplus \mathcal{X}^2$ is type 2, add $\bigoplus \mathcal{X}^2$ after Z^* . Then in both cases, these odered spaces are type 1. This completes the proof of Claim.

Now since $(\bigoplus \mathcal{X}^0) \oplus (\bigoplus \mathcal{X}^1)$ is type 0 or 1 and $(\bigoplus \mathcal{X}^2) \oplus Z^*$ is type 1, Lemma 4 (2) (4) or Lemma 9 shows $X = ((\bigoplus \mathcal{X}^0) \oplus (\bigoplus \mathcal{X}^1)) \oplus ((\bigoplus \mathcal{X}^2) \oplus Z^*)$ is orderable.

Next assuming (2), let $\langle \mathcal{Z}_Y : Y \in \mathcal{Y} \rangle$ be a sequence of ordered decompositions in (2) and set $\mathcal{X} = \bigcup_{Y \in \mathcal{Y}} \mathcal{Z}_Y$. Then \mathcal{X} is also an ordered decomposition of X and for every $i \in 3$, $\mathcal{X}^i = \bigcup_{Y \in \mathcal{Y}} \mathcal{Z}_Y^i$ holds. When $\mathcal{X}^1 \neq \emptyset$, by (1), we see that X is orderable. Therefore we assume $\mathcal{X}^1 = \emptyset$. We consider two cases.

Case 1. $\mathcal{X}^0 = \emptyset$.

In this case, since $\mathcal{X} = \mathcal{X}^2$, by Lemma 8, we see that X is orderable.

Case 2. $\mathcal{X}^0 \neq \emptyset$.

In this case, by (2), \mathcal{X}^2 is empty or infinite. When \mathcal{X}^2 is empty, by $\mathcal{X} = \mathcal{X}^0$, applying Lemma 6, see that X is orderable. Now we assume that \mathcal{X}^2 is infinite. It follows from Lemma 8 that $\bigoplus \mathcal{X}^2$ can be considered as a type 0 ordered space. Now $\mathcal{X}^0 \cup \{\bigoplus \mathcal{X}^2\}$ is considered as an ordered decomposition of X by type 0 ordered spaces, by Lemma 6, we see that X is orderable. \Box

Applying the theorem above, we see the following, where note that discrete spaces are orderable.

Corollary 11. Assume that a space X has an ordered decomposition \mathcal{X} . If \mathcal{X} satisfies one of the following clauses, then X is orderable,

- (1) $\mathcal{X}^0 = \emptyset$, see [6, Lemma 5],
- (2) $\mathcal{X}^1 \neq \emptyset$,
- (3) \mathcal{X}^2 is empty or infinite,
- (4) \mathcal{X} contains a type 0 ordered space with a jump,
- (5) \mathcal{X} contains a type 2 ordered space with a gap,
- (6) \mathcal{X} contains infinitely many singletons, or contains an infinite discrete space,
- (7) X contains a space which is homeomorphic to either the rationals Q or the irrationals P.

Proof. (1) - (6) are easy. For (7), remark the following results:

• the space \mathbb{Q} is characterized as the unique space that is non-empty, countable, metrizable, without isolated points [7],

• the space \mathbb{P} is characterized as the unique space that is non-empty, zero-dimensional, separable, completely metrizable, nowhere locally compact (=no compact subset has non-empty interior) [1].

Using these characterizations, we see that \mathbb{Q} and \mathbb{P} are homeomorphic to the type 1 ordered spaces $(0,1] \cap \mathbb{Q}$ and $(0,\pi] \cap \mathbb{P}$ respectively. Now apply (2).

We will see that the reverse implication of Theorem 10 is true whenever X is locally connected. To see this, we need the following proposition which is a consequence of [2, Theorem II], however we present its easy and direct proof.

Proposition 12. [2] Let $\langle X, <_0 \rangle$ be an ordered set whose interval topology $\lambda_{<_0}$ is connected. Moreover let $<_1$ be an order on X whose interval topology $\lambda_{<_1}$ is weaker than $\lambda_{<_0}$, that is, $\lambda_{<_1} \subset \lambda_{<_0}$. Then the following hold.

- (1) if there are $x_0, x_1 \in X$ with $x_0 <_0 x_1$ and $x_0 <_1 x_1$, then $<_1 = <_0$, that is, $x <_1 y$ iff $x <_0 y$,
- (2) if there are $x_0, x_1 \in X$ with $x_0 <_0 x_1$ and $x_1 <_1 x_0$, then $<_1 = <_0^{-1}$.

Thus the orders $<_0$ and $<_1$ have the same type and the topologies $\lambda_{<_0}$ and $\lambda_{<_1}$ coincide.

Proof. We only prove (1), because (2) is similar. Assume $x_0 <_0 x_1$ and $x_0 <_1 x_1$. For every $x \in X$, we prove the following Claims.

Claim 1. If $x <_0 x_0$, then $x <_1 x_0$.

Proof. Let $x <_0 x_0$. First assume $x_0 <_1 x <_1 x_1$. From $X \setminus \{x\} = (\leftarrow, x)_{<_1} \oplus (x, \rightarrow)_{<_1}$ with $x_0 \in (\leftarrow, x)_{<_1}$ and $x_1 \in (x, \rightarrow)_{<_1}$, the connected set $[x_0, x_1]_{<_0}$ is covered by non-empty disjoint open sets $[x_0, x_1]_{<_0} \cap (\leftarrow, x)_{<_1}$ and $[x_0, x_1]_{<_0} \cap (x, \rightarrow)_{<_1}$, a contradiction.

Next assume $x_1 <_1 x$. Then the connected set $[x, x_0]_{<_0}$ is covered by non-empty disjoint open sets $[x, x_0]_{<_0} \cap (\leftarrow, x_1)_{<_1}$ and $[x, x_0]_{<_0} \cap (x_1, \rightarrow)_{<_1}$, a contradiction. This completes the proof of Claim 1.

Similarly we see:

8

Claim 2. If $x_0 <_0 x <_0 x_1$, then $x_0 <_1 x <_1 x_1$.

Claim 3. If $x_1 <_0 x$, then $x_1 <_1 x$.

Moreover for every $x, y \in X$, similarly we can see:

Claim 4. If $x <_0 y <_0 x_0$, then $x <_1 y <_1 x_0$.

Claim 5. If $x_0 <_0 x <_0 y <_0 x_1$, then $x_0 <_1 x <_1 y <_1 x_1$.

Claim 6. If $x_1 <_0 x <_0 y$, then $x_1 <_1 x <_1 y$.

Now the claims above show $<_1 = <_0$.

The above proposition says that a connected orderable space has two compatible orders so that one order is the reverse order of another one, so these types coincide.

Theorem 13. Let a space X can be written as a topological sum $X = \bigoplus \mathcal{Y}$ for some collection \mathcal{Y} of locally connected orderable spaces. Then X is orderable if and only if \mathcal{Y} satisfies either (1) or (2) in Theorem 10.

Proof. One direction follows from Theorem 10. So assume that X is orderable by an order $<_X$ and \mathcal{Y} satisfies the negation of "(1) or (2)", we will get a contradiction. For each $Y \in \mathcal{Y}$, fixing a compatible order $<_Y$ on Y, let \mathcal{Z}_Y be the set of all connected components of Y, that is, the set of all maximal connected subsets of Y. Since Y is locally connected, all members of \mathcal{Z}_Y are clopen in Y.

Moreover fix $Z \in \mathcal{Z}_Y$. Let \langle_Z be the restricted order $\langle_Y \upharpoonright Z$ of the order $\langle_Y \text{ on } Z$. Since Z is convex in the ordered space $\langle Y, \langle_Y \rangle$ and clopen in X, the interval topology λ_{\langle_Z} coincides with the subspace topology $\lambda_{\langle_Y} \upharpoonright Z$ of the interval topology λ_{\langle_Y} on Z. Also since Z is connected clopen subspace of X, by the convexity of Z in $\langle X, \langle_X \rangle$, we have $\lambda_{\langle_X \upharpoonright Z} = \lambda_{\langle_X} \upharpoonright Z = (\lambda_{\langle_X} \upharpoonright Y) \upharpoonright Z = \lambda_{\langle_Y} \upharpoonright Z = \lambda_{\langle_Z}$. Since Z is connected, by the proposition above, we see that $\langle_X \upharpoonright Z$ coincide with either $\langle_Z \text{ or } \langle_Z^{-1} \text{ and } Z \text{ is a convex set in the ordered set } \langle X, \langle_X \rangle$. So the ordered sets $\langle Z, \langle_X \upharpoonright Z \rangle$ and $\langle Z, \langle_Z \rangle$ have the same type.

Now let $\mathcal{Z} = \bigcup_{Y \in \mathcal{V}} \mathcal{Z}_Y$, then \mathcal{Z} is an ordered decomposition of X, where we consider the order $<_Z$ on Z for every $Z \in \mathcal{Z}$. By the negation of "(1) or (2)", we see that $\mathcal{Z}^0 \neq \emptyset$, $\mathcal{Z}^1 = \emptyset$ and \mathcal{Z}^2 is non-empty and finite, where $\mathcal{Z}^i = \{ Z \in \mathcal{Z} : \langle Z, \langle Z \rangle \text{ is type } i \}$. Enumerate \mathcal{Z}^2 as $\mathcal{Z}^2 = \{Z_k : k < n\}$ for some $n \in \omega$ with $1 \leq n$. Since it is finite, we may assume $Z_0 <_X Z_1 <_X \cdots <_X Z_{n-1}$, where $A <_X B$ means $a <_X b$ for every $a \in A$ and $b \in B$. For every k < n, because $\langle Z_k, \langle Z_k \rangle$ is type 2, so is $\langle Z_k, \langle X \upharpoonright Z_k \rangle$, therefore Z_k has both a $\langle X$ minimal element $<_X$ - min Z_k and a $<_X$ -maximal element $<_X$ - max Z_k in X. Moreover fix $Z^* \in \mathcal{Z}^0$. Since $\{Z^*\} \cup \mathcal{Z}^2$ is a pairwise disjoint collection of convex sets in $\langle X, \langle X \rangle$, we see either $Z^* \langle X, Z_{n-1}$ or $Z_0 <_X Z^*$. We may assume $Z^* <_X Z_{n-1}$. Take the smallest k < nwith $Z^* <_X Z_k$. It follows from $Z^* \in \mathcal{Z}^0$ that Z^* has neither $<_X$ minimal elements nor $<_X$ -maximal elements. Now by the minimality of k, $(\leftarrow, <_X - \min Z_k)_{<_X}$ has no $<_X$ -maximal elements in X. Since Z_k is clopen in the ordered space $\langle X, <_X \rangle$ with $<_X - \min Z_k \in Z_k$ and $(\leftarrow, <_X - \min Z_k)_{<_X} \neq \emptyset$, $(\leftarrow, <_X - \min Z_k)_{<_X}$ has to have a $<_X$ maximal element, a contradiction. The above theorem yields the following.

Corollary 14. Let X be a locally connected space. Then X is orderable if and only if the set \mathcal{Y} of all connected components satisfies both (A) and (B),

(A) for every Y ∈ 𝔅, Y is orderable,
(B) either (1) or (2) holds:
(1) 𝔅¹ ≠ ∅,
(2) 𝔅⁰ = ∅ or 𝔅² is empty or infinite.

This corollary also shows that the subspace $(0,1)_{\mathbb{R}} \cup \{2\}$ of the real line \mathbb{R} is not orderable.

Example 15. Applying the corollary above, we can see:

- when $1 \leq n < \omega$, the subspace $(-2, -1)_{\mathbb{R}} \cup \bigcup_{k < n} [k, k + \frac{1}{2}]_{\mathbb{R}}$ of \mathbb{R} is not orderable,
- the subspace $(-2, -1)_{\mathbb{R}} \cup \bigcup_{k \in \omega} [k, k + \frac{1}{2}]_{\mathbb{R}}$ of \mathbb{R} is orderable,
- when $1 \leq n < \omega$, the subspace $[-2, -\overline{1}]_{\mathbb{R}} \cup \bigcup_{k < n} (k, k + \frac{1}{2})_{\mathbb{R}}$ of \mathbb{R} is not orderable,
- the subspace $[-2, -1]_{\mathbb{R}} \cup \bigcup_{k \in \omega} (k, k + \frac{1}{2})_{\mathbb{R}}$ of \mathbb{R} is not orderable,
- when $1 \leq n < \omega$, the subspace $(-4, -3]_{\mathbb{R}} \cup (-2, -1)_{\mathbb{R}} \cup \bigcup_{k < n} [k, k + \frac{1}{2}]_{\mathbb{R}}$ of \mathbb{R} is orderable.

Finally we consider the suborderability of topological sums of suborderable spaces.

Corollary 16. If a space X can be written as a topological sum $X = \bigoplus \mathcal{Y}$ for some collection \mathcal{Y} of suborderable spaces, then X is suborderable. In particular, a topological sum of orderable spaces is suborderable.

Proof. It is well-known that for every ordered space $\langle Y, <_Y \rangle$, there is an ordered space $\langle Z, <_Z \rangle$ such that $Y \subset Z, <_Y = <_Z \upharpoonright Y, \lambda_{<_Y} = \lambda_{<_Z} \upharpoonright Y$ and the space $\langle Z, \lambda_{<_Z} \rangle$ is compact, hence $\langle Z, <_Z \rangle$ is type 2, see [4].

Let \mathcal{Y} be as above. For every $Y \in \mathcal{Y}$, take a compact ordered space \tilde{Y} containing Y as a topological subspace. Let $\tilde{\mathcal{Y}}$ be the collection $\{\tilde{Y} : Y \in \mathcal{Y}\}$ of compact ordered spaces. Taking order isomorphic copies of \tilde{Y} 's if necessary, we may assume that the collection $\tilde{\mathcal{Y}}$ is pairwise disjoint. Now it follows from Lemma 8 that $\bigoplus \tilde{\mathcal{Y}}$ is orderable. Since X is a subspace of $\bigoplus \tilde{\mathcal{Y}}$, it is suborderable. \Box

As above \mathbb{Q} and \mathbb{P} can be ordered by a type 1 order and they are totally disconnected, where a space X is totally disconnected if X does not contain any connected subsets of cardinality larger than one. The referee of the present paper pointed out that the lexicographic product

10

space $X = [0, 1]_{\mathbb{R}} \times \{0, 1\}$ is compact and totally disconnected, so it cannot be ordered by a type 1 order. We would like to ask:

Question 17. Under what conditions, a non-compact totally disconnected orderable space can be ordered by a type 1 order?

Acknowledgment. The author would like to appreciate the referee for his/her many helpful comments and suggestions throughout this paper.

References

- P. S. Aleksandrov, P. Urysohn, Über nulldimensionale Punktmengen, Math. Annal., 98 (1928), 89-106.
- [2] S. Eilenberg, Ordered topological spaces, Amer. J. Math., 63 (1941), 39-45.
- [3] R. Engelking, General Topology-Revised and completed ed.. Heldermann Verlag, Berlin (1989).
- [4] R. Kaufman, Ordered sets abd compact spaces, Coll. Math. 17 (1967), 35-39.
- [5] K. Kunen, Set Theory. An Introduction to Independence Proofs, Studies in Logic and the Foundations of Mathematics, vol. 102, North-Holland, Amsterdam, 1980.
- [6] U. Marconi, On a theorem about orderability, Rend. Circ. Mat. Palermo (2) 50 (2001), no. 3, 543-546.
- [7] W. Sierpiński, Sur une propriété topologique des ensembles dénombrables denses en soi, Fund. Math. 1 (1920), 11-16.

DEPARTMENT OF MATHEMATICS, OITA UNIVERSITY, OITA, 870-1192 JAPAN *E-mail address*: nkemoto@oita-u.ac.jp