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Abstract. The following may be well-known:
• the subspace (0, 1) ∪ {2} of the usual real numbers R is the
topological sum of two linearly ordered spaces, and well-
known that there is no linear ordering of X whose open in-
terval topology coincides with the topology of X.

In this paper, we consider when the topological sum of a pairwise
disjoint collection X of ordered spaces are orderable. As corollaries,
we see:
• whenever X contains infinitely many singletons or contains
an infinite discrete space, its topological sum is orderable,
• whenever X contains at least one ordered space with a max-
imal element but without minimal elements, its topological
sum is orderable,
• whenever X does not contain ordered spaces with both a
maximal element and a minimal element, its topological sum
is orderable,
• whenever X contains infinitely many ordered spaces with
both a maximal element and a minimal element, its topo-
logical sum is orderable,
• whenever X consists of suborderable spaces, its topological
sum is suborderable.

Let < be a linear order on a set X, see [3, page 4]. The pair ⟨X,<⟩ is
said to be a linearly ordered set or an ordered set, and usually simply
denoted byX. So when we say “letX be an ordered set”, we mean that
X ̸= ∅ and a linear order< onX is already given is tacit understanding.
An ordered set ⟨X,<⟩ has a natural topology λ<, which is called an
interval topology, generated by {(←, x)< : x ∈ X}∪{(x,→)< : x ∈ X}
as a subbase, that is, the smallest topology containing it, where (←
, x)< = {y ∈ X : y < x}, also (x,→)< is similarly defined. So we can
also consider an ordered set as a topological space with the interval
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topology, we say that the triple ⟨X,<, λ<⟩ is an ordered space and
denoted simply by X. A topological space X with a topology τ , which
is also simply denoted by X, is said to be orderable if there is an order
< on X with τ = λ<, and such an order < is called a compatible order
of τ . Note that an orderable space can have many compatible orders.
A topological space X is said to be suborderable if it is a subspace (in
the topological sense) of some orderable spaces.

Let X be a pairwise disjoint collection of topological spaces, that is,
X ∩Y = ∅ whenever X ̸= Y ∈ X . The topological space

∪
X with the

topology
⊕

X∈X τX generated by
∪

X∈X τX as a subbase is said to be
the topological sum of X , where τX is the topology on X. In this case,
the topological sum is simply denoted by

⊕
X , or

⊕
α∈AXα when X

is written as X = {Xα : α ∈ A}. Because we consider the topological
sum of a collection X of spaces, throughout the paper, we assume that
X is non-empty and pairwise disjoint.

We will consider both collections of orderable spaces and collections
of ordered spaces. A collection of ordered spaces naturally can be
considered as a collection of orderable spaces. On the other hand,
a collection of orderable spaces can be considered as a collection of
ordered spaces by giving compatible orders. In this case, it will be
important how to choose compatible orders.

When a topological space X is represented as a topological sum
X =

⊕
X for some collection X of ordered spaces, we say “X is an

ordered decomposition of X”. Obviously, if X is an orderable space,
then considering X as an ordered space having a compatible order,
the singleton {X} is one of ordered decompositions of X. Thus an
orderable space has at least one ordered decomposition.

It may be well-known that the topological sum X = (0, 1)R ⊕ {2}
(that is, the subspace (0, 1) ∪ {2} in R) is not orderable. For a proof,
see Corollary 14. With the usual order, {(0, 1)R, {2}} is an ordered
decomposition of X.

Also it is well-known that whenever X is a collection of ordered
spaces having minimal elements or maximal elements, its topological
sum is orderable, see [6, Lemma 5]. In this paper, we will consider
when the topological sum of orderable/ordered spaces are orderable.

Definition 1. An ordered set X is said to be type 0 if it has neither
minimal elements nor maximal elements with respect to the given order.
An ordered set X is said to be type 1 if either it has a minimal element
but not have maximal elements, or it has a maximal element but not
have minimal elements. An ordered set X is said to be type 2 if it
has both a minimal element and a maximal element. When X is a
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singleton, X is considered to be type 2. Note that the interval (0, 1)R
above is type 0 and the singleton {2} is type 2.

For a collection X of ordered spaces and i ∈ 3 (= |0, 1, 2}), let
X i = {X ∈ X : X is type i }.

Then X is decomposed into X 0, X 1 and X 2.
For an order < on X, <−1 denotes the reverse order on X, that is,

x <−1 y iff y < x. Note that the reverse order has the same type as
the original type and does not change its interval topology.

Definition 2. Let X be a (pairwise disjoint, of course) collection of
ordered spaces indexed as X = {Xα : α < κ} with a cardinal κ with
κ ≥ 1 and let X =

∪
α<κXα. Moreover let <α be the order on Xα and

λ<α its interval topology for each α < κ. For each x ∈ X, let α(x) be
the unique α < κ with x ∈ Xα.

The symbol Σα<κ <α denotes the order < on X defined by the fol-
lowing rule:

x < y iff

{
x <α(x) y if α(x) = α(y),

α(x) < α(y) otherwise.

If κ < ω, then Σα<κ <α is denoted by <0 + <1 + · · ·+ <κ−1. In
particular, <0 + <1 denotes the resulting order on X0 ∪X1 adding the
ordered space X1 after the ordered space X0. Similarly if κ = ω, then
Σα<κ <α is denoted by <0 + <1 + <2 + · · · . Moreover the ordered
space ⟨X,Σα<κ <α⟩ is also simply denoted by Σα<κXα if contexts are
clear.

The following lemma gives an equivalent condition of
⊕

α<κ Xα =
Σα<κXα.

Lemma 3. Let {Xα : α < κ} be a collection of ordered spaces indexed
by a cardinal κ with κ ≥ 1. Let < be the order Σα<κ<α defined above,
where <α’s are orders on Xα’s. Then λ< =

⊕
α<κ λ<α, that is, the

topological sum
⊕

α<κ λ<α is orderable by <, if and only if for every
α < κ, Xα ∈ λ< holds.

Proof. If λ< =
⊕

α<κ λ<α , then for every α < κ, Xα ∈ λ<α ⊂ λ< holds.
Conversely assume that for every α < κ, Xα ∈ λ< holds. Note

that the restriction <↾ Xα of < on Xα coincides with <α. To see
λ< ⊂

⊕
α<κ λ<α , let x ∈ X, where X =

∪
α<κ Xα. Then (←, x)< =∪

β<α(x) Xβ ∪ (←, x)<α(x)
∈

⊕
α<κ λ<α and (x,→)< = (x,→)<α(x)

∪∪
α(x)<β Xβ ∈

⊕
α<κ λ<α hold. To see λ< ⊃

⊕
α<κ λ<α , it suffices to

see λ< ⊃ λ<α for every α < κ. Fix x ∈ Xα. Then (←, x)<α = (←
, x)< ∩Xα ∈ λ< and (x,→)<α = (x,→)< ∩Xα ∈ λ< hold. □
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Lemma 4. The following hold.

(1) if X0 and X1 are two type 0 ordered spaces, then the topological
sum X0 ⊕X1 is orderable by a type 0 order,

(2) if X0 and X1 are two type 1 ordered spaces, then the topological
sum X0 ⊕X1 is orderable by a type 0 order,

(3) if X0 and X1 are two type 2 ordered spaces, then the topological
sum X0 ⊕X1 is orderable by a type 2 order,

(4) if X0 is a type 0 ordered space and X1 is a type 1 ordered space,
then the topological sum X0⊕X1 is orderable by a type 1 order,

(5) if X0 is a type 1 ordered space and X1 is a type 2 ordered space,
then the topological sum X0⊕X1 is orderable by a type 1 order.

Proof. (1) Let <0 and <1 be type 0 orders on X0 and X1 respectively,
and let < be the order <0 + <1. Obviously < is type 0. By X0 =∪

x∈X0
(←, x)< ∈ λ< and X1 =

∪
x∈X1

(x,→)< ∈ λ<, we see that the
topological sum X0 ⊕X1 is orderable by <.

(2) Let <0 and <1 be type 1 orders on X0 and X1 respectively. We
consider <−1

i instead of <i if necessary, we may assume that both X0

and X1 have no minimal elements but has a maximal element. Let <
be the order <0 + <−1

1 , then obviously < is type 0. It follows from
X0 = (←, <−1

1 -minX1)< ∈ λ< and X1 = (<0 -maxX0,→)< ∈ λ< that
the topological sum X0 ⊕ X1 is orderable by <, where <−1

1 -minX1

and <0 -maxX0 are the minimal element of X1 with respect to the
order <−1

1 and the maximal element of X0 with respect to the order
<0, respectively.

The remaining are similar, so we leave them to the reader. □

Remark 5. About (2) of the lemma, let <0 be the usual order on
the half open interval X0 = (0, 1]R in R and <1 be the usual order on
X1 = (2, 3]R. Then both <0 and <1 are type 1, moreover the order
< defined by <0 + <1 is also type 1. However the order topology
λ< does not induce the topological sum X0 ⊕X1, because the ordered
space ⟨X0 ∪X1, <⟩ is homeomorphic to the interval (0, 2]R in R.

Note that the type 2 order <−1
0 + <1 also induces the topological

sum X0 ⊕ X1, but in our discussion below, this order will not be so
important.

Some pattern of the above lemma can be extended for further length.

Lemma 6. Let {Xα : α < κ} be a collection of type 0 ordered spaces
indexed by a cardinal κ with κ ≥ 1. Then the topological sum

⊕
α<κ Xα

is orderable by a type 0 order.
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Proof. Let < be the order Σα<κ <α, where <α is the type 0 order on
Xα. Then as in (1) of Lemma 4, we see Xα ∈ λ< for every α < κ which
shows λ< =

⊕
α<κ λ<α . □

Lemma 7. Let {Xα : α < κ} be a collection of type 1 ordered spaces
indexed by a cardinal κ with κ ≥ 1. Then the following hold.

(1) if κ = 2n+1 for some n ∈ ω, then the topological sum
⊕

α<κ Xα

is orderable by a type 1 order,
(2) otherwise, the topological sum

⊕
α<κ Xα is orderable by a type

0 order,

Proof. Let <α be the type 1 order on Xα for each α < κ, we may
assume that each Xα has a <α-maximal element but not have <α-
minimal elements.

(1) Let < be the order <0 + <−1
1 + <2 + · · ·+ <−1

2n−1 + <2n.
Since <2k + <−1

2k+1 is a type 0 order which induce the topological

sum X2k ⊕ X2k+1 for every k < n, the type 0 order <0 + <−1
1 + <2

+ · · ·+ <−1
2n−1 induces the topological sum X0 ⊕ X1 ⊕ · · · ⊕ X2n−1 by

Lemma 6. Now by Lemma 4 (4), < is a type 1 order which induces the
topological sum X0 ⊕X1 ⊕ · · · ⊕X2n.

(2) When κ = ω, by Lemma 6, the type 0 order Σk<ω(<2k + <−1
2k+1)

induces the topological sum
⊕

α<κXα.
Assume κ > ω. Note that every ordinal α can be represented as

α = ω · β + n for a unique pair of ordinal β and n ∈ ω, where ω · β is
the ordinal multiplication, that is, the order type of the lexicographic
ordered set β × ω, see [5, I, Exercises (3)]. Obviously for each β < κ,
the type 0 order Σk<ω(<ω·β+2k + <−1

ω·β+2k+1) induces the topological
sum

⊕
n∈ω Xω·β+n. Now it follows from Lemma 6 that the type 0

order Σβ<κ(Σk<ω(<ω·β+2k + <−1
ω·β+2k+1)) induces the topological sum⊕

α<κXα. □
Lemma 8. Let {Xα : α < κ} be a collection of type 2 ordered spaces
indexed by a cardinal κ with κ ≥ 1. Then the following hold.

(1) if κ is finite, then the topological sum
⊕

α<κ Xα is orderable by
a type 2 order,

(2) otherwise, the topological sum
⊕

α<κ Xα is orderable by a type
0 order, also is orderable by a type 1 order.

Proof. (1) is similar to Lemma 4 (3).
(2) When κ = ω, both the type 0 order (Σk<ω<2k)

−1+(Σk<ω<2k+1)
and the type 1 order Σn<ω<n induce the topological sum

⊕
α<κ Xα.

Assume κ > ω. As above, the type 0 order (Σk<ω <ω·β+2k)
−1 +

(Σk<ω <ω·β+2k+1) induces the topological sum
⊕

n∈ω Xω·β+n for each
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β < κ. Now from Lemma 6 and Lemma 4, both the type 0 or-
der Σβ<κ((Σk<ω <ω·β+2k)

−1 + (Σk<ω <ω·β+2k+1)) and the type 1 order
Σn<ω <n +Σ1≤β<κ((Σk<ω <ω·β+2k)

−1 + (Σk<ω <ω·β+2k+1)) induce the
topological sum

⊕
α<κXα. □

Lemma 9. Let X be a non-empty collection of type 0 or 1 ordered
spaces. Then the topological sum

⊕
X is ordered by a type 0 or 1

order.

Proof. For each i ∈ 2 = {0, 1}, let enumerate X i by a cardinal κi. If
κ0 = 0 or κ1 = 0, then the conclusion is immediate, so we may assume
κ0 ≥ 1 and κ1 ≥ 1. By Lemma 6, the topological sum

⊕
X 0 is ordered

by a type 0 order. Moreover by Lemma 7, the topological sum
⊕
X 1

is ordered by a type 0 or 1 order. Now by Lemma 4 (1) or (4) , the
topological sum

⊕
X =

⊕
X 0 ⊕

⊕
X 1 is ordered by a type 0 or 1

order. □
Theorem 10. Let a space X can be written as a topological sum X =⊕
Y for some collection Y of orderable spaces. If Y satisfies either (1)

or (2) below, then X is orderable,

(1) there are Y ∈ Y and an ordered decomposition ZY of Y such
that Z1

Y ̸= ∅,
(2) there is a sequence ⟨ZY : Y ∈ Y⟩ of ordered decompositions
ZY ’s of Y ’s such that

∪
Y ∈Y Z0

Y = ∅, or
∪

Y ∈Y Z2
Y is empty or

infinite.

Proof. Let Y be as above satisfying (1) or (2). For every Y ∈ Y , by
orderability of Y , one can fix a compatible order <Y on Y . Now Y can
be considered as an ordered decomposition of X.

First assuming (1), take such Y ∈ Y and ZY with Z1
Y ̸= ∅ in (1).

Fix Z∗ ∈ Z1
Y and let X = (Y \ {Y }) ∪ (ZY \ {Z∗}). Then X ∪ {Z∗} is

an ordered decomposition of X. For each i ∈ 3, enumerate X i by some
cardinal. Lemmas 6, 7 and 8 show the following,

•
⊕
X 0 can be ordered by a type 0 order,

•
⊕
X 1 can be ordered by a type 0 order or a type 1 order,

•
⊕
X 2 can be ordered by a type 0 order or a type 2 order.

Then it follows from Lemma 4 (1) and (4) that (
⊕
X 0) ⊕ (

⊕
X 1)

can be ordered by a type 0 order or a type 1 order.

Claim. (
⊕
X 2)⊕ Z∗ can be ordered by a type 1 order,

Proof. We may assume that Z∗ has no minimal elments but has a
maximal element. When

⊕
X 2 is type 0, add Z∗ after

⊕
X 2. When⊕

X 2 is type 2, add
⊕
X 2 after Z∗. Then in both cases, these odered

spaces are type 1. This completes the proof of Claim.
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Now since (
⊕
X 0)⊕ (

⊕
X 1) is type 0 or 1 and (

⊕
X 2)⊕Z∗ is type

1, Lemma 4 (2) (4) or Lemma 9 shows X = ((
⊕
X 0) ⊕ (

⊕
X 1)) ⊕

((
⊕
X 2)⊕ Z∗) is orderable.

Next assuming (2), let ⟨ZY : Y ∈ Y⟩ be a sequence of ordered
decompositions in (2) and set X =

∪
Y ∈Y ZY . Then X is also an

ordered decomposition of X and for every i ∈ 3, X i =
∪

Y ∈Y Z i
Y holds.

When X 1 ̸= ∅, by (1), we see that X is orderable. Therefore we assume
X 1 = ∅. We consider two cases.

Case 1. X 0 = ∅.

In this case, since X = X 2, by Lemma 8, we see that X is orderable.

Case 2. X 0 ̸= ∅.

In this case, by (2), X 2 is empty or infinite. When X 2 is empty, by X =
X 0, applying Lemma 6, see that X is orderable. Now we assume that
X 2 is infinite. It follows from Lemma 8 that

⊕
X 2 can be considered as

a type 0 ordered space. Now X 0 ∪{
⊕
X 2} is considered as an ordered

decomposition of X by type 0 ordered spaces, by Lemma 6, we see that
X is orderable. □

Applying the theorem above, we see the following, where note that
discrete spaces are orderable.

Corollary 11. Assume that a space X has an ordered decomposition
X . If X satisfies one of the following clauses, then X is orderable,

(1) X 0 = ∅, see [6, Lemma 5],
(2) X 1 ̸= ∅,
(3) X 2 is empty or infinite,
(4) X contains a type 0 ordered space with a jump,
(5) X contains a type 2 ordered space with a gap,
(6) X contains infinitely many singletons, or contains an infinite

discrete space,
(7) X contains a space which is homeomorphic to either the ratio-

nals Q or the irrationals P.

Proof. (1) - (6) are easy. For (7), remark the following results:

• the space Q is characterized as the unique space that is non-empty,
countable, metrizable, without isolated points [7],

• the space P is characterized as the unique space that is non-empty,
zero-dimensional, separable, completely metrizable, nowhere locally
compact (=no compact subset has non-empty interior) [1].
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Using these characterizations, we see that Q and P are homeomorphic
to the type 1 ordered spaces (0, 1]∩Q and (0, π]∩P respectively. Now
apply (2). □

We will see that the reverse implication of Theorem 10 is true when-
ever X is locally connected. To see this, we need the following propo-
sition which is a consequence of [2, Theorem II], however we present
its easy and direct proof.

Proposition 12. [2] Let ⟨X,<0⟩ be an ordered set whose interval topol-
ogy λ<0 is connected. Moreover let <1 be an order on X whose interval
topology λ<1 is weaker than λ<0, that is, λ<1 ⊂ λ<0. Then the following
hold.

(1) if there are x0, x1 ∈ X with x0 <0 x1 and x0 <1 x1, then <1=<0,
that is, x <1 y iff x <0 y,

(2) if there are x0, x1 ∈ X with x0 <0 x1 and x1 <1 x0, then
<1=<−1

0 .

Thus the orders <0 and <1 have the same type and the topologies λ<0

and λ<1 coincide.

Proof. We only prove (1), because (2) is similar. Assume x0 <0 x1 and
x0 <1 x1. For every x ∈ X, we prove the following Claims.

Claim 1. If x <0 x0, then x <1 x0.

Proof. Let x <0 x0. First assume x0 <1 x <1 x1. From X \ {x} = (←
, x)<1 ⊕ (x,→)<1 with x0 ∈ (←, x)<1 and x1 ∈ (x,→)<1 , the connected
set [x0, x1]<0 is covered by non-empty disjoint open sets [x0, x1]<0 ∩ (←
, x)<1 and [x0, x1]<0 ∩ (x,→)<1 , a contradiction.

Next assume x1 <1 x. Then the connected set [x, x0]<0 is covered by
non-empty disjoint open sets [x, x0]<0∩(←, x1)<1 and [x, x0]<0∩(x1,→
)<1 , a contradiction. This completes the proof of Claim 1.

Similarly we see:

Claim 2. If x0 <0 x <0 x1, then x0 <1 x <1 x1.

Claim 3. If x1 <0 x, then x1 <1 x.

Moreover for every x, y ∈ X, similarly we can see:

Claim 4. If x <0 y <0 x0, then x <1 y <1 x0.

Claim 5. If x0 <0 x <0 y <0 x1, then x0 <1 x <1 y <1 x1.

Claim 6. If x1 <0 x <0 y, then x1 <1 x <1 y.

Now the claims above show <1=<0. □
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The above proposition says that a connected orederable space has
two compatible orders so that one order is the reverse order of another
one, so these types coincide.

Theorem 13. Let a space X can be written as a topological sum X =⊕
Y for some collection Y of locally connected orderable spaces. Then

X is orderable if and only if Y satisfies either (1) or (2) in Theorem
10.

Proof. One direction follows from Theorem 10. So assume that X is
orderable by an order <X and Y satisfies the negation of “ (1) or (2)”,
we will get a contradiction. For each Y ∈ Y , fixing a compatible order
<Y on Y , let ZY be the set of all connected components of Y , that
is, the set of all maximal connected subsets of Y . Since Y is locally
connected, all members of ZY are clopen in Y .

Moreover fix Z ∈ ZY . Let <Z be the restricted order <Y ↾ Z of the
order <Y on Z. Since Z is convex in the ordered space ⟨Y,<Y ⟩ and
clopen in X, the interval topology λ<Z

coincides with the subspace
topology λ<Y

↾ Z of the interval topology λ<Y
on Z. Also since Z is

connected clopen subspace of X, by the convexity of Z in ⟨X,<X⟩, we
have λ<X↾Z = λ<X

↾ Z = (λ<X
↾ Y ) ↾ Z = λ<Y

↾ Z = λ<Z
. Since Z is

connected, by the proposition above, we see that <X↾ Z coincide with
either <Z or <−1

Z and Z is a convex set in the ordered set ⟨X,<X⟩. So
the ordered sets ⟨Z,<X↾ Z⟩ and ⟨Z,<Z⟩ have the same type.

Now let Z =
∪

Y ∈Y ZY , then Z is an ordered decomposition of X,
where we consider the order <Z on Z for every Z ∈ Z. By the negation
of “ (1) or (2)”, we see that Z0 ̸= ∅, Z1 = ∅ and Z2 is non-empty
and finite, where Z i = {Z ∈ Z : ⟨Z,<Z⟩ is type i }. Enumerate Z2

as Z2 = {Zk : k < n} for some n ∈ ω with 1 ≤ n. Since it is
finite, we may assume Z0 <X Z1 <X · · · <X Zn−1, where A <X B
means a <X b for every a ∈ A and b ∈ B. For every k < n, because
⟨Zk, <Zk

⟩ is type 2, so is ⟨Zk, <X↾ Zk⟩, therefore Zk has both a <X-
minimal element <X -minZk and a <X-maximal element <X -maxZk

in X. Moreover fix Z∗ ∈ Z0. Since {Z∗} ∪ Z2 is a pairwise disjoint
collection of convex sets in ⟨X,<X⟩, we see either Z∗ <X Zn−1 or
Z0 <X Z∗. We may assume Z∗ <X Zn−1. Take the smallest k < n
with Z∗ <X Zk. It follows from Z∗ ∈ Z0 that Z∗ has neither <X-
minimal elements nor <X-maximal elements. Now by the minimality
of k, (←, <X -minZk)<X

has no <X-maximal elements in X. Since
Zk is clopen in the ordered space ⟨X,<X⟩ with <X -minZk ∈ Zk

and (←, <X -minZk)<X
̸= ∅, (←, <X -minZk)<X

has to have a <X-
maximal element, a contradiction. □
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The above theorem yields the following.

Corollary 14. Let X be a locally connected space. Then X is orderable
if and only if the set Y of all connected components satisfies both (A)
and (B),

(A) for every Y ∈ Y, Y is orderable,
(B) either (1) or (2) holds:

(1) Y1 ̸= ∅,
(2) Y0 = ∅ or Y2 is empty or infinite.

This corollary also shows that the subspace (0, 1)R ∪ {2} of the real
line R is not orderable.

Example 15. Applying the corollary above, we can see:

• when 1 ≤ n < ω, the subspace (−2,−1)R ∪
∪

k<n[k, k + 1
2
]R of

R is not orderable,
• the subspace (−2,−1)R ∪

∪
k∈ω[k, k + 1

2
]R of R is orderable,

• when 1 ≤ n < ω, the subspace [−2,−1]R ∪
∪

k<n(k, k + 1
2
)R of

R is not orderable,
• the subspace [−2,−1]R ∪

∪
k∈ω(k, k+

1
2
)R of R is not orderable,

• when 1 ≤ n < ω, the subspace (−4,−3]R∪(−2,−1)R∪
∪

k<n[k, k+
1
2
]R of R is orderable.

Finally we consider the suborderability of topological sums of sub-
orderable spaces.

Corollary 16. If a space X can be written as a topological sum X =⊕
Y for some collection Y of suborderable spaces, then X is suborder-

able. In particular, a topological sum of orderable spaces is suborderable.

Proof. It is well-known that for every ordered space ⟨Y,<Y ⟩, there is
an ordered space ⟨Z,<Z⟩ such that Y ⊂ Z,<Y=<Z↾ Y, λ<Y

= λ<Z
↾ Y

and the space ⟨Z, λ<Z
⟩ is compact, hence ⟨Z,<Z⟩ is type 2, see [4].

Let Y be as above. For every Y ∈ Y , take a compact ordered space
Ỹ containing Y as a topological subspace. Let Ỹ be the collection
{Ỹ : Y ∈ Y} of compact ordered spaces. Taking order isomorphic
copies of Ỹ ’s if necessary, we may assume that the collection Ỹ is
pairwise disjoint. Now it follows from Lemma 8 that

⊕
Ỹ is orderable.

Since X is a subspace of
⊕
Ỹ , it is suborderable. □

As above Q and P can be ordered by a type 1 order and they are
totally disconnected, where a space X is totally disconnected if X does
not contain any connected subsets of cardinality larger than one. The
referee of the present paper pointed out that the lexicographic product
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space X = [0, 1]R × {0, 1} is compact and totally disconnected, so it
cannot be ordered by a type 1 order. We would like to ask:

Question 17. Under what conditions, a non-compact totally discon-
nected orderable space can be ordered by a type 1 order?
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[1] P. S. Aleksandrov, P. Urysohn, Über nulldimensionale Punktmengen, Math.
Annal., 98 (1928), 89-106.

[2] S. Eilenberg, Ordered topological spaces, Amer. J. Math., 63 (1941), 39-45.
[3] R. Engelking, General Topology-Revised and completed ed.. Heldermann Ver-

lag, Berlin (1989).
[4] R. Kaufman, Ordered sets abd compact spaces, Coll. Math. 17 (1967), 35-39.
[5] K. Kunen, Set Theory. An Introduction to Independence Proofs, Studies in

Logic and the Foundations of Mathematics, vol. 102, North-Holland, Amster-
dam, 1980.

[6] U. Marconi, On a theorem about orderability, Rend. Circ. Mat. Palermo (2) 50
(2001), no. 3, 543-546.
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