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Abstract. We will calculate the density, the spread and related
cardinal functions on lexicographic products of GO-spaces, and
give their applications.

1. Introduction

The notion of a lexicographic product of GO-spaces was introduced
in [14], and their weight was calculated in [6]. Let d(X), s(X) and
w(X) denote the density, the spread and the weight of a space X,
respectively. In [6], it is proved that whenever X =

∏
α<γ Xα is a

lexicographic product of GO-spaces, the weight of X is represented as

w(X) =

{
sup{|

∏
α≤β Xα| : β < γ} if γ is limit,

max{|
∏

α<γ−1 Xα|, w(Xγ−1)} if γ is successor.

Also, some cardinal functions of lexicographic products of LOTS are
considered in [1]. In this paper, we will calculate the density, the spread
and related cardinal functions on lexicographic products of GO-spaces.
We will see that whenever X =

∏
α<γ Xα is a lexicographic product of
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GO-spaces,

d(X) =



sup{|
∏

α≤β Xα| : β < γ}
if γ is limit,

max{|
∏

α<γ−1Xα|, d(Xγ−1)}
if γ is successor and |Xγ−1| > 2,

sup{|
∏

α≤β Xα| : β < γ − 1}
if γ is successor, |Xγ−1| = 2 and γ − 1 is limit,

max{|
∏

α<γ−2Xα|, w(Xγ−2)}
if γ is successor, |Xγ−1| = 2 and γ − 1 is successor.

As applications, for example, we see:

• d(2ω) = d(3ω) = d((ω + 1)ω) = d(2ω+1) = ℵ0 and d(3ω+1) =
d((ω+1)ω+1) = 2ℵ0 , whereas w(2ω) = w(3ω) = w((ω+1)ω) = ℵ0
and w(2ω+1) = w(3ω+1) = w((ω + 1)ω+1) = 2ℵ0 .

Modifying the spread s(X), we will define, in section 3, an additional
cardinal function 2-s(X) for each GO-space X. By using it, we will see
that whenever X =

∏
α<γ Xα is a lexicographic product of GO-spaces,

s(X) =



sup{|
∏

α≤β Xα| : β < γ}
if γ is limit,

max{|
∏

α<γ−1 Xα|, s(Xγ−1)}
if γ is successor and |Xγ−1| > 2,

sup{|
∏

α≤β Xα| : β < γ − 1}
if γ is successor, |Xγ−1| = 2 and γ − 1 is limit,

max{|
∏

α<γ−2 Xα|, 2-s(Xγ−2)}
if γ is successor, |Xγ−1| = 2 and γ − 1 is successor.

2. Preliminaries

All topological spaces are assumed to be regular T2 containing at least
2 points and when we consider a product

∏
α<γ Xα, all Xα’s are also

assumed to have cardinality at least 2 with γ ≥ 2.
The symbol |x| denotes the cardinality of a set x. Usually the sym-

bols α, β, γ, · · · denote ordinals. An ordinal α satisfying α = |α| is
called a cardinal. Also usually the symbols κ, λ, µ, · · · denote cardi-
nals. The symbols ω and ω1 denote the first infinite ordinal and the
first uncountable ordinal respectively. An infinite cardinal κ is regular
if cfκ = κ, where cfκ denotes the cofinality of κ, otherwise singular.
For a cardinal κ, the symbol κ+, which is called the successor of κ,
denotes the smallest cardinal greater than κ. An uncountable cardinal
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λ is called a successor cardinal if λ = κ+ for some cardinal κ, otherwise
limit cardinal. The symbol κλ denotes the cardinality of the set of all
functions from λ to κ. When we want to infer that ω (ω1) is a cardinal,
it is written as ℵ0 (ℵ1 respectively). Ordinals have the usual order
topology. The symbols R, Q, P and I denote the reals, the rationals,
the irrationals and the unit interval [0, 1] in R, which is also denoted
by [0, 1]R, respectively.

A lexicographic product X =
∏

α<γ Xα of GO-spaces Xα’s is defined

in [14] as a subspace of the lexicographic product X̂ =
∏

α<γ X
∗
α of

LOTS X∗
α’s, where X∗

α is a LOTS with Xα ⊂ X∗
α which is called the

minimal d-extension of Xα. For readers’ convenience, we recall here
outlines of the concepts which are used in this paper.

LOTS and GO-spaces: A linearly ordered set ⟨X,<X⟩, see [2, page
4], has a natural topology λX , which is called an interval topology,
generated by

{(←, x)X : x ∈ X} ∪ {(x,→)X : x ∈ X}

as a subbase, where (x,→)X = {z ∈ X : x <X z}, (x, y)X = {z ∈ X :
x <X z <X y}, (x, y]X = {z ∈ X : x <X z ≤X y} and so on. The
triple ⟨X,<X , λX⟩, which is simply denoted by X, is called a LOTS.

A triple ⟨X,<X , τX⟩ is said to be a GO-space, which is also simply
denoted by X, if ⟨X,<X⟩ is a linearly ordered set and τX is a T2-
topology on X having a base consisting of convex sets, where a subset
C ofX is convex if for every x, y ∈ C with x <X y, [x, y]X ⊂ C holds. In
this situation, the pair ⟨X,<X⟩ is called the underlying linearly ordered
set of X, and the triple ⟨X,<X , λX⟩, which is denoted by LX , is called
the underlying LOTS of X. Obviously, the GO-space topology τX is
stronger than the interval topology λX , that is, λX ⊂ τX . For more
GO-spaces, see [4, 20]. Usually <X , (x, y)X , λX and τX are written
simply <, (x, y), λ and τ if contexts are clear.

Lexicographic products of LOTS: The lexicographic product of
a sequence of LOTS is a classic concept, although the lexicographic
product of a sequence of GO-spaces was defined recently [14]. For every
α < γ, let Yα be a LOTS and Y =

∏
α<γ Yα. Every element y ∈ Y is

identified with the sequence ⟨y(α) : α < γ⟩, where a sequence means
a function whose domain is an ordinal. For notational convenience,∏

α<γ Yα is considered as {∅} whenever γ = 0, where ∅ is considered to

be a function whose domain is 0. When 0 ≤ β < γ, y0 ∈
∏

α<β Yα and
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y1 ∈
∏

β≤α Yα, y0
∧y1 denotes the sequence y ∈

∏
α<γ Yα defined by

y(α) =

{
y0(α) if α < β,

y1(α) if β ≤ α.

In this case, whenever β = 0, ∅ ∧y1 is considered as y1. In case 0 ≤
β < γ, y0 ∈

∏
α<β Yα, u ∈ Yβ and y1 ∈

∏
β<α Yα, y0

∧⟨u⟩∧y1 denotes

the sequence y ∈
∏

α<γ Yα defined by

y(α) =


y0(α) if α < β,

u if α = β,

y1(α) if β < α.

More general cases are similarly defined.
The lexicographic order <Y on Y =

∏
α<γ Yα, where all Yα’s are

LOTS’s, is defined as follows: for every y, y′ ∈ Y ,

y <Y y′ iff for some α < γ, y ↾ α = y′ ↾ α and y(α) <Yα y′(α),

where y ↾ α = ⟨y(β) : β < α⟩ and <Yα is the order on Yα.

The minimal d-extension of a GO-space: If Y = ⟨Y,<Y , τY ⟩ is
a GO-space, then for each subset X of Y , the subspace X = ⟨X,<X

, τX⟩ is defined and it is also a GO-space, where <X is the restriction
<Y ↾ X × X and τX is the subspace topology {U ∩ X : U ∈ τY } of
τY . In particular, each subspace X of a LOTS Y is a GO-space since
every LOTS is a GO-space. Conversely, for every GO-space X, there
is a LOTS X∗ such that

• X is a dense subspace of X∗ (as a GO-space),
• if L is a LOTS containing X as a dense subspace, then L also
contains the LOTS X∗ as a subspace (in the sense of the iden-
tification).

Such anX∗ is called the minimal d-extension of a GO-spaceX, see [21].
Indeed, for a GO-space X = ⟨X,<X , τX⟩ with LX = ⟨X,<X , λX⟩, the
LOTS X∗ is constructed as

X∗ = (X− × {−1}) ∪ (X × {0}) ∪ (X+ × {1}),
where

X+ = {x ∈ X : (←, x] ∈ τX \ λX},
X− = {x ∈ X : [x,→) ∈ τX \ λX},

and the order <X∗ on X∗ is the restriction of the usual lexicographic
order on X × {−1, 0, 1} with −1 < 0 < 1, also we identify X × {0}
with X in the obvious way. Obviously, we can see:

• if X is a LOTS, then X∗ = X,
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• X has a maximal element maxX if and only if X∗ has a maxi-
mal element maxX∗, in this case, maxX = maxX∗ (similarly
for minimal elements).

Lexicographic products of GO-spaces: Now we are ready to define
the lexicographic product of GO-spaces. For every α < γ, let Xα be a
GO-space and X =

∏
α<γ Xα. Take the minimal d-extension X∗

α of Xα

for each α < γ, and let X̂ =
∏

α<γ X
∗
α be the lexicographic product of

the LOTS X∗
α’s. Then X is a subset of the LOTS X̂. Considered as

a GO-subspace of X̂, we call X =
∏

α<γ Xα the lexicographic product

of GO-spaces Xα’s, for more details see [14].
∏

i∈ω Xi (
∏

i≤n Xi where
n ∈ ω) is denoted by X0 ×X1 ×X2 × · · · (X0 ×X1 ×X2 × · · · ×Xn,
respectively).

∏
α<γ Xα is also denoted by Xγ whenever Xα = X for

all α < γ. When Xα’s are GO-spaces,
∏

α<γ Xα usually means the lex-
icographic product unless otherwise stated. Moreover we assume that∏

α<γ Xα is infinite, γ ≥ 2 and |Xα| ≥ 2 for every α < γ. Therefore
when γ < ω, for at least one α < γ, Xα is infinite.

We remark that when δ < γ, a lexicographic product
∏

α<γ Xα is

regarded as the lexicographic product
∏

α<δ Xα ×
∏

δ≤α<γ Xα of two

lexicographic products, where the lexicographic product
∏

δ≤α<γ Xα is

considered in the natural way, see [14, Lemma 1.5]. About lexico-
graphic products of GO-spaces, see [7, 12, 15, 16, 17, 18]. Also about
Tychonoff products of GO-spaces, see [5, 8, 11, 13].

3. Cardinal functions on GO-spaces

Recall the following cardinal functions on a topological space X, see
[2].

• s(X) = sup{|H| : H is a relatively discrete subset in X }, where
H is relatively discrete inX if every element x inH is an isolated
point in H, that is, for every x ∈ H, there is a neighborhood U
of x with U ∩H = {x},
• c(X) = sup{|U| : U is a pairwise disjoint collection of non-

empty open sets of X }.
The following relationships about a topological space X are well-

known and easy to prove.

• w(X) ≥ s(X) ≥ c(X),
• w(X) ≥ d(X) ≥ c(X),
• |X| ≥ d(X).

Since we are assuming that spaces are regular T2, a space X is dis-
crete whenever X is finite, where X is discrete if all points in X are
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isolated in X. Therefore all cardinal functions above on X coincide
with |X| whenever X is finite. So hereafter we assume that all spaces
are infinite unless otherwise stated.

Unfortunately, we cannot determine only from the equation κ =
s(X) whether a space X has a relatively discrete subset of cardinality
κ in case κ is a limit cardinal. Similar phenomenon occurs for c(X).
So we consider further two cardinal functions. For a topological space
X, let

• ss(X) = min{κ : there are no relatively discrete subspaces of
cardinality κ},

• cc(X) = min{κ : there are no pairwise disjoint collections of
κ-many non-empty open sets}.

It is trivial that cc(X) ≤ ss(X) and cc(X) ≤ d(X)+. Since we are
assuming that all spaces are infinite and T2, we have ω1 ≤ cc(X). It is
known that cc(X) has to be a regular uncountable cardinal, see [3] or
[9, Theorem 12.2]. Note that

• ss(X) = s(X) holds whenever ss(X) is a limit cardinal,
ss(X) = s(X)+ holds whenever ss(X) is a successor cardinal,
• cc(X) = c(X) holds whenever cc(X) is a limit cardinal,
cc(X) = c(X)+ holds whenever cc(X) is a successor cardinal.

Using the hereditary collectionwise Hausdorffness of GO-spaces, we
can prove the following easily, see also [10, 2.23 (a)].

Lemma 3.1 (folklore). Let H be a relatively discrete subspace of a GO-
space X. Then there is a pairwise disjoint collection {U(x) : x ∈ H}
of open sets in X with x ∈ U(x) for every x ∈ H. Hence, c(X) = s(X)
and cc(X) = ss(X) hold whenever X is a GO-space.

For a GO-space X, since it is well known |X| ≥ w(X) (see below),
we have:

• |X| ≥ w(X) ≥ d(X) ≥ s(X),
• s(X)+ ≥ ss(X) ≥ s(X).

Let X = ⟨X,<X , τX⟩ be a GO-space, define

N+
X = {x ∈ X : ∃y ∈ X(x < y, (x, y) = ∅)},

N−
X = {x ∈ X : ∃y ∈ X(y < x, (y, x) = ∅)}.

For every x ∈ N+
X , the element y ∈ X with x < y and (x, y) = ∅ is

denoted by x+, similarly for every x ∈ N−
X , we can assign x− ∈ X with

x− < x and (x−, x) = ∅. Since x 7→ x+ is a one-to-one onto map from
N+

X to N−
X , we see |N+

X | = |N
−
X |.
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N+
X and the other sets listed are not properties but sets that are defined,

in the case of the sets N+
X and N−

X , from the underlying LOTS, and
for X+ and X− from the GO-space. Obviously, the topology τX is
generated by S = {(←, x) : x ∈ X} ∪ {(x,→) : x ∈ X} ∪ {(←, x] :
x ∈ X+} ∪ {[x,→) : x ∈ X−} as a subbase, which also shows |X| ≥
w(X). Thus a GO-space X is completely determined by reserving its
underlying LOTS LX , X

+ and X− with X+ ⊂ {x ∈ X : (←, x] /∈ λX}
and X− ⊂ {x ∈ X : [x,→) /∈ λX}. For example,

• the Sorgenfrey line S is determined from LS = R, S+ = ∅ and
S− = R,
• the Michael line M is determined from LM = R, M+ = P and
M− = P.

The cardinal functions w(X), d(X), s(X), ss(X) of a GO-space X
can be described using the terms LX , N

+
X , X

+ and X−. The equality
(4) in the following lemma is essentially proved in [6, Lemma 2.2], so
we give here proofs of (1), (2) and (3).

Lemma 3.2. Let X be a GO-space. Then

(1) d(X) = max{d(LX), |X+ ∩X−|, |X+ ∩N−
X |, |X− ∩N+

X |},
(2) s(X) = max{s(LX), |X+ ∩X−|, |X+ ∩N−

X |, |X− ∩N+
X |},

(3) ss(X) = max{ss(LX), |X+ ∩X−|+, |X+ ∩N−
X |+, |X− ∩N+

X |+},
(4) w(X) = max{d(LX), |N+

X |, |X+|, |X−|}.

Although we are assuming that spaces are infinite and T2, note that
all equalities above hold whenever X is finite, because of X = LX ,
|X| = w(LX) = d(LX) = s(LX) and |X|+ = ss(LX) by the discreteness
of X.

Proof. Obviously, d(X), d(LX), s(X), and s(LX) are infinite, also
ss(X) and ss(LX) are uncountable. Let

D0 = (X+ ∩X−) ∪ (X+ ∩N−
X) ∪ (X− ∩N+

X),

then all members ofD0 are isolated points ofX, so d(X) ≥ s(X) ≥ |D0|
and ss(X) > |D0|. And we have d(X) ≥ d(LX), s(X) ≥ s(LX) and
ss(X) ≥ ss(LX) because of λX ⊂ τX . Therefore the inequality “≥” in
(1), (2) and (3) holds. Let

E0 = {x ∈ X : (x,→) = ∅ or (←, x) = ∅ },

then it is trivial that |E0| ≤ 2.

Claim. If U is a non-empty open set in X, then U ∩ (D0 ∪E0) ̸= ∅ or
IntLX

U ̸= ∅.
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Proof. We may assume that U is a convex set. If there are x, y, z ∈ U
with x < y < z, then the interval (x, z) is an open set in LX , so
y ∈ (x, z) ⊂ IntLX

U . In the other case, we have 1 ≤ |U | ≤ 2, so U
contains an isolated point d in X. It follows that (←, d] ∈ τX and
[d,→) ∈ τX . If d ∈ N+

X ∩ N−
X , then it is also isolated in LX , so

d ∈ IntLX
U . If d /∈ N+

X , then d = maxX ∈ E0 or d ∈ X+. If d /∈ N−
X ,

then d = minX ∈ E0 or d ∈ X−. Hence, d /∈ N+
X ∩ N−

X implies
d ∈ U ∩ (D0 ∪ E0). This completes the proof of the claim.

(1) To see “≤”, let
κ1 = max{d(LX), |X+ ∩X−|, |X+ ∩N−

X |, |X
− ∩N+

X |}.
Take a subset D of X with D0 ∪ E0 ⊂ D and |D| = κ1 which is dense
in LX . Let U be an arbitrary non-empty open set of X. By Claim, we
see that ∅ ̸= (IntLX

U) ∩ D ⊂ U ∩ D or ∅ ̸= U ∩ (D0 ∪ E0) ⊂ U ∩ D.
Hence, D is dense in X, and we have d(X) ≤ |D| = κ1.

(2) and (3)
To see “≤”, let

κ2 = max{s(LX), |X+ ∩X−|, |X+ ∩N−
X |, |X

− ∩N+
X |},

κ3 = max{ss(LX), |X+ ∩X−|+, |X+ ∩N−
X |

+, |X− ∩N+
X |

+}.
And let U be an arbitrary pairwise disjoint collection of non-empty
open sets in X. Put U0 = {U ∈ U : U ∩ (D0∪E0) ̸= ∅} and U1 = {U ∈
U : IntLX

U ̸= ∅}. Then an assignment U0 ∋ U 7→ x(U) ∈ U ∩(D0∪E0)
is one-to-one since U is pairwise disjoint. So we see |U0| ≤ |D0 ∪
E0| ≤ max{ℵ0, |X+ ∩X−|, |X+ ∩N−

X |, |X− ∩N+
X |} and max{ℵ0, |X+ ∩

X−|, |X+∩N−
X |, |X−∩N+

X |} is ≤ κ2 and < κ3. Since {IntLX
U : U ∈ U1}

is a pairwise disjoint collection of non-empty open sets in LX , we see
that |U1| ≤ c(LX) = s(LX) ≤ κ2 and |U1| < cc(LX) = ss(LX) ≤ κ3.
By Claim, we have U = U0 ∪ U1, so |U| ≤ κ2 and |U| < κ3. Hence
s(X) = c(X) ≤ κ2 and ss(X) = cc(X) ≤ κ3. □
Example 3.3. Applying the lemma above with d(R) = s(R) = ℵ0, we
can calculate the well-known cardinal functions on S and M,

• noting LS = R, N+
S = N−

S = ∅, S+ = ∅ and S− = R, we see
d(S) = s(S) = ℵ0 and w(S) = 2ℵ0 ,
• noting LM = R, N+

M = N−
M = ∅, M+ = P and M− = P, we see

d(M) = s(M) = w(M) = 2ℵ0 .

In the next section, we culculate cardinal functions of lexicographic
products. To describe the spread of lexicographic products, we further
need some fine cardinal functions.
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Definition 3.4. Let X be a GO-space and H ⊂ X. A point x in
X is a 0-cluster (1-cluster) point of H if for every neighborhood U of
x, H ∩ (U ∩ (←, x)) ̸= ∅ (H ∩ (U ∩ (x,→)) ̸= ∅ respectively) holds.
We say that H is relatively 0-discrete if H does not have a 0-cluster
point of H, that is, for every x ∈ H, there is a neighborhood U of x
with H ∩ (U ∩ (←, x)) = ∅. The relatively 1-discreteness is similarly
defined. Note that H is relatively discrete if and only if it is relatively
0-discrete and relatively 1-discrete, that is, for every x ∈ H, there is a
neighborhood U of x withH∩(U∩(←, x)) = ∅ andH∩(U∩(x,→)) = ∅.

Further we give an additional notion. A point x in X is a 2-cluster
point of H if it is 0-cluster and 1-cluster. We say that H is relatively
2-discrete if H does not have a 2-cluster point of H, that is, for every
x ∈ H, there is a neighborhood U of x with H ∩ (U ∩ (←, x)) = ∅ or
H ∩ (U ∩ (x,→)) = ∅.

Obviously,

• if H is relatively discrete, then it is both relatively 0-discrete
and relatively 1-discrete,
• if H is relatively 0-discrete (or relatively 1-discrete), then it is
relatively 2-discrete.

Now we can define corresponding cardinal functions on GO-spaces.

Definition 3.5. Let X be a GO-space. For i ∈ 3 (= {0, 1, 2}), let
• i-s(X) = sup{|H| : H is relatively i-discrete },
• i-ss(X) = min{κ : there are no relatively i-discrete subspaces

of cardinality κ}.

Obviously, every relatively 2-discrete subset H of a GO-space X
is expressed as H0 ∪ H1 for some relatively 0-discrete subset H0 and
relatively 1-discrete subset H1, so we see

• 2-s(X) = max{0-s(X), 1-s(X)},
• 2-ss(X) = max{0-ss(X), 1-ss(X)},
• min{0-s(X), 1-s(X)} ≥ s(X),
• min{0-ss(X), 1-ss(X)} ≥ ss(X).

Let X = ⟨X,<, τ⟩ be a GO-space. Then we can define GO-spaces
X0 = ⟨X,<, τ0⟩ and X1 = ⟨X,<, τ1⟩ which have the following bases,
respectively:

{I ∩ (←, a] : I is an open convex in X, a ∈ I},

{I ∩ [a,→) : I is an open convex in X, a ∈ I}.
For each i ∈ 2 and for each subset H of X, it is easily seen that H is
relatively i-discrete in X if and only if H is relatively discrete in Xi.
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Hence, i-ss(X) = ss(Xi) = cc(Xi) is a regular uncountable cardinal.
And 2-ss(X) = max{0-ss(X), 1-ss(X)} is also a regular uncountable
cardinal.

As in Lemma 3.2, we can describe these cardinal functions using the
terms LX , N

+
X , X

+ and X− as follows. By (3) of the following lemma
with Lemma 3.2, we also see:

• w(X) ≥ 2-s(X).

Lemma 3.6. Let X be a GO-space. Then

(1) 0-s(X) = max{s(LX), |N+
X |, |X−|},

0-ss(X) = max{ss(LX), |N+
X |+, |X−|+},

(2) 1-s(X) = max{s(LX), |N+
X |, |X+|},

1-ss(X) = max{ss(LX), |N+
X |+, |X+|+},

(3) 2-s(X) = max{s(LX), |N+
X |, |X−|, |X+|},

2-ss(X) = max{ss(LX), |N+
X |+, |X−|+, |X+|+}.

Proof. (2) is similar to (1) and (3) follows from (1) and (2), so we
only show (1). Noting |N+

X | = |N
−
X |, let κ = max{s(LX), |N−

X |, |X−|}
and κ∗ = max{ss(LX), |N−

X |+, |X−|+}. Since 0-s(X) ≥ s(X) ≥ s(LX),
0-ss(X) ≥ ss(X) ≥ ss(LX) and both N−

X and X− are relatively 0-
discrete, it is obvious that 0-s(X) ≥ κ and 0-ss(X) ≥ κ∗.

To see 0-s(X) ≤ κ and 0-ss(X) ≤ κ∗ , let H be a relatively 0-discrete
subspace of X, we will see |H| ≤ κ and |H| < κ∗ . Let

H0 = {x ∈ H : x ∈ N−
X ∪X− or (←, x) = ∅}.

Obviously, |H0| ≤ κ and |H0| < κ∗. Let H1 = H \H0.

Claim. |H1| ≤ κ and |H1| < κ∗.

Proof. Note that x ∈ ClX(←, x) for every x ∈ H1. Since H is relatively
0-discrete, for every x ∈ H1, we can fix an open convex neighborhood
Bx of x in X with H∩ (Bx∩ (←, x)) = ∅. Also from x ∈ ClX(←, x), we
can fix yx ∈ Bx ∩ (←, x) for every x ∈ H1. Then {(yx, x) : x ∈ H1} is a
pairwise disjoint collection of non-empty intervals, that is, non-empty
LX-open sets. Thus |H1| ≤ s(LX) ≤ κ and |H1| < ss(LX) ≤ κ∗. This
completes the proof of Claim.

By the claim, we see |H| = |H0 ∪H1| ≤ κ and < κ∗. □

Applying the lemma above, we see 2-s(R) = ℵ0, 1-s(S) = ℵ0, 0-s(S) =
2-s(S) = 2ℵ0 and 0-s(M) = 1-s(M) = 2-s(M) = 2ℵ0 .
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4. Cardinal functions on lexicographic products

In [6], the weight of lexicographic products of GO-spaces was calcu-
lated. In this section, we calculate the density and the spread of lexi-
cographic products of GO-spaces. First we consider cardinal functions
of lexicographic products of two GO-spaces, which extend Theorem 2.2
and 2.3 in [1].

Lemma 4.1. Let X = X0 × X1 be a lexicographic products of two
GO-spaces. Then the following hold:

(1)

d(X) =

{
w(X0) if |X1| = 2,

max{|X0|, d(X1)} if |X1| > 2,

(2)

s(X) =

{
2-s(X0) if |X1| = 2,

max{|X0|, s(X1)} if |X1| > 2,

(3)

ss(X) =

{
2-ss(X0) if |X1| = 2,

max{|X0|+, ss(X1)} if |X1| > 2,

(4) i-s(X) = max{|X0|, i-s(X1)} for every i ∈ 3 (= {0, 1, 2}),
(5) i-ss(X) = max{|X0|+, i-ss(X1)} for every i ∈ 3.

Proof. Let X̂ = X∗
0 ×X∗

1 . Of course, Xi = ⟨Xi, <Xi
, τXi
⟩ is implicitly

understood for i ∈ 2 (= {0, 1}).
(3) and (5) for i ∈ 2: To see “≥”, three claims below suffice.

Claim 1. Let H ⊂ X0, v ∈ X1 and K = H × {v}.
• If (←, v)X1 ̸= ∅, then K is relatively 0-discrete in X.
• If (v,→)X1 ̸= ∅, then K is relatively 1-discrete in X.
• If H is relatively 0-discrete in X0, then K is relatively 0-discrete
in X.
• If H is relatively 1-discrete in X0, then K is relatively 1-discrete
in X.

Proof. We prove the first and the third ones, because the remaining are
similar. To see that K is relatively 0-discrete in X, let x ∈ H and put
K0 = K ∩ (←, ⟨x, v⟩)X . Then we have K0 = (H ∩ (←, x)X0)× {v}. It
suffices to find an open neighborhood V of ⟨x, v⟩ in X which is disjoint
from K0.

If (←, v)X1 ̸= ∅, then take a v′ ∈ X1 with v′ <X1 v. Obviously, V =
(⟨x, v′⟩,→)X̂ ∩X is a required one. If (←, x)X0 = ∅, then K0 = ∅, so
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V = X works. If (←, x)X0 ̸= ∅ andH is relatively 0-discrete inX0, then
we can take a y∗ ∈ X∗

0 with y∗ <X∗
0
x such thatH∩((y∗, x)X∗

0
∩X0) = ∅.

Then V = (⟨y∗, v⟩,→)X̂ ∩X is a required neighborhood of ⟨x, v⟩. This
completes the proof of Claim 1.

Claim 2. The following hold.

• ss(X) ≥ 2-ss(X0).
• i-ss(X) ≥ |X0|+ for each i ∈ 2.
• If |X1| > 2, then ss(X) ≥ |X0|+.

Proof. First, fix a v ∈ X1 with (←, v)X1 ̸= ∅. Applying Claim 1 for
H = X0, we see that K = X0 × {v} is relatively 0-discrete in X.
Hence 0-ss(X) > |K| = |X0|, and so 0-ss(X) ≥ |X0|+. If H is an
arbitrary relatively 1-discrere subset of X0, then we see from Claim 1
that K = H×{v} is both relatively 0-discrete and relatively 1-discrete,
so it is relatively discrete in X. Hence ss(X) > |K| = |H|, and we have
ss(X) ≥ 1-ss(X0).

Next, by fixing a v ∈ X1 with (v,→)X1 ̸= ∅, we see in a similar
way that X0 × {v} is relatively 1-discrete in X, 1-ss(X) ≥ |X0|+ and
ss(X) ≥ 0-ss(X0).

Then we also have ss(X) ≥ max{0-ss(X0), 1-ss(X0)} = 2-ss(X0).
If |X1| > 2, then we can take a v ∈ X1 such that (←, v)X1 ̸= ∅

and (v,→)X1 ̸= ∅. For such v, we see that K = X0 × {v} is both
relatively 0-discrete and relatively 1-discrete, so it is relatively discrete
in X. Hence ss(X) > |K| = |X0|, and we have ss(X) ≥ |X0|+. This
completes the proof of Claim 2.

Claim 3. ss(X) ≥ ss(X1) and i-ss(X) ≥ i-ss(X1) for each i ∈ 2.

Proof. Fix u ∈ X0. Let H be a relatively 0-discrete subset of X1 and
K = {u} × H. To see that K is relatively 0-discrete in X, let v ∈ H
with (←, ⟨u, v⟩)X̂ ∩K ̸= ∅. Then by (←, v)X1 ̸= ∅ and the relative 0-
discreteness of H in X1, we can find an element w∗ ∈ X∗

1 with w∗ <X∗
1
v

and ((w∗, v)X∗
1
∩X1)∩H = ∅. Now we have ((⟨u,w∗⟩, ⟨u, v⟩)X̂∩X)∩K =

∅, thus K is relatively 0-discrete in X. Therefore we have |H| = |K| <
0-ss(X). We have shown 0-ss(X) ≥ 0-ss(X1).

Similarly, we see that K = {u} ×H is relatively 1-discrete in X, for
each relatively 1-discrete subset H of X1, so |H| = |K| < 1-ss(X). We
have shown 1-ss(X) ≥ 1-ss(X1).

If H is a relatively discrete subset of X1, then it is both relatively 0-
discrete and relatively 1-discrete. Since K = {u}×H is both relatively
0-discrete and relatively 1-discrete in X, it is relatively discrete in X.
Therefore we have |H| = |K| < ss(X). We have shown ss(X) ≥
ss(X1). This completes the proof of Claim 3.
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To see “≤”, two claims below suffice.

Claim 4. If |X1| = 2, then ss(X) ≤ 2-ss(X0).

Proof. Let X1 = {v0, v1} with v0 <X1 v1. Since X = X0 × X1 is
assumed to be infinite, we have ω ≤ |X0|, so ω1 ≤ 2-ss(X0). Let H be a
relatively discrete subset ofX and putKi = {u ∈ X0 : ⟨u, vi⟩ ∈ H} and
Hi = Ki×{vi} for each i ∈ 2. Then we have H = H0∪H1. To see that
K0 is relatively 0-discrete in X0, let u ∈ K0 with (←, u)X0 ̸= ∅. Since
H is relatively discrete in X, we have H ∩ ((⟨u∗, v⟩, ⟨u, v1⟩)X̂ ∩ X) =
{⟨u, v0⟩} for some u∗ ∈ X∗

0 with u∗ <X∗
0
u and v ∈ X1. Now we obtain

an open neighborhood (u∗,→)X∗
0
∩X0 of u in X0 which is disjoint from

K0 ∩ (←, u)X0 , so K0 is relatively 0-discrete in X0. Therefore |H0| =
|K0| < 0-ss(X0) ≤ 2-ss(X0). Similarly, we see |H1| < 1-ss(X0) ≤
2-ss(X0), and so |H| < 2-ss(X0). Hence, ss(X) ≤ 2-ss(X0) holds.
This completes the proof of Claim 4 .

Claim 5. The following hold.

• ss(X) ≤ max{|X0|+, ss(X1)}.
• i-ss(X) ≤ max{|X0|+, i-ss(X1)} for each i ∈ 2.

Proof. Let κ = max{|X0|+, ss(X1)} and κi = max{|X0|+, i-ss(X1)} for
each i ∈ 2. We would like to show that ss(X) ≤ κ and i-ss(X) ≤ κi.
The lexicographic product X = X0 ×X1 is assumed to be infinite, so
either |X0| ≥ ω or |X1| ≥ ω. In the latter case, ss(X1) and i-ss(X1),
for each i ∈ 2, are regular uncountable cardinals. Hence, κ and κi are
regular uncountable cardinals in any case.

Let H be a subset of X and set Ku = {v ∈ X1 : ⟨u, v⟩ ∈ H} and
Hu = {u} ×Ku for every u ∈ X0. Then H =

∪
u∈X0

Hu.
Assume that H is relatively 0-discrete in X. To see that Ku is

relatively 0-discrete in X1, let v ∈ Ku with (←, v)X1 ̸= ∅. We have
H ∩ ((⟨u, v∗⟩, ⟨u, v⟩)X̂ ∩ X) = ∅ for some v∗ ∈ X∗

1 with v∗ <X∗
1
v.

Now we obtain an open neighborhood (v∗,→)X∗
1
∩X1 of v in X1 which

is disjoint from Ku ∩ (←, v)X1 , so Ku is relatively 0-discrete in X1.
Therefore |Hu| = |Ku| < 0-ss(X1) ≤ κ0. By |X0| < κ0, we have
|H| < κ0. Hence, 0-ss(X) ≤ κ0 holds.

It had been seen that if H is relatively 0-discrete in X, then Ku

is relatively 0-discrete in X1 for every u ∈ X0, and 0-ss(X) ≤ κ0.
Similarly, we see that if H is relatively 1-discrete in X, then Ku is
relatively 1-discrete in X1 for every u ∈ X0, and 1-ss(X) ≤ κ1.

If H is relatively discrete in X, then it is both relatively 0-discrete
and relatively 1-discrete in X, so Ku is both relatively 0-discrete and
relatively 1-discrete, thus relatively discrete in X1 for every u ∈ X.
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Hence, |Hu| = |Ku| < ss(X1) ≤ κ. By |X0| < κ, we have |H| < κ.
Hence, ss(X) ≤ κ holds. This completes the proof of Claim 5.

(2) and (4) for i ∈ 2: We can see (2) and (4) from (3) and (5),
respectively. We only prove (4) because the remaining is similar.

First we consider the case i-ss(X1) ≥ |X0|+. Since X = X0 ×X1 is
assumed to be infinite, we have i-ss(X1) ≥ ω1. By (5), either i-ss(X) =
i-ss(X1) = κ for some limit cardinal κ, or i-ss(X) = i-ss(X1) = κ+

for some infinte cardinal κ. In any case, i-s(X) = i-s(X1) = κ ≥ |X0|
holds, so we have i-s(X) = max{|X0|, i-s(X1)}.

Next we consider the case i-ss(X1) < |X0|+. We have |X0| ≥ ω
in this case. By (5), we see i-ss(X) = |X0|+, so i-s(X) = |X0| ≥
i-ss(X1) ≥ i-s(X1). Hence, i-s(X) = max{|X0|, i-s(X1)}.

(4) and (5) for i = 2: We only prove (5) because the remaining is
similar. We had already seen that

0-ss(X) = max{|X0|+, 0-ss(X1)},

1-ss(X) = max{|X0|+, 1-ss(X1)}.
So we have

2-ss(X) = max{0-ss(X), 1-ss(X)}
= max{|X0|+,max{0-ss(X1), 1-ss(X1)}}
= max{|X0|+, 2-ss(X1)}.

(1): To see “≥”, let κ = d(X). Since we are assuming that X is
infinite, κ ≥ ω holds. Take a dense subset D in X with |D| = κ. Take
an elementary submodel M of H(θ), where θ is large enough, with
⟨X0, <X0 , τX0⟩, ⟨X1, <X1 , τX1⟩ ∈ M , D ⊂ M and |M | = κ. Also note

that by the definability, almost all objects such as X∗
0 , X

∗
1 , X̂, · · · , etc.,

belong to M .
First we consider the case |X1| = 2. Let X1 = {v0, v1} with v0 <X1

v1. To see κ ≥ w(X0), from |M | = κ, it suffices to see that τX0 ∩M is
a base for X0.

Claim 6. For every u ∈ X0 and every open neighborhood W of u in
X0, the following hold:

(1) there is an open set U ∈M in X0 with u ∈ U ⊂ (←, u)X0 ∪W ,
(2) there is an open set V ∈M in X0 with u ∈ V ⊂ (u,→)X0 ∪W .

Proof. Let u ∈ X0 and W be an open neighborhood of u in X0. When
(u,→)X0 = ∅ (i.e., u = maxX0), set U = X0 ∈ M , then this U works.
So let (u,→)X0 ̸= ∅. Since W is an open neighborhood of u in X0 and
X∗

0 is a LOTS containing X0 as a dense subset, there is w∗ ∈ X∗
0 with

u <X∗
0
w∗ such that (u,w∗)X∗

0
∩X0 ⊂ W . We consider two cases.
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Case 1. (u,w∗)X∗
0
̸= ∅.

In this case, since (⟨u, v1⟩, ⟨w∗, v0⟩)X̂ ∩X is a non-empty open set in X,
by the density of D, we can fix a point x ∈ ((⟨u, v1⟩, ⟨w∗, v0⟩)X̂∩X)∩D,
say x = ⟨x(0), x(1)⟩ ∈ X0×X1. Noting x ∈ D ⊂M , by the definability,
we see x(0) ∈ M and u <X0 x(0) <X∗

0
w∗. So by letting U = (←

, x(0))X0 , obviously U ∈M and U is the desired one.

Case 2. (u,w∗)X∗
0
= ∅.

In this case, from {⟨u, v1⟩} = (⟨u, v0⟩, ⟨w∗, v0⟩)X̂ ∩ X, ⟨u, v1⟩ is an
isolated point in X, therefore ⟨u, v1⟩ ∈ D ⊂ M because of the density
of D. Then by the definability, we see u ∈ M and U = (←, u]X0 ∈ M
is the desired one.

(2) is similar to (1). This completes the proof of Claim 6.

Now by the claim above, U ∩ V is an open neighborhood of u with
U ∩ V ⊂ W and U ∩ V ∈M . Therefore τX0 ∩M is a base for X0.

Next we consider the case |X1| > 2. We see from (2) that |X0| ≤
s(X) ≤ κ. The following claim shows d(X1) ≤ κ, hence we see
max{|X0|, d(X1)} ≤ κ.

Claim 7. X1 ∩M is dense in X1.

Proof. Let V be a non-empty open set in X1. It suffices to find an
element of V ∩ M . Fix v ∈ V . We may assume (←, v)X1 ̸= ∅ and
(v,→)X1 ̸= ∅, otherwise v belongs to M by the definability so v ∈
V ∩M . Therefore there are v∗0, v

∗
1 ∈ X∗

1 with v∗0 <X∗
1
v <X∗

1
v∗1 and

(v∗0, v
∗
1)X∗

1
∩ X1 ⊂ V . Fix u ∈ X0. Since (⟨u, v∗0⟩, ⟨u, v∗1⟩)X̂ ∩ X is

non-empty open set in X, by the density of D, we can find a point
x ∈ D ∩ ((⟨u, v∗0⟩, ⟨u, v∗1⟩)X̂ ∩ X), say x = ⟨x(0), x(1)⟩. Now we have
x ∈ D ⊂ M , x(0) = u, x(1) ∈ (v∗0, v

∗
1)X∗

1
∩ X1 ∩M ⊂ V ∩M . This

completes the proof of Claim 7.

Now we check “≤”. Two claims below suffice.

Claim 8. If |X1| = 2, then d(X) ≤ w(X0).

Proof. Let κ = w(X0). Since X = X0×X1 is assumed to be infinite, we
have |X0| ≥ ω, so κ ≥ ω. Noting κ = max{d(LX0), |N+

X0
|, |X+

0 |, |X−
0 |},

we can take a dense set D in LX0 with |D| = κ such that

• N+
X0
∪N−

X0
∪X+

0 ∪X−
0 ⊂ D,

• maxX0 ∈ D if X0 has a maximal element,
• minX0 ∈ D if X0 has a minimal element.

By |X1| = 2, we have |D × X1| = κ. So it suffices to show that
D ×X1 is dense in X.
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Let U be a non-empty open set in X. We would like to find an
element of U ∩ (D × X1). Fix x ∈ U , say x = ⟨x(0), x(1)⟩. We may
assume x(0) /∈ D, otherwise x is a desired one. Either (←, x(1))X1 = ∅
or (x(1),→)X1 = ∅ holds since |X1| = 2. We may assume the former,
because the latter is similar. We have (←, x(0))X0 ̸= ∅ since x(0) /∈ D.

By x ∈ U and (←, x)X ̸= ∅, we can find y ∈ X̂, with y <X̂ x and
(y, x)X̂ ∩X ⊂ U , say y = ⟨u∗, v∗⟩ for some u∗ ∈ X∗

0 and v∗ ∈ X∗
1 = X1.

From (←, x(1))X1 = ∅ and y <X̂ x, we have u∗ <X∗
0
x(0). Moreover

from x(0) /∈ N−
X0
∪X−

0 , we can take u0, u1 ∈ X0 with u∗ < u0 < u1 <
x(0). Since D is dense in LX0 and (u0, x(0))X0 is a non-empty open set
in LX0 , there is a point u ∈ D ∩ (u0, x(0))X0 . By u∗ < u0 < u < x(0),
we have y = ⟨u∗, v∗⟩ <X̂ ⟨u, v∗⟩ <X̂ x, so ⟨u, v∗⟩ ∈ U ∩ (D ×X1). This
completes the proof of Claim 8.

Claim 9. d(X) ≤ max{|X0|, d(X1)}.

Proof. Let κ = max{|X0|, d(X1)}. Since X = X0 × X1 is assumed to
be infinite, we have κ ≥ ω. By d(X1) ≤ κ, we can take a dense subset
D in X1 with |D| ≤ κ such that

• maxX1 ∈ D if X1 has a maximal element,
• minX1 ∈ D if X1 has a minimal element.

By |X0| ≤ κ, we have |X0×D| = κ. So it suffices to show that X0×D
is dense in X.

Let U be a non-empty open set in X. We would like to find an
element of U ∩ (X0 × D). Fix x ∈ U , say x = ⟨x(0), x(1)⟩. We
may assume x(1) /∈ D, otherwise x is a desired one. Then we have
(←, x(1))X1 ̸= ∅ and (x(1),→)X1 ̸= ∅. Since U is an open set with
x ∈ U , we can find v∗0, v

∗
1 ∈ X∗

1 with v∗0 <X∗
1

x(1) <X∗
1

v∗1 and
(⟨x(0), v∗0⟩, ⟨x(0), v∗1⟩)X̂ ∩ X ⊂ U . Because (v∗0, v

∗
1)X∗

1
∩ X1 is a non-

empty open set in X1 and D is dense in X1, we can find a point
v ∈ ((v∗0, v

∗
1)X∗

1
∩ X1) ∩ D. We see ⟨x(0), v⟩ ∈ U ∩ (X0 × D). This

completes the proof of Claim 9.
□

Now the following result in [6] is an easy consequence of Lemmas
3.2, 3.6 and 4.1. We leave its proof to the reader.

Corollary 4.2. [6, Lemma 3.1] Let X = X0 × X1 be a lexicographic
products of two GO-spaces. Then w(X) = max{|X0|, w(X1)} holds.

Example 4.3. Using the lemmas and corollary above with Example
3.3, for example, we can see the following:
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(1) if X = R × 2, then w(X) = 2-s(X) = 1-s(X) = 0-s(X) = 2ℵ0 ,
d(X) = s(X) = ℵ0, note that the subspace R×{1} is identified
with S,

(2) if X = R× 3, then w(X) = s(X) = 2ℵ0 ,
(3) if X = 2× R, then w(X) = s(X) = ℵ0,
(4) if X = S× 2, then w(X) = s(X) = 2ℵ0 ,
(5) if X = 2 × S, then w(X) = 2-s(X) = 0-s(X) = 2ℵ0 , 1-s(X) =

d(X) = s(X) = ℵ0,
(6) if X = S× S, then w(X) = s(X) = 2ℵ0 ,
(7) if X = M× P, then w(X) = s(X) = 2ℵ0 ,
(8) if X = P×M, then w(X) = s(X) = 2ℵ0 ,
(9) if X = R×Q, then w(X) = s(X) = 2ℵ0 ,
(10) if X = Q× R, then w(X) = s(X) = ℵ0.

Using the lemmas and corollary above repeatedly, we can also calcu-
late such cardinal functions on lexicographic products of finite length.
Next we consider lexicographic products of infinite length. The follow-
ing lemma extends Theorem 3.1 in [1].

Lemma 4.4. Let γ be a limit ordinal and X =
∏

α<γ Xα a lexicographic

product of GO-spaces. Then w(X) = s(X) = sup{|
∏

α≤β Xα| : β < γ}
and 2-ss(X) = ss(X) = s(X)+.

Proof. Letting X̂ =
∏

α<γ X
∗
α, set κ = sup{|

∏
α≤β Xα| : β < γ}. For

each β < γ, let κβ = |
∏

α≤β Xα|, then κ = sup{κβ : β < γ}.

Claim 1. γ ≤ κ. And κβ < ss(X) for every β < γ.

Proof. Since Xα is assumed to have at least two points for each α < γ,
we have β < 2|β| ≤ κβ for each β < γ. Hence γ ≤ κ holds. Let
β < γ. As GO-spaces, the lexicographic product X =

∏
α<γ Xα can

be identified with the lexicographic product Z0×Z1 of two GO-spaces
Z0 =

∏
α≤β Xα and Z1 =

∏
β<α Xα with |Z1| > 2, by Lemma 4.1 (3),

we see ss(X) > |Z0| = κβ. This completes the proof of Claim 1.

Claim 2. κ < ss(X).

Proof. In the case that the sequence {κβ : β < γ} is eventually con-
stant, i.e. there is β0 < γ such that for every β < γ with β0 ≤ β,
κβ = κβ0 , we have κ = κβ0 < ss(X).

Next we consider the case that the sequence {κβ : β < γ} is not
eventually constant, then note cfκ = cfγ ≤ γ ≤ κ ≤ ss(X) by Claim 1.
When κ is singular, we see κ < ss(X) since ss(X) cannot be singular.
When κ is regular, we have γ = κ. For every α < γ, fix two points
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vα, wα ∈ Xα with vα <Xα wα. For every β < γ, define a point xβ ∈∏
α<γ Xα by

xβ(α) =

{
wα if α = β,

vα if α ̸= β.

Then obviously the sequence {xβ : β < γ} is strictly decreasing in X,
therefore H = {xβ+1 : β < γ} is relatively discrete in X and of size κ,
so we see κ < ss(X).

Claim 3. w(X) ≤ κ.

Proof. Take an elementary submodel M of H(θ), where θ is large
enough, with ⟨⟨Xα, <Xα , τXα⟩ : α < γ⟩, ⟨⟨X∗

α, <X∗
α
⟩ : α < γ⟩ ∈ M ,

γ ⊂ M ,
∪

β<γ

∏
α≤β X

∗
α ⊂ M and |M | ≤ κ. It suffices to show that

τX ∩M is a base for X, where τX is the topology of X.

Let x ∈ X and W be an open set in X with x ∈ W .

Fact. The following hold:

(1) there is an open set U ∈M in X with x ∈ U ⊂ (←, x)X ∪W ,
(2) there is an open set V ∈M in X with x ∈ V ⊂ (x,→)X ∪W .

Proof. Since (2) is similar to (1), we prove (1). When (x,→)X = ∅,
set U = X. By the difinability, we have X ∈ M , so this U works. Let
(x,→)X ̸= ∅. Since W is open in X and x ∈ W , we can find x∗ ∈ X̂
with x <X̂ x∗ and (x, x∗)X̂ ∩X ⊂ W . We consider two cases.

Case 1. (x, x∗)X̂ = ∅.

In this case, set α0 = min{α < γ : x(α) ̸= x∗(α)}. Then we have x ↾
α0 = x∗ ↾ α0 and x(α0) <X∗

α0
x∗(α0), (x(α0), x

∗(α0))X∗
α0

= ∅, moreover

for every α < γ with α0 < α, x∗(α) = minXα and x(α) = maxXα

hold. Note α0 ∈ γ ⊂ M and x∗ ↾ (α0 + 1) ∈
∏

α≤α0
X∗

α ⊂ M , also
note by the definability, we have x∗ = x∗ ↾ (α0 + 1)∧⟨minXα : α0 <
α < γ⟩ ∈ M . Now let U = (←, x∗)X̂ ∩X, then obviously U ∈ M and
x ∈ U ⊂ (←, x)X ∪W .

Case 2. (x, x∗)X̂ ̸= ∅.

Take an element z ∈ (x, x∗)X̂ , then there is α0 < γ such that in∏
α≤α0

X∗
α, x ↾ (α0 + 1) < z ↾ (α0 + 1) < x∗ ↾ (α0 + 1) holds. Note

α0 ∈ M and z ↾ (α0 + 1) ∈
∏

α≤α0
X∗

α ⊂ M . By the elementarity, we

obtain a z′ ∈ X̂ ∩M with z′ ↾ (α0 + 1) = z ↾ (α0 + 1). Now letting
U = (←, z′)X̂ ∩X ∈ M , this U is the desired one. This completes the
proof of Fact.
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Now from this fact, we see U ∩ V ∈ M and x ∈ U ∩ V ⊂ W . Hence
τX ∩M is a base for X. This completes the proof of Claim 3.

From Claim 2 and 3, we see s(X) ≤ w(X) ≤ κ < ss(X) ≤ s(X)+

and 2-s(X) ≤ w(X) ≤ κ < ss(X) ≤ 2-ss(X) ≤ 2-s(X)+. It follows
that w(X) = s(X) = κ and ss(X) = s(X)+ = 2-ss(X) = κ+. □

Note that in the lemma above, ss(X) cannot be a limit cardinal.
Now we can prove our main result. For an ordinal γ, set

γ − 1 =

{
δ if γ = δ + 1 for an ordinal δ, i.e., γ is a successor,

γ if γ is 0 or a limit,

see [19, I, Definition 9.4]. The symbol γ − 2 denotes (γ − 1)− 1.

Theorem 4.5. Let X =
∏

α<γ Xα be a lexicographic product of GO-
spaces. Then the following hold:

(1) for every i ∈ 3,

i-s(X) =

{
sup{|

∏
α≤β Xα| : β < γ} if γ is limit,

max{|
∏

α<γ−1 Xα|, i-s(Xγ−1)} if γ is successor.

i-ss(X) =

{
(sup{|

∏
α≤β Xα| : β < γ})+ if γ is limit,

max{|
∏

α<γ−1Xα|+, i-ss(Xγ−1)} if γ is successor.

(2)

s(X) =



sup{|
∏

α≤β Xα| : β < γ}
if γ is limit,

max{|
∏

α<γ−1 Xα|, s(Xγ−1)}
if γ is successor and |Xγ−1| > 2,

sup{|
∏

α≤β Xα| : β < γ − 1}
if γ is successor, |Xγ−1| = 2 and γ − 1 is limit,

max{|
∏

α<γ−2 Xα|, 2-s(Xγ−2)}
if γ is successor, |Xγ−1| = 2 and γ − 1 is successor.
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ss(X) =



(sup{|
∏

α≤β Xα| : β < γ})+

if γ is limit,

max{|
∏

α<γ−1Xα|+, ss(Xγ−1)}
if γ is successor and |Xγ−1| > 2,

(sup{|
∏

α≤β Xα| : β < γ − 1})+

if γ is successor, |Xγ−1| = 2 and γ − 1 is limit,

max{|
∏

α<γ−2Xα|+, 2-ss(Xγ−2)}
if γ is successor, |Xγ−1| = 2 and γ − 1 is successor.

(3)

d(X) =



sup{|
∏

α≤β Xα| : β < γ}
if γ is limit,

max{|
∏

α<γ−1Xα|, d(Xγ−1)}
if γ is successor and |Xγ−1| > 2,

sup{|
∏

α≤β Xα| : β < γ − 1}
if γ is successor, |Xγ−1| = 2 and γ − 1 is limit,

max{|
∏

α<γ−2Xα|, w(Xγ−2)}
if γ is successor, |Xγ−1| = 2 and γ − 1 is successor.

Proof. When γ is limit, we see from Lemma 4.4 that

s(X) = w(X) = sup{|
∏

α≤β Xα| : β < γ},

ss(X) = 2-ss(X) = (sup{|
∏

α≤β Xα| : β < γ})+.
By s(X) ≤ d(X) ≤ w(X), s(X) ≤ i-s(X) ≤ w(X) and ss(X) ≤
i-ss(X) ≤ 2-ss(X), for each i ∈ 3, we also have

d(X) = i-s(X) = sup{|
∏

α≤β Xα| : β < γ},

i-ss(X) = (sup{|
∏

α≤β Xα| : β < γ})+.
Hence all equations in the lemma hold in this case.

When γ is successor, the lexicographic product X =
∏

α<γ Xα can
be identified with the lexicographic product Y × Xγ−1 of two GO-
spaces Y =

∏
α<γ−1 Xα and Xγ−1. Since |Y | = |

∏
α<γ−1 Xα| and

|Y |+ = |
∏

α<γ−1 Xα|+, we obtain the equations in (1) by applying

Lemma 4.1 (4) and (5). In case |Xγ−1| > 2, we obtain the equations in
(2) and (3) by applying Lemma 4.1 (2), (3) and (1). In case |Xγ−1| = 2
and γ − 1 is limit, we see, by the similar argument above, that

s(Y ) = i-s(Y ) = d(Y ) = w(Y ) = sup{|
∏

α≤β Xα| : β < γ − 1},
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ss(Y ) = i-ss(Y ) = (sup{|
∏

α≤β Xα| : β < γ − 1})+

for every i ∈ 3. Hence we also obtain the equations in (2) and (3) by
applying Lemma 4.1 (2), (3) and (1).

Let us consider the remaining case, that is, γ is successor, |Xγ−1| = 2
and γ−1 is successor. Then the lexicographic product Y =

∏
α<γ−1 Xα

can be identified with the lexicographic product Z ×Xγ−2 of two GO-
spaces Z =

∏
α<γ−2Xα and Xγ−2. Applying Lemma 4.1 (2) and (4),

we have

s(X) = s(Y ×Xγ−1) = 2-s(Y ) = 2-s(Z×Xγ−2) = max{|Z|, 2-s(Xγ−2)}.
Similarly we obtain from Lemma 4.1 (3) and (5) that

ss(X) = 2-ss(Y ) = max{|Z|+, 2-ss(Xγ−2)}.
By Lemma 4.1 (1) and Corollary 4.2, we have

d(X) = d(Y ×Xγ−1) = w(Y ) = w(Z ×Xγ−2) = max{|Z|, w(Xγ−2)}.
It had been seen that all equations in the present lemma hold in each
case. □

For comparison, we state a result in [6] which can be proved similarly
as (1) of the above theorem using Corollary 4.2.

Proposition 4.6. [6, Theorem 3.2] Let X =
∏

α<γ Xα be a lexico-
graphic product of GO-spaces. Then

w(X) =

{
sup{|

∏
α≤β Xα| : β < γ} if γ is limit,

max{|
∏

α<γ−1 Xα|, w(Xγ−1)} if γ is successor.

5. Applications

About the hereditarily Lindelöf property of lexicographic products
of LOTS’s, Faber essentially proved the following result [4, Theorem
4.33] which is written in our terminology. Note that a GO-space X is
hereditarily Lindelöf iff s(X) ≤ ℵ0.

Proposition 5.1. [4, Theorem 4.3.3] Let X =
∏

α<γ Xα be a lexico-

graphic product of LOTS’s. Then s(X) ≤ ℵ0 if and only if the following
clauses hold.

(1) γ ≤ ω + 1,
(2) if γ = ω + 1, then |Xω| = 2 and for every α < ω, |Xα| ≤ ℵ0,
(3) if γ = ω, then for every α < ω, |Xα| ≤ ℵ0,
(4) if 2 ≤ γ < ω and |Xγ−1| > 2, then s(Xγ−1) ≤ ℵ0 and for every

α < γ − 1, |Xα| ≤ ℵ0,
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(5) if 2 ≤ γ < ω and |Xγ−1| = 2, then s(Xγ−2) ≤ ℵ0, |N+
Xγ−2
| ≤ ℵ0

and for every α < γ − 2, |Xα| ≤ ℵ0.
However, in the proposition above, “LOTS’s” cannot be replaced by

“GO-spaces”. The lexicographic product S × 2 is such an example.
Because, note that s(S) ≤ ℵ0 and N+

S = ∅ hold. On the other hand,
we see s(S × 2) = 2ℵ0 because S × {0} is relatively discrete in S × 2,
compare with (5) in the proposition above.

We can improve as follows. The proof is an easy consequence of (2)
of Theorem 4.5.

Corollary 5.2. Let X =
∏

α<γ Xα be a lexicographic product of GO-

spaces. Then s(X) ≤ ℵ0 if and only if the following clauses hold.

(1) γ ≤ ω + 1,
(2) if γ = ω + 1, then |Xω| = 2 and for every α < ω, |Xα| ≤ ℵ0,
(3) if γ = ω, then for every α < ω, |Xα| ≤ ℵ0,
(4) if 2 ≤ γ < ω and |Xγ−1| > 2, then s(Xγ−1) ≤ ℵ0 and for every

α < γ − 1, |Xα| ≤ ℵ0,
(5) if 2 ≤ γ < ω and |Xγ−1| = 2, then 2-s(Xγ−2) ≤ ℵ0 and for

every α < γ − 2, |Xα| ≤ ℵ0.
Proof. Assume s(X) ≤ ℵ0. If ω + 1 < γ were true, then noting
|
∏

ω≤α<γ Xα| > 3 and by (2) of Theorem 4.5, we have s(X) = s(
∏

α<ω Xα

×
∏

ω≤α<γ Xα) ≥ |
∏

α<ω Xα| ≥ 2ℵ0 > ℵ0, a contradiction. We have

shown (1). The remaining are left to the reader. □
Similarly we can see the following which is a direct extension of [4,

Theorem 4.3.2] for “GO-spaces” .

Corollary 5.3. Let X =
∏

α<γ Xα be a lexicographic product of GO-

spaces. Then d(X) ≤ ℵ0 if and only if the following clauses hold.

(1) γ ≤ ω + 1,
(2) if γ = ω + 1, then |Xω| = 2 and for every α < ω, |Xα| ≤ ℵ0,
(3) if γ = ω, then for every α < ω, |Xα| ≤ ℵ0,
(4) if 2 ≤ γ < ω and |Xγ−1| > 2, then d(Xγ−1) ≤ ℵ0 and for every

α < γ − 1, |Xα| ≤ ℵ0,
(5) if 2 ≤ γ < ω and |Xγ−1| = 2, then w(Xγ−2) ≤ ℵ0 and for every

α < γ − 2, |Xα| ≤ ℵ0.
For a cardinal κ and an ordinal γ, define

κ<γ = sup{κµ : µ is a cardinal and µ < γ }, equivalently,

κ<γ = sup{κ|α| : α is an ordinal and α < γ },
see [6]. Using this cardinal function, we can easily calculate cardinal
functions of lexicographic products of type Y γ.
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Corollary 5.4. Let κ be a cardinal with κ ≥ 2 and X =
∏

α<γ Xα

a lexicographic product of GO-spaces with |Xα| = κ for every α < γ.
Then the following hold.

(1)

d(X) = s(X) =

{
κ<γ−1 if κ = 2 and γ is successor,

κ<γ otherwise,

(2) w(X) = 2-s(X) = 1-s(X) = 0-s(X) = κ<γ, see [6, Corollary
4.4] for the weight.

(3)

ss(X) =

{
(κ<γ−1)+ if κ = 2 and γ is successor,

(κ<γ)+ otherwise,

(4) 2-ss(X) = 1-ss(X) = 0-ss(X) = (κ<γ)+.

Proof. (1) First we consider the case κ = 2. Since we are assum-
ing that X is infinite, we have γ ≥ ω. When γ is limit, it follows
from Lemma 4.4 that d(X) = s(X) = 2<γ. So let γ be succes-
sor. When γ − 1 is limit, it follows from γ > γ − 1 ≥ |γ| ≥ ω
and Theorem 4.5 (2) and (3) that d(X) = s(X) = sup{|

∏
α≤β Xα| :

β < γ − 1} = 2<γ−1. When γ − 1 is successor, it follows from
γ − 1 > γ − 2 ≥ |γ| ≥ ω, |Xγ−2| = 2 and Theorem 4.5 (2) and (3)
that s(X) = max{|

∏
α<γ−2 Xα|, 2-s(Xγ−2)} = |

∏
α<γ−2 Xα| = 2|γ−2| =

2<γ−1 and d(X) = max{|
∏

α<γ−2 Xα|, w(Xγ−2)} = |
∏

α<γ−2Xα| =
2|γ−2| = 2<γ−1.

Next we consider the case κ > 2. When γ is limit, Lemma 4.4
shows d(X) = s(X) = κ<γ. So let γ be successor. Then Theorem
4.5 (2) and (3) show s(X) = max{|

∏
α<γ−1Xα|, s(Xγ−1)} and d(X) =

max{|
∏

α<γ−1 Xα|, d(Xγ−1)}. Now when 2 < κ < ω, by ℵ0 ≤ |X|, we
have ω ≤ γ, therefore |

∏
α<γ−1Xα| ≥ κω = 2ω > ω, and so s(X) =

d(X) = |
∏

α<γ−1Xα| = κ|γ−1| = κ<γ. When κ ≥ ω, it follows from

|
∏

α<γ−1 Xα| ≥ |X0| = κ = |Xγ−1| ≥ max{s(Xγ−1), d(Xγ−1)} that

s(X) = d(X) = |
∏

α<γ−1Xα| = κ|γ−1| = κ<γ.

(2) We only prove the case 0-s(X), because the other are similar.
When γ is limit, as above, use Lemma 4.4. Let γ be successor, then
0-s(X) = max{|

∏
α<γ−1Xα|, 0-s(Xγ−1)}. Because of γ ≥ 2, we have

|
∏

α<γ−1 Xα| ≥ |X0| = κ = |Xγ−1| ≥ 0-s(Xγ−1), therefore 0-s(X) =

|
∏

α<γ−1 Xα| = κ|γ−1| = κ<γ.

(3) and (4) are similar. □
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Example 5.5. By the corollary above, when Y is a GO-space with
|Y | > 2, the weight, the density and the spread of the lexicographic
product Y γ coincide. For example: .

(1) w(3ω) = s(3ω) = ℵ0, w(3ω+1) = s(3ω+1) = w(3ω+2) = s(3ω+2) =
· · · = w(3ω1) = s(3ω1) = 2ℵ0 , w(3ω1+1) = s(3ω1+1) = 2ℵ1 ,

(2) w((ω+1)ω) = s((ω+1)ω) = ℵ0, w((ω+1)ω+1) = s((ω+1)ω+1) =
w((ω + 1)ω+2) = s((ω + 1)ω+2) = · · · = w((ω + 1)ω1) = s((ω +
1)ω1) = 2ℵ0 , w((ω + 1)ω1+1) = s((ω + 1)ω1+1) = 2ℵ1 ,

(3) w(Qω) = s(Qω) = ℵ0, w(Qω+1) = s(Qω+1) = w(Qω+2) =
s(Qω+2) = · · · = w(Qω1) = s(Qω1) = 2ℵ0 , w(Qω1+1) = s(Qω1+1) =
2ℵ1 ,

(4) w(Sω) = s(Sω) = w(Sω+1) = s(Sω+1) = w(Sω+2) = s(Sω+2) =
· · · = w(Sω1) = s(Sω1) = 2ℵ0 , w(Sω1+1) = s(Sω1+1) = 2ℵ1 .

Example 5.6. Compared with the example above, the case |Y | = 2 is
somewhat strange.

(1) w(2ω) = s(2ω) = ℵ0,
(2) w(2ω+1) = 2-s(2ω+1) = 1-s(2ω+1) = 0-s(2ω+1) = 2ℵ0 ,
(3) d(2ω+1) = s(2ω+1) = ℵ0,
(4) w(2ω+2) = s(2ω+2) = 2ℵ0 ,
(5) w(2ω1) = s(2ω1) = 2ℵ0 ,
(6) w(2ω1+1) = 2-s(2ω1+1) = 1-s(2ω1+1) = 0-s(2ω1+1) = 2ℵ1 ,
(7) d(2ω1+1) = s(2ω1+1) = 2ℵ0 ,
(8) w(2ω1+2) = s(2ω1+2) = 2ℵ1 .

It is known that if Y is a ω1-Suslin line, that is, a LOTS Y with
ℵ1 = d(Y ) = cc(Y ), then the Tychonoff product space Y 2 cannot be
ccc, i.e., c(Y 2) > ℵ0, in fact c(Y 2) = d(Y 2) (= ℵ1), e.g., see [19, II
Lemma 4.3]. Using (1) of the corollary above, we have a similar result
about lexicographic products.

Corollary 5.7. Let Y be a GO-space with |Y | ≥ 2. For every γ ≥ 2,
the density d(Y γ) and the spread s(Y γ) (= c(Y γ)) of the lexicographic
product Y γ coincide.
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