CARDINAL FUNCTIONS ON LEXICOGRAPHIC
PRODUCTS

YASUSHI HIRATA AND NOBUYUKI KEMOTO

ABSTRACT. We will calculate the density, the spread and related
cardinal functions on lexicographic products of GO-spaces, and
give their applications.

1. INTRODUCTION

The notion of a lexicographic product of GO-spaces was introduced
in [14], and their weight was calculated in [6]. Let d(X), s(X) and
w(X) denote the density, the spread and the weight of a space X,
respectively. In [6], it is proved that whenever X = [],_ X, is a
lexicographic product of GO-spaces, the weight of X is represented as

(X sup{| [ [o<s Xal : B <7} if ~y is limit,
w(X) = =
max{|[],., ; Xaol,w(Xy-1)} if v is successor.

Also, some cardinal functions of lexicographic products of LOTS are
considered in [1]. In this paper, we will calculate the density, the spread
and related cardinal functions on lexicographic products of GO-spaces.

We will see that whenever X =[] _ ., X 18 a lexicographic product of
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GO-spaces,
(sup{[ [[o<s Xal : B <7}
if v is limit,
maX{' Ha<—y—1 Xa|, d(X’y—l)}

if 7y is successor and |X,_1| > 2,

sup{|[Lo<p Xol : B <y =1}
if v is successor, | X,_1| = 2 and vy — 1 is limit,

maX{' Ha<'y—2 XO&” w(X’Y—Q)}
if 7 is successor, |X,_;| = 2 and 7 — 1 is successor.

\
As applications, for example, we see:

e d(2¢¥) = d(3¥) = d((w + 1)¥) = d(2¥T') = Xy and d(3*T!) =
d((w+1)“T1) = 2% whereas w(2¥) = w(3¥) = w((w+1)¥) = R,

and w(2°) = w(3“™) = w((w + 1)@ 1) = 2%,
Modifying the spread s(X), we will define, in section 3, an additional
cardinal function 2-s(X) for each GO-space X. By using it, we will see
that whenever X =[], L Xalsa lexicographic product of GO-spaces,

(sup{[ [Ta<s Xl : 6 <7}
if 7 is limit,
max{[ [ [, 1 Xal, s(X5-1)}

if 7 is successor and | X,_1| > 2,

sup{| [Ts Xol: 8 <7~ 1)
if 7 is successor, |X,_1] =2 and v — 1 is limit,

(| Ly Xl 2-5(X, )}
if  is successor, | X,_1| = 2 and v — 1 is successor.

\
2. PRELIMINARIES

All topological spaces are assumed to be reqular Ty containing at least
2 points and when we consider a product [, < Xao, all X, ’s are also
assumed to have cardinality at least 2 with v > 2.

The symbol |z| denotes the cardinality of a set z. Usually the sym-
bols «, 3,7, -+ denote ordinals. An ordinal « satisfying a = |« is
called a cardinal. Also usually the symbols x, A\, 4, - - - denote cardi-
nals. The symbols w and w; denote the first infinite ordinal and the
first uncountable ordinal respectively. An infinite cardinal x is reqular
if cfk = K, where cfrx denotes the cofinality of k, otherwise singular.
For a cardinal x, the symbol k™, which is called the successor of k,
denotes the smallest cardinal greater than x. An uncountable cardinal
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A is called a successor cardinal if A = k™ for some cardinal x, otherwise
limit cardinal. The symbol x* denotes the cardinality of the set of all
functions from A to k. When we want to infer that w (w,) is a cardinal,
it is written as Yo (N; respectively). Ordinals have the usual order
topology. The symbols R, Q, P and I denote the reals, the rationals,
the irrationals and the unit interval [0, 1] in R, which is also denoted
by [0, 1]g, respectively.

A lexicographic product X =[], _ ., Xo of GO-spaces X, ’s is defined

in [14] as a subspace of the lexicographic product X = [, -, X5 of
LOTS X?’s, where X} is a LOTS with X, C X} which is called the
minimal d-extension of X,. For readers’ convenience, we recall here
outlines of the concepts which are used in this paper.

LOTS and GO-spaces: A linearly ordered set (X, <x), see [2, page
4], has a natural topology Ax, which is called an interval topology,
generated by

{+—2)x 12 € X} U{(z,—=)x 2 € X}

as a subbase, where (z, »>)x ={z € X 1z <x z}, (z,y)x ={2 € X :
T <x z<x Uy}l (,ylx ={2 € X : 2 <x 2 <x y} and so on. The
triple (X, <x, Ax), which is simply denoted by X, is called a LOTS.

A triple (X, <x,7x) is said to be a GO-space, which is also simply
denoted by X, if (X, <x) is a linearly ordered set and 7x is a Ts-
topology on X having a base consisting of convex sets, where a subset
C of X is convez if for every z,y € C with z <x vy, [z,y]x C C holds. In
this situation, the pair (X, <) is called the underlying linearly ordered
set of X, and the triple (X, <y, Ax), which is denoted by Ly, is called
the underlying LOTS of X. Obviously, the GO-space topology 7x is
stronger than the interval topology Ax, that is, Ax C 7x. For more
GO-spaces, see [4, 20]. Usually <x, (z,y)x, Ax and 7x are written
simply <, (z,y), A and 7 if contexts are clear.

Lexicographic products of LOTS: The lexicographic product of
a sequence of LOTS is a classic concept, although the lexicographic

product of a sequence of GO-spaces was defined recently [14]. For every
a <7, let Y, bea LOTS and Y = [],_., Ya. Every element y € Y is

aly @
identified with the sequence (y(a) : o < ), where a sequence means
a function whose domain is an ordinal. For notational convenience,
1L, -, Yo 1s considered as {0} whenever v = 0, where ) is considered to

be a function whose domain is 0. When 0 < 8 <, yo € [], - 5 Yo and



4 YASUSHI HIRATA AND NOBUYUKI KEMOTO

Y1 € [1s<a Yo 0 "y; denotes the sequence y € [],_. Y, defined by

yo(a) if a < B,
y(o) = .
yi(a) if g <o
In this case, whenever 3 = 0, ) "y, is considered as ;. In case 0 <

B <7 Yo € [loepYar v € Ys and y1 € [[5., Ya, %0 "u)yy denotes
the sequence y € []._. Y, defined by

a<y

a<y

yola) ifa<f,
yla) =< u if « = 6,
yi(a) if B < a.
More general cases are similarly defined.

The lexicographic order <y on Y = [], < Ya, where all Y,’s are
LOTS’s, is defined as follows: for every 3,7’ € Y,

y <y y iff for some a <7,y [a=9y | o and y(a) <y, ¢ (),
where y [ o = (y(f) : B < a) and <y, is the order on Y,,.

The minimal d-extension of a GO-space: If Y = (Y, <y, 7y) is
a GO-space, then for each subset X of Y, the subspace X = (X, <x
,Tx) is defined and it is also a GO-space, where <x is the restriction
<y| X x X and 7x is the subspace topology {UNX : U € 1y} of
Ty. In particular, each subspace X of a LOTS Y is a GO-space since
every LOTS is a GO-space. Conversely, for every GO-space X, there
is a LOTS X* such that

e X is a dense subspace of X* (as a GO-space),

e if I is a LOTS containing X as a dense subspace, then L also
contains the LOTS X* as a subspace (in the sense of the iden-
tification).

Such an X* is called the minimal d-extension of a GO-space X, see [21].
Indeed, for a GO-space X = (X, <x,7x) with Ly = (X, <x, Ax), the
LOTS X* is constructed as

X' = (X7 x {-1}) U(X x {0}) U (X" x {1}),
where
Xt ={reX:(«,x] €rx\ A}
X ={zeX:[zr,—)ermx\ x}
and the order <y~ on X* is the restriction of the usual lexicographic

order on X x {—1,0,1} with —1 < 0 < 1, also we identify X x {0}
with X in the obvious way. Obviously, we can see:

e if X is a LOTS, then X* = X,
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e X has a maximal element max X if and only if X* has a maxi-
mal element max X*, in this case, max X = max X* (similarly
for minimal elements).

Lexicographic products of GO-spaces: Now we are ready to define
the lexicographic product of GO-spaces. For every a < v, let X, be a
GO-space and X = [],_, X,. Take the minimal d-extension X} of X,

for each o < 7y, and let X = IL, < Xa be the lexicographic product of

the LOTS X*’s. Then X is a subset of the LOTS X. Considered as
a GO-subspace of X , we call X =[], < Xa the lexicographic product
of GO-spaces X,’s, for more details see [14]. [[,., Xi (I[;<,, Xi where
n € w) is denoted by X x X7 x Xo X -+ (Xog X X7 X Xg X -+ X X,
respectively). [, -, Xa Is also denoted by X7 whenever X, = X for
all @ <. When X,’s are GO-spaces, [[,, < Xa usually means the lex-
icographic product unless otherwise stated. Moreover we assume that
Haq X, is infinite, v > 2 and |X,| > 2 for every a < 7. Therefore
when v < w, for at least one o < y, X, is infinite.

We remark that when 6 < v, a lexicographic product [], <y Xa 18
regarded as the lexicographic product [, s Xo X [[5<4c Xa of two
lexicographic products, where the lexicographic product [] <acry Xa 18
considered in the natural way, see [14, Lemma 1.5]. About lexico-
graphic products of GO-spaces, see [7, 12, 15, 16, 17, 18]. Also about
Tychonoff products of GO-spaces, see [5, 8, 11, 13].

3. CARDINAL FUNCTIONS ON GO-SPACES

Recall the following cardinal functions on a topological space X, see
[2].
e 5(X) =sup{|H|: H is a relatively discrete subset in X }, where
H is relatively discretein X if every element x in H is an isolated
point in H, that is, for every x € H, there is a neighborhood U
of x with UN H = {z},
o ¢(X) = sup{|U| : U is a pairwise disjoint collection of non-
empty open sets of X }.
The following relationships about a topological space X are well-
known and easy to prove.
o w(X) > 5(X) > c(X),
o w(X)>d(X) > c(X),
o |X|>d(X).
Since we are assuming that spaces are regular 75, a space X is dis-
crete whenever X is finite, where X is discrete if all points in X are
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isolated in X. Therefore all cardinal functions above on X coincide
with | X| whenever X is finite. So hereafter we assume that all spaces
are infinite unless otherwise stated.

Unfortunately, we cannot determine only from the equation x =
s(X) whether a space X has a relatively discrete subset of cardinality
K in case k is a limit cardinal. Similar phenomenon occurs for ¢(X).
So we consider further two cardinal functions. For a topological space
X, let

e 5s(X) = min{x : there are no relatively discrete subspaces of
cardinality x},
e cc(X) = min{k : there are no pairwise disjoint collections of
K-many non-empty open sets}.
It is trivial that ce(X) < ss(X) and cc(X) < d(X)T. Since we are
assuming that all spaces are infinite and 75, we have w; < cc(X). It is
known that cc(X) has to be a regular uncountable cardinal, see [3] or
9, Theorem 12.2]. Note that

e s5(X) = s(X) holds whenever ss(X) is a limit cardinal,
ss(X) = s(X)™ holds whenever ss(X) is a successor cardinal,

o cc(X) = ¢(X) holds whenever cc(X) is a limit cardinal,
ce(X) = ¢(X)" holds whenever cc(X) is a successor cardinal.

Using the hereditary collectionwise Hausdorffness of GO-spaces, we
can prove the following easily, see also [10, 2.23 (a)].

Lemma 3.1 (folklore). Let H be a relatively discrete subspace of a GO-
space X. Then there is a pairwise disjoint collection {U(zx) : v € H}
of open sets in X with x € U(x) for every x € H. Hence, ¢(X) = s(X)
and cc(X) = ss(X) hold whenever X is a GO-space.

For a GO-space X, since it is well known |X| > w(X) (see below),
we have:
o |X| 2 w(X) 2 d(X) > s(X),
o s(X)T > ss(X) > s(X).
Let X = (X, <x,7Tx) be a GO-space, define
Ni={zeX:Fye X<y, (z,y)=0)},

Ny={reX:dyeX(y<uz(yr)=0)}
For every x € Ny, the element y € X with z < y and (z,y) = 0 is
denoted by x, similarly for every x € Ny, we can assign = € X with

z” <z and (z7,2) = (. Since x — z7 is a one-to-one onto map from
Ny to Ny, we see |[N¥| = |Nx|.
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Ny and the other sets listed are not properties but sets that are defined,
in the case of the sets Ny and Ny, from the underlying LOTS, and
for X* and X~ from the GO-space. Obviously, the topology 7x is
generated by S = {(«—,2) : x € X} U{(z,—) : x € X} U{(+, 1] :
x € XT}U{[r,—) : z € X~} as a subbase, which also shows |X| >
w(X). Thus a GO-space X is completely determined by reserving its
underlying LOTS Ly, X* and X~ with X+ C {x € X : (+—,z] ¢ Ax}
and X~ C{z € X :[z,—) ¢ A\x}. For example,

e the Sorgenfrey line S is determined from Lg = R, ST = () and

ST =R,
e the Michael line M is determined from Ly = R, M™ = P and
M~ =P.

The cardinal functions w(X),d(X), s(X),ss(X) of a GO-space X
can be described using the terms Lx, N, X and X~. The equality
(4) in the following lemma is essentially proved in [6, Lemma 2.2], so
we give here proofs of (1), (2) and (3).

Lemma 3.2. Let X be a GO-space. Then
(1) d(X) = max{d(Lx),|XTNnX"|,|XTNNx|,| X~ NN},
(2) s(X)=max{s(Lx),|XTNX"|,|XTNNg|,| X" NN{I},
(3) ss(X) =max{ss(Lx), | XTNX|" | XTN N |X NNETY
(4) w(X) = max{d(Lx),|Nx|,|X*],|X"[}.

Although we are assuming that spaces are infinite and 75, note that
all equalities above hold whenever X is finite, because of X = Ly,

| X|=w(Lx)=d(Lx) = s(Lx)and |X|" = ss(Ly) by the discreteness
of X.

Proof. Obviously, d(X), d(Lx), s(X), and s(Lx) are infinite, also
ss(X) and ss(Lx) are uncountable. Let

Dy=(X"TNXH)U(XTNNg)U(X NNy,

then all members of Dy are isolated points of X, so d(X) > s(X) > |Dy|
and ss(X) > |Dy|. And we have d(X) > d(Lx), s(X) > s(Lx) and
ss(X) > ss(Lx) because of Ax C 7x. Therefore the inequality “>”" in
(1), (2) and (3) holds. Let

Eo={zeX: (x,=)=0or (+-,2) =0},
then it is trivial that |Ey| < 2.

Claim. If U is a non-empty open set in X, then U N (Dy U Ey) # 0 or
IDtLXU 7é @
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Proof. We may assume that U is a convex set. If there are x,y, 2z € U
with x < y < z, then the interval (z,z) is an open set in Ly, so
y € (x,z) C Inty, U. In the other case, we have 1 < |U| < 2, so U
contains an isolated point d in X. It follows that (+—,d] € 7x and
[d,—) € 7x. If d € N{ N Ny, then it is also isolated in Ly, so
denty U. Ifd¢ Nf, thend=max X € Egorde XT. Ifd ¢ Ny,
then d = min X € FEy or d € X~. Hence, d ¢ Ny N Ny implies
d € UN(DyU Ey). This completes the proof of the claim.

(1) To see “<” let
k1 = max{d(Lx),|XTNX|,|XTNNg|,| X~ NN}

Take a subset D of X with Dy U Ey C D and |D| = k1 which is dense
in Lx. Let U be an arbitrary non-empty open set of X. By Claim, we
see that () # (Int,, U)ND CcUNDor ) #UN(DyUEy) CUND.
Hence, D is dense in X, and we have d(X) < |D| = &;.

(2) and (3)
To see “<7, let
ke = max{s(Lx),| X NX"|,|XT N N|,| X~ NN}
k3 = max{ss(Lx), | XTNX |7 | XT NN | X NnNfT}

And let U be an arbitrary pairwise disjoint collection of non-empty
open sets in X. Put Uy ={U eUd : UN(DyUEy) # 0} and Uy = {U €
U :Tnty, U # 0}. Then an assignment Uy > U — x(U) € UN(DyU Ey)
is one-to-one since U is pairwise disjoint. So we see |[Uy| < |Dy U
Eo| < max{Ng, [ XTNX~|,|XTNNg|,| X~ NN} and max{Rg, | XN
X, |IXTNN5], [ X NN} is < ke and < k3. Since {Int,, U : U € U }
is a pairwise disjoint collection of non-empty open sets in Ly, we see
that U] < ¢(Lx) = s(Lx) < ky and |Uy| < cc(Lx) = ss(Lx) < K.
By Claim, we have U = Uy U U, so [U] < ke and |U| < k3. Hence
$(X) = ¢(X) < Ky and ss(X) = ce(X) < k3. O

Example 3.3. Applying the lemma above with d(R) = s(R) = R, we
can calculate the well-known cardinal functions on S and M,
e noting Lg = R, Ny = Ny =0, ST =0 and S~ = R, we see
d(S) = s(S) = Ry and w(S) = 2%,
e noting Ly = R, Ny = Ny = 0, MT =P and M~ = P, we see
d(M) = s(M) = w(M) = 2% .

In the next section, we culculate cardinal functions of lexicographic
products. To describe the spread of lexicographic products, we further
need some fine cardinal functions.
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Definition 3.4. Let X be a GO-space and H C X. A point z in
X is a 0-cluster (1-cluster) point of H if for every neighborhood U of
r, HN(UN (+-2)) # 0 (HN (UN (z,—)) # 0 respectively) holds.
We say that H is relatively 0-discrete if H does not have a O-cluster
point of H, that is, for every x € H, there is a neighborhood U of x
with H N (U N (+<,z)) = 0. The relatively 1-discreteness is similarly
defined. Note that H is relatively discrete if and only if it is relatively
0-discrete and relatively 1-discrete, that is, for every x € H, there is a
neighborhood U of z with HN(UN (4, z)) = 0 and HN(UN(z, —)) = 0.

Further we give an additional notion. A point z in X is a 2-cluster
point of H if it is O-cluster and 1-cluster. We say that H is relatively
2-discrete if H does not have a 2-cluster point of H, that is, for every
x € H, there is a neighborhood U of x with H N (U N (+,z)) =0 or
HnUN (z,—)) = 0.

Obviously,

e if H is relatively discrete, then it is both relatively 0-discrete
and relatively 1-discrete,

o if H is relatively O-discrete (or relatively 1-discrete), then it is
relatively 2-discrete.

Now we can define corresponding cardinal functions on GO-spaces.

Definition 3.5. Let X be a GO-space. For i € 3 (= {0, 1,2}), let
e i-s(X) =sup{|H|: H is relatively i-discrete },
e i-ss(X) = min{k : there are no relatively i-discrete subspaces
of cardinality k}.

Obviously, every relatively 2-discrete subset H of a GO-space X
is expressed as Hy U H; for some relatively 0-discrete subset H, and
relatively 1-discrete subset H;, so we see
2-s(X) = max{0-s(X), 1-s(X)},

2-35(X) = max{0-ss(X), 1-ss(X)},
min{0-s(X), 1-s(X)} > s(X),
min{0-ss(X), 1-ss(X)} > ss(X).

Let X = (X, <,7) be a GO-space. Then we can define GO-spaces
Xo = (X, <,70) and X; = (X, <, 71) which have the following bases,
respectively:

{IN(4,a]:Iis an open convex in X, a € I},

{INla,—): I is an open convex in X, a € I}.

For each 7 € 2 and for each subset H of X it is easily seen that H is
relatively ¢-discrete in X if and only if H is relatively discrete in Xj.
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Hence, i-ss(X) = ss(X;) = cc(X;) is a regular uncountable cardinal.
And 2-ss(X) = max{0-ss(X), 1-ss(X)} is also a regular uncountable
cardinal.

As in Lemma 3.2, we can describe these cardinal functions using the
terms Lx, Ny, X* and X~ as follows. By (3) of the following lemma
with Lemma 3.2, we also see:

o w(X) >2-5(X).

Lemma 3.6. Let X be a GO-space. Then

(1) 0-s(X) = max{s(Lx), |Nx|, | X[},
0-ss(X) = max{ss(Lx),|Ny|", | X"},

(2) 1-s(X) = max{s(Lx), |[Nx], [ X"},
1-ss(X) = max{ss(Lx), |N5|*, | X"},

(3) 2-s(X) = max{s(Lx), |Nx[, | X[, [ X"},
2-5s(X) = max{ss(Lx), |Ny|", [ X |7, | X[}

Proof. (2) is similar to (1) and (3) follows from (1) and (2), so we
only show (1). Noting |[N%| = |Nx|, let k = max{s(Lx),|Nx|,|X |}
and £* = max{ss(Lx),|Nx|",|X~|*}. Since 0-s(X) > s(X) > s(Lx),
0-ss(X) > ss(X) > ss(Lx) and both Ny and X~ are relatively 0-
discrete, it is obvious that 0-s(X) > x and 0-ss(X) > &*.

To see 0-s(X) < k and 0-ss(X) < k*, let H be a relatively 0-discrete
subspace of X, we will see |[H| < k and |H| < k* . Let

Hy={re€ H:z € NyUX or (+,z) =0}
Obviously, |Hy| < k and |Hg| < k*. Let H; = H \ Hy.
Claim. |H;| < k and |H;| < k*.

Proof. Note that x € Clx(+,x) for every x € H;. Since H is relatively
O-discrete, for every x € Hy, we can fix an open convex neighborhood
B, of x in X with HN (B, N (+,x)) = 0. Also from x € Clx(+,z), we
can fix y, € B, N (+,z) for every x € Hy. Then {(y,,x) :x € H,} is a
pairwise disjoint collection of non-empty intervals, that is, non-empty
Lx-open sets. Thus |H;| < s(Lx) < k and |Hy| < ss(Lx) < x*. This
completes the proof of Claim.

By the claim, we see |H| = |Hy U Hy| < k and < K*. O

Applying the lemma above, we see 2-s(R) = R, 1-5(S) = Ry, 0-s(S) =
2-5(S) = 2% and 0-s(M) = 1-s(M) = 2-s(M) = 2%,
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4. CARDINAL FUNCTIONS ON LEXICOGRAPHIC PRODUCTS

In [6], the weight of lexicographic products of GO-spaces was calcu-
lated. In this section, we calculate the density and the spread of lexi-
cographic products of GO-spaces. First we consider cardinal functions
of lexicographic products of two GO-spaces, which extend Theorem 2.2
and 2.3 in [1].

Lemma 4.1. Let X = Xy x X; be a lexicographic products of two
G O-spaces. Then the following hold:

(1)

_ Jw(Xo) if [ Xa| =2,
4X) = {max{|X0|,d(X1)} if | X1| > 2,
(2)
 [2:5(X0) if X3 = 2
() = {max{|X0|,s(X1)} if X)) > 2,
(3)
. 2-SS(X0) Zf |X1| = 2,
ss(X) = {max{|X0|+,ss(X1)} if X1 > 2,

(4) i-s(X) = max{| Xo|,i-s(X1)} for everyi € 3 (={0,1,2}),
(5) i-ss(X) = max{|Xo|",i-ss(X1)} for every i € 3.

Proof. Let X = X x Xi. Of course, X; = (X;, <x,,Tx,) is implicitly
understood for i € 2 (= {0, 1}).

(3) and (5) for i € 2: To see “>”, three claims below suffice.

Claim 1. Let H C Xy, v € X; and K = H x {v}.

o If («—,v)x, # 0, then K is relatively O-discrete in X.

o If (v,—)x, # 0, then K is relatively 1-discrete in X.

o If H is relatively O-discrete in X, then K is relatively 0-discrete
in X.

o If H is relatively 1-discrete in X, then K is relatively 1-discrete
in X.

Proof. We prove the first and the third ones, because the remaining are
similar. To see that K is relatively O-discrete in X, let x € H and put
Ko = KN (+,(z,v))x. Then we have Ky = (H N («—,x)x,) x {v}. It
suffices to find an open neighborhood V' of (x,v) in X which is disjoint
from K.

If (+—,v)x, # 0, then take a v" € X; with v/ <x, v. Obviously, V =
((z,v"),—)x N X is a required one. If (+—, z)x, = 0, then Ky = 0, so
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V = X works. If (+—, x)x, # 0 and H is relatively 0-discrete in Xy, then
we can take a y* € Xg with y* <y x such that HN((y*, z)x;NXo) = 0.
Then V = ((y*,v), =)+ N X is a required neighborhood of (z,v). This
completes the proof of Claim 1.

Claim 2. The following hold.
o 55(X) > 2-55(Xp).
e i-ss(X) > |Xo|" for each i € 2.
o If | X;| > 2, then ss(X) > | X,|™.

Proof. First, fix a v € X; with («—,v)x, # 0. Applying Claim 1 for
H = Xy, we see that K = Xy x {v} is relatively O-discrete in X.
Hence 0-ss(X) > |K| = |Xo|, and so 0-ss(X) > |Xo|". If H is an
arbitrary relatively 1-discrere subset of X, then we see from Claim 1
that K = H x {v} is both relatively 0-discrete and relatively 1-discrete,
so it is relatively discrete in X. Hence ss(X) > |K| = |H|, and we have
ss(X) > 1-ss(Xp).

Next, by fixing a v € X; with (v,—)x, # 0, we see in a similar
way that Xo x {v} is relatively 1-discrete in X, 1-ss(X) > | X,|" and
ss(X) > 0-ss(Xo).

Then we also have ss(X) > max{0-ss(Xj), 1-ss(Xo)} = 2-s5(Xp).

If |X;] > 2, then we can take a v € X; such that (+—,v)x, # 0
and (v, —)x, # 0. For such v, we see that K = X, x {v} is both
relatively 0-discrete and relatively 1-discrete, so it is relatively discrete
in X. Hence ss(X) > |K| = |Xo|, and we have ss(X) > |Xo|*. This
completes the proof of Claim 2.

Claim 3. ss(X) > ss(X;) and i-ss(X) > i-ss(X7) for each i € 2.

Proof. Fix u € Xy. Let H be a relatively 0-discrete subset of X; and
K = {u} x H. To see that K is relatively O-discrete in X, let v € H
with (+—, (u,v)) ¢ N K # 0. Then by (+,v)x, # 0 and the relative 0-
discreteness of H in X5, we can find an element w* € X7 with w* < Xr v
and ((w*,v)x:NX1)NH = 0. Now we have (((u, w*), (u,v)) sNX)NK =
(), thus K is relatively O-discrete in X. Therefore we have |H| = | K| <
0-ss(X). We have shown 0-ss(X) > 0-ss(X71).

Similarly, we see that K = {u} x H is relatively 1-discrete in X, for
each relatively 1-discrete subset H of X1, so |H| = |K| < 1-ss(X). We
have shown 1-ss(X) > 1-ss(X;).

If H is a relatively discrete subset of X, then it is both relatively 0-
discrete and relatively 1-discrete. Since K = {u} x H is both relatively
O-discrete and relatively 1-discrete in X, it is relatively discrete in X.
Therefore we have |H| = |K| < ss(X). We have shown ss(X) >
ss(X1). This completes the proof of Claim 3.
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To see “<”, two claims below suffice.
Claim 4. If | X;| = 2, then ss(X) < 2-s5(X)).

Proof. Let Xy = {vg,v1} with vy <x, v;. Since X = Xy x Xj is
assumed to be infinite, we have w < | Xy|, so w; < 2-ss(Xj). Let H be a
relatively discrete subset of X and put K; = {u € Xy : (u,v;) € H} and
H; = K; x{v;} for each i € 2. Then we have H = HyU H;. To see that
Ky is relatively 0-discrete in Xy, let u € Ko with (<, u)x, # 0. Since
H is relatively discrete in X, we have H N (((u*,v), (u,v1)) s N X) =
{{u,vo) } for some u* € X5 with u* <x: u and v € X;. Now we obtain
an open neighborhood (u*, —)x; N Xo of u in X which is disjoint from
Ko N (+,u)x,, so Ky is relatively 0-discrete in X,. Therefore |Hy| =
|Ko| < 0-s8(Xp) < 2-ss(Xp). Similarly, we see |Hi| < 1-ss(Xp) <
2-s5(Xp), and so |H| < 2-ss(Xy). Hence, ss(X) < 2-ss(Xp) holds.
This completes the proof of Claim 4 .

Claim 5. The following hold.

e ss(X) < max{|Xo|", ss(X1)}.
e i-ss(X) < max{|Xo|*,i-ss(X;)} for each i € 2.

Proof. Let k = max{| Xo|™", ss(X1)} and x; = max{|Xo|",i-ss(X7)} for
each i € 2. We would like to show that ss(X) < k and i-ss(X) < k;.
The lexicographic product X = Xy x X is assumed to be infinite, so
either | Xo| > w or |Xi| > w. In the latter case, ss(X;) and i-ss(X),
for each ¢ € 2, are regular uncountable cardinals. Hence, x and k; are
regular uncountable cardinals in any case.

Let H be a subset of X and set K,, = {v € X; : (u,v) € H} and
H, ={u} x K, for every u € X,. Then H = UueXO H,.

Assume that H is relatively 0-discrete in X. To see that K, is
relatively O-discrete in X, let v € K, with («—,v)x, # 0. We have
H N0 (((u,v*), (u,v)) ¢ N X) = 0 for some v* € X} with v* <x: v.
Now we obtain an open neighborhood (v*, —)x: N X of v in X; which
is disjoint from K, N («—,v)x,, so K, is relatively O-discrete in X;.
Therefore |H,| = |K.| < 0-ss(X1) < ko. By |Xo| < Ko, we have
|H| < ko. Hence, 0-ss(X) < kg holds.

It had been seen that if H is relatively O-discrete in X, then K,
is relatively O-discrete in X; for every u € X, and 0-ss(X) < ko.
Similarly, we see that if H is relatively 1-discrete in X, then K, is
relatively 1-discrete in X, for every u € Xy, and 1-ss(X) < k1.

If H is relatively discrete in X, then it is both relatively O-discrete
and relatively 1-discrete in X, so K, is both relatively 0-discrete and
relatively 1-discrete, thus relatively discrete in X; for every u € X.
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Hence, |H,| = |K,| < ss(X1) < k. By |Xo| < K, we have |H| < k.
Hence, ss(X) < & holds. This completes the proof of Claim 5.

(2) and (4) for i € 2: We can see (2) and (4) from (3) and (5),
respectively. We only prove (4) because the remaining is similar.

First we consider the case i-ss(X;) > | Xo|T. Since X = Xy x X is
assumed to be infinite, we have i-ss(X;) > w;. By (5), either i-ss(X) =
i-ss(X1) = k for some limit cardinal &, or i-ss(X) = i-ss(X;) = k*
for some infinte cardinal k. In any case, i-s(X) = i-s(X;) = k > | Xo|
holds, so we have i-s(X) = max{|Xo|,i-s(X1)}.

Next we consider the case i-ss(X;) < |Xo|T. We have |Xo| > w
in this case. By (5), we see i-ss(X) = |Xo|T, so i-s(X) = |Xo| >
i-ss(X1) > i-s(X7). Hence, i-s(X) = max{|Xo|,i-s(X1)}.

(4) and (5) for ¢ = 2: We only prove (5) because the remaining is
similar. We had already seen that

0-ss(X) = max{|Xo|", 0-ss(X1)},
1-ss(X) = max{| X,|", 1-ss(X1)}.
So we have
2-s5(X) = max{0-ss(X),1-ss(X)}

= max{|Xo|", max{0-ss(X), 1-ss(X1)}}
= max{’X0’+,2—SS(X1)}-

(1): To see “>", let k = d(X). Since we are assuming that X is
infinite, K > w holds. Take a dense subset D in X with |D| = k. Take
an elementary submodel M of H(6), where 6 is large enough, with
(X0, <x0,Tx0) (X1, <x,,Tx,) € M, D C M and |M| = k. Also note
that by the definability, almost all objects such as X§, X7, X -, ete.,
belong to M.

First we consider the case |X;| = 2. Let Xy = {vo,v1} with vy <x,
v1. To see k > w(Xy), from |M| = &, it suffices to see that 7x, N M is
a base for X.

Claim 6. For every u € X and every open neighborhood W of u in
X, the following hold:

(1) there is an open set U € M in Xo with u € U C (+—,u)x, UW,
(2) there is an open set V € M in Xg withu € V C (u, —)x, UW.

Proof. Let u € Xy and W be an open neighborhood of u in Xy. When
(u,—=)x, =0 (i-e., u = max Xy), set U = Xy € M, then this U works.
So let (u,—)x, # (). Since W is an open neighborhood of u in X, and
X§ is a LOTS containing X, as a dense subset, there is w* € Xj with
u <x: w* such that (u,w*)x; N Xo C W. We consider two cases.
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Case 1. (u,w")x; # 0.

In this case, since ((u, v1), (w*, vp)) ¢ NX is a non-empty open set in X,
by the density of D, we can fix a point x € (((u,v1), (w*, vo)) xNX)ND,
say x = (x(0),z(1)) € Xox X;. Notingz € D C M, by the definability,
we see 7(0) € M and u <x, z(0) <x; w*. So by letting U = (+
,2(0))x,, obviously U € M and U is the desired one.

Case 2. (u,w")x; = 0.

In this case, from {(u,v1)} = ((u,vo), (W*, v0))x N X, (u,vy) is an
isolated point in X, therefore (u,v1) € D C M because of the density
of D. Then by the definability, we see v € M and U = (+—,u]x, € M
is the desired one.

(2) is similar to (1). This completes the proof of Claim 6.

Now by the claim above, U NV is an open neighborhood of u with
UNV cWand UNV € M. Therefore 7x, N M is a base for Xj.

Next we consider the case |X;| > 2. We see from (2) that | X,| <
s(X) < k. The following claim shows d(X;) < &k, hence we see
max{| Xo|,d(X1)} < k.

Claim 7. X; N M is dense in X;.

Proof. Let V be a non-empty open set in X;. It suffices to find an
element of VN M. Fix v € V. We may assume (+,v)x, # 0 and
(v,—)x, # 0, otherwise v belongs to M by the definability so v €
V' M. Therefore there are vy, v € Xi with vy <x; v <xr vj and
(vg,vi)x; N Xy C V. Fix u € Xo. Since ((u,vg), (u,v7)) g N X is
non-empty open set in X, by the density of D, we can find a point
x € DN (((u,vs), (u,v7))x NX), say x = (x(0),z(1)). Now we have
ve€DCM, x0)=mu 2(1) € (v5,v])x; N X1 NM C VN M. This
completes the proof of Claim 7.
Now we check “<”. Two claims below suffice.

Claim 8. If | X;| = 2, then d(X) < w(Xj).
Proof. Let k = w(Xj). Since X = X x X is assumed to be infinite, we
have [Xo| > w, so k > w. Noting x = max{d(Lx,),|N%,|, | Xq],1Xq |},
we can take a dense set D in Ly, with |D| = k such that

e Ny UNy UXjUXy CD,

e max Xy € D if X, has a maximal element,

e min Xy € D if X, has a minimal element.

By |Xi| = 2, we have |D x X;| = k. So it suffices to show that
D x X, is dense in X.
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Let U be a non-empty open set in X. We would like to find an
element of U N (D x X;). Fix x € U, say = (x(0),2(1)). We may
assume z(0) ¢ D, otherwise z is a desired one. Either (+—,z(1))x, =0
or (z(1),—)x, = 0 holds since | X;| = 2. We may assume the former,
because the latter is similar. We have (+,x(0))x, # 0 since z(0) ¢ D.
By x € U and (+,x)x # 0, we can find y € X, with y <4 z and
(y,2)xNX C U, say y = (u*,v*) for some u* € X} and v* € X = X;.
From (-, z(1))x, = 0 and y <3 =, we have u* <x; x(0). Moreover
from z(0) ¢ Ny, U Xy, we can take ug,u; € Xo with u* < ug < ug <
x(0). Since D is dense in Lx, and (ug, x(0))x, is a non-empty open set
in Lx,, there is a point u € D N (ug, z(0))x,. By v* < wuy < u < 2(0),
we have y = (u*,v*) <z (u,v*) <y , s0 (u,v*) € UN (D x X;). This
completes the proof of Claim 8.

Claim 9. d(X) < max{|Xo|, d(X1)}.

Proof. Let k = max{|Xo|,d(X1)}. Since X = Xy x X is assumed to
be infinite, we have k > w. By d(X;) < k, we can take a dense subset
D in X; with |D| < & such that

e max X; € D if X; has a maximal element,
e min X; € D if X; has a minimal element.

By | Xo| < &, we have | Xy x D| = k. So it suffices to show that Xy x D
is dense in X.

Let U be a non-empty open set in X. We would like to find an
element of U N (X x D). Fix x € U, say x = (x(0),z(1)). We
may assume (1) ¢ D, otherwise x is a desired one. Then we have
(«—,2(1))x, # 0 and (z(1),—)x, # 0. Since U is an open set with
r € U, we can find vg,vf € X{ with vf <x; 2(1) <x; v{ and
((z(0),v5), (x(0),vi)) x N X C U. Because (v5,v])x: N X1 is a non-
empty open set in X; and D is dense in X;, we can find a point
v € ((v5,v])x: N X1) N D. We see ((0),v) € UN (Xo x D). This
completes the proof of Claim 9.

U

Now the following result in [6] is an easy consequence of Lemmas
3.2, 3.6 and 4.1. We leave its proof to the reader.

Corollary 4.2. [6, Lemma 3.1] Let X = X, x X; be a lexicographic
products of two GO-spaces. Then w(X) = max{|Xo|, w(X1)} holds.

Example 4.3. Using the lemmas and corollary above with Example
3.3, for example, we can see the following:
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(1) if X =R x 2, then w(X) = 2-5(X) = 1-s(X) = 0-s(X) = 2%,
d(X) = s(X) = N, note that the subspace R x {1} is identified
with S,

(2) if X =R x 3, then w(X) = s(X) = 2%,

(3) if X =2 x R, then w(X) = s(

(4) if X =S x 2, then w(X) = s(X) = 2%

(5) if X =2 xS, then w(X) = 2-s(X
A(X) = 5(X) = N,

N
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(6) if X =S xS, then w(X) = s(X) = 2%,
(7) if X =M x P, then w(X) = s(X) = 2%,
(8) if X =P x M, then w(X) = s(X) = 2%,
(9) if X =R x Q, then w(X) = s(X) = 2%,
(10) if X = Q x R, then w(X) = s(X) = N,.

Using the lemmas and corollary above repeatedly, we can also calcu-
late such cardinal functions on lexicographic products of finite length.
Next we consider lexicographic products of infinite length. The follow-
ing lemma extends Theorem 3.1 in [1].

Lemma 4.4. Let~ be a limit ordinal and X = ch<'y X, alexicographic
product of GO-spaces. Then w(X) = s(X) = sup{| [[ < Xal : B <7}
and 2-ss(X) = ss(X) = s(X)*.

Proof. Letting X = [Ioo, Xa, set £ = sup{[[[,cs Xal : B <~} For
each B <, let kg = |[],<5 Xal, then k =sup{rz: B <7}

Claim 1. v < k. And kg < ss(X) for every 5 < 7.

Proof. Since X, is assumed to have at least two points for each o < 7,
we have g8 < 2l < kp for each f < v. Hence v < & holds. Let
B < . As GO-spaces, the lexicographic product X = [, < Xa can
be identified with the lexicographic product Z; x Z; of two GO-spaces
Zo = [la<p Xa and Zy = [[5., Xo with [Z1] > 2, by Lemma 4.1 (3),
we see ss(X) > |Zy| = k. This completes the proof of Claim 1.

Claim 2. x < ss(X).

Proof. In the case that the sequence {kz : f < v} is eventually con-
stant, i.e. there is fy < v such that for every g < v with fy < 5,
Kg = Kg,, we have k = kg, < ss(X).

Next we consider the case that the sequence {kg : f < ~} is not
eventually constant, then note cfx = cfy <y < k < ss(X) by Claim 1.
When & is singular, we see k < ss(X) since ss(X) cannot be singular.
When k is regular, we have v = k. For every a < =, fix two points
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Vo, Wo € X, with v, <x, w,. For every 8 < v, define a point x5 €

Ha<"/Xa by
(a) = w, ifa=p,
P v if a# B

Then obviously the sequence {z5 : f < v} is strictly decreasing in X,
therefore H = {x341 : < 7} is relatively discrete in X and of size &,
so we see kK < ss(X).

Claim 3. w(X) < k.

Proof. Take an elementary submodel M of H(f), where 6 is large
enough, with ((X,, <x.,7x.) 1 @ < 7), (X}, <x:) : a < v) € M,
v C M, Use, [1acp Xo € M and [M] < k. It suffices to show that
Tx N M is a base for X, where 7y is the topology of X.

Let x € X and W be an open set in X with z € W.

Fact. The following hold:

(1) there is an open set U € M in X with x € U C (+—,x)x UW,
(2) there is an open set V € M in X withz e V C (z,—»)x UW.

Proof. Since (2) is similar to (1), we prove (1). When (z,—)x = 0,
set U = X. By the difinability, we have X € M, so this U works. Let
(2,—)x # 0. Since W is open in X and = € W, we can find 2* € X
with <y z* and (z,2*) ; N X C W. We consider two cases.

Case 1. (z,2%) 4 = 0.

In this case, set ap = min{a < v : z(«a) # 2*(«)}. Then we have z |
ap = 2" [ ag and z(ao) <xz, (@), (¥(a0), 2" (o)) xz, = 0, moreover
for every a < v with ap < «, z*(o) = min X, and z(a) = max X,
hold. Note ag € v C M and 2* | (ag + 1) € [[ocn, Xa C M, also
note by the definability, we have 2* = x* | (ap + 1)"(min X, : ag <
a <) € M. Now let U = (+,2*)x N X, then obviously U € M and
relUC («,z)x UW.

Case 2. (z,2*)y # 0.

Take an element z € (z,2%)g, then there is oy < < such that in
[Tocay Xo» @ [ (0 +1) <z T (ag+1) < 2" | (ag + 1) holds. Note
ap € M and 2 | (ap+ 1) € [[,<o, Xo € M. By the elementarity, we
obtain a 2/ € X N M with 2’ | (ag+ 1) = 2 | (ag + 1). Now letting

U= (4+,2)xNX € M, this U is the desired one. This completes the
proof of Fact.
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Now from this fact, we see UNV € M and x € UNV C W. Hence
Tx N M is a base for X. This completes the proof of Claim 3.

s(X) < s(X)7
(X)*. Tt follows

kT, O

From Claim 2 and 3, we see s(X) < w(X) <k <s
and 2-s(X) < w(X) < k < ss(X) < 2-ss(X) < 2-s
that w(X) = s(X) = k and ss(X) = s(X)T = 2-s5(X)

Note that in the lemma above, ss(X) cannot be a limit cardinal.
Now we can prove our main result. For an ordinal ~, set

| = 0 if y =404 1 for an ordinal ¢, i.e., 7y is a successor,
7 1y if yis 0 or a limit,

see [19, I, Definition 9.4]. The symbol v — 2 denotes (y — 1) — 1.

Theorem 4.5. Let X = Ha<V X, be a lexicographic product of GO-
spaces. Then the following hold:

(1) for everyi € 3,

i-s(X) = sup{| [La<p Xal - 5 <7} if 7y is limit,
max{| [T, | Xal,i-s(X;-1)}  if v is successor.

(sup{]| Hagg Xaol 1 B <)t iof v is limat,
max{]| Ha<7_1 Xo|t,i-ss(Xy-1)}  if v is successor.

i-ss(X) = {

(2)

sup{| [Tocs Xal - 6 <7}
if v 1s limat,
max{| [[ocy—1 Xal s(X5-1)}
if v is successor and | X,_1| > 2,

sup{| HagﬁXoc| f<y—1}

if v is successor, | X,_1| =2 and v — 1 is limit,

max{|[To<\—s Xal, 2- ( v—2)}
if v is successor, | Xy_1| =2 and v — 1 is successor.

\
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((sup{|Tocp Xal : B <7})"
if v is limat,
max{| [T\ Xal " s5(X;-1)}

if v is successor and | X,_1| > 2,

(sup{|[[o<s Xal : B <v—1})7
if v is successor, | X,_1| =2 and v — 1 is limit,

max{| [T .,_, Xal", 2-55(X, )}
[ if v is successor, | X,_1| =2 and v — 1 is successor.

(sup{]| Hag,BXa| 18 <7}
if v is limat,
max{]| Ha<7—1 Xol, d(Xy-1)}
if v is successor and | X _1| > 2,

sup{|[[,<5 Xal : 6 <7 —1}
if v is successor, | Xy_1| =2 and v — 1 is limit,

maX{|Ha<7 2 Xal, w(X5-2)}

( if v is successor, | X,_1] =2 and v — 1 is successor.

Proof. When # is limit, we see from Lemma 4.4 that

s(X) = w(X) = sup{[[[ocs Xal : B <7},

)
s8(X) = 2-ss(X) = (sup{| [[ocp Xal : B <7}
By s(X) < d(X) < w(X), s(X) < i-s(X) < w(X) and ss(X) <
i~ss(X) < 2-ss(X), for each ¢ € 3, we also have

d(X) = i-s(X) = sup{[[[ocs Xal : B <7},

i-s5(X) = (sup{|[Jocp Xal : B <})".
Hence all equations in the lemma hold in this case.

When v is successor, the lexicographic product X = [], < X, can
be identified with the lexicographic product Y x X,_; of two GO-
spaces Y =[], ;Xo and X, ;. Since [Y] = [[[,., ; Xa| and
Y™ = [Ilac, 1 Xal ", we obtain the equations in (1) by applying
Lemma 4.1 (4) and (5). In case |X,_1| > 2, we obtain the equations in
(2) and (3) by applying Lemma 4.1 (2), (3) and (1). In case | X,_1| = 2
and v — 1 is limit, we see, by the similar argument above, that

s(Y) =i-s(Y) = d(Y) = w(Y) = sup{|[[o<p Xal : 6 <~ =1},
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ss(Y) =i-ss(Y) = (sup{|[[ocp Xal : B <7 — 1hH*
for every i € 3. Hence we also obtain the equations in (2) and (3) by
applying Lemma 4.1 (2), (3) and (1).
Let us consider the remaining case, that is, 7 is successor, | X,_;| = 2
and vy —1 is successor. Then the lexicographic product Y =[] X,

a<ly—1“

can be identified with the lexicographic product Z x X, _5 of two GO-
spaces Z =[] Xo and X,_o. Applying Lemma 4.1 (2) and (4),
we have

s(X) =s(YxX,_1) =2-5(Y) = 2-5(Zx X,_2) = max{|Z|, 2-s(X,_2) }.
Similarly we obtain from Lemma 4.1 (3) and (5) that
ss(X) = 2-ss(Y) = max{|Z|T, 2-ss(X,_2)}.
By Lemma 4.1 (1) and Corollary 4.2, we have
d(X)=dY x X,.1) =w(Y) =w(Z x X,_5) = max{|Z], w(X,_2)}.

It had been seen that all equations in the present lemma hold in each
case. U

a<ly—2

For comparison, we state a result in [6] which can be proved similarly
as (1) of the above theorem using Corollary 4.2.

Proposition 4.6. [6, Theorem 3.2] Let X = []
graphic product of GO-spaces. Then

o<y X, be a lexico-

w(X) = sup{]| Hagg Xao| 1 8 <7} if v 1s limat,
max{| Ha@_l Xol|,w(Xy-1)}  if v is successor.

5. APPLICATIONS

About the hereditarily Lindelof property of lexicographic products
of LOTS’s, Faber essentially proved the following result [4, Theorem
4.33] which is written in our terminology. Note that a GO-space X is
hereditarily Lindeldf iff s(X) < R,.

Proposition 5.1. [4, Theorem 4.3.3] Let X = [],_, X be a lexico-
graphic product of LOTS’s. Then s(X) < Ny if and only if the following
clauses hold.

(1) i S;u)+'17

(2) if v = w+ 1, then | X, | = 2 and for every a < w, | X,| < Vg,

(3) if v = w, then for every a < w, | X4| < Ny,

(4) if 2 <y <w and | X,_1| > 2, then s(X,—1) < N and for every

a<y—1, | X, <N,
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(5) if2 <y <w and | Xy1| = 2, then s(X,—5) < No, [Ny
and for every a <y — 2, | X,| < No.

| <N

2l —=

However, in the proposition above, “LOTS’s” cannot be replaced by
“GO-spaces”. The lexicographic product S x 2 is such an example.
Because, note that s(S) < Ry and Ng = @) hold. On the other hand,
we see s(S x 2) = 2% because S x {0} is relatively discrete in S x 2,
compare with (5) in the proposition above.

We can improve as follows. The proof is an easy consequence of (2)
of Theorem 4.5.

Corollary 5.2. Let X = Ha<7 X be a lexicographic product of GO-
spaces. Then s(X) < Vg if and only if the following clauses hold.
(1) y<wH+1,
(2) if y =w+ 1, then | X,| = 2 and for every a < w, |X,| < Ny,
(3) if v = w, then for every a < w, | X, < Ny,
(4) if2 <y <w and | Xy_1| > 2, then s(X,—1) < Ny and for every
a<y—1, | X, <N,
(5) if 2 < v < w and |X,1| = 2, then 2-s(X,_2) < Ry and for
every a < vy — 2, | Xo| < V.
Proof. Assume s(X) < Ny, If w+ 1 < v were true, then noting
| [1<acy Xal > 3 and by (2) of Theorem 4.5, we have s(X) = s([[,.,, Xa
X [Nucacy Xa) 2 [Tlacw Xal = 2% > Vg, a contradiction. We have
shown (1). The remaining are left to the reader. O

Similarly we can see the following which is a direct extension of [4,
Theorem 4.3.2] for “GO-spaces” .

Corollary 5.3. Let X = Ha<7 X, be a lexicographic product of GO-
spaces. Then d(X) < Xq if and only if the following clauses hold.
(1) vy <w+1,
(2) if y =w+1, then | X,| = 2 and for every a < w, |X4| < Vo,
(3) if v = w, then for every a < w, | X, < Ny,
(4) if 2 <y <w and | Xy_1| > 2, then d(X,—1) < Ry and for every
Oé<’)/—1, ’Xa’ SNO;
(5) if2 <y <w and | Xy_1| =2, then w(X,_2) <Ny and for every
a<vy—2,|X,| <N

For a cardinal k and an ordinal v, define

k<7 =sup{k" : pis a cardinal and pu < 7 }, equivalently,

lol': v is an ordinal and o < v },

k<7 = sup{k
see [6]. Using this cardinal function, we can easily calculate cardinal

functions of lexicographic products of type Y.
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Corollary 5.4. Let & be a cardinal with £ > 2 and X =[], X
a lexicographic product of GO-spaces with |X,| = k for every a < 7.
Then the following hold.

(1)
d(X) = s(X) = {

(2) w(X) = 2-5(X) = 1-s(X) = 0-s(X) = k<7, see [6, Corollary
4.4] for the weight.

<v-—1

K if Kk =2 and vy 1s successor,

<7 otherwise,

(k=7"1"  if k =2 and vy is successor,
ss(X) = ot .
(k<) otherwise,

(4) 2-ss(X) = 1-ss(X) = 0-s8(X) = (k") *.

Proof. (1) First we consider the case k = 2. Since we are assum-
ing that X is infinite, we have v > w. When + is limit, it follows
from Lemma 4.4 that d(X) = s(X) = 2<7. So let 7 be succes-
sor. When v — 1 is limit, it follows from v > v —1 > |y| > w
and Theorem 4.5 (2) and (3) that d(X) = s(X) = sup{|[],<5 Xal :
B < v—1} = 2771, When v — 1 is successor, it follows from
y—=1>~v—-22>|y > w, |X,—2] = 2 and Theorem 4.5 (2) and (3)
that s(X) = max{|[[,., o Xal, 2-5(X;-2)} = |[[oc, 2 Xa| = 2 =2 =
29 and d(X) = max{| [[cy_o Xeh 00X, 2)} = |Tlacys Xl =
olv=2l — 9<v—1

Next we consider the case x > 2. When v is limit, Lemma 4.4
shows d(X) = s(X) = k7. So let v be successor. Then Theorem
4.5 (2) and (3) show s(X) = max{|[],., ; Xal|, s(X;-1)} and d(X) =
max{|[],., ; Xal, d(X,-1)}. Now when 2 < k < w, by Ry < [X], we
have w < =, therefore [[[,., | Xo| > & = 2¥ > w, and so s(X) =
d(X) = |[Taery Xol = k1711 = k<7 When x > w, it follows from
Toey s Xal = 1Xol = £ = [X,a] > max{s(X,1).d(X,1)} that
$(X) = d(X) = [[Tacy1 Xal = "1 =57,

(2) We only prove the case 0-s(X), because the other are similar.
When ~ is limit, as above, use Lemma 4.4. Let v be successor, then
0-s(X) = max{|[[,.,_; Xal,0-s(X>-1)}. Because of v > 2, we have
[[loey1 Xal = [Xo| = & = [Xy-1] > 0-s(X,—1), therefore 0-s(X) =
My s Xal = A1 = 5

(3) and (4) are similar. O



24 YASUSHI HIRATA AND NOBUYUKI KEMOTO

Example 5.5. By the corollary above, when Y is a GO-space with
Y| > 2, the weight, the density and the spread of the lexicographic
product Y7 coincide. For example: .
(1) w(34) = 5(3°) = Ry, w(3H1) = s(3°1) = w(3+72) = 5(3+?) =
coe=w(39) = 5(391) = 280 qp(39rtl) = g(3witl) = 2%,
(2) w((w+1)*) = s((W+1)*) = Ro, w((w+1)**) = s((w+1)**) =
w((w+1)*"?) =s((w+1)?) = =w(w+ 1)*) = s((w+
1)) = 2%, w((w +1)*1%) = s((w + 1)1 Ht) = 2%,
(3) w(Q”) = s(Q¥) = Ry, w(Q@) = s(Q“") = w(@Q?) =
S0 = = (@) = (@) = 2 w(@ ) = (@) =
(1) w(E) = s(8%) = w(S1) = s(SH) = w(S+2) = s(5+?) =
s = w(SW) = s(S¥r) = 2% q(Sitl) = g(SWitl) = 2%,

Example 5.6. Compared with the example above, the case |Y| = 2 is
somewhat strange.

(1) w(2*) = 5(2*) = Ny,

d(2¢71) = s(2¢71) = Ry,

w<2w+2) _ 8(2w+2) — 21‘(07

(291) = 5(291) = 2No,

w(29H) = 2-5(241H1) = 1-5(241H1) = Q-s(2v1H1) = 281,
d(2#1F1) = g(2v1t1) = %o,

) w(241+2) = 5(2112) = 21,

It is known that if Y is a w;-Suslin line, that is, a LOTS Y with
N; = d(Y) = cc(Y), then the Tychonoff product space Y2 cannot be
cce, ie., c(Y?) > Ry, in fact ¢(Y?) = d(Y?) (= ¥y), e.g., see [19, I
Lemma 4.3]. Using (1) of the corollary above, we have a similar result
about lexicographic products.

N — N N N

Corollary 5.7. Let Y be a GO-space with |Y| > 2. For every v > 2,
the density d(Y?) and the spread s(Y7) (= c(Y?)) of the lexicographic
product Y7 coincide.
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