C^{*}-EMBEDDING AND P-EMBEDDING IN SUBSPACES OF PRODUCTS OF ORDINALS

NOBUYUKI KEMOTO AND TOSHIMICHI USUBA

Abstract

It is known that in $X=A \times B$, where A and B are subspaces of ordinals, all closed C^{*}-embedded subspaces of X are P-embedded. Also it is asked whether all closed C^{*}-embedded subspaces of X are P-embedded whenever X is a subspace of products of two ordinals.

In this paper, we prove that both of the following are consistent with ZFC: - there is a subspace X of $(\omega+1) \times \omega_{1}$ such that the closed subspace $X \cap\left(\{\omega\} \times \omega_{1}\right)$ is C^{*}-embedded in X but not P embedded in X, - for every subspace X of $(\omega+1) \times \omega_{1}$, if the closed subspace $X \cap\left(\{\omega\} \times \omega_{1}\right)$ is C^{*}-embedded in X, then it is P-embedded in X.

1. Introduction

A subset F of a space X is C^{*}-embedded in X if every continuous function from F to the unit interval $\mathbb{I}:=[0,1]$ can be continuously extended over X. Also recall that a subset F of a space of X is P embedded in X if every continuous function from F to a Banach space can be continuously extended over X. We remark that P-embedded subspaces are C^{*}-embedded and that a clopen subspace F^{\prime} of a C^{*} embedded (P-embedded) subspace F of X is also C^{*}-embedded (P embedded, respectively) in X. Also it is well known that:

- a space X is normal if and only if all closed subspaces are C^{*} embedded [4, Theorem 2.1.8],
- a space X is collectionwise normal if and only if all closed subspaces are P-embedded [2].

Date: July 6, 2022.
2020 Mathematics Subject Classification. 03E10, 03E17, 03E35, 54B10, 54C05, 54C20.

Key words and phrases. C^{*}-embedding, P-embedding, subspaces of products of ordinals, consistent, $2^{\omega}<2^{\omega_{1}}$, almost disjoint family, independent family.

This research was supported by Grant-in-Aid for Scientific Research (C) 21K03339.

Note that both Lindelöf spaces and metrizable spaces are collectionwise normal.

In [10], it is proved that in $X=A \times B$, where A and B are subspaces of ordinals, all closed C^{*}-embedded subspaces of X are P-embedded and it is asked whether all closed C^{*}-embedded subspaces of X are P-embedded whenever X is a subspace of the product of two ordinals [10, Question 2].

In this paper, we prove that both of the following are consistent with ZFC:

- there is a subspace X of $(\omega+1) \times \omega_{1}$ such that the closed subspace $X \cap\left(\{\omega\} \times \omega_{1}\right)$ is C^{*}-embedded in X but not P embedded in X,
- for every subspace X of $(\omega+1) \times \omega_{1}$, if the closed subspace $X \cap\left(\{\omega\} \times \omega_{1}\right)$ is C^{*}-embedded in X, then it is P-embedded in X.
In the remainder of this section, we prepare basic notions and facts. Spaces are completely regular T_{1} topological spaces. For a space X, a subset U is a cozero-set in X if $U=h^{-1}[(0,1]]$ for some continuous function $h: X \rightarrow \mathbb{I}$, where $(0,1]$ denotes the unit half open interval in I.

A collection \mathcal{U} of subsets of a space X is said to be locally finite (discrete) in X if every point in X has a neighborhood which meets at most finitely many (one, respectively) members of \mathcal{U}. A subset F of a space X is said to be discrete if the collection $\{\{x\}: x \in F\}$ is discrete. Note that the union of a locally finite collection of cozero sets is also a cozero set.

For a collection \mathcal{U} of subsets of X and a subspace F of $X, \mathcal{U} \upharpoonright F$ denotes the set $\{U \cap F: U \in \mathcal{U}\}$. Also $h \upharpoonright F$ denotes the restriction of h to F whenever h is a function on X and $F \subset X$. An open cover \mathcal{U} of subsets of a space X is called a cozero cover of X if each member of \mathcal{U} is a cozero-set in X.

There are characterizations of C^{*}-embedding and P-embedding in terms of cozero covers. We will use these characterizations rather than original definitions.
Proposition 1.1. [28, Lemma 2.1] Let F be a subspace of a space X. Then F is C^{*}-embedded in X if and only if for every finite (or two elements) cozero cover \mathcal{U} of F, there is a locally finite cozero cover \mathcal{V} of X such that $\mathcal{V} \upharpoonright F$ refines \mathcal{U}, that is, for every $V \in \mathcal{V}$, there is $U \in \mathcal{U}$ with $V \cap F \subset U$.
Proposition 1.2. [1, Theorem 14.7] Let F be a subspace of a space X. Then F is P-embedded in X if and only if for every locally finite
cozero cover \mathcal{U} of F, there is a locally finite cozero cover \mathcal{V} of X such that $\mathcal{V} \upharpoonright F$ refines \mathcal{U}.

The symbols ω and ω_{1} denote the first infinite ordinal and the first uncountable ordinal, respectively. The first cardinal exceeding ω_{1} is denoted by ω_{2}. Also the symbol $2^{\omega}\left(2^{\omega_{1}}\right)$ denotes the cardinality of the collection of all subsets of ω (ω_{1}, respectively). The symbol $[\omega]^{\omega}$ denotes the set of all infinite subsets of ω. Ordinal numbers have the usual order topologies. A subset S of a regular uncountable cardinal κ is called stationary if it intersects all closed unbounded (abbreviated as club) subsets of κ. The Pressing Down Lemma (PDL) will be frequently used.
Lemma 1.3. [27, PDL, II Lemma 6.15] Let S be a stationary set in a regular uncountable cardinal κ. If a function $f: S \rightarrow \kappa$ is regressive, that is $f(\alpha)<\alpha$ for every $\alpha \in S$, then there are a stationary set $S^{\prime \prime} \subset S$ and $\gamma<\kappa$ such that $f(\alpha)=\gamma$ for every $\alpha \in S^{\prime}$.

The following are easy consequences of the PDL.
Lemma 1.4. Let X be a stationary set in a regular uncountable cardinal κ. If \mathcal{U} is a locally finite collection of subsets of X, then there is $\gamma<\kappa$ such that $\{U \in \mathcal{U}:(X \cap(\gamma, \kappa)) \cap U \neq \emptyset\}$ is finite.
Lemma 1.5. Let κ be a regular uncountable cardinal and X a stationary set of κ. If $h: X \rightarrow \mathbb{R}$ is continuous, where \mathbb{R} denotes the real line, then it is constant on some tail, that is, there is $\alpha^{*}<\kappa$ with $h \upharpoonright\left(X \cap\left(\alpha^{*}, \kappa\right)\right)$ is constant. Therefore a cozero-set of X is either bounded or contains some tail.

Further we introduce technical notation which will be used frequently in our arguments. Let A be a subset of a regular uncountable cardinal κ. $\operatorname{Lim}_{\kappa}(A)$, which is usually written $\operatorname{Lim}(A)$, denotes the set $\{\alpha<$ $\kappa: \alpha=\sup (A \cap \alpha)\}$, that is, the set of all cluster points of A in κ, where we define $\sup \emptyset=-1$. Note that $\operatorname{Lim}(A)$ is club whenever A is unbounded in κ.

Let C be a club set in a regular uncountable cardinal κ, then obviously $\operatorname{Lim}(C) \subset C$, in this case, we define $\operatorname{Succ}(C)=C \backslash \operatorname{Lim}(C)$. Moreover let $p_{C}(\alpha)=\sup (C \cap \alpha)$ for $\alpha \in C$. Note that for each $\alpha \in C$, $p_{C}(\alpha) \in C \cup\{-1\}$ holds, in particular $p_{C}(\min C)=-1$, also $p_{C}(\alpha)<\alpha$ if and only if $\alpha \in \operatorname{Succ}(C)$. Intuitively, $p_{C}(\alpha)$ is the immediate predecessor of α in C whenever $\alpha \in \operatorname{Succ}(C)$. Observe that $\kappa \backslash C$ is the disjoint union of $\left\{\left(p_{C}(\alpha), \alpha\right): \alpha \in \operatorname{Succ}(C)\right\}$ of open intervals. Also note that $\kappa \backslash \operatorname{Lim}(C)$ is the disjoint union of $\left\{\left(p_{C}(\alpha), \alpha\right]: \alpha \in \operatorname{Succ}(C)\right\}$. In particular, $\operatorname{Lim}\left(\omega_{1}\right)$ and $\operatorname{Succ}\left(\omega_{1}\right)$ are denoted by Lim and Succ respectively.

Note the following lemma.
Lemma 1.6. [27, II Lemma 6.13] Let κ be a regular uncountable cardinal, $A \subset \kappa$ and $f: A \rightarrow \kappa$. Then the set $\{\alpha<\kappa: \forall \beta \in A \cap \alpha(f(\beta)<$ $\alpha)\}$ is club in κ.

We also use the following notation. Let μ and ν be ordinals and $X \subset(\mu+1) \times(\nu+1)$. For subsets $C \subset \mu+1$ and $D \subset \nu+1$, define

$$
X_{C}=X \cap C \times(\nu+1), X^{D}=X \cap(\mu+1) \times D, X_{C}^{D}=X_{C} \cap X^{D} .
$$

Moreover for $\alpha \leq \mu$ and $\beta \leq \nu, V_{\alpha}(X)$ denotes the vertical slice $\{\delta \leq$ $\nu:\langle\alpha, \delta\rangle \in X\}$ of X and $H_{\beta}(X)$ denotes the horizontal slice $\{\gamma \leq \mu$: $\langle\gamma, \beta\rangle \in X\}$ of X.

For a space $X, X=\bigoplus_{\lambda \in \Lambda} X_{\lambda}$ means that the space X is the pairwise disjoint sum of (cl)open subspaces X_{λ} 's.

For undefined topological or set theoretical notions, see [4, 11, 27]. For other researches about topological properties of products of ordinals and the above notation, see $[5,6,7,8,9,12,13,14,16,17,18,19,20$, $21,22,23,24,25,26]$.

2. P-Embedding in subspaces of $(\omega+1) \times \omega_{1}$

Two subsets F and H of a space X are said to be separated in X if there are disjoint open sets U and V in X with $F \subset U$ and $H \subset V$. In this section, we consider the P-embedding in subspaces of $(\omega+1) \times \omega_{1}$. First we prove:

Lemma 2.1. Let X be a subspace of $(\omega+1) \times \omega_{1}$ and A denote the set $\left\{n \in \omega: V_{n}(X)\right.$ is stationary in $\left.\omega_{1}\right\}$. Then for every closed subset F in X with $F \subset X_{\{\omega\}}, F$ is P-embedded in X if and only if, if $V_{\omega}(X)$ is not stationary in ω_{1}, then $\mathrm{Cl}_{X} X_{A}$ and F are almost separated, that is, there is $\alpha^{*}<\omega_{1}$ such that $X^{\left(\alpha^{*}, \omega_{1}\right)} \cap \mathrm{Cl}_{X} X_{A}$ and $X^{\left(\alpha^{*}, \omega_{1}\right)} \cap F$ are separated in $X^{\left(\alpha^{*}, \omega_{1}\right)}$, where Cl_{X} denotes the closure in X.

Proof. "only if" part: Let F be P-embedded in X and suppose that $V_{\omega}(X)$ is not stationary in ω_{1}. Take a club set C in ω_{1} disjoint from $V_{\omega}(X)$. For every $\alpha \in \operatorname{Succ}(C)$, set $F(\alpha)=F^{\left(p_{C}(\alpha), \alpha\right]}\left(=F \cap X^{\left(p_{C}(\alpha), \alpha\right]}\right)$ and $X(\alpha)=X^{\left(p_{C}(\alpha), \alpha\right]}$. Note that each $F(\alpha)$ is closed in X and each $X(\alpha)$ is countable and first countable, so metrizable. Since $\mathcal{U}=\{F(\alpha)$: $\alpha \in \operatorname{Succ}(C)\}$ is a disjoint clopen cover of F and F is P-embedded in X, we can find a locally finite cozero cover \mathcal{V} of X such that $\mathcal{V} \upharpoonright F$ refines \mathcal{U}. For each $\alpha \in \operatorname{Succ}(C)$, set $W(\alpha)=(\bigcup\{V \in \mathcal{V}: F(\alpha) \cap V \neq \emptyset\}) \cap X(\alpha)$. Then obviously $\mathcal{W}=\{W(\alpha): \alpha \in \operatorname{Succ}(C)\}$ is a locally finite and pairwise disjoint collection of cozero sets in X with $F(\alpha) \subset W(\alpha) \subset$ $X(\alpha)$ for every $\alpha \in \operatorname{Succ}(C)$ and also \mathcal{W} covers F. For every $n \in A$,
since $V_{n}(X)$ is stationary and \mathcal{W} is locally finite in X with $W(\alpha) \subset$ $X(\alpha)(\alpha \in \operatorname{Succ}(C))$, we can find $\alpha_{n}<\omega_{1}$ with $X_{\{n\}}^{\left(\alpha_{n}, \omega_{1}\right)} \cap(\cup \mathcal{W})=\emptyset$. Letting $\alpha^{*}=\sup \left\{\alpha_{n}: n \in A\right\}$, we see $X_{A}^{\left(\alpha^{*}, \omega_{1}\right)} \cap(\bigcup \mathcal{W})=\emptyset$. For every $\alpha \in \operatorname{Succ}(C)$, using the normality of $X(\alpha)$, take an open set $U(\alpha)$ of $X(\alpha)$ with $F(\alpha) \subset U(\alpha) \subset \mathrm{Cl}_{X(\alpha)} U(\alpha) \subset W(\alpha)$. Since \mathcal{W} is locally finite, we have $X_{A}^{\left(\alpha^{*}, \omega_{1}\right)} \cap \mathrm{Cl}_{X}\left(\bigcup_{\alpha \in \operatorname{Succ}(C)} U(\alpha)\right)=\emptyset$. Now letting $U=X^{\left(\alpha^{*}, \omega_{1}\right)} \cap\left(\bigcup_{\alpha \in \operatorname{Succ}(C)} U(\alpha)\right), U$ and $X^{\left(\alpha^{*}, \omega_{1}\right)} \backslash \mathrm{Cl}_{X^{\left(\alpha^{*}, \omega_{1}\right)}} U$ separate $X^{\left(\alpha^{*}, \omega_{1}\right)} \cap F$ and $X^{\left(\alpha^{*}, \omega_{1}\right)} \cap \mathrm{Cl}_{X} X_{A}$.
"if" part: Assume that if $V_{\omega}(X)$ is not stationary in ω_{1}, then $\mathrm{Cl}_{X} X_{A}$ and F are almost separated. We will see that F is P-embedded in X.

First assume that $V_{\omega}(X)$ is stationary in ω_{1} and \mathcal{U} is a locally finite cozero cover of F. Since F is closed in the collectionwise normal space $X_{\{\omega\}}$, one can fix a locally finite cozero cover \mathcal{U}^{\prime} of $X_{\{\omega\}}$ such that $\mathcal{U}^{\prime} \upharpoonright F$ refines \mathcal{U}. Since $X_{\{\omega\}}$ is homeomorphic to the stationary set $V_{\omega}(X)$, it follows from Lemmas 1.4 and 1.5 that there are $U \in \mathcal{U}^{\prime}$ and $\alpha^{*}<\omega_{1}$ with $X_{\{\omega\}}^{\left(\alpha^{*}, \omega_{1}\right)} \subset U$. On the other hand, since $X^{\left[0, \alpha^{*}\right]}$ is collectionwise normal, we can find a locally finite cozero cover \mathcal{V}_{0} of $X^{\left[0, \alpha^{*}\right]}$ such that $\mathcal{V}_{0} \upharpoonright X_{\{\omega\}}^{\left[0, \alpha^{*}\right]}$ refines \mathcal{U}^{\prime} hence $\mathcal{V}_{0} \upharpoonright F^{\left[0, \alpha^{*}\right]}$ refines \mathcal{U}. Now $\mathcal{V}:=\mathcal{V}_{0} \cup\left\{X^{\left(\alpha^{*}, \omega_{1}\right)}\right\}$ is a locally finite cozero cover of X such that $\mathcal{V} \upharpoonright F$ refines \mathcal{U}.

Next assume that $V_{\omega}(X)$ is not stationary in ω_{1}. By the assumption, we can fix $\alpha^{*}<\omega_{1}$ and an open set W in $X^{\left(\alpha^{*}, \omega_{1}\right)}$ such that

$$
X^{\left(\alpha^{*}, \omega_{1}\right)} \cap F \subset W \subset \mathrm{Cl}_{X^{\left(\alpha^{*}, \omega_{1}\right)}} W \subset X^{\left(\alpha^{*}, \omega_{1}\right)} \backslash \mathrm{Cl}_{X} X_{A}
$$

Since $X^{\left[0, \alpha^{*}\right]}$ is collectionwise normal, as above, it suffices to verify the following claim.

Claim. $F^{\left(\alpha^{*}, \omega_{1}\right)}$ is P-embedded in $X^{\left(\alpha^{*}, \omega_{1}\right)}$.
Proof. Let \mathcal{U} be a locally finite cozero cover of $F^{\left(\alpha^{*}, \omega_{1}\right)}$ and take a club set C in ω_{1} disjoint from $V_{\omega}(X) \cup\left(\bigcup_{n \in \omega \backslash A} V_{n}(X)\right)$. For each $\alpha \in$ $\operatorname{Succ}(C)$, set $F(\alpha)=F^{\left(\alpha^{*}, \omega_{1}\right) \cap\left(p_{C}(\alpha), \alpha\right]}$ and $X(\alpha)=X^{\left(\alpha^{*}, \omega_{1}\right) \cap\left(p_{C}(\alpha), \alpha\right]}$. Obviously $F^{\left(\alpha^{*}, \omega_{1}\right)}$ can be represented as the topological sum $F^{\left(\alpha^{*}, \omega_{1}\right)}=$ $\bigoplus_{\alpha \in \operatorname{Succ}(C)} F(\alpha)$. For each $\alpha \in \operatorname{Succ}(C)$, since $F(\alpha)$ is a closed subspace of the collectionwise normal clopen subspace $X(\alpha)$ of X, we can take a locally finite cozero cover \mathcal{V}_{α} of $X(\alpha)$ such that $\mathcal{V}_{\alpha} \upharpoonright F(\alpha)$ refines \mathcal{U}, moreover we can take a cozero set V_{α} in $X(\alpha)$ (hence in X) such that $F(\alpha) \subset V_{\alpha} \subset W \cap X_{\alpha}$ and let $\mathcal{V}_{\alpha}^{\prime}=\left\{V \cap V_{\alpha}: V \in \mathcal{V}_{\alpha}\right\}$. Then $\mathcal{V}_{\alpha}^{\prime}$ is a locally finite collection of cozero sets in X with $F(\alpha) \subset \bigcup \mathcal{V}_{\alpha}^{\prime} \subset X(\alpha)$ such that $\mathcal{V}_{\alpha}^{\prime} \upharpoonright F(\alpha)$ refines \mathcal{U}. Now let $\mathcal{V}^{\prime}=\bigcup_{\alpha \in \operatorname{Succ}(C)} \mathcal{V}_{\alpha}^{\prime}$, then we
see $\bigcup \mathcal{V}^{\prime} \subset W$ and that \mathcal{V}^{\prime} is a collection of cozero sets in $X^{\left(\alpha^{*}, \omega_{1}\right)}$ with $F^{\left(\alpha^{*}, \omega_{1}\right)} \subset \bigcup \mathcal{V}^{\prime}$. We show:
Fact. \mathcal{V}^{\prime} is locally finite in $X^{\left(\alpha^{*}, \omega_{1}\right)}$.
Proof. It suffices to see that $\left\{V_{\alpha}: \alpha \in \operatorname{Succ}(C)\right\}$ is locally finite in $X^{\left(\alpha^{*}, \omega_{1}\right)}$. So let $x \in X^{\left(\alpha^{*}, \omega_{1}\right)}$. When $x \in X_{\{\omega\}}^{\left(\alpha^{*}, \omega_{1}\right)}$, say $x=\langle\omega, \gamma\rangle$, we can fix $\alpha \in \operatorname{Succ}(C)$ with $p_{C}(\alpha)<\gamma<\alpha$. Then $X(\alpha)$ is a neighborhood of x meeting at most one member of $\left\{V_{\alpha}: \alpha \in \operatorname{Succ}(C)\right\}$.

Now assume $x \in X_{\omega}^{\left(\alpha^{*}, \omega_{1}\right)}$, say $x=\langle n, \gamma\rangle$ for some $n \in \omega$. When $n \in \omega \backslash A$, by $C \cap V_{n}(X)=\emptyset$, we can fix $\alpha \in \operatorname{Succ}(C)$ with $p_{C}(\alpha)<$ $\gamma<\alpha$. Then as above, $X(\alpha)$ is a neighborhood of x meeting at most one member of $\left\{V_{\alpha}: \alpha \in \operatorname{Succ}(C)\right\}$. When $n \in A$, by $x \in X_{\{n\}}^{\left(\alpha^{*}, \omega_{1}\right)} \subset$ $X_{A}^{\left(\alpha^{*}, \omega_{1}\right)} \subset X_{A} \subset \mathrm{Cl}_{X} X_{A}$, we see $x \notin \mathrm{Cl}_{X^{\left(\alpha^{*}, \omega_{1}\right)}} W$. It follows from $\bigcup \mathcal{V}^{\prime} \subset W$ that $X^{\left(\alpha^{*}, \omega_{1}\right)} \backslash \mathrm{Cl}_{X^{\left(\alpha^{*}, \omega_{1}\right)}} W$ is a neighborhood of x meeting no members of $\left\{V_{\alpha}: \alpha \in \operatorname{Succ}(C)\right\}$. This completes the proof of Fact.

Now since $X_{\omega}^{\left(\alpha^{*}, \omega_{1}\right)}$ is cozero in $X^{\left(\alpha^{*}, \omega_{1}\right)}, \mathcal{V}^{\prime} \cup\left\{X_{\omega}^{\left(\alpha^{*}, \omega_{1}\right)}\right\}$ witnesses the P-embedding of $F^{\left(\alpha^{*}, \omega_{1}\right)}$ in $X^{\left(\alpha^{*}, \omega_{1}\right)}$. This completes the proof of Claim.

Corollary 2.2. Let X be a subspace of $(\omega+1) \times \omega_{1}$ and $A=\{n \in$ $\omega: V_{n}(X)$ is stationary in $\left.\omega_{1}\right\}$. Then $X_{\{\omega\}}$ is P-embedded in X if and only if, if $V_{\omega}(X)$ is not stationary in ω_{1}, then $V_{\omega}\left(\mathrm{Cl}_{X} X_{A}\right)$ is bounded in ω_{1}.

Proof. "only if" part: Assume that $X_{\{\omega\}}$ is P-embedded in X and $V_{\omega}(X)$ is not stationary. By Lemma 2.1, $\mathrm{Cl}_{X} X_{A}$ and $X_{\{\omega\}}$ are almost separated, in particular, $X^{\left(\alpha^{*}, \omega_{1}\right)} \cap \mathrm{Cl}_{X} X_{A}$ and $X^{\left(\alpha^{*}, \omega_{1}\right)} \cap X_{\{\omega\}}$ are separated in $X^{\left(\alpha^{*}, \omega_{1}\right)}$ for some $\alpha^{*}<\omega_{1}$, which implies that $V_{\omega}\left(\mathrm{Cl}_{X} X_{A}\right)$ is bounded in ω_{1}.
"if" part: Assume that if $V_{\omega}(X)$ is not stationary in ω_{1}, then $V_{\omega}\left(\mathrm{Cl}_{X} X_{A}\right)$ is bounded in ω_{1}. By Lemma 2.1, it suffices to check that if $V_{\omega}(X)$ is not stationary in ω_{1}, then $\mathrm{Cl}_{X} X_{A}$ and $X_{\{\omega\}}$ are almost separated. So assume that $V_{\omega}(X)$ is not stationary, then by our assumption, $X^{\left(\alpha^{*}, \omega_{1}\right)} \cap \mathrm{Cl}_{X} X_{A}$ and $X_{\{\omega\}}^{\left(\alpha^{*}, \omega_{1}\right)}$ are disjoint for some $\alpha^{*}<\omega_{1}$. From $X^{\left(\alpha^{*}, \omega_{1}\right)} \cap \mathrm{Cl}_{X} X_{A}=\mathrm{Cl}_{X^{\left(\alpha^{*}, \omega_{1}\right)}} X_{A}^{\left(\alpha^{*}, \omega_{1}\right)}$, it suffices to verify the following claim.
Claim. $X_{A}^{\left(\alpha^{*}, \omega_{1}\right)}$ is clopen in $X^{\left(\alpha^{*}, \omega_{1}\right)}$.
Proof. Since A is open in $\omega+1, X_{A}^{\left(\alpha^{*}, \omega_{1}\right)}$ is open in $X^{\left(\alpha^{*}, \omega_{1}\right)}$. Let $y \in \mathrm{Cl}_{X^{\left(\alpha^{*}, \omega_{1}\right)}} X_{A}^{\left(\alpha^{*}, \omega_{1}\right)}$. Because $X^{\left(\alpha^{*}, \omega_{1}\right)} \cap \mathrm{Cl}_{X} X_{A}$ and $X_{\{\omega\}}^{\left(\alpha^{*}, \omega_{1}\right)}$ are
disjoint and $y \in X^{\left(\alpha^{*}, \omega_{1}\right)} \cap \mathrm{Cl}_{X} X_{A}$, we see $y \in X_{\omega}^{\left(\alpha^{*}, \omega_{1}\right)}$. Since each $X_{\{n\}}^{\left(\alpha^{*}, \omega_{1}\right)}$ is open in $X^{\left(\alpha^{*}, \omega_{1}\right)}$, so we must have $y \in X_{A}^{\left(\alpha^{*}, \omega_{1}\right)}$, thus $X_{A}^{\left(\alpha^{*}, \omega_{1}\right)}$ is closed. This completes the proof of the claim.

3. C^{*}-Embedding in Special Subspaces of $(\omega+1) \times \omega_{1}$

In this section, we consider C^{*}-embedding in certain type of subspaces of $(\omega+1) \times \omega_{1}$.

Definition 3.1. Let \mathcal{N} be a sequence in $[\omega]^{\omega}$ of length ω_{1}, say $\mathcal{N}=$ $\left\{N(\alpha): \alpha<\omega_{1}\right\}$. The subspace $X_{\mathcal{N}}$ of $(\omega+1) \times \omega_{1}$ is defined as follows:

$$
X_{\mathcal{N}}=\omega \times \operatorname{Lim} \cup\left(\bigcup_{\alpha<\omega_{1}}(N(\alpha) \cup\{\omega\}) \times\{\alpha+1\}\right)
$$

This type of subspaces of $(\omega+1) \times \omega_{1}$ is first discussed in [15]. Throughout the rest of this section, let $X=X_{\mathcal{N}}$ and $A=\{n \in \omega$: $V_{n}(X)$ is stationary in $\left.\omega_{1}\right\}$. First note that the subspace $X_{\{\omega\}}(=\{\omega\} \times$ Succ) of X is closed and discrete in X and $A=\omega$. So Corollary 2.2 yields:

Corollary 3.2. $X_{\{\omega\}}$ is not P-embedded in X.
Moreover we check:
Lemma 3.3. X is not normal.
Proof. Obviously $X_{\{\omega\}}$ and $X^{\text {Lim }}$ are disjoint closed sets, we will see that they cannot be separated. So let U be an open set in X containing X^{Lim}. For every $n \in \omega$, by $\operatorname{Lim} \subset V_{n}(X)$ and the PDL, we can fix $\alpha_{n}<\omega_{1}$ with $X_{\{n\}}^{\left(\alpha_{n}, \omega_{1}\right)} \subset U$. Letting $\alpha^{*}=\sup \left\{\alpha_{n}: n \in \omega\right\}$, we see $X_{\omega}^{\left(\alpha^{*}, \omega_{1}\right)} \subset U$. Pick $\alpha<\omega_{1}$ with $\alpha^{*} \leq \alpha$. Because $X_{\omega}^{\{\alpha+1\}}=N(\alpha) \times$ $\{\alpha+1\} \subset X_{\omega}^{\left(\alpha^{*}, \omega_{1}\right)} \subset U$ holds and $N(\alpha)$ is infinite, we see $\langle\omega, \alpha+1\rangle \in$ $\mathrm{Cl}_{X} U \cap X_{\{\omega\}}$. Therefore $X_{\{\omega\}}$ and X^{Lim} cannot be separated.

The proof of the above lemma also shows that $X_{\{\omega\}} \cup X^{\text {Lim }}$ is a closed subspace of X which is not C^{*}-embedded in X. In the following lemma, we characterize that the closed subspace $X_{\{\omega\}}$ is C^{*}-embedded in X.

Lemma 3.4. For the space $X=X_{\mathcal{N}}$ above with $\mathcal{N}=\left\{N(\alpha): \alpha<\omega_{1}\right\}$, the following are equivalent:
(1) the closed subspace $X_{\{\omega\}}$ is C^{*}-embedded in X,
(2) for every function $h: \omega_{1} \rightarrow 2$, where $2=\{0,1\}$, there is a sequence $\left\{r_{n}: n \in \omega\right\} \subset \mathbb{I}$ such that for every $i \in 2$, except for countably many $\alpha \in h^{-1}[\{i\}],\left\{r_{n}: n \in N(\alpha)\right\}$ converges to i in the usual sense, that is, for every $\varepsilon>0$, there is $m \in \omega$ such that for every $n \in N(\alpha) \cap(m, \omega),\left|r_{n}-i\right|<\varepsilon$ holds,
(3) for every function $h: \omega_{1} \rightarrow 2$, there is a function $k: \omega \rightarrow 2$ such that for every $i \in 2$, except for countably many $\alpha \in h^{-1}[\{i\}]$, $N(\alpha) \subset^{*} k^{-1}[\{i\}]$ holds, that is, $N(\alpha) \backslash k^{-1}[\{i\}]$ is finite,
(4) for every $H \subset \omega_{1}$, there is $K \subset \omega$ such that both of the following hold:
(a) except for countably many $\alpha \in H, N(\alpha) \subset^{*} K$ holds,
(b) except for countably many $\alpha \in \omega_{1} \backslash H, N(\alpha) \subset^{*} \omega \backslash K$ holds.

Proof. (1) \Rightarrow (2): Let $X_{\{\omega\}}$ be C^{*}-embedded in X and $h: \omega_{1} \rightarrow 2$. The function $f: X_{\{\omega\}} \rightarrow 2$ defined by:

$$
f(\langle\omega, \alpha+1\rangle)=i \text { if } \alpha \in h^{-1}[\{i\}]
$$

is continuous, because $X_{\{\omega\}}$ is discrete. Since $X_{\{\omega\}}$ is C^{*}-embedded in X, we can find a continuous function $g: X \rightarrow \mathbb{I}$ with $g \upharpoonright X_{\{\omega\}}=f$. For every $n \in \omega$, by the stationarity of $V_{n}(X)$, we can find $\alpha_{n}<\omega_{1}$ and $r_{n} \in \mathbb{I}$ such that the restriction $g \upharpoonright X_{\{n\}}^{\left(\alpha_{n}, \omega_{1}\right)}$ is constant taking the value r_{n}. Let $\alpha^{*}=\sup \left\{\alpha_{n}: n \in \omega\right\}$. It suffices to see the following claim.

Claim 1. For every $i \in 2$ and $\alpha \in h^{-1}[\{i\}] \cap\left(\alpha^{*}, \omega_{1}\right)$, the sequence $\left\{r_{n}: n \in N(\alpha)\right\}$ converges to i.
Proof. Let $i \in 2, \alpha \in h^{-1}[\{i\}] \cap\left(\alpha^{*}, \omega_{1}\right)$ and $\varepsilon>0$. Since g is continuous at $\langle\omega, \alpha+1\rangle$ and $g(\langle\omega, \alpha+1\rangle)=f(\langle\omega, \alpha+1\rangle)=i$, there is $m \in \omega$ with $g[((N(\alpha) \cap(m, \omega)) \cup\{\omega\})) \times\{\alpha+1\}] \subset(i-\varepsilon, i+\varepsilon)$. Now for every $n \in N(\alpha) \cap(m, \omega)$, we have $\left|r_{n}-i\right|=|g(\langle n, \alpha+1\rangle)-i|<\varepsilon$. This completes the proof of Claim 1.
$(2) \Rightarrow(3)$: Assume (2) and let $h: \omega_{1} \rightarrow 2$. We can take a sequence $\left\{r_{n}: n \in \omega\right\} \subset \mathbb{I}$ and $\alpha^{*}<\omega_{1}$ such that for every $i \in 2$ and $\alpha \in$ $h^{-1}[\{i\}] \cap\left(\alpha^{*}, \omega_{1}\right),\left\{r_{n}: n \in N(\alpha)\right\}$ converges to i. Take a function $k: \omega \rightarrow 2$ with $\left\{n \in \omega: r_{n}<\frac{1}{3}\right\} \subset k^{-1}[\{0\}]$ and $\left\{n \in \omega: r_{n}>\right.$ $\left.\frac{2}{3}\right\} \subset k^{-1}[\{1\}]$ Since for every $\alpha \in h^{-1}[\{0\}] \cap\left(\alpha^{*}, \omega_{1}\right),\left\{r_{n}: n \in N(\alpha)\right\}$ converges to 0 , we can find $m \in \omega$ such that $N(\alpha) \cap(m, \omega) \subset k^{-1}[\{0\}]$, thus we see $N(\alpha) \subset^{*} k^{-1}[\{0\}]$. Similarly for every $\alpha \in h^{-1}[\{1\}] \cap$ $\left(\alpha^{*}, \omega_{1}\right)$, we see $N(\alpha) \subset^{*} k^{-1}[\{1\}]$.

The equivalence (3) \Leftrightarrow (4) follows from the identifications $H=$ $h^{-1}[\{1\}]$ and $K=k^{-1}[\{1\}]$.
$(3) \Rightarrow(1)$: Assume (3). To see (1), let \mathcal{U} be a two elements cozero cover of $X_{\{\omega\}}$. Since $X_{\{\omega\}}$ is discrete, we may assume $\mathcal{U}=\left\{U_{0}, U_{1}\right\}$ with $U_{i}=\left\{\langle\omega, \alpha+1\rangle: \alpha \in h^{-1}[\{i\}]\right\}(i \in 2)$ for some function $h: \omega_{1} \rightarrow 2$. For this h, take a function $k: \omega \rightarrow 2$ in (3). Take $\alpha^{*}<\omega_{1}$ such that for every $i \in 2$ and $\alpha \in h^{-1}[\{i\}] \cap\left(\alpha^{*}, \omega_{1}\right), N(\alpha) \subset^{*} k^{-1}[\{i\}]$ holds. Since $X^{\left[0, \alpha^{*}\right]}$ is collectionwise normal, it suffices to find a locally finite cozero cover \mathcal{V} of $X^{\left(\alpha^{*}, \omega_{1}\right)}$ such that $\mathcal{V} \upharpoonright X_{\{\omega\}}^{\left(\alpha^{*}, \omega_{1}\right)}$ refines \mathcal{U}. Define a function $g: X^{\left(\alpha^{*}, \omega_{1}\right)} \rightarrow \mathbb{I}$ by the following clauses:
(a) if $x=\langle\omega, \alpha+1\rangle$ for some $\alpha \in h^{-1}[\{i\}] \cap\left[\alpha^{*}, \omega_{1}\right)$, then $g(x)=i$,
(b) if $x \in X_{\{n\}}^{\left(\alpha^{*}, \omega_{1}\right)}$ for some $n \in k^{-1}[\{0\}]$, then $g(x)=\frac{1}{n}$,
(c) if $x \in X_{\{n\}}^{\left(\alpha^{*}, \omega_{1}\right)}$ for some $n \in k^{-1}[\{1\}]$, then $g(x)=1-\frac{1}{n}$.

We check:
Claim 2. The above function g is continuous.
Proof. Let $x \in X^{\left(\alpha^{*}, \omega_{1}\right)}$ and $\varepsilon>0$. Whenever $x \in X_{\{n\}}^{\left(\alpha^{*}, \omega_{1}\right)}$ for some $n \in \omega$, the set $X_{\{n\}}^{\left(\alpha^{*}, \omega_{1}\right)}$ is a clopen neighborhood of x on which g is constant. So we assume $x \in X_{\{\omega\}}^{\left(\alpha^{*}, \omega_{1}\right)}$. We may assume $x=\langle\omega, \alpha+1\rangle$ with $\alpha \in h^{-1}[\{0\}] \cap\left[\alpha^{*}, \omega_{1}\right)$. From $g(x)=0$ and $N(\alpha) \subset^{*} k^{-1}[\{0\}]$, we can find $m^{\prime} \in \omega$ with $N(\alpha) \cap\left(m^{\prime}, \omega\right) \subset k^{-1}[\{0\}]$. Taking $m \in \omega$ with $m^{\prime} \leq m$ and $\frac{1}{m}<\varepsilon$, let $W=((N(\alpha) \cap(m, \omega) \cup\{\omega\})) \times\{\alpha+1\}$. Obviously W is a clopen neighborhood of x. If $y \in W \backslash\{x\}$, then $y=\langle n, \alpha+1\rangle$ holds for some $n \in N(\alpha) \cap(m, \omega)$. Now by $n \in k^{-1}[\{0\}]$, we see $g(y)=\frac{1}{n}<\frac{1}{m}<\varepsilon$, so g is continuous at x. This completes the proof of the claim.

Now the collection $\mathcal{V}=\left\{g^{-1}\left[\left[0, \frac{2}{3}\right)\right], g^{-1}\left[\left(\frac{1}{3}, 1\right]\right]\right\}$ is the desired cozero cover of $X^{\left(\alpha^{*}, \omega_{1}\right)}$.

Definition 3.5. Property (A) means the following property.
[Property (A)] There is a sequence $\mathcal{N} \subset[\omega]^{\omega}$ of length ω_{1}, say $\mathcal{N}=$ $\left\{N(\alpha): \alpha<\omega_{1}\right\}$, which satisfies (4) (equivalently (1), (2) and (3)) of Lemma 3.4, that is, for every $H \subset \omega_{1}$, there is $K \subset \omega$ such that both of the following hold:
(1) except for countably many $\alpha \in H, N(\alpha) \subset^{*} K$ holds,
(2) except for countably many $\alpha \in \omega_{1} \backslash H, N(\alpha) \subset^{*} \omega \backslash K$ holds,

In the next section, we will discuss the consistency of Property (A).

4. Consistency

A subcollection \mathcal{A} of the collection $[\omega]^{\omega}$ is called almost disjoint if for every distinct pair $A, B \in \mathcal{A}$, the intersection $A \cap B$ is finite, see [27, II,

Definition 1.1]. Note that all maximal almost disjoint collections are uncountable, see [27, II, Theorem 1.2 (a)]. Dow and Shelah proved in [3] the following.
Proposition 4.1. [3, Theorem 2.1] It is consistent with Martin's axiom and $2^{\omega}=\omega_{2}$ that there is a maximal almost disjoint collection \mathcal{A} such that for every disjoint pair \mathcal{A}_{0} and \mathcal{A}_{1} with $\mathcal{A}_{0}, \mathcal{A}_{1} \subset \mathcal{A}$, there is $K \subset \omega$ satisfying both of the following:
(a) $A \subset^{*} K$ holds for every $A \in \mathcal{A}_{0}$,
(b) $A \subset^{*} \omega \backslash K$ holds for every $A \in \mathcal{A}_{1}$.

We remark that if Martin's axiom and $2^{\omega}=\omega_{2}$ are assumed, then $2^{\omega}=2^{\omega_{1}}$ holds, see [27, II, Theorem 2.18]. In the above proposition, taking a sequence $\mathcal{N}\left(=\left\{N(\alpha): \alpha<\omega_{1}\right\}\right)$ of length ω_{1} from \mathcal{A}, we see that \mathcal{N} satisfies (4) of Lemma 3.4. Using Corollary 2.2, we have:

Theorem 4.2. It is consistent with ZFC that Property (A) holds, therefore there is a subspace X of $(\omega+1) \times \omega_{1}$ such that the closed subspace $X_{\{\omega\}}$ of X is C^{*}-embedded in X but not P-embedded in X.

We will see that the negation of Property (A) is also consistent with ZFC. In fact, we have the following.
Theorem 4.3. If $2^{\omega}<2^{\omega_{1}}$ is assumed, then for every subspace X of $(\omega+1) \times \omega_{1}$, if $X_{\{\omega\}}$ is C^{*}-embedded in X, then it is P-embedded in X. Therefore $2^{\omega}<2^{\omega_{1}}$ implies the negation of Property (A).
Proof. Assume $2^{\omega}<2^{\omega_{1}}$ and $X \subset(\omega+1) \times \omega_{1}$. Moreover assume that $X_{\{\omega\}}$ is C^{*}-embedded in X. From Corollary 2.2, assuming that $V_{\omega}(X)$ is not stationary, it suffices to see that $V_{\omega}\left(\mathrm{Cl}_{X} X_{A}\right)$ is bounded in ω_{1}, where $A=\left\{n \in \omega: V_{n}(X)\right.$ is stationary in $\left.\omega_{1}\right\}$. So assume that $V_{\omega}(X)$ is not stationary but $V_{\omega}\left(\mathrm{Cl}_{X} X_{A}\right)$ is unbounded, we will derive a contradiction. Take a club set C^{\prime} of ω_{1} disjoint from $V_{\omega}(X) \cup$ $\left(\bigcup_{n \in \omega \backslash A} V_{n}(X)\right)$. For every $\alpha<\omega_{1}$, take $g(\alpha) \in V_{\omega}\left(\mathrm{Cl}_{X} X_{A}\right)$ with $\alpha<$ $g(\alpha)$ and let $C=C^{\prime} \cap\left\{\alpha<\omega_{1}: \forall \beta<\alpha(g(\beta)<\alpha)\right\}$. Obviously from Lemma 1.6, C is also a club set in ω_{1} having the following property:

- C is disjoint from $V_{\omega}(X) \cup\left(\bigcup_{n \in \omega \backslash A} V_{n}(X)\right)$,
- for every $\alpha \in \operatorname{Succ}(C), \mathrm{Cl}_{X} X_{A} \cap X_{\{\omega\}}^{\left(p_{C}(\alpha), \alpha\right]} \neq \emptyset$.

Then $X_{\{\omega\}}$ can be represented as $X_{\{\omega\}}=\bigoplus_{\alpha \in \operatorname{Succ}(C)} X_{\{\omega\}}^{\left(p_{C}(\alpha), \alpha\right]}$. For every $\alpha \in \operatorname{Succ}(C)$, fix $x_{\alpha} \in \mathrm{Cl}_{X} X_{A} \cap X_{\{\omega\}}^{\left(p_{C}(\alpha), \alpha\right]}$. Because of the first countability of X, for every $\alpha \in \operatorname{Succ}(C)$, we can fix a non-decreasing sequence $\left\{\gamma_{\alpha}(n): n \in \omega\right\}$ in ω_{1} with $p_{C}(\alpha)<\gamma_{\alpha}(0)$ and a strictly increasing sequence $N(\alpha):=\left\{m_{\alpha}(n): n \in \omega\right\}$ in A such that $\left\{y_{\alpha}(n)\right.$: $n \in \omega\}$ converges to x_{α}, where $y_{\alpha}(n)=\left\langle m_{\alpha}(n), \gamma_{\alpha}(n)\right\rangle$.

For every subset H of $\operatorname{Succ}(C)$, let $U(H)=\bigcup_{\alpha \in H} X_{\{\omega\}}^{\left(p_{C}(\alpha), \alpha\right]}$. Now fix $H \subset \operatorname{Succ}(C)$. Then since $\{U(H), U(\operatorname{Succ}(C) \backslash H)\}$ is a disjoint clopen cover of the C^{*}-embedded subspace $X_{\{\omega\}}$, we can find a continuous function $f_{H}: X \rightarrow \mathbb{I}$ such that $f_{H}(x)=0\left(f_{H}(x)=1\right)$ whenever $x \in U(H)(x \in U(\operatorname{Succ}(C) \backslash H)$, respectively). For every $n \in A$, since $V_{n}(X)$ is stationary and f_{H} is continuous, we can fix $\beta_{n}<\omega_{1}$ and $r_{n} \in \mathbb{I}$ such that f_{H} is constant on $X_{\{n\}}^{\left(\beta_{n}, \omega_{1}\right)}$ taking value r_{n}. Letting $\beta^{*}=\sup \left\{\beta_{n}: n \in A\right\}$, for every $\alpha \in \operatorname{Succ}(C)$ with $\beta^{*} \leq p_{C}(\alpha)$, since f_{H} is continuous at x_{α} and $\left\{y_{\alpha}(n): n \in \omega\right\}$ converges to x_{α}, we can find $n_{\alpha} \in \omega$ such that:
(1) whenever $\alpha \in H, f_{H}\left(y_{\alpha}(n)\right)<\frac{1}{3}$ holds for every $n \in \omega$ with $n_{\alpha} \leq n$,
(2) whenever $\alpha \in \operatorname{Succ}(C) \backslash H, f_{H}\left(y_{\alpha}(n)\right)>\frac{2}{3}$ holds for every $n \in \omega$ with $n_{\alpha} \leq n$.
Because of $\beta^{*} \leq p_{C}(\alpha)$, notice $f_{H}\left(y_{\alpha}(n)\right)=r_{m_{\alpha}(n)}$ in the clauses (1) and (2) above. Now let $K_{H}=\left\{m \in A: r_{m}<\frac{1}{3}\right\}$. Then from (1), we see that for every $\alpha \in \operatorname{Succ}(C)$ with $\beta^{*} \leq p_{C}(\alpha)$, if $\alpha \in H$, then $N(\alpha) \subset^{*} K_{H}$ holds. Also from (2), we see that for every $\alpha \in \operatorname{Succ}(C)$ with $\beta^{*} \leq p_{C}(\alpha)$, if $\alpha \in \operatorname{Succ}(C) \backslash H$, then $N(\alpha) \subset^{*} A \backslash K_{H}$ holds. Thus for every $H \subset \operatorname{Succ}(C)$, we have shown:
(a) except for countably many $\alpha \in H, N(\alpha) \subset^{*} K_{H}$ holds,
(b) except for countably many $\alpha \in \operatorname{Succ}(C) \backslash H, N(\alpha) \subset^{*} A \backslash K_{H}$ holds.
Now let $\left\{H_{\xi}: \xi<2^{\omega_{1}}\right\}$ be an independent collection of subsets of $\operatorname{Succ}(C)$, that is, for distinct $\xi_{1}, \ldots, \xi_{m}, \zeta_{1}, \ldots, \zeta_{n}<2^{\omega_{1}}$, the set

$$
H_{\xi_{1}} \cap \cdots \cap H_{\xi_{m}} \cap\left(\operatorname{Succ}(C) \backslash H_{\zeta_{1}}\right) \cap \cdots \cap\left(\operatorname{Succ}(C) \backslash H_{\zeta_{n}}\right)
$$

is uncountable, see [27, VIII Exercises A6]. Letting $K_{\xi}=K_{H_{\xi}}$ for each $\xi<2^{\omega_{1}}$, the following claim yields a contradiction, because A is countable and $2^{\omega}<2^{\omega_{1}}$ is assumed.

Claim. If $\xi<\zeta<2^{\omega_{1}}$, then $K_{\xi} \neq K_{\zeta}$.
Proof. Fix $\alpha^{*}<\omega_{1}$ with
(a) $)_{\xi} N(\alpha) \subset^{*} K_{\xi}$ holds for every $\alpha \in H_{\xi}$ with $\alpha^{*} \leq \alpha$,
(b) ${ }_{\xi} N(\alpha) \subset^{*} A \backslash K_{\xi}$ holds for every $\alpha \in \operatorname{Succ}(C) \backslash H_{\xi}$ with $\alpha^{*} \leq \alpha$,
(a) $\zeta_{\zeta} N(\alpha) \subset^{*} K_{\zeta}$ holds for every $\alpha \in H_{\zeta}$ with $\alpha^{*} \leq \alpha$,
(b) $\zeta_{\zeta} N(\alpha) \subset^{*} A \backslash K_{\zeta}$ holds for every $\alpha \in \operatorname{Succ}(C) \backslash H_{\zeta}$ with $\alpha^{*} \leq \alpha$.

Since $H_{\xi} \cap\left(\operatorname{Succ}(C) \backslash H_{\zeta}\right)$ is uncountable, take $\alpha \in H_{\xi} \backslash H_{\zeta}$ with $\alpha^{*} \leq \alpha$. From $(\mathrm{a})_{\xi}$, we have $N(\alpha) \subset^{*} K_{\xi}$. Moreover from $(\mathrm{b})_{\zeta}$, we
have $N(\alpha) \subset^{*} A \backslash K_{\zeta}$. Since $N(\alpha)$ is infinite, we have $K_{\xi} \neq K_{\zeta}$. This completes the proof of the claim.

Using Corollary 3.2 and Lemma 3.4, we see that $2^{\omega}<2^{\omega_{1}}$ implies the negation of Property (A).

Finally we ask:
Question 4.4. Is it consistent with ZFC that for every subspace X of $(\omega+1) \times \omega_{1}$ and every closed subspace F of X, F is P-embedded in X whenever it is C^{*}-embedded in X ?

Acknowledgement

The authors would like to express their gratitude to the referee for his many helpful comments and suggestions.

References

[1] R. A. Alo and H. L. Shapiro, Normal Topological Space, Cambridge University Press, London, 1974.
[2] C. H. Dowker, On a theorem of Hanner, Acta. Mat. 2 (1952), 303-313.
[3] A. Dow and S. Shelah, Martin's axiom and separated mad families, Rend. Circ. Mat. Palermo, 61 (2012), no. 1, 107-115.
[4] R. Engelking, General Topology-Revised and completed ed.. Heldermann Verlag, Berlin (1989).
[5] W. G. Fleissner, N. Kemoto and J. Terasawa, Strong zero-dimensionality of Products of Ordinals, Top. Appl., 132 (2003), 109-127.
[6] R. Frič and N. Kemoto, Sequential completeness of products of ordinals, Czec. Math. 49 (1999) 119-125.
[7] Y. Hirata and N. Kemoto, Separating by G_{δ}-sets in finite powers of ω_{1}, Fund. Math., 177 (2003) 83-94
[8] Y. Hirata and N. Kemoto, The hereditarily collectionwise Hausdorff property in products of ω_{1}, Top. Proc., 29 (2005) 167-173.
[9] Y. Hirata and N. Kemoto, Mild normality of finite products of subspaces of ω_{1}, Top. Appl., 153 (2006) 1203-1213.
[10] Y. Hirata and Y. Yajima, C^{*}-embedding implies P-embedding in products of ordinals, Top. Appl., 231 (2017), 251-265.
[11] T. Jech, Set Theory. The third millennium edition, revised and expanded, Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2003.
[12] L. Kalantan and N. Kemoto, Mild normality in products of ordinals, Houston J. Math., 29 (2003) 937-947.
[13] N. Kemoto, Normality of products of GO-spaces and cardinals, Top. Proc. 18 (1993) 133-142.
[14] N. Kemoto, Orthocompact subspaces in products of two ordinals, Top. Proc. 22 (1997) 247-264.
[15] N. Kemoto and T. Nogura, Normality and paranormality in product spaces, Top. Appl., 121 (2002) 319-331.
[16] N. Kemoto, T. Nogura and Y. Yajima, Normality and closed projections of products with a cardinal factor, Fund. Math. 151 (1996) 279-297.
[17] N. Kemoto, T. Nogura, K. D. Smith and Y. Yajima, Normal subspaces in products of two ordinals, Top. Appl. 69 (1996) 217-226.
[18] N. Kemoto, H. Ohta and K. Tamano, Products of spaces of ordinal numbers, Top. Appl., 45 (1992) 245-260.
[19] N. Kemoto and K. D. Smith, The product of two ordinals is hereditarily countably metacompact, Top. Appl. 74 (1996) 91-96.
[20] N. Kemoto and K. D. Smith, Hereditarily countable metacompactness in finite and infinite product spaces of ordinals, Top. Appl. 77 (1997) 57-63.
[21] N. Kemoto, K. D. Smith and P. J. Szeptycki, Countable paracompactness versus normality in ω_{1}^{2}, Top. Appl., 104 (2000) 141-154.
[22] N. Kemoto and P. J. Szeptycki, Topological properties of products of ordinals, Top. Appl., 143 (2004), 257-277.
[23] N. Kemoto, K. Tamano and Y. Yajima, Generalized paracompactness of subspaces in products of two ordinals, Top. Appl., 104 (2000) 155-168.
[24] N. Kemoto and Y. Yajima, Orthocompactness in products, Tsukuba J. Math, 16 (1992), 407-422.
[25] N. Kemoto and Y. Yajima, Orthocompactness and normality of products with a cardinal factor, Top. Appl., 49 (1993), 141-148.
[26] N. Kemoto and Y. Yajima, Rectangular products with ordinal factors, Top. Appl., 1545 (2007), 758-770.
[27] K. Kunen, Set Theory, An Introduction to Independence Proofs, Studies in Logic and the Foundations of Mathematics, vol. 102, North-Holland, Amsterdam, 1980.
[28] K. Morita and T. Hoshina, C-embedding and the homotopy extension property, Gene. Topo. Appl., 5 (1975), 69-81.

Department of Mathematics, Oita University, Oita, 870-1192 Japan
E-mail address: nkemoto@cc.oita-u.ac.jp
Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan

E-mail address: usuba@waseda.jp

