C*-EMBEDDING AND P-EMBEDDING IN SUBSPACES OF PRODUCTS OF ORDINALS

NOBUYUKI KEMOTO AND TOSHIMICHI USUBA

ABSTRACT. It is known that in $X = A \times B$, where A and B are subspaces of ordinals, all closed C^* -embedded subspaces of X are P-embedded. Also it is asked whether all closed C^* -embedded subspaces of X are P-embedded whenever X is a subspace of products of two ordinals.

In this paper, we prove that both of the following are consistent with ZFC:

- there is a subspace X of $(\omega + 1) \times \omega_1$ such that the closed subspace $X \cap (\{\omega\} \times \omega_1)$ is C^{*}-embedded in X but not P-embedded in X,
- for every subspace X of (ω + 1) × ω₁, if the closed subspace X ∩ ({ω} × ω₁) is C*-embedded in X, then it is P-embedded in X.

1. INTRODUCTION

A subset F of a space X is C^* -embedded in X if every continuous function from F to the unit interval $\mathbb{I} := [0,1]$ can be continuously extended over X. Also recall that a subset F of a space of X is Pembedded in X if every continuous function from F to a Banach space can be continuously extended over X. We remark that P-embedded subspaces are C^* -embedded and that a clopen subspace F' of a C^* embedded (P-embedded) subspace F of X is also C^* -embedded (Pembedded, respectively) in X. Also it is well known that:

• a space X is normal if and only if all closed subspaces are C^* -embedded [4, Theorem 2.1.8],

• a space X is collectionwise normal if and only if all closed subspaces are P-embedded [2].

Date: July 6, 2022.

2020 Mathematics Subject Classification. 03E10, 03E17, 03E35, 54B10, 54C05, 54C20.

Key words and phrases. C^* -embedding, P-embedding, subspaces of products of ordinals, consistent, $2^{\omega} < 2^{\omega_1}$, almost disjoint family, independent family.

This research was supported by Grant-in-Aid for Scientific Research (C) 21K03339.

Note that both Lindelöf spaces and metrizable spaces are collectionwise normal.

In [10], it is proved that in $X = A \times B$, where A and B are subspaces of ordinals, all closed C^* -embedded subspaces of X are P-embedded and it is asked whether all closed C^* -embedded subspaces of X are P-embedded whenever X is a subspace of the product of two ordinals [10, Question 2].

In this paper, we prove that both of the following are consistent with ZFC:

- there is a subspace X of $(\omega + 1) \times \omega_1$ such that the closed subspace $X \cap (\{\omega\} \times \omega_1)$ is C^{*}-embedded in X but not Pembedded in X,
- for every subspace X of $(\omega + 1) \times \omega_1$, if the closed subspace $X \cap (\{\omega\} \times \omega_1)$ is C*-embedded in X, then it is P-embedded in X.

In the remainder of this section, we prepare basic notions and facts. Spaces are completely regular T_1 topological spaces. For a space X, a subset U is a *cozero-set in* X if $U = h^{-1}[(0, 1]]$ for some continuous function $h: X \to \mathbb{I}$, where (0, 1] denotes the unit half open interval in \mathbb{I} .

A collection \mathcal{U} of subsets of a space X is said to be *locally finite* (*discrete*) in X if every point in X has a neighborhood which meets at most finitely many (one, respectively) members of \mathcal{U} . A subset F of a space X is said to be *discrete* if the collection $\{\{x\} : x \in F\}$ is discrete. Note that the union of a locally finite collection of cozero sets is also a cozero set.

For a collection \mathcal{U} of subsets of X and a subspace F of X, $\mathcal{U} \upharpoonright F$ denotes the set $\{U \cap F : U \in \mathcal{U}\}$. Also $h \upharpoonright F$ denotes the restriction of h to F whenever h is a function on X and $F \subset X$. An open cover \mathcal{U} of subsets of a space X is called a *cozero cover* of X if each member of \mathcal{U} is a cozero-set in X.

There are characterizations of C^* -embedding and P-embedding in terms of cozero covers. We will use these characterizations rather than original definitions.

Proposition 1.1. [28, Lemma 2.1] Let F be a subspace of a space X. Then F is C^* -embedded in X if and only if for every finite (or two elements) cozero cover \mathcal{U} of F, there is a locally finite cozero cover \mathcal{V} of X such that $\mathcal{V} \upharpoonright F$ refines \mathcal{U} , that is, for every $V \in \mathcal{V}$, there is $U \in \mathcal{U}$ with $V \cap F \subset U$.

Proposition 1.2. [1, Theorem 14.7] Let F be a subspace of a space X. Then F is P-embedded in X if and only if for every locally finite

 $\mathbf{2}$

cozero cover \mathcal{U} of F, there is a locally finite cozero cover \mathcal{V} of X such that $\mathcal{V} \upharpoonright F$ refines \mathcal{U} .

The symbols ω and ω_1 denote the first infinite ordinal and the first uncountable ordinal, respectively. The first cardinal exceeding ω_1 is denoted by ω_2 . Also the symbol 2^{ω} (2^{ω_1}) denotes the cardinality of the collection of all subsets of ω (ω_1 , respectively). The symbol $[\omega]^{\omega}$ denotes the set of all infinite subsets of ω . Ordinal numbers have the usual order topologies. A subset *S* of a regular uncountable cardinal κ is called *stationary* if it intersects all closed unbounded (abbreviated as club) subsets of κ . The Pressing Down Lemma (PDL) will be frequently used.

Lemma 1.3. [27, PDL, II Lemma 6.15] Let S be a stationary set in a regular uncountable cardinal κ . If a function $f: S \to \kappa$ is regressive, that is $f(\alpha) < \alpha$ for every $\alpha \in S$, then there are a stationary set $S' \subset S$ and $\gamma < \kappa$ such that $f(\alpha) = \gamma$ for every $\alpha \in S'$.

The following are easy consequences of the PDL.

Lemma 1.4. Let X be a stationary set in a regular uncountable cardinal κ . If \mathcal{U} is a locally finite collection of subsets of X, then there is $\gamma < \kappa$ such that $\{U \in \mathcal{U} : (X \cap (\gamma, \kappa)) \cap U \neq \emptyset\}$ is finite.

Lemma 1.5. Let κ be a regular uncountable cardinal and X a stationary set of κ . If $h : X \to \mathbb{R}$ is continuous, where \mathbb{R} denotes the real line, then it is constant on some tail, that is, there is $\alpha^* < \kappa$ with $h \upharpoonright (X \cap (\alpha^*, \kappa))$ is constant. Therefore a cozero-set of X is either bounded or contains some tail.

Further we introduce technical notation which will be used frequently in our arguments. Let A be a subset of a regular uncountable cardinal κ . $\lim_{\kappa}(A)$, which is usually written $\lim(A)$, denotes the set $\{\alpha < \kappa : \alpha = \sup(A \cap \alpha)\}$, that is, the set of all cluster points of A in κ , where we define $\sup \emptyset = -1$. Note that $\lim(A)$ is club whenever A is unbounded in κ .

Let C be a club set in a regular uncountable cardinal κ , then obviously $\operatorname{Lim}(C) \subset C$, in this case, we define $\operatorname{Succ}(C) = C \setminus \operatorname{Lim}(C)$. Moreover let $p_C(\alpha) = \sup(C \cap \alpha)$ for $\alpha \in C$. Note that for each $\alpha \in C$, $p_C(\alpha) \in C \cup \{-1\}$ holds, in particular $p_C(\min C) = -1$, also $p_C(\alpha) < \alpha$ if and only if $\alpha \in \operatorname{Succ}(C)$. Intuitively, $p_C(\alpha)$ is the immediate predecessor of α in C whenever $\alpha \in \operatorname{Succ}(C)$. Observe that $\kappa \setminus C$ is the disjoint union of $\{(p_C(\alpha), \alpha) : \alpha \in \operatorname{Succ}(C)\}$ of open intervals. Also note that $\kappa \setminus \operatorname{Lim}(C)$ is the disjoint union of $\{(p_C(\alpha), \alpha) : \alpha \in \operatorname{Succ}(C)\}$. In particular, $\operatorname{Lim}(\omega_1)$ and $\operatorname{Succ}(\omega_1)$ are denoted by Lim and Succ respectively. Note the following lemma.

Lemma 1.6. [27, II Lemma 6.13] Let κ be a regular uncountable cardinal, $A \subset \kappa$ and $f : A \to \kappa$. Then the set $\{\alpha < \kappa : \forall \beta \in A \cap \alpha(f(\beta) < \alpha)\}$ is club in κ .

We also use the following notation. Let μ and ν be ordinals and $X \subset (\mu + 1) \times (\nu + 1)$. For subsets $C \subset \mu + 1$ and $D \subset \nu + 1$, define

 $X_C = X \cap C \times (\nu + 1), X^D = X \cap (\mu + 1) \times D, X_C^D = X_C \cap X^D.$

Moreover for $\alpha \leq \mu$ and $\beta \leq \nu$, $V_{\alpha}(X)$ denotes the vertical slice $\{\delta \leq \nu : \langle \alpha, \delta \rangle \in X\}$ of X and $H_{\beta}(X)$ denotes the horizontal slice $\{\gamma \leq \mu : \langle \gamma, \beta \rangle \in X\}$ of X.

For a space $X, X = \bigoplus_{\lambda \in \Lambda} X_{\lambda}$ means that the space X is the pairwise disjoint sum of (cl)open subspaces X_{λ} 's.

For undefined topological or set theoretical notions, see [4, 11, 27]. For other researches about topological properties of products of ordinals and the above notation, see [5, 6, 7, 8, 9, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26].

2. *P*-EMBEDDING IN SUBSPACES OF $(\omega + 1) \times \omega_1$

Two subsets F and H of a space X are said to be *separated* in X if there are disjoint open sets U and V in X with $F \subset U$ and $H \subset V$. In this section, we consider the P-embedding in subspaces of $(\omega + 1) \times \omega_1$. First we prove:

Lemma 2.1. Let X be a subspace of $(\omega + 1) \times \omega_1$ and A denote the set $\{n \in \omega : V_n(X) \text{ is stationary in } \omega_1\}$. Then for every closed subset F in X with $F \subset X_{\{\omega\}}$, F is P-embedded in X if and only if, if $V_{\omega}(X)$ is not stationary in ω_1 , then $\operatorname{Cl}_X X_A$ and F are almost separated, that is, there is $\alpha^* < \omega_1$ such that $X^{(\alpha^*,\omega_1)} \cap \operatorname{Cl}_X X_A$ and $X^{(\alpha^*,\omega_1)} \cap F$ are separated in $X^{(\alpha^*,\omega_1)}$, where Cl_X denotes the closure in X.

Proof. "only if" part: Let F be P-embedded in X and suppose that $V_{\omega}(X)$ is not stationary in ω_1 . Take a club set C in ω_1 disjoint from $V_{\omega}(X)$. For every $\alpha \in \operatorname{Succ}(C)$, set $F(\alpha) = F^{(p_C(\alpha),\alpha]} (=F \cap X^{(p_C(\alpha),\alpha]})$ and $X(\alpha) = X^{(p_C(\alpha),\alpha]}$. Note that each $F(\alpha)$ is closed in X and each $X(\alpha)$ is countable and first countable, so metrizable. Since $\mathcal{U} = \{F(\alpha) : \alpha \in \operatorname{Succ}(C)\}$ is a disjoint clopen cover of F and F is P-embedded in X, we can find a locally finite cozero cover \mathcal{V} of X such that $\mathcal{V} \upharpoonright F$ refines \mathcal{U} . For each $\alpha \in \operatorname{Succ}(C)$, set $W(\alpha) = (\bigcup\{V \in \mathcal{V} : F(\alpha) \cap V \neq \emptyset\}) \cap X(\alpha)$. Then obviously $\mathcal{W} = \{W(\alpha) : \alpha \in \operatorname{Succ}(C)\}$ is a locally finite and pairwise disjoint collection of cozero sets in X with $F(\alpha) \subset W(\alpha) \subset X(\alpha)$ for every $\alpha \in \operatorname{Succ}(C)$ and also \mathcal{W} covers F. For every $n \in A$,

since $V_n(X)$ is stationary and \mathcal{W} is locally finite in X with $W(\alpha) \subset X(\alpha)$ ($\alpha \in \operatorname{Succ}(C)$), we can find $\alpha_n < \omega_1$ with $X_{\{n\}}^{(\alpha_n,\omega_1)} \cap (\bigcup \mathcal{W}) = \emptyset$. Letting $\alpha^* = \sup\{\alpha_n : n \in A\}$, we see $X_A^{(\alpha^*,\omega_1)} \cap (\bigcup \mathcal{W}) = \emptyset$. For every $\alpha \in \operatorname{Succ}(C)$, using the normality of $X(\alpha)$, take an open set $U(\alpha)$ of $X(\alpha)$ with $F(\alpha) \subset U(\alpha) \subset \operatorname{Cl}_{X(\alpha)} U(\alpha) \subset W(\alpha)$. Since \mathcal{W} is locally finite, we have $X_A^{(\alpha^*,\omega_1)} \cap \operatorname{Cl}_X(\bigcup_{\alpha \in \operatorname{Succ}(C)} U(\alpha)) = \emptyset$. Now letting $U = X^{(\alpha^*,\omega_1)} \cap (\bigcup_{\alpha \in \operatorname{Succ}(C)} U(\alpha)), U$ and $X^{(\alpha^*,\omega_1)} \setminus \operatorname{Cl}_{X(\alpha^*,\omega_1)} U$ separate $X^{(\alpha^*,\omega_1)} \cap F$ and $X^{(\alpha^*,\omega_1)} \cap \operatorname{Cl}_X X_A$.

"if" part: Assume that if $V_{\omega}(X)$ is not stationary in ω_1 , then $\operatorname{Cl}_X X_A$ and F are almost separated. We will see that F is P-embedded in X.

First assume that $V_{\omega}(X)$ is stationary in ω_1 and \mathcal{U} is a locally finite cozero cover of F. Since F is closed in the collectionwise normal space $X_{\{\omega\}}$, one can fix a locally finite cozero cover \mathcal{U}' of $X_{\{\omega\}}$ such that $\mathcal{U}' \upharpoonright F$ refines \mathcal{U} . Since $X_{\{\omega\}}$ is homeomorphic to the stationary set $V_{\omega}(X)$, it follows from Lemmas 1.4 and 1.5 that there are $U \in \mathcal{U}'$ and $\alpha^* < \omega_1$ with $X_{\{\omega\}}^{(\alpha^*,\omega_1)} \subset U$. On the other hand, since $X^{[0,\alpha^*]}$ is collectionwise normal, we can find a locally finite cozero cover \mathcal{V}_0 of $X^{[0,\alpha^*]}$ such that $\mathcal{V}_0 \upharpoonright X_{\{\omega\}}^{[0,\alpha^*]}$ refines \mathcal{U}' hence $\mathcal{V}_0 \upharpoonright F^{[0,\alpha^*]}$ refines \mathcal{U} . Now $\mathcal{V} := \mathcal{V}_0 \cup \{X^{(\alpha^*,\omega_1)}\}$ is a locally finite cozero cover of X such that $\mathcal{V} \upharpoonright F$ refines \mathcal{U} .

Next assume that $V_{\omega}(X)$ is not stationary in ω_1 . By the assumption, we can fix $\alpha^* < \omega_1$ and an open set W in $X^{(\alpha^*,\omega_1)}$ such that

$$X^{(\alpha^*,\omega_1)} \cap F \subset W \subset \operatorname{Cl}_{X^{(\alpha^*,\omega_1)}} W \subset X^{(\alpha^*,\omega_1)} \setminus \operatorname{Cl}_X X_A.$$

Since $X^{[0,\alpha^*]}$ is collectionwise normal, as above, it suffices to verify the following claim.

Claim. $F^{(\alpha^*,\omega_1)}$ is *P*-embedded in $X^{(\alpha^*,\omega_1)}$.

Proof. Let \mathcal{U} be a locally finite cozero cover of $F^{(\alpha^*,\omega_1)}$ and take a club set C in ω_1 disjoint from $V_{\omega}(X) \cup (\bigcup_{n \in \omega \setminus A} V_n(X))$. For each $\alpha \in \operatorname{Succ}(C)$, set $F(\alpha) = F^{(\alpha^*,\omega_1) \cap (p_C(\alpha),\alpha]}$ and $X(\alpha) = X^{(\alpha^*,\omega_1) \cap (p_C(\alpha),\alpha]}$. Obviously $F^{(\alpha^*,\omega_1)}$ can be represented as the topological sum $F^{(\alpha^*,\omega_1)} = \bigoplus_{\alpha \in \operatorname{Succ}(C)} F(\alpha)$. For each $\alpha \in \operatorname{Succ}(C)$, since $F(\alpha)$ is a closed subspace of the collectionwise normal clopen subspace $X(\alpha)$ of X, we can take a locally finite cozero cover \mathcal{V}_{α} of $X(\alpha)$ such that $\mathcal{V}_{\alpha} \upharpoonright F(\alpha)$ refines \mathcal{U} , moreover we can take a cozero set V_{α} in $X(\alpha)$ (hence in X) such that $F(\alpha) \subset V_{\alpha} \subset W \cap X_{\alpha}$ and let $\mathcal{V}'_{\alpha} = \{V \cap V_{\alpha} : V \in \mathcal{V}_{\alpha}\}$. Then \mathcal{V}'_{α} is a locally finite collection of cozero sets in X with $F(\alpha) \subset \bigcup \mathcal{V}'_{\alpha} \subset X(\alpha)$ such that $\mathcal{V}'_{\alpha} \upharpoonright F(\alpha)$ refines \mathcal{U} . Now let $\mathcal{V}' = \bigcup_{\alpha \in \operatorname{Succ}(C)} \mathcal{V}'_{\alpha}$, then we

see $\bigcup \mathcal{V}' \subset W$ and that \mathcal{V}' is a collection of cozero sets in $X^{(\alpha^*,\omega_1)}$ with $F^{(\alpha^*,\omega_1)} \subset \bigcup \mathcal{V}'$. We show:

Fact. \mathcal{V}' is locally finite in $X^{(\alpha^*,\omega_1)}$.

Proof. It suffices to see that $\{V_{\alpha} : \alpha \in \operatorname{Succ}(C)\}$ is locally finite in $X^{(\alpha^*,\omega_1)}$. So let $x \in X^{(\alpha^*,\omega_1)}$. When $x \in X^{(\alpha^*,\omega_1)}_{\{\omega\}}$, say $x = \langle \omega, \gamma \rangle$, we can fix $\alpha \in \operatorname{Succ}(C)$ with $p_C(\alpha) < \gamma < \alpha$. Then $X(\alpha)$ is a neighborhood of x meeting at most one member of $\{V_{\alpha} : \alpha \in \operatorname{Succ}(C)\}$.

Now assume $x \in X_{\omega}^{(\alpha^*,\omega_1)}$, say $x = \langle n, \gamma \rangle$ for some $n \in \omega$. When $n \in \omega \setminus A$, by $C \cap V_n(X) = \emptyset$, we can fix $\alpha \in \operatorname{Succ}(C)$ with $p_C(\alpha) < \gamma < \alpha$. Then as above, $X(\alpha)$ is a neighborhood of x meeting at most one member of $\{V_{\alpha} : \alpha \in \operatorname{Succ}(C)\}$. When $n \in A$, by $x \in X_{\{n\}}^{(\alpha^*,\omega_1)} \subset X_A \subset \operatorname{Cl}_X X_A$, we see $x \notin \operatorname{Cl}_{X(\alpha^*,\omega_1)} W$. It follows from $\bigcup \mathcal{V}' \subset W$ that $X^{(\alpha^*,\omega_1)} \setminus \operatorname{Cl}_{X(\alpha^*,\omega_1)} W$ is a neighborhood of x meeting no members of $\{V_{\alpha} : \alpha \in \operatorname{Succ}(C)\}$. This completes the proof of Fact.

Now since $X_{\omega}^{(\alpha^*,\omega_1)}$ is cozero in $X^{(\alpha^*,\omega_1)}$, $\mathcal{V}' \cup \{X_{\omega}^{(\alpha^*,\omega_1)}\}$ witnesses the *P*-embedding of $F^{(\alpha^*,\omega_1)}$ in $X^{(\alpha^*,\omega_1)}$. This completes the proof of Claim.

Corollary 2.2. Let X be a subspace of $(\omega + 1) \times \omega_1$ and $A = \{n \in \omega : V_n(X) \text{ is stationary in } \omega_1\}$. Then $X_{\{\omega\}}$ is P-embedded in X if and only if, if $V_{\omega}(X)$ is not stationary in ω_1 , then $V_{\omega}(\operatorname{Cl}_X X_A)$ is bounded in ω_1 .

Proof. "only if" part: Assume that $X_{\{\omega\}}$ is *P*-embedded in *X* and $V_{\omega}(X)$ is not stationary. By Lemma 2.1, $\operatorname{Cl}_X X_A$ and $X_{\{\omega\}}$ are almost separated, in particular, $X^{(\alpha^*,\omega_1)} \cap \operatorname{Cl}_X X_A$ and $X^{(\alpha^*,\omega_1)} \cap X_{\{\omega\}}$ are separated in $X^{(\alpha^*,\omega_1)}$ for some $\alpha^* < \omega_1$, which implies that $V_{\omega}(\operatorname{Cl}_X X_A)$ is bounded in ω_1 .

"if" part: Assume that if $V_{\omega}(X)$ is not stationary in ω_1 , then $V_{\omega}(\operatorname{Cl}_X X_A)$ is bounded in ω_1 . By Lemma 2.1, it suffices to check that if $V_{\omega}(X)$ is not stationary in ω_1 , then $\operatorname{Cl}_X X_A$ and $X_{\{\omega\}}$ are almost separated. So assume that $V_{\omega}(X)$ is not stationary, then by our assumption, $X^{(\alpha^*,\omega_1)} \cap \operatorname{Cl}_X X_A$ and $X^{(\alpha^*,\omega_1)}_{\{\omega\}}$ are disjoint for some $\alpha^* < \omega_1$. From $X^{(\alpha^*,\omega_1)} \cap \operatorname{Cl}_X X_A = \operatorname{Cl}_{X^{(\alpha^*,\omega_1)}} X^{(\alpha^*,\omega_1)}_A$, it suffices to verify the following claim.

Claim. $X_{A}^{(\alpha^*,\omega_1)}$ is clopen in $X^{(\alpha^*,\omega_1)}$.

Proof. Since A is open in $\omega + 1$, $X_A^{(\alpha^*,\omega_1)}$ is open in $X^{(\alpha^*,\omega_1)}$. Let $y \in \operatorname{Cl}_{X^{(\alpha^*,\omega_1)}} X_A^{(\alpha^*,\omega_1)}$. Because $X^{(\alpha^*,\omega_1)} \cap \operatorname{Cl}_X X_A$ and $X_{\{\omega\}}^{(\alpha^*,\omega_1)}$ are

disjoint and $y \in X^{(\alpha^*,\omega_1)} \cap \operatorname{Cl}_X X_A$, we see $y \in X^{(\alpha^*,\omega_1)}_{\omega}$. Since each $X^{(\alpha^*,\omega_1)}_{\{n\}}$ is open in $X^{(\alpha^*,\omega_1)}$, so we must have $y \in X^{(\alpha^*,\omega_1)}_A$, thus $X^{(\alpha^*,\omega_1)}_A$ is closed. This completes the proof of the claim.

3. C*-embedding in special subspaces of $(\omega + 1) \times \omega_1$

In this section, we consider C^* -embedding in certain type of subspaces of $(\omega + 1) \times \omega_1$.

Definition 3.1. Let \mathcal{N} be a sequence in $[\omega]^{\omega}$ of length ω_1 , say $\mathcal{N} = \{N(\alpha) : \alpha < \omega_1\}$. The subspace $X_{\mathcal{N}}$ of $(\omega+1) \times \omega_1$ is defined as follows:

$$X_{\mathcal{N}} = \omega \times \operatorname{Lim} \cup (\bigcup_{\alpha < \omega_1} (N(\alpha) \cup \{\omega\}) \times \{\alpha + 1\}).$$

This type of subspaces of $(\omega + 1) \times \omega_1$ is first discussed in [15]. Throughout the rest of this section, let $X = X_N$ and $A = \{n \in \omega : V_n(X) \text{ is stationary in } \omega_1\}$. First note that the subspace $X_{\{\omega\}} (= \{\omega\} \times \text{Succ})$ of X is closed and discrete in X and $A = \omega$. So Corollary 2.2 yields:

Corollary 3.2. $X_{\{\omega\}}$ is not *P*-embedded in *X*.

Moreover we check:

Lemma 3.3. X is not normal.

Proof. Obviously $X_{\{\omega\}}$ and X^{Lim} are disjoint closed sets, we will see that they cannot be separated. So let U be an open set in X containing X^{Lim} . For every $n \in \omega$, by $\text{Lim} \subset V_n(X)$ and the PDL, we can fix $\alpha_n < \omega_1$ with $X_{\{n\}}^{(\alpha_n,\omega_1)} \subset U$. Letting $\alpha^* = \sup\{\alpha_n : n \in \omega\}$, we see $X_{\omega}^{(\alpha^*,\omega_1)} \subset U$. Pick $\alpha < \omega_1$ with $\alpha^* \leq \alpha$. Because $X_{\omega}^{\{\alpha+1\}} = N(\alpha) \times \{\alpha+1\} \subset X_{\omega}^{(\alpha^*,\omega_1)} \subset U$ holds and $N(\alpha)$ is infinite, we see $\langle \omega, \alpha+1 \rangle \in Cl_X U \cap X_{\{\omega\}}$. Therefore $X_{\{\omega\}}$ and X^{Lim} cannot be separated. \Box

The proof of the above lemma also shows that $X_{\{\omega\}} \cup X^{\text{Lim}}$ is a closed subspace of X which is not C^* -embedded in X. In the following lemma, we characterize that the closed subspace $X_{\{\omega\}}$ is C^* -embedded in X.

Lemma 3.4. For the space $X = X_N$ above with $\mathcal{N} = \{N(\alpha) : \alpha < \omega_1\}$, the following are equivalent:

(1) the closed subspace $X_{\{\omega\}}$ is C^* -embedded in X,

NOBUYUKI KEMOTO AND TOSHIMICHI USUBA

- (2) for every function $h : \omega_1 \to 2$, where $2 = \{0, 1\}$, there is a sequence $\{r_n : n \in \omega\} \subset \mathbb{I}$ such that for every $i \in 2$, except for countably many $\alpha \in h^{-1}[\{i\}], \{r_n : n \in N(\alpha)\}$ converges to iin the usual sense, that is, for every $\varepsilon > 0$, there is $m \in \omega$ such that for every $n \in N(\alpha) \cap (m, \omega), |r_n - i| < \varepsilon$ holds,
- (3) for every function $h: \omega_1 \to 2$, there is a function $k: \omega \to 2$ such that for every $i \in 2$, except for countably many $\alpha \in h^{-1}[\{i\}],$ $N(\alpha) \subset^* k^{-1}[\{i\}]$ holds, that is, $N(\alpha) \setminus k^{-1}[\{i\}]$ is finite,
- (4) for every $H \subset \omega_1$, there is $K \subset \omega$ such that both of the following hold:
 - (a) except for countably many $\alpha \in H$, $N(\alpha) \subset^* K$ holds,
 - (b) except for countably many $\alpha \in \omega_1 \setminus H$, $N(\alpha) \subset^* \omega \setminus K$ holds.

Proof. (1) \Rightarrow (2): Let $X_{\{\omega\}}$ be C^* -embedded in X and $h: \omega_1 \to 2$. The function $f: X_{\{\omega\}} \to 2$ defined by:

$$f(\langle \omega, \alpha + 1 \rangle) = i \text{ if } \alpha \in h^{-1}[\{i\}]$$

is continuous, because $X_{\{\omega\}}$ is discrete. Since $X_{\{\omega\}}$ is C^* -embedded in X, we can find a continuous function $g: X \to \mathbb{I}$ with $g \upharpoonright X_{\{\omega\}} = f$. For every $n \in \omega$, by the stationarity of $V_n(X)$, we can find $\alpha_n < \omega_1$ and $r_n \in \mathbb{I}$ such that the restriction $g \upharpoonright X_{\{n\}}^{(\alpha_n,\omega_1)}$ is constant taking the value r_n . Let $\alpha^* = \sup\{\alpha_n : n \in \omega\}$. It suffices to see the following claim.

Claim 1. For every $i \in 2$ and $\alpha \in h^{-1}[\{i\}] \cap (\alpha^*, \omega_1)$, the sequence $\{r_n : n \in N(\alpha)\}$ converges to i.

Proof. Let $i \in 2$, $\alpha \in h^{-1}[\{i\}] \cap (\alpha^*, \omega_1)$ and $\varepsilon > 0$. Since g is continuous at $\langle \omega, \alpha + 1 \rangle$ and $g(\langle \omega, \alpha + 1 \rangle) = f(\langle \omega, \alpha + 1 \rangle) = i$, there is $m \in \omega$ with $g[((N(\alpha) \cap (m, \omega)) \cup \{\omega\})) \times \{\alpha + 1\}] \subset (i - \varepsilon, i + \varepsilon)$. Now for every $n \in N(\alpha) \cap (m, \omega)$, we have $|r_n - i| = |g(\langle n, \alpha + 1 \rangle) - i| < \varepsilon$. This completes the proof of Claim 1.

 $(2) \Rightarrow (3)$: Assume (2) and let $h: \omega_1 \to 2$. We can take a sequence $\{r_n : n \in \omega\} \subset \mathbb{I}$ and $\alpha^* < \omega_1$ such that for every $i \in 2$ and $\alpha \in h^{-1}[\{i\}] \cap (\alpha^*, \omega_1), \{r_n : n \in N(\alpha)\}$ converges to i. Take a function $k: \omega \to 2$ with $\{n \in \omega : r_n < \frac{1}{3}\} \subset k^{-1}[\{0\}]$ and $\{n \in \omega : r_n > \frac{2}{3}\} \subset k^{-1}[\{1\}]$ Since for every $\alpha \in h^{-1}[\{0\}] \cap (\alpha^*, \omega_1), \{r_n : n \in N(\alpha)\}$ converges to 0, we can find $m \in \omega$ such that $N(\alpha) \cap (m, \omega) \subset k^{-1}[\{0\}]$, thus we see $N(\alpha) \subset k^{-1}[\{0\}]$. Similarly for every $\alpha \in h^{-1}[\{1\}] \cap (\alpha^*, \omega_1)$, we see $N(\alpha) \subset k^{-1}[\{1\}]$.

The equivalence (3) \Leftrightarrow (4) follows from the identifications $H = h^{-1}[\{1\}]$ and $K = k^{-1}[\{1\}]$.

8

 $(3) \Rightarrow (1)$: Assume (3). To see (1), let \mathcal{U} be a two elements cozero cover of $X_{\{\omega\}}$. Since $X_{\{\omega\}}$ is discrete, we may assume $\mathcal{U} = \{U_0, U_1\}$ with $U_i = \{\langle \omega, \alpha + 1 \rangle : \alpha \in h^{-1}[\{i\}]\}$ $(i \in 2)$ for some function $h : \omega_1 \to 2$. For this h, take a function $k : \omega \to 2$ in (3). Take $\alpha^* < \omega_1$ such that for every $i \in 2$ and $\alpha \in h^{-1}[\{i\}] \cap (\alpha^*, \omega_1)$, $N(\alpha) \subset^* k^{-1}[\{i\}]$ holds. Since $X^{[0,\alpha^*]}$ is collectionwise normal, it suffices to find a locally finite cozero cover \mathcal{V} of $X^{(\alpha^*,\omega_1)}$ such that $\mathcal{V} \upharpoonright X^{(\alpha^*,\omega_1)}_{\{\omega\}}$ refines \mathcal{U} . Define a function $q : X^{(\alpha^*,\omega_1)} \to \mathbb{I}$ by the following clauses:

(a) if $x = \langle \omega, \alpha + 1 \rangle$ for some $\alpha \in h^{-1}[\{i\}] \cap [\alpha^*, \omega_1)$, then g(x) = i, (b) if $x \in X_{\{n\}}^{(\alpha^*, \omega_1)}$ for some $n \in k^{-1}[\{0\}]$, then $g(x) = \frac{1}{n}$, (c) if $x \in X_{\{n\}}^{(\alpha^*, \omega_1)}$ for some $n \in k^{-1}[\{1\}]$, then $g(x) = 1 - \frac{1}{n}$.

We check:

Claim 2. The above function g is continuous.

Proof. Let $x \in X^{(\alpha^*,\omega_1)}$ and $\varepsilon > 0$. Whenever $x \in X^{(\alpha^*,\omega_1)}_{\{n\}}$ for some $n \in \omega$, the set $X^{(\alpha^*,\omega_1)}_{\{n\}}$ is a clopen neighborhood of x on which g is constant. So we assume $x \in X^{(\alpha^*,\omega_1)}_{\{\omega\}}$. We may assume $x = \langle \omega, \alpha + 1 \rangle$ with $\alpha \in h^{-1}[\{0\}] \cap [\alpha^*, \omega_1)$. From g(x) = 0 and $N(\alpha) \subset^* k^{-1}[\{0\}]$, we can find $m' \in \omega$ with $N(\alpha) \cap (m', \omega) \subset k^{-1}[\{0\}]$. Taking $m \in \omega$ with $m' \leq m$ and $\frac{1}{m} < \varepsilon$, let $W = ((N(\alpha) \cap (m, \omega) \cup \{\omega\})) \times \{\alpha + 1\}$. Obviously W is a clopen neighborhood of x. If $y \in W \setminus \{x\}$, then $y = \langle n, \alpha + 1 \rangle$ holds for some $n \in N(\alpha) \cap (m, \omega)$. Now by $n \in k^{-1}[\{0\}]$, we see $g(y) = \frac{1}{n} < \frac{1}{m} < \varepsilon$, so g is continuous at x. This completes the proof of the claim.

Now the collection $\mathcal{V} = \{g^{-1}[[0, \frac{2}{3})], g^{-1}[(\frac{1}{3}, 1]]\}$ is the desired cozero cover of $X^{(\alpha^*, \omega_1)}$.

Definition 3.5. Property (A) means the following property.

[Property (A)] There is a sequence $\mathcal{N} \subset [\omega]^{\omega}$ of length ω_1 , say $\mathcal{N} = \{N(\alpha) : \alpha < \omega_1\}$, which satisfies (4) (equivalently (1), (2) and (3)) of Lemma 3.4, that is, for every $H \subset \omega_1$, there is $K \subset \omega$ such that both of the following hold:

- (1) except for countably many $\alpha \in H$, $N(\alpha) \subset^* K$ holds,
- (2) except for countably many $\alpha \in \omega_1 \setminus H$, $N(\alpha) \subset^* \omega \setminus K$ holds,

In the next section, we will discuss the consistency of Property (A).

4. Consistency

A subcollection \mathcal{A} of the collection $[\omega]^{\omega}$ is called *almost disjoint* if for every distinct pair $A, B \in \mathcal{A}$, the intersection $A \cap B$ is finite, see [27, II, Definition 1.1. Note that all maximal almost disjoint collections are uncountable, see [27, II, Theorem 1.2 (a)]. Dow and Shelah proved in [3] the following.

Proposition 4.1. [3, Theorem 2.1] It is consistent with Martin's axiom and $2^{\omega} = \omega_2$ that there is a maximal almost disjoint collection \mathcal{A} such that for every disjoint pair \mathcal{A}_0 and \mathcal{A}_1 with $\mathcal{A}_0, \mathcal{A}_1 \subset \mathcal{A}$, there is $K \subset \omega$ satisfying both of the following:

- (a) $A \subset^* K$ holds for every $A \in \mathcal{A}_0$,
- (b) $A \subset^* \omega \setminus K$ holds for every $A \in \mathcal{A}_1$.

We remark that if Martin's axiom and $2^{\omega} = \omega_2$ are assumed, then $2^{\omega} = 2^{\omega_1}$ holds, see [27, II, Theorem 2.18]. In the above proposition, taking a sequence $\mathcal{N} (= \{N(\alpha) : \alpha < \omega_1\})$ of length ω_1 from \mathcal{A} , we see that \mathcal{N} satisfies (4) of Lemma 3.4. Using Corollary 2.2, we have:

Theorem 4.2. It is consistent with ZFC that Property (A) holds, therefore there is a subspace X of $(\omega + 1) \times \omega_1$ such that the closed subspace $X_{\{\omega\}}$ of X is C^{*}-embedded in X but not P-embedded in X.

We will see that the negation of Property (A) is also consistent with ZFC. In fact, we have the following.

Theorem 4.3. If $2^{\omega} < 2^{\omega_1}$ is assumed, then for every subspace X of $(\omega + 1) \times \omega_1$, if $X_{\{\omega\}}$ is C^{*}-embedded in X, then it is P-embedded in X. Therefore $2^{\omega} < 2^{\omega_1}$ implies the negation of Property (A).

Proof. Assume $2^{\omega} < 2^{\omega_1}$ and $X \subset (\omega + 1) \times \omega_1$. Moreover assume that $X_{\{\omega\}}$ is C^{*}-embedded in X. From Corollary 2.2, assuming that $V_{\omega}(X)$ is not stationary, it suffices to see that $V_{\omega}(\operatorname{Cl}_X X_A)$ is bounded in ω_1 , where $A = \{n \in \omega : V_n(X) \text{ is stationary in } \omega_1\}$. So assume that $V_{\omega}(X)$ is not stationary but $V_{\omega}(\operatorname{Cl}_X X_A)$ is unbounded, we will derive a contradiction. Take a club set C' of ω_1 disjoint from $V_{\omega}(X) \cup$ $(\bigcup_{n \in \omega \setminus A} V_n(X))$. For every $\alpha < \omega_1$, take $g(\alpha) \in V_{\omega}(\operatorname{Cl}_X X_A)$ with $\alpha < \omega_1$ $g(\alpha)$ and let $C = C' \cap \{\alpha < \omega_1 : \forall \beta < \alpha(g(\beta) < \alpha)\}$. Obviously from Lemma 1.6, C is also a club set in ω_1 having the following property:

- C is disjoint from V_ω(X) ∪ (⋃_{n∈ω\A} V_n(X)),
 for every α ∈ Succ(C), Cl_X X_A ∩ X^{(p_C(α),α]}_{ω} ≠ Ø.

Then $X_{\{\omega\}}$ can be represented as $X_{\{\omega\}} = \bigoplus_{\alpha \in \operatorname{Succ}(C)} X_{\{\omega\}}^{(p_C(\alpha),\alpha]}$. For every $\alpha \in \operatorname{Succ}(C)$, fix $x_{\alpha} \in \operatorname{Cl}_X X_A \cap X_{\{\omega\}}^{(p_C(\alpha),\alpha]}$. Because of the first countability of X, for every $\alpha \in \text{Succ}(C)$, we can fix a non-decreasing sequence $\{\gamma_{\alpha}(n) : n \in \omega\}$ in ω_1 with $p_C(\alpha) < \gamma_{\alpha}(0)$ and a strictly increasing sequence $N(\alpha) := \{m_{\alpha}(n) : n \in \omega\}$ in A such that $\{y_{\alpha}(n) :$ $n \in \omega$ converges to x_{α} , where $y_{\alpha}(n) = \langle m_{\alpha}(n), \gamma_{\alpha}(n) \rangle$.

For every subset H of $\operatorname{Succ}(C)$, let $U(H) = \bigcup_{\alpha \in H} X_{\{\omega\}}^{(p_C(\alpha),\alpha]}$. Now fix $H \subset \operatorname{Succ}(C)$. Then since $\{U(H), U(\operatorname{Succ}(C) \setminus H)\}$ is a disjoint clopen cover of the C^* -embedded subspace $X_{\{\omega\}}$, we can find a continuous function $f_H : X \to \mathbb{I}$ such that $f_H(x) = 0$ ($f_H(x) = 1$) whenever $x \in U(H)$ ($x \in U(\operatorname{Succ}(C) \setminus H)$, respectively). For every $n \in A$, since $V_n(X)$ is stationary and f_H is continuous, we can fix $\beta_n < \omega_1$ and $r_n \in \mathbb{I}$ such that f_H is constant on $X_{\{n\}}^{(\beta_n,\omega_1)}$ taking value r_n . Letting $\beta^* = \sup\{\beta_n : n \in A\}$, for every $\alpha \in \operatorname{Succ}(C)$ with $\beta^* \leq p_C(\alpha)$, since f_H is continuous at x_α and $\{y_\alpha(n) : n \in \omega\}$ converges to x_α , we can find $n_\alpha \in \omega$ such that:

- (1) whenever $\alpha \in H$, $f_H(y_\alpha(n)) < \frac{1}{3}$ holds for every $n \in \omega$ with $n_\alpha \leq n$,
- (2) whenever $\alpha \in \text{Succ}(C) \setminus H$, $f_H(y_\alpha(n)) > \frac{2}{3}$ holds for every $n \in \omega$ with $n_\alpha \leq n$.

Because of $\beta^* \leq p_C(\alpha)$, notice $f_H(y_\alpha(n)) = r_{m_\alpha(n)}$ in the clauses (1) and (2) above. Now let $K_H = \{m \in A : r_m < \frac{1}{3}\}$. Then from (1), we see that for every $\alpha \in \operatorname{Succ}(C)$ with $\beta^* \leq p_C(\alpha)$, if $\alpha \in H$, then $N(\alpha) \subset^* K_H$ holds. Also from (2), we see that for every $\alpha \in \operatorname{Succ}(C)$ with $\beta^* \leq p_C(\alpha)$, if $\alpha \in \operatorname{Succ}(C) \setminus H$, then $N(\alpha) \subset^* A \setminus K_H$ holds. Thus for every $H \subset \operatorname{Succ}(C)$, we have shown:

- (a) except for countably many $\alpha \in H$, $N(\alpha) \subset^* K_H$ holds,
- (b) except for countably many $\alpha \in \operatorname{Succ}(C) \setminus H$, $N(\alpha) \subset^* A \setminus K_H$ holds.

Now let $\{H_{\xi} : \xi < 2^{\omega_1}\}$ be an independent collection of subsets of Succ(C), that is, for distinct $\xi_1, \ldots, \xi_m, \zeta_1, \ldots, \zeta_n < 2^{\omega_1}$, the set

$$H_{\xi_1} \cap \cdots \cap H_{\xi_m} \cap (\operatorname{Succ}(C) \setminus H_{\zeta_1}) \cap \cdots \cap (\operatorname{Succ}(C) \setminus H_{\zeta_n})$$

is uncountable, see [27, VIII Exercises A6]. Letting $K_{\xi} = K_{H_{\xi}}$ for each $\xi < 2^{\omega_1}$, the following claim yields a contradiction, because A is countable and $2^{\omega} < 2^{\omega_1}$ is assumed.

Claim. If $\xi < \zeta < 2^{\omega_1}$, then $K_{\xi} \neq K_{\zeta}$.

Proof. Fix $\alpha^* < \omega_1$ with

- (a)_{ξ} $N(\alpha) \subset^* K_{\xi}$ holds for every $\alpha \in H_{\xi}$ with $\alpha^* \leq \alpha$,
- $(b)_{\xi} N(\alpha) \subset^* A \setminus K_{\xi}$ holds for every $\alpha \in \operatorname{Succ}(C) \setminus H_{\xi}$ with $\alpha^* \leq \alpha$,
- (a) $\zeta N(\alpha) \subset K_{\zeta}$ holds for every $\alpha \in H_{\zeta}$ with $\alpha^* \leq \alpha$,

(b) $(\alpha) \subset A \setminus K_{\zeta}$ holds for every $\alpha \in \operatorname{Succ}(C) \setminus H_{\zeta}$ with $\alpha^* \leq \alpha$.

Since $H_{\xi} \cap (\operatorname{Succ}(C) \setminus H_{\zeta})$ is uncountable, take $\alpha \in H_{\xi} \setminus H_{\zeta}$ with $\alpha^* \leq \alpha$. From (a)_{ξ}, we have $N(\alpha) \subset K_{\xi}$. Moreover from (b)_{ζ}, we

have $N(\alpha) \subset^* A \setminus K_{\zeta}$. Since $N(\alpha)$ is infinite, we have $K_{\xi} \neq K_{\zeta}$. This completes the proof of the claim.

Using Corollary 3.2 and Lemma 3.4, we see that $2^{\omega} < 2^{\omega_1}$ implies the negation of Property (A).

Finally we ask:

Question 4.4. Is it consistent with ZFC that for every subspace X of $(\omega + 1) \times \omega_1$ and every closed subspace F of X, F is P-embedded in X whenever it is C^{*}-embedded in X?

Acknowledgement

The authors would like to express their gratitude to the referee for his many helpful comments and suggestions.

References

- R. A. Alo and H. L. Shapiro, Normal Topological Space, Cambridge University Press, London, 1974.
- [2] C. H. Dowker, On a theorem of Hanner, Acta. Mat. 2 (1952), 303–313.
- [3] A. Dow and S. Shelah, Martin's axiom and separated mad families, Rend. Circ. Mat. Palermo, 61 (2012), no. 1, 107–115.
- [4] R. Engelking, General Topology-Revised and completed ed.. Heldermann Verlag, Berlin (1989).
- [5] W. G. Fleissner, N. Kemoto and J. Terasawa, Strong zero-dimensionality of Products of Ordinals, Top. Appl., 132 (2003), 109–127.
- [6] R. Frič and N. Kemoto, Sequential completeness of products of ordinals, Czec. Math. 49 (1999) 119–125.
- [7] Y. Hirata and N. Kemoto, Separating by G_δ-sets in finite powers of ω₁, Fund. Math., 177 (2003) 83–94
- [8] Y. Hirata and N. Kemoto, The hereditarily collectionwise Hausdorff property in products of ω₁, Top. Proc., 29 (2005) 167–173.
- [9] Y. Hirata and N. Kemoto, Mild normality of finite products of subspaces of ω₁, Top. Appl., 153 (2006) 1203–1213.
- [10] Y. Hirata and Y. Yajima, C*-embedding implies P-embedding in products of ordinals, Top. Appl., 231 (2017), 251–265.
- [11] T. Jech, Set Theory. The third millennium edition, revised and expanded, Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2003.
- [12] L. Kalantan and N. Kemoto, Mild normality in products of ordinals, Houston J. Math., 29 (2003) 937–947.
- [13] N. Kemoto, Normality of products of GO-spaces and cardinals, Top. Proc. 18 (1993) 133–142.
- [14] N. Kemoto, Orthocompact subspaces in products of two ordinals, Top. Proc. 22 (1997) 247–264.
- [15] N. Kemoto and T. Nogura, Normality and paranormality in product spaces, Top. Appl., 121 (2002) 319–331.

- [16] N. Kemoto, T. Nogura and Y. Yajima, Normality and closed projections of products with a cardinal factor, Fund. Math. 151 (1996) 279–297.
- [17] N. Kemoto, T. Nogura, K. D. Smith and Y. Yajima, Normal subspaces in products of two ordinals, Top. Appl. 69 (1996) 217–226.
- [18] N. Kemoto, H. Ohta and K. Tamano, Products of spaces of ordinal numbers, Top. Appl., 45 (1992) 245–260.
- [19] N. Kemoto and K. D. Smith, The product of two ordinals is hereditarily countably metacompact, Top. Appl. 74 (1996) 91–96.
- [20] N. Kemoto and K. D. Smith, Hereditarily countable metacompactness in finite and infinite product spaces of ordinals, Top. Appl.77 (1997) 57–63.
- [21] N. Kemoto, K. D. Smith and P. J. Szeptycki, Countable paracompactness versus normality in ω₁², Top. Appl., 104 (2000) 141–154.
- [22] N. Kemoto and P. J. Szeptycki, Topological properties of products of ordinals, Top. Appl., 143 (2004), 257–277.
- [23] N. Kemoto, K. Tamano and Y. Yajima, Generalized paracompactness of subspaces in products of two ordinals, Top. Appl., 104 (2000) 155–168.
- [24] N. Kemoto and Y. Yajima, Orthocompactness in products, Tsukuba J. Math, 16 (1992), 407–422.
- [25] N. Kemoto and Y. Yajima, Orthocompactness and normality of products with a cardinal factor, Top. Appl., 49 (1993), 141–148.
- [26] N. Kemoto and Y. Yajima, Rectangular products with ordinal factors, Top. Appl., 1545 (2007), 758–770.
- [27] K. Kunen, Set Theory, An Introduction to Independence Proofs, Studies in Logic and the Foundations of Mathematics, vol. 102, North-Holland, Amsterdam, 1980.
- [28] K. Morita and T. Hoshina, C-embedding and the homotopy extension property, Gene. Topo. Appl., 5 (1975), 69–81.

DEPARTMENT OF MATHEMATICS, OITA UNIVERSITY, OITA, 870-1192 JAPAN *E-mail address*: nkemoto@cc.oita-u.ac.jp

Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan

E-mail address: usuba@waseda.jp