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Abstract. It is known that in X = A × B, where A and B are
subspaces of ordinals, all closed C∗-embedded subspaces of X are
P -embedded. Also it is asked whether all closed C∗-embedded sub-
spaces of X are P -embedded whenever X is a subspace of products
of two ordinals.

In this paper, we prove that both of the following are consistent
with ZFC:

• there is a subspace X of (ω + 1) × ω1 such that the closed
subspace X ∩ ({ω} × ω1) is C∗-embedded in X but not P -
embedded in X,

• for every subspace X of (ω + 1)× ω1, if the closed subspace
X ∩ ({ω}×ω1) is C

∗-embedded in X, then it is P -embedded
in X.

1. Introduction

A subset F of a space X is C∗-embedded in X if every continuous
function from F to the unit interval I := [0, 1] can be continuously
extended over X. Also recall that a subset F of a space of X is P -
embedded in X if every continuous function from F to a Banach space
can be continuously extended over X. We remark that P -embedded
subspaces are C∗-embedded and that a clopen subspace F ′ of a C∗-
embedded (P -embedded) subspace F of X is also C∗-embedded (P -
embedded, respectively) in X. Also it is well known that:

• a space X is normal if and only if all closed subspaces are C∗-
embedded [4, Theorem 2.1.8],

• a spaceX is collectionwise normal if and only if all closed subspaces
are P -embedded [2].
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Note that both Lindelöf spaces and metrizable spaces are collection-
wise normal.

In [10], it is proved that in X = A×B, where A and B are subspaces
of ordinals, all closed C∗-embedded subspaces of X are P -embedded
and it is asked whether all closed C∗-embedded subspaces of X are
P -embedded whenever X is a subspace of the product of two ordinals
[10, Question 2].

In this paper, we prove that both of the following are consistent with
ZFC:

• there is a subspace X of (ω + 1) × ω1 such that the closed
subspace X ∩ ({ω} × ω1) is C∗-embedded in X but not P -
embedded in X,

• for every subspace X of (ω + 1) × ω1, if the closed subspace
X ∩ ({ω}×ω1) is C

∗-embedded in X, then it is P -embedded in
X.

In the remainder of this section, we prepare basic notions and facts.
Spaces are completely regular T1 topological spaces. For a space X,
a subset U is a cozero-set in X if U = h−1[(0, 1]] for some continuous
function h : X → I, where (0, 1] denotes the unit half open interval in
I.

A collection U of subsets of a space X is said to be locally finite
(discrete) in X if every point in X has a neighborhood which meets at
most finitely many (one, respectively) members of U . A subset F of a
space X is said to be discrete if the collection {{x} : x ∈ F} is discrete.
Note that the union of a locally finite collection of cozero sets is also a
cozero set.

For a collection U of subsets of X and a subspace F of X, U ↾ F
denotes the set {U ∩F : U ∈ U}. Also h ↾ F denotes the restriction of
h to F whenever h is a function on X and F ⊂ X. An open cover U
of subsets of a space X is called a cozero cover of X if each member of
U is a cozero-set in X.

There are characterizations of C∗-embedding and P -embedding in
terms of cozero covers. We will use these characterizations rather than
original definitions.

Proposition 1.1. [28, Lemma 2.1] Let F be a subspace of a space X.
Then F is C∗-embedded in X if and only if for every finite (or two
elements) cozero cover U of F , there is a locally finite cozero cover V
of X such that V ↾ F refines U , that is, for every V ∈ V, there is
U ∈ U with V ∩ F ⊂ U .

Proposition 1.2. [1, Theorem 14.7] Let F be a subspace of a space
X. Then F is P -embedded in X if and only if for every locally finite
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cozero cover U of F , there is a locally finite cozero cover V of X such
that V ↾ F refines U .

The symbols ω and ω1 denote the first infinite ordinal and the first
uncountable ordinal, respectively. The first cardinal exceeding ω1 is
denoted by ω2. Also the symbol 2ω (2ω1) denotes the cardinality of
the collection of all subsets of ω (ω1, respectively). The symbol [ω]ω

denotes the set of all infinite subsets of ω. Ordinal numbers have the
usual order topologies. A subset S of a regular uncountable cardinal κ
is called stationary if it intersects all closed unbounded (abbreviated as
club) subsets of κ. The Pressing Down Lemma (PDL) will be frequently
used.

Lemma 1.3. [27, PDL, II Lemma 6.15] Let S be a stationary set in a
regular uncountable cardinal κ. If a function f : S → κ is regressive,
that is f(α) < α for every α ∈ S, then there are a stationary set S ′ ⊂ S
and γ < κ such that f(α) = γ for every α ∈ S ′.

The following are easy consequences of the PDL.

Lemma 1.4. Let X be a stationary set in a regular uncountable car-
dinal κ. If U is a locally finite collection of subsets of X, then there is
γ < κ such that {U ∈ U : (X ∩ (γ, κ)) ∩ U ̸= ∅} is finite.

Lemma 1.5. Let κ be a regular uncountable cardinal and X a station-
ary set of κ. If h : X → R is continuous, where R denotes the real
line, then it is constant on some tail, that is, there is α∗ < κ with
h ↾ (X ∩ (α∗, κ)) is constant. Therefore a cozero-set of X is either
bounded or contains some tail.

Further we introduce technical notation which will be used frequently
in our arguments. Let A be a subset of a regular uncountable cardinal
κ. Limκ(A), which is usually written Lim(A), denotes the set {α <
κ : α = sup(A ∩ α)}, that is, the set of all cluster points of A in κ,
where we define sup ∅ = −1. Note that Lim(A) is club whenever A is
unbounded in κ.

Let C be a club set in a regular uncountable cardinal κ, then ob-
viously Lim(C) ⊂ C, in this case, we define Succ(C) = C \ Lim(C).
Moreover let pC(α) = sup(C ∩α) for α ∈ C. Note that for each α ∈ C,
pC(α) ∈ C∪{−1} holds, in particular pC(minC) = −1, also pC(α) < α
if and only if α ∈ Succ(C). Intuitively, pC(α) is the immediate pre-
decessor of α in C whenever α ∈ Succ(C). Observe that κ \ C is the
disjoint union of {(pC(α), α) : α ∈ Succ(C)} of open intervals. Also
note that κ\Lim(C) is the disjoint union of {(pC(α), α] : α ∈ Succ(C)}.
In particular, Lim(ω1) and Succ(ω1) are denoted by Lim and Succ re-
spectively.
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Note the following lemma.

Lemma 1.6. [27, II Lemma 6.13] Let κ be a regular uncountable car-
dinal, A ⊂ κ and f : A → κ. Then the set {α < κ : ∀β ∈ A∩α(f(β) <
α)} is club in κ.

We also use the following notation. Let µ and ν be ordinals and
X ⊂ (µ+ 1)× (ν + 1). For subsets C ⊂ µ+ 1 and D ⊂ ν + 1, define

XC = X ∩ C × (ν + 1), XD = X ∩ (µ+ 1)×D,XD
C = XC ∩XD.

Moreover for α ≤ µ and β ≤ ν, Vα(X) denotes the vertical slice {δ ≤
ν : ⟨α, δ⟩ ∈ X} of X and Hβ(X) denotes the horizontal slice {γ ≤ µ :
⟨γ, β⟩ ∈ X} of X.

For a space X, X =
⊕

λ∈Λ Xλ means that the space X is the pairwise
disjoint sum of (cl)open subspaces Xλ’s.

For undefined topological or set theoretical notions, see [4, 11, 27].
For other researches about topological properties of products of ordinals
and the above notation, see [5, 6, 7, 8, 9, 12, 13, 14, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25, 26].

2. P -embedding in subspaces of (ω + 1)× ω1

Two subsets F and H of a space X are said to be separated in X if
there are disjoint open sets U and V in X with F ⊂ U and H ⊂ V . In
this section, we consider the P -embedding in subspaces of (ω+1)×ω1.
First we prove:

Lemma 2.1. Let X be a subspace of (ω + 1) × ω1 and A denote the
set {n ∈ ω : Vn(X) is stationary in ω1}. Then for every closed subset
F in X with F ⊂ X{ω}, F is P -embedded in X if and only if, if Vω(X)
is not stationary in ω1, then ClX XA and F are almost separated, that
is, there is α∗ < ω1 such that X(α∗,ω1) ∩ ClX XA and X(α∗,ω1) ∩ F are
separated in X(α∗,ω1), where ClX denotes the closure in X.

Proof. “only if” part: Let F be P -embedded in X and suppose that
Vω(X) is not stationary in ω1. Take a club set C in ω1 disjoint from
Vω(X). For every α ∈ Succ(C), set F (α) = F (pC(α),α] (= F ∩X(pC(α),α])
and X(α) = X(pC(α),α]. Note that each F (α) is closed in X and each
X(α) is countable and first countable, so metrizable. Since U = {F (α) :
α ∈ Succ(C)} is a disjoint clopen cover of F and F is P -embedded inX,
we can find a locally finite cozero cover V ofX such that V ↾ F refines U .
For each α ∈ Succ(C), set W (α) = (

∪
{V ∈ V : F (α)∩V ̸= ∅})∩X(α).

Then obviously W = {W (α) : α ∈ Succ(C)} is a locally finite and
pairwise disjoint collection of cozero sets in X with F (α) ⊂ W (α) ⊂
X(α) for every α ∈ Succ(C) and also W covers F . For every n ∈ A,
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since Vn(X) is stationary and W is locally finite in X with W (α) ⊂
X(α) (α ∈ Succ(C)), we can find αn < ω1 with X

(αn,ω1)
{n} ∩ (

∪
W) = ∅.

Letting α∗ = sup{αn : n ∈ A}, we see X
(α∗,ω1)
A ∩ (

∪
W) = ∅. For

every α ∈ Succ(C), using the normality of X(α), take an open set
U(α) of X(α) with F (α) ⊂ U(α) ⊂ ClX(α) U(α) ⊂ W (α). Since W is

locally finite, we have X
(α∗,ω1)
A ∩ClX(

∪
α∈Succ(C) U(α)) = ∅. Now letting

U = X(α∗,ω1)∩ (
∪

α∈Succ(C) U(α)), U and X(α∗,ω1) \ClX(α∗,ω1) U separate

X(α∗,ω1) ∩ F and X(α∗,ω1) ∩ ClX XA.

“if” part: Assume that if Vω(X) is not stationary in ω1, then ClX XA

and F are almost separated. We will see that F is P -embedded in X.
First assume that Vω(X) is stationary in ω1 and U is a locally finite

cozero cover of F . Since F is closed in the collectionwise normal space
X{ω}, one can fix a locally finite cozero cover U ′ of X{ω} such that
U ′ ↾ F refines U . Since X{ω} is homeomorphic to the stationary set
Vω(X), it follows from Lemmas 1.4 and 1.5 that there are U ∈ U ′

and α∗ < ω1 with X
(α∗,ω1)
{ω} ⊂ U . On the other hand, since X [0,α∗] is

collectionwise normal, we can find a locally finite cozero cover V0 of

X [0,α∗]such that V0 ↾ X [0,α∗]
{ω} refines U ′ hence V0 ↾ F [0,α∗] refines U . Now

V := V0∪{X(α∗,ω1)} is a locally finite cozero cover of X such that V ↾ F
refines U .

Next assume that Vω(X) is not stationary in ω1. By the assumption,
we can fix α∗ < ω1 and an open set W in X(α∗,ω1) such that

X(α∗,ω1) ∩ F ⊂ W ⊂ ClX(α∗,ω1) W ⊂ X(α∗,ω1) \ ClX XA.

Since X [0,α∗] is collectionwise normal, as above, it suffices to verify the
following claim.

Claim. F (α∗,ω1) is P -embedded in X(α∗,ω1).

Proof. Let U be a locally finite cozero cover of F (α∗,ω1) and take a
club set C in ω1 disjoint from Vω(X) ∪ (

∪
n∈ω\A Vn(X)). For each α ∈

Succ(C), set F (α) = F (α∗,ω1)∩(pC(α),α] and X(α) = X(α∗,ω1)∩(pC(α),α].
Obviously F (α∗,ω1) can be represented as the topological sum F (α∗,ω1) =⊕

α∈Succ(C) F (α). For each α ∈ Succ(C), since F (α) is a closed subspace

of the collectionwise normal clopen subspace X(α) of X, we can take
a locally finite cozero cover Vα of X(α) such that Vα ↾ F (α) refines U ,
moreover we can take a cozero set Vα in X(α) (hence in X) such that
F (α) ⊂ Vα ⊂ W ∩Xα and let V ′

α = {V ∩ Vα : V ∈ Vα}. Then V ′
α is a

locally finite collection of cozero sets in X with F (α) ⊂
∪
V ′
α ⊂ X(α)

such that V ′
α ↾ F (α) refines U . Now let V ′ =

∪
α∈Succ(C) V ′

α, then we



6 NOBUYUKI KEMOTO AND TOSHIMICHI USUBA

see
∪

V ′ ⊂ W and that V ′ is a collection of cozero sets in X(α∗,ω1) with
F (α∗,ω1) ⊂

∪
V ′. We show:

Fact. V ′ is locally finite in X(α∗,ω1).

Proof. It suffices to see that {Vα : α ∈ Succ(C)} is locally finite in

X(α∗,ω1). So let x ∈ X(α∗,ω1). When x ∈ X
(α∗,ω1)
{ω} , say x = ⟨ω, γ⟩, we

can fix α ∈ Succ(C) with pC(α) < γ < α. ThenX(α) is a neighborhood
of x meeting at most one member of {Vα : α ∈ Succ(C)}.

Now assume x ∈ X
(α∗,ω1)
ω , say x = ⟨n, γ⟩ for some n ∈ ω. When

n ∈ ω \ A, by C ∩ Vn(X) = ∅, we can fix α ∈ Succ(C) with pC(α) <
γ < α. Then as above, X(α) is a neighborhood of x meeting at most

one member of {Vα : α ∈ Succ(C)}. When n ∈ A, by x ∈ X
(α∗,ω1)
{n} ⊂

X
(α∗,ω1)
A ⊂ XA ⊂ ClX XA, we see x /∈ ClX(α∗,ω1) W . It follows from∪
V ′ ⊂ W that X(α∗,ω1) \ ClX(α∗,ω1) W is a neighborhood of x meeting

no members of {Vα : α ∈ Succ(C)}. This completes the proof of Fact.

Now since X
(α∗,ω1)
ω is cozero in X(α∗,ω1), V ′∪{X(α∗,ω1)

ω } witnesses the
P -embedding of F (α∗,ω1) in X(α∗,ω1). This completes the proof of Claim.

□
Corollary 2.2. Let X be a subspace of (ω + 1) × ω1 and A = {n ∈
ω : Vn(X) is stationary in ω1}. Then X{ω} is P -embedded in X if and
only if, if Vω(X) is not stationary in ω1, then Vω(ClX XA) is bounded
in ω1.

Proof. “only if” part: Assume that X{ω} is P -embedded in X and
Vω(X) is not stationary. By Lemma 2.1, ClX XA and X{ω} are almost

separated, in particular, X(α∗,ω1) ∩ ClX XA and X(α∗,ω1) ∩ X{ω} are

separated in X(α∗,ω1) for some α∗ < ω1, which implies that Vω(ClX XA)
is bounded in ω1.

“if” part: Assume that if Vω(X) is not stationary in ω1, then Vω(ClX XA)
is bounded in ω1. By Lemma 2.1, it suffices to check that if Vω(X)
is not stationary in ω1, then ClX XA and X{ω} are almost separated.
So assume that Vω(X) is not stationary, then by our assumption,

X(α∗,ω1) ∩ ClX XA and X
(α∗,ω1)
{ω} are disjoint for some α∗ < ω1. From

X(α∗,ω1)∩ClX XA = ClX(α∗,ω1) X
(α∗,ω1)
A , it suffices to verify the following

claim.

Claim. X
(α∗,ω1)
A is clopen in X(α∗,ω1).

Proof. Since A is open in ω + 1, X
(α∗,ω1)
A is open in X(α∗,ω1). Let

y ∈ ClX(α∗,ω1) X
(α∗,ω1)
A . Because X(α∗,ω1) ∩ ClX XA and X

(α∗,ω1)
{ω} are
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disjoint and y ∈ X(α∗,ω1) ∩ ClX XA, we see y ∈ X
(α∗,ω1)
ω . Since each

X
(α∗,ω1)
{n} is open in X(α∗,ω1), so we must have y ∈ X

(α∗,ω1)
A , thus X

(α∗,ω1)
A

is closed. This completes the proof of the claim.
□

3. C∗-embedding in special subspaces of (ω + 1)× ω1

In this section, we consider C∗-embedding in certain type of sub-
spaces of (ω + 1)× ω1.

Definition 3.1. Let N be a sequence in [ω]ω of length ω1, say N =
{N(α) : α < ω1}. The subspace XN of (ω+1)×ω1 is defined as follows:

XN = ω × Lim ∪ (
∪

α<ω1

(N(α) ∪ {ω})× {α + 1}).

This type of subspaces of (ω + 1) × ω1 is first discussed in [15].
Throughout the rest of this section, let X = XN and A = {n ∈ ω :
Vn(X) is stationary in ω1}. First note that the subspaceX{ω} (= {ω}×
Succ) of X is closed and discrete in X and A = ω. So Corollary 2.2
yields:

Corollary 3.2. X{ω} is not P -embedded in X.

Moreover we check:

Lemma 3.3. X is not normal.

Proof. Obviously X{ω} and XLim are disjoint closed sets, we will see
that they cannot be separated. So let U be an open set in X containing
XLim. For every n ∈ ω, by Lim ⊂ Vn(X) and the PDL, we can fix

αn < ω1 with X
(αn,ω1)
{n} ⊂ U . Letting α∗ = sup{αn : n ∈ ω}, we see

X
(α∗,ω1)
ω ⊂ U . Pick α < ω1 with α∗ ≤ α. Because X

{α+1}
ω = N(α) ×

{α+ 1} ⊂ X
(α∗,ω1)
ω ⊂ U holds and N(α) is infinite, we see ⟨ω, α+ 1⟩ ∈

ClX U ∩X{ω}. Therefore X{ω} and XLim cannot be separated. □

The proof of the above lemma also shows that X{ω}∪XLim is a closed
subspace ofX which is not C∗-embedded inX. In the following lemma,
we characterize that the closed subspace X{ω} is C∗-embedded in X.

Lemma 3.4. For the space X = XN above with N = {N(α) : α < ω1},
the following are equivalent:

(1) the closed subspace X{ω} is C∗-embedded in X,
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(2) for every function h : ω1 → 2, where 2 = {0, 1}, there is a
sequence {rn : n ∈ ω} ⊂ I such that for every i ∈ 2, except for
countably many α ∈ h−1[{i}], {rn : n ∈ N(α)} converges to i
in the usual sense, that is, for every ε > 0, there is m ∈ ω such
that for every n ∈ N(α) ∩ (m,ω), |rn − i| < ε holds,

(3) for every function h : ω1 → 2, there is a function k : ω → 2 such
that for every i ∈ 2, except for countably many α ∈ h−1[{i}],
N(α) ⊂∗ k−1[{i}] holds, that is, N(α) \ k−1[{i}] is finite,

(4) for every H ⊂ ω1, there is K ⊂ ω such that both of the following
hold:
(a) except for countably many α ∈ H, N(α) ⊂∗ K holds,
(b) except for countably many α ∈ ω1 \ H, N(α) ⊂∗ ω \ K

holds.

Proof. (1) ⇒ (2): Let X{ω} be C
∗-embedded in X and h : ω1 → 2. The

function f : X{ω} → 2 defined by:

f(⟨ω, α + 1⟩) = i if α ∈ h−1[{i}]

is continuous, because X{ω} is discrete. Since X{ω} is C∗-embedded in
X, we can find a continuous function g : X → I with g ↾ X{ω} = f .
For every n ∈ ω, by the stationarity of Vn(X), we can find αn < ω1

and rn ∈ I such that the restriction g ↾ X(αn,ω1)
{n} is constant taking the

value rn. Let α∗ = sup{αn : n ∈ ω}. It suffices to see the following
claim.

Claim 1. For every i ∈ 2 and α ∈ h−1[{i}] ∩ (α∗, ω1), the sequence
{rn : n ∈ N(α)} converges to i.

Proof. Let i ∈ 2, α ∈ h−1[{i}]∩(α∗, ω1) and ε > 0. Since g is continuous
at ⟨ω, α+1⟩ and g(⟨ω, α+1⟩) = f(⟨ω, α+1⟩) = i, there is m ∈ ω with
g[((N(α) ∩ (m,ω)) ∪ {ω})) × {α + 1}] ⊂ (i − ε, i + ε). Now for every
n ∈ N(α) ∩ (m,ω), we have |rn − i| = |g(⟨n, α + 1⟩) − i| < ε. This
completes the proof of Claim 1.

(2) ⇒ (3): Assume (2) and let h : ω1 → 2. We can take a sequence
{rn : n ∈ ω} ⊂ I and α∗ < ω1 such that for every i ∈ 2 and α ∈
h−1[{i}] ∩ (α∗, ω1), {rn : n ∈ N(α)} converges to i. Take a function
k : ω → 2 with {n ∈ ω : rn < 1

3
} ⊂ k−1[{0}] and {n ∈ ω : rn >

2
3
} ⊂ k−1[{1}] Since for every α ∈ h−1[{0}] ∩ (α∗, ω1), {rn : n ∈ N(α)}

converges to 0, we can find m ∈ ω such that N(α)∩ (m,ω) ⊂ k−1[{0}],
thus we see N(α) ⊂∗ k−1[{0}]. Similarly for every α ∈ h−1[{1}] ∩
(α∗, ω1), we see N(α) ⊂∗ k−1[{1}].

The equivalence (3) ⇔ (4) follows from the identifications H =
h−1[{1}] and K = k−1[{1}].
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(3) ⇒ (1): Assume (3). To see (1), let U be a two elements cozero
cover ofX{ω}. SinceX{ω} is discrete, we may assume U = {U0, U1} with
Ui = {⟨ω, α + 1⟩ : α ∈ h−1[{i}]} (i ∈ 2) for some function h : ω1 → 2.
For this h, take a function k : ω → 2 in (3). Take α∗ < ω1 such that for
every i ∈ 2 and α ∈ h−1[{i}] ∩ (α∗, ω1), N(α) ⊂∗ k−1[{i}] holds. Since
X [0,α∗] is collectionwise normal, it suffices to find a locally finite cozero

cover V of X(α∗,ω1) such that V ↾ X(α∗,ω1)
{ω} refines U . Define a function

g : X(α∗,ω1) → I by the following clauses:

(a) if x = ⟨ω, α+1⟩ for some α ∈ h−1[{i}]∩ [α∗, ω1), then g(x) = i,

(b) if x ∈ X
(α∗,ω1)
{n} for some n ∈ k−1[{0}], then g(x) = 1

n
,

(c) if x ∈ X
(α∗,ω1)
{n} for some n ∈ k−1[{1}], then g(x) = 1− 1

n
.

We check:

Claim 2. The above function g is continuous.

Proof. Let x ∈ X(α∗,ω1) and ε > 0. Whenever x ∈ X
(α∗,ω1)
{n} for some

n ∈ ω, the set X
(α∗,ω1)
{n} is a clopen neighborhood of x on which g is

constant. So we assume x ∈ X
(α∗,ω1)
{ω} . We may assume x = ⟨ω, α + 1⟩

with α ∈ h−1[{0}] ∩ [α∗, ω1). From g(x) = 0 and N(α) ⊂∗ k−1[{0}],
we can find m′ ∈ ω with N(α) ∩ (m′, ω) ⊂ k−1[{0}]. Taking m ∈ ω
with m′ ≤ m and 1

m
< ε, let W = ((N(α) ∩ (m,ω) ∪ {ω}))× {α + 1}.

Obviously W is a clopen neighborhood of x. If y ∈ W \ {x}, then
y = ⟨n, α+1⟩ holds for some n ∈ N(α)∩ (m,ω). Now by n ∈ k−1[{0}],
we see g(y) = 1

n
< 1

m
< ε, so g is continuous at x. This completes the

proof of the claim.

Now the collection V = {g−1[[0, 2
3
)], g−1[(1

3
, 1]]} is the desired cozero

cover of X(α∗,ω1). □
Definition 3.5. Property (A) means the following property.

[Property (A)] There is a sequence N ⊂ [ω]ω of length ω1, say N =
{N(α) : α < ω1}, which satisfies (4) (equivalently (1), (2) and (3)) of
Lemma 3.4, that is, for every H ⊂ ω1, there is K ⊂ ω such that both
of the following hold:

(1) except for countably many α ∈ H, N(α) ⊂∗ K holds,
(2) except for countably many α ∈ ω1 \H, N(α) ⊂∗ ω \K holds,

In the next section, we will discuss the consistency of Property (A).

4. Consistency

A subcollection A of the collection [ω]ω is called almost disjoint if for
every distinct pair A,B ∈ A, the intersection A∩B is finite, see [27, II,



10 NOBUYUKI KEMOTO AND TOSHIMICHI USUBA

Definition 1.1]. Note that all maximal almost disjoint collections are
uncountable, see [27, II, Theorem 1.2 (a)]. Dow and Shelah proved in
[3] the following.

Proposition 4.1. [3, Theorem 2.1] It is consistent with Martin’s axiom
and 2ω = ω2 that there is a maximal almost disjoint collection A such
that for every disjoint pair A0 and A1 with A0,A1 ⊂ A, there is K ⊂ ω
satisfying both of the following:

(a) A ⊂∗ K holds for every A ∈ A0,
(b) A ⊂∗ ω \K holds for every A ∈ A1.

We remark that if Martin’s axiom and 2ω = ω2 are assumed, then
2ω = 2ω1 holds, see [27, II, Theorem 2.18]. In the above proposition,
taking a sequence N (= {N(α) : α < ω1}) of length ω1 from A, we see
that N satisfies (4) of Lemma 3.4. Using Corollary 2.2, we have:

Theorem 4.2. It is consistent with ZFC that Property (A) holds, there-
fore there is a subspace X of (ω+1)×ω1 such that the closed subspace
X{ω} of X is C∗-embedded in X but not P -embedded in X.

We will see that the negation of Property (A) is also consistent with
ZFC. In fact, we have the following.

Theorem 4.3. If 2ω < 2ω1 is assumed, then for every subspace X of
(ω + 1) × ω1, if X{ω} is C∗-embedded in X, then it is P -embedded in
X. Therefore 2ω < 2ω1 implies the negation of Property (A).

Proof. Assume 2ω < 2ω1 and X ⊂ (ω + 1) × ω1. Moreover assume
that X{ω} is C∗-embedded in X. From Corollary 2.2, assuming that
Vω(X) is not stationary, it suffices to see that Vω(ClX XA) is bounded
in ω1, where A = {n ∈ ω : Vn(X) is stationary in ω1}. So assume
that Vω(X) is not stationary but Vω(ClX XA) is unbounded, we will
derive a contradiction. Take a club set C ′ of ω1 disjoint from Vω(X) ∪
(
∪

n∈ω\A Vn(X)). For every α < ω1, take g(α) ∈ Vω(ClX XA) with α <

g(α) and let C = C ′ ∩ {α < ω1 : ∀β < α(g(β) < α)}. Obviously from
Lemma 1.6, C is also a club set in ω1 having the following property:

• C is disjoint from Vω(X) ∪ (
∪

n∈ω\A Vn(X)),

• for every α ∈ Succ(C), ClX XA ∩X
(pC(α),α]
{ω} ̸= ∅.

Then X{ω} can be represented as X{ω} =
⊕

α∈Succ(C)X
(pC(α),α]
{ω} . For

every α ∈ Succ(C), fix xα ∈ ClX XA ∩ X
(pC(α),α]
{ω} . Because of the first

countability of X, for every α ∈ Succ(C), we can fix a non-decreasing
sequence {γα(n) : n ∈ ω} in ω1 with pC(α) < γα(0) and a strictly
increasing sequence N(α) := {mα(n) : n ∈ ω} in A such that {yα(n) :
n ∈ ω} converges to xα, where yα(n) = ⟨mα(n), γα(n)⟩.
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For every subset H of Succ(C), let U(H) =
∪

α∈H X
(pC(α),α]
{ω} . Now fix

H ⊂ Succ(C). Then since {U(H), U(Succ(C)\H)} is a disjoint clopen
cover of the C∗-embedded subspace X{ω}, we can find a continuous
function fH : X → I such that fH(x) = 0 (fH(x) = 1) whenever
x ∈ U(H) (x ∈ U(Succ(C) \H), respectively). For every n ∈ A, since
Vn(X) is stationary and fH is continuous, we can fix βn < ω1 and

rn ∈ I such that fH is constant on X
(βn,ω1)
{n} taking value rn. Letting

β∗ = sup{βn : n ∈ A}, for every α ∈ Succ(C) with β∗ ≤ pC(α), since
fH is continuous at xα and {yα(n) : n ∈ ω} converges to xα, we can
find nα ∈ ω such that:

(1) whenever α ∈ H, fH(yα(n)) < 1
3
holds for every n ∈ ω with

nα ≤ n,
(2) whenever α ∈ Succ(C)\H, fH(yα(n)) >

2
3
holds for every n ∈ ω

with nα ≤ n.

Because of β∗ ≤ pC(α), notice fH(yα(n)) = rmα(n) in the clauses (1)
and (2) above. Now let KH = {m ∈ A : rm < 1

3
}. Then from (1),

we see that for every α ∈ Succ(C) with β∗ ≤ pC(α), if α ∈ H, then
N(α) ⊂∗ KH holds. Also from (2), we see that for every α ∈ Succ(C)
with β∗ ≤ pC(α), if α ∈ Succ(C) \ H, then N(α) ⊂∗ A \ KH holds.
Thus for every H ⊂ Succ(C), we have shown:

(a) except for countably many α ∈ H, N(α) ⊂∗ KH holds,
(b) except for countably many α ∈ Succ(C) \H, N(α) ⊂∗ A \KH

holds.

Now let {Hξ : ξ < 2ω1} be an independent collection of subsets of
Succ(C), that is, for distinct ξ1, . . . , ξm, ζ1, . . . , ζn < 2ω1 , the set

Hξ1 ∩ · · · ∩Hξm ∩ (Succ(C) \Hζ1) ∩ · · · ∩ (Succ(C) \Hζn)

is uncountable, see [27, VIII Exercises A6]. Letting Kξ = KHξ
for

each ξ < 2ω1 , the following claim yields a contradiction, because A is
countable and 2ω < 2ω1 is assumed.

Claim. If ξ < ζ < 2ω1 , then Kξ ̸= Kζ .

Proof. Fix α∗ < ω1 with

(a)ξ N(α) ⊂∗ Kξ holds for every α ∈ Hξ with α∗ ≤ α,
(b)ξ N(α) ⊂∗ A \Kξ holds for every α ∈ Succ(C) \Hξ with α∗ ≤ α,
(a)ζ N(α) ⊂∗ Kζ holds for every α ∈ Hζ with α∗ ≤ α,
(b)ζ N(α) ⊂∗ A \Kζ holds for every α ∈ Succ(C) \Hζ with α∗ ≤ α.

Since Hξ ∩ (Succ(C) \ Hζ) is uncountable, take α ∈ Hξ \ Hζ with
α∗ ≤ α. From (a)ξ, we have N(α) ⊂∗ Kξ. Moreover from (b)ζ , we
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have N(α) ⊂∗ A \Kζ . Since N(α) is infinite, we have Kξ ̸= Kζ . This
completes the proof of the claim.

Using Corollary 3.2 and Lemma 3.4, we see that 2ω < 2ω1 implies
the negation of Property (A).

□
Finally we ask:

Question 4.4. Is it consistent with ZFC that for every subspace X of
(ω + 1) × ω1 and every closed subspace F of X, F is P -embedded in
X whenever it is C∗-embedded in X?
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