THE WEIGHT OF LEXICOGRAPHIC PRODUCTS

YASUSHI HIRATA AND NOBUYUKI KEMOTO

ABSTRACT. We will calculate the weight of lexicographic products of GO-spaces, using this we will see:

- the assertion that the weight of the lexicographic product 2^{ω_1} is \aleph_1 is equivalent to the Continuum Hypothesis (CH), that is, $2^{\aleph_0} = \aleph_1$,
- the assertion that the weight of both lexicographic products 2^{ω_1} and 2^{ω_1+1} coincide is equivalent to the assertion $2^{\aleph_0} = 2^{\aleph_1}$,
- the assertion that the lexicographic product 2^{γ} is homeomorphic to the usual Tychonoff product 2^{γ} is equivalent to $\gamma \leq \omega$.

1. INTRODUCTION

We will work on the usual ZFC-set theory including the Axiom of Choice (AC) [4, 11]. All spaces are assumed to be regular T_1 containing at least 2 points and when we consider a product $\prod_{\alpha < \gamma} X_{\alpha}$, all X_{α} 's are also assumed to have cardinality at least 2 with $\gamma \ge 2$. Set theoretical and topological terminologies follow [4, 11, 1].

In [2], second countability of lexicographic products of LOTS's is characterized. It is known in [2, p.78, Example 4] that the usual Tychonoff product 2^{ω} , which is homeomorphic to the Cantor set \mathbb{C} , is also homeomorphic to the lexicographic product 2^{ω} , where $2 = \{0, 1\}$ with 0 < 1. So they are second countable, that is, the weight is at most countable. On the other hand, the weight of the usual Tychonoff product 2^{ω_1} is easily seen to be \aleph_1 . So it is natural to conjecture:

- (1) the lexicographic product 2^{ω_1} is homeomorphic to the usual Tychonoff product 2^{ω_1} ,
- (2) the weight of the lexicographic product 2^{ω_1} is \aleph_1 .

Date: August 5, 2020.

²⁰¹⁰ Mathematics Subject Classification. Primary 54F05, 54B10, 54B05. Secondary 54C05.

Key words and phrases. lexicographic product, GO-space, LOTS, weight, homogeneous, the continuum hypothesis.

This research was supported by Grant-in-Aid for Scientific Research (C) $19\mathrm{K}03606.$

Recently, the notion of lexicographic products of GO-spaces is introduced and discussed in [8, 9, 10], also see [3, 6, 7] for products of LOTS's. In this paper, we will calculate the weight of lexicographic products of GO-spaces. As corollaries, we see:

- the conjecture (1) is false, in fact, the assertion that the lexicographic product 2^{γ} is homeomorphic to the usual Tychonoff product 2^{γ} is equivalent to $\gamma \leq \omega$,
- the conjecture (2) is equivalent to the Continuum Hypothesis (CH), that is, $2^{\aleph_0} = \aleph_1$.

Obviously the usual Tychonoff products 2^{ω_1} and 2^{ω_1+1} are homeomorphic, however we will also see:

• the assertion that the weight of both lexicographic products 2^{ω_1} and 2^{ω_1+1} coincide is equivalent to the assertion $2^{\aleph_0} = 2^{\aleph_1}$.

A linearly ordered set $\langle L, <_L \rangle$ has a natural topology λ_L , which is called an *interval topology*, generated by $\{(\leftarrow, x)_L : x \in L\} \cup \{(x, \rightarrow)_L : x \in L\}$ as a subbase, where $(x, \rightarrow)_L = \{z \in L : x <_L z\}, (x, y)_L = \{z \in L : x <_L z <_L y\}, (x, y]_L = \{z \in L : x <_L z \leq_L y\}$ and so on. The triple $\langle L, <_L, \lambda_L \rangle$, which is simply denoted by L, is called a *LOTS*.

A triple $\langle X, <_X, \tau_X \rangle$ is said to be a *GO-space*, which is also simply denoted by X, if $\langle X, <_X \rangle$ is a linearly ordered set and τ_X is a T_2 topology on X having a base consisting of convex sets, where a subset C of X is *convex* if for every $x, y \in C$ with $x <_X y, [x, y]_X \subset C$ holds. In this situation, $\langle X, <_X \rangle$ is called an *underlying linearly ordered set* of X. The symbols \mathbb{R} and \mathbb{Q} denote the reals and the rationals respectively. Note that they are LOTS's. On the other hand, the Sorgenfrey line \mathbb{S} , whose underlying linearly ordered set is \mathbb{R} and the sets of type [a, b)are declared to be open, is known to be a GO-space but not a LOTS. For more information on LOTS's or GO-spaces, see [12]. Usually $<_L$, $(x, y)_L$, λ_L or τ_X are written simply <, $(x, y), \lambda$ or τ if contexts are clear.

 ω and ω_1 denote the first infinite ordinal and the first uncountable ordinal, respectively. Ordinals, which are usually denoted by Greek letters $\alpha, \beta, \gamma, \delta \cdots$, are considered to be LOTS's with the usual interval topology. cf α denotes the cofinality of the ordinal α . When α is a successor ordinal, i.e., $\alpha = \delta + 1$ for some ordinal δ , this δ is denoted by $\alpha - 1$. A non-zero ordinal which is not successor is said to be a limit ordinal.

An ordinal α is said to be a *cardinal* if $\alpha = |\alpha|$, where |X| denotes the cardinality of a set X, that is, |X| is the smallest ordinal δ such that there is a 1-1 map from X onto δ [11, I Definition 10.3], where note that the existence of |X| is ensured by AC. When we want to

 $\mathbf{2}$

emphasize that ω and ω_1 are cardinals, we write them by \aleph_0 and \aleph_1 , respectively. Generally, the α -th uncountable cardinal is denoted by ω_{α} or \aleph_{α} . Cardinals are usually denoted by Greek letters $\kappa, \lambda, \mu, \cdots$. For cardinals κ and $\lambda, \kappa^{\lambda}$ denotes the cardinal $|X^Y|$ with $|X| = \kappa$ and $|Y| = \lambda$, where X^Y denotes the set of all functions on Y to X.

It is well known that for a LOTS $\langle Y, \langle Y, \lambda_Y \rangle$, if $X \subset Y$, then $\langle X, \langle X, \tau_X \rangle$ is a GO-space with $\langle X = \langle Y \rangle X$ and τ_X is the subspace topology $\lambda_Y \upharpoonright X$. For every GO-space X, there is a LOTS X* such that X is a dense subspace of X* and X* has the property that if L is a LOTS containing X as a dense subspace, then L also contains the LOTS X* as a subspace, see [13]. Such a X* is called the *minimal d-extension of a GO-space X*. Indeed, the LOTS X* is constructed as follows, see also [8]. Let

$$X^+ = \{ x \in X : (\leftarrow, x] \in \tau_X \setminus \lambda_X \},\$$
$$X^- = \{ x \in X : [x, \to) \in \tau_X \setminus \lambda_X \}.$$

Then

$$X^* = (X^- \times \{-1\}) \cup (X \times \{0\}) \cup (X^+ \times \{1\}),$$

where the order $<_{X^*}$ on X^* is the restriction of the usual lexicographic order on $X \times \{-1, 0, 1\}$ with -1 < 0 < 1. Also we identify $X \times \{0\}$ with X in the obvious way. Obviously, we can see:

- if X is a LOTS, then $X^* = X$,
- X has a maximal element max X if and only if X^* has a maximal element max X^* , in this case, max $X = \max X^*$ (similarly for minimal elements).

For every $\alpha < \gamma$, let X_{α} be a LOTS and $X = \prod_{\alpha < \gamma} X_{\alpha}$. Every element $x \in X$ is identified with the sequence $\langle x(\alpha) : \alpha < \gamma \rangle$. In the present paper, a sequence means a function whose domain is an ordinal. For notational convenience, $\prod_{\alpha < \gamma} X_{\alpha}$ is considered as $\{\emptyset\}$ whenever $\gamma = 0$, where \emptyset is considered to be a function whose domain is 0. When $0 \leq \beta < \gamma$, $y_0 \in \prod_{\alpha < \beta} X_{\alpha}$ and $y_1 \in \prod_{\beta \leq \alpha} X_{\alpha}$, $y_0 \wedge y_1$ denotes the sequence $y \in \prod_{\alpha < \gamma} X_{\alpha}$ defined by

$$y(\alpha) = \begin{cases} y_0(\alpha) & \text{if } \alpha < \beta, \\ y_1(\alpha) & \text{if } \beta \le \alpha. \end{cases}$$

In this case, whenever $\beta = 0$, $\emptyset^{\wedge} y_1$ is considered as y_1 . In case $0 \leq \beta < \gamma$, $y_0 \in \prod_{\alpha < \beta} X_{\alpha}$, $u \in X_{\beta}$ and $y_1 \in \prod_{\beta < \alpha} X_{\alpha}$, $y_0^{\wedge} \langle u \rangle^{\wedge} y_1$ denotes

the sequence $y \in \prod_{\alpha < \gamma} X_{\alpha}$ defined by

$$y(\alpha) = \begin{cases} y_0(\alpha) & \text{if } \alpha < \beta, \\ u & \text{if } \alpha = \beta, \\ y_1(\alpha) & \text{if } \beta < \alpha. \end{cases}$$

More general cases are similarly defined.

The lexicographic order $<_X$ on $X = \prod_{\alpha < \gamma} X_{\alpha}$, where all X_{α} 's are LOTS's, is defined as follows: for every $x, x' \in X$,

$$x <_X x'$$
 iff for some $\alpha < \gamma$, $x \upharpoonright \alpha = x' \upharpoonright \alpha$ and $x(\alpha) <_{X_\alpha} x'(\alpha)$,

where $x \upharpoonright \alpha = \langle x(\beta) : \beta < \alpha \rangle$ and $\langle X_{\alpha} \rangle$ is the order on X_{α} . Now for every $\alpha < \gamma$, let X_{α} be a GO-space and $X = \prod_{\alpha < \gamma} X_{\alpha}$. The subspace X of the lexicographic product $\hat{X} = \prod_{\alpha < \gamma} X_{\alpha}^*$ is said to be the *lexicographic product of GO-spaces* X_{α} 's, for more details see [8]. $\prod_{i \in \omega} X_i \ (\prod_{i < n} X_i \text{ where } n \in \omega) \text{ is denoted by } X_0 \times X_1 \times X_2 \times \cdots$ $(X_0 \times X_1 \times X_2 \times \cdots \times X_n, \text{ respectively}).$ $\prod_{\alpha < \gamma} X_\alpha$ is also denoted by X^{γ} whenever $X_{\alpha} = X$ for all $\alpha < \gamma$. When X_{α} 's are GO-spaces, $\prod_{\alpha < \gamma} X_{\alpha}$ usually means the lexicographic product otherwise stated.

2. The weight of GO-spaces

Recall that the weight w(X) and the density d(X) of a topological space X are defined as follows:

$$w(X) = \min\{|\mathcal{B}| : \mathcal{B} \text{ is a base for } X\},\$$

 $d(X) = \min\{|D|: D \text{ is dense in } X\}.$

Because X is regular T_1 , note that if X is infinite, then $\aleph_0 \leq d(X) \leq$ w(X) and $d(X) \leq |X|$ hold, and also that if X is finite, then d(X) =w(X) = |X|. For a GO-space X, let

$$N_X^+ = \{x \in X : \text{ there is } y \in X \text{ with } x < y \text{ and } (x, y) = \emptyset \},\$$

 $N_X^- = \{ x \in X : \text{ there is } y \in X \text{ with } y < x \text{ and } (y, x) = \emptyset \}.$

In other words, an element of N_X^+ is called a left neighbor of neighbors in the sense of [2, p.6]. For every $x \in N_X^+$, assign $y \in X$ with x < yand $(x, y) = \emptyset$. Then this assignment defines a 1-1 map on N_X^+ onto N_X^- , so we have $|N_X^+| = |N_X^-|$. Obviously we have :

- if $x \in N_X^+$, then $(\leftarrow, x] \in \lambda_X \subset \tau_X$, $x \in X^+ \cup N_X^+$ iff $(x, \rightarrow)_X \neq \emptyset$ and $(\leftarrow, x]_X \in \tau_X$.

Lemma 2.1. Let X be a GO-space and $x \in X$. Then $x \notin X^+ \cup N_X^+$ holds if and only if $(x, y)_{X^*} \neq \emptyset$ for every $y \in X^*$ with $x <_{X^*} y$, in other words, x has no immediate successor in X^* . Therefore, if $x \notin X^+ \cup N_X^+$, $(x, \to)_X \neq \emptyset$, D is dense in X and U is a neighborhood of x in X, then there is $d \in D$ with x < d and $[x, d]_X \subset U$.

Proof. The necessity is obvious. To see the the sufficiency, let $x \notin X^+ \cup N_X^+$, $(x, \to) \neq \emptyset$. If $y_0 \in X^*$ were an immediate successor of x, then y_0 would not belong to X otherwise $x \in N_X^+$ and $(\leftarrow, x] = (\leftarrow y_0)_{X^*} \cap X$ would be open in X. Thus $x \in X^+$, a contradiction.

To see the latter half, let $x \notin X^+ \cup N_X^+$, $(x, \to)_X \neq \emptyset$, D be dense in X and U a neighborhood of x. Take $y \in X^*$ with $x <_{X^*} y$ and $[x, y)_{X^*} \cap X \subset U$. Then y is not the immediate successor of x in X^* , so $(x, y)_{X^*} \neq \emptyset$ and $(x, y)_{X^*} \cap X$ is a non-empty open set in X. Therefore there exists a $d \in D$ such that $d \in (x, y)_{X^*} \cap X$, then $[x, d]_X \subset U$. \Box

We can also verify an analogous Lemma above for $x \notin X^- \cup N_X^-$. The weight w(X) of a GO-space X is decided from $d(X), |N_X^+|, |X^+|$ and $|X^-|$.

Lemma 2.2. Let X be a GO-space. Then

$$w(X) = \max\{d(X), |N_X^+|, |X^+|, |X^-|\}.$$

Proof. If X is finite, then we have $|N_X^+| \le |X| = w(X) = d(X)$ and $X^+ = X^- = \emptyset$. So we assume that X is infinite.

To see the inequality " \geq ", let $\kappa = w(X)$ and \mathcal{B} be a base for X with $|\mathcal{B}| = \kappa$. For each $x \in N_X^+$, assign $B_x \in \mathcal{B}$ with $x \in B_x \subset (\leftarrow, x]_X$. Then this assignment defines an injective function on N_X^+ to \mathcal{B} , so we have $|N_X^+| \leq \kappa$. Similarly we can see $|X^+| \leq \kappa$ and $|X^-| \leq \kappa$.

To see the other inequality, let $\kappa = \max\{d(X), |N_X^+|, |X^+|, |X^-|\}$ and fix a dense set D in X with |D| = d(X). Since $|N_X^+| = |N_X^-|$ holds, it suffices to see the following claim.

Claim 1. The collection

$$\mathcal{S} := \{(\leftarrow, x) : x \in D\} \cup \{(x, \rightarrow) : x \in D\}$$
$$\cup \{(\leftarrow, x] : x \in N_X^+ \cup X^+\} \cup \{[x, \rightarrow) : x \in N_X^- \cup X^-\}$$

is a subbase for X, in fact, the collection of all non-empty intersections of at most two members of \mathcal{S} is a base for X.

Proof. Let U be a non-empty open set with $x \in U$. We consider several cases.

Case 1. $(\leftarrow, x) = \emptyset$, that is, $x = \min X$.

Note $(x, \to) \neq \emptyset$. Whenever $x \in N_X^+ \cup X^+$, we have $x \in (\leftarrow, x] = \{x\} \subset U$. So let $x \notin N_X^+ \cup X^+$. From Lemma 2.1, we can take $d \in D$ with x < d and $[x, d] \subset U$. Then $x \in (\leftarrow, d)_X \subset U$ with $(\leftarrow, d)_X \in S$.

Similarly we see:

Case 2. $(x, \rightarrow) = \emptyset$, that is, $x = \max X$.

Case 3. $(\leftarrow, x) \neq \emptyset$ and $(x, \rightarrow) \neq \emptyset$.

Whenever $x \notin N_X^+ \cup X^+$ and $x \notin N_X^- \cup X^-$, taking $d', d \in D$ with d' < x < d and $[d', d] \subset U$ from Lemma 2.1, we have $x \in (\leftarrow, d) \cap (d', \rightarrow) \subset U$ with $(\leftarrow, d), (d', \rightarrow) \in \mathcal{S}$. Whenever $x \notin N_X^+ \cup X^+$ and $x \in N_X^- \cup X^-$, taking $d \in D$ with x < d and $[x, d] \subset U$ from Lemma 2.1, we have $x \in (\leftarrow, d) \cap [x, \rightarrow) \subset U$ with $(\leftarrow, d), [x, \rightarrow) \in \mathcal{S}$. The case $x \in N_X^+ \cup X^+$ and $x \notin N_X^- \cup X^-$ is similar. Whenever $x \in N_X^+ \cup X^+$ and $x \in N_X^- \cup X^-$, we have $x \in (\leftarrow, x] \cap [x, \rightarrow) = \{x\} \subset U$ with $(\leftarrow, x], [x, \rightarrow) \in \mathcal{S}$.

Remark that this lemma also shows the well-known fact $w(X) \leq |X|$ about a GO-space X.

3. The weight of lexicographic products

In this section, we calculate the weight of the lexicographic products.

Lemma 3.1. Let $X = X_0 \times X_1$ be a lexicographic product of GO-spaces with $|X| \ge \omega$ and κ an infinite cardinal. Then $w(X) \le \kappa$ holds if and only if $|X_0| \le \kappa$ and $w(X_1) \le \kappa$.

Proof. Let $\hat{X} = X_0^* \times X_1^*$.

To see "only if" part, let $w(X) \leq \kappa$ and \mathcal{B} be a base for X with $|\mathcal{B}| = w(X)$. Take $v', v \in X_1$ with v' < v. Then for every $u \in X_0$, $(\langle u, v' \rangle, \to)_X$ is a neighborhood of $\langle u, v \rangle$. So for every $u \in X_0$ assign $B_u \in \mathcal{B}$ with $\langle u, v \rangle \in B_u \subset (\langle u, v' \rangle, \to)_X$. Then this assignment witnesses $|X_0| \leq |\mathcal{B}| \leq \kappa$. Now fix $u_0 \in X_0$, then obviously X_1 can be identified with the subspace $\{u_0\} \times X_1$, see also [9, Lemma 3.4]. Then we have $w(X_1) = w(\{u_0\} \times X_1) \leq w(X) \leq \kappa$.

To see "if" part, let $|X_0| \leq \kappa$ and $w(X_1) \leq \kappa$. Then by Lemma 2.2, we see $d(X_1) \leq \kappa$, $|N_{X_1}^+| \leq \kappa$, $|X_1^+| \leq \kappa$ and $|X_1^-| \leq \kappa$. So we can fix a dense set D_1 in X_1 with $|D_1| = d(X_1)$. Let

$$M = \{ v \in X_1 : (\leftarrow, v) = \emptyset \text{ or } (v, \rightarrow) = \emptyset \},\$$

that is, M is the set of a maximal element and a minimal element if exists, so $|M| \leq 2$. ¿From Lemma 2.2, it suffices to see the following claims.

Claim 1. $d(X) \leq \kappa$.

Proof. Let $D = X_0 \times (D_1 \cup M)$. The assumption ensures $|D| \leq \kappa$, so it suffices to see that D is dense in X. Let $x \in X$ and U be a neighborhood of x in X, say $x = \langle u, v \rangle$. When $v \in M$, obviously $U \cap D$ is non-empty. So assume $v \notin M$, then we can take $v_0^*, v_1^* \in X_1^*$ with $v_0^* < v < v_1^*$ and $(\langle u, v_0^* \rangle, \langle u, v_1^* \rangle)_{\hat{X}} \cap X \subset U$. Since $(v_0^*, v_1^*)_{X_1^*} \cap X_1$ is non-empty open set in X_1 , we can find $d \in D_1 \cap ((v_0^*, v_1^*)_{X_1^*} \cap X_1)$. Now we have $\langle u, d \rangle \in U \cap D$.

Claim 2. $|N_X^+| \leq \kappa$.

Proof. It suffices to see $N_X^+ \subset X_0 \times (N_{X_1}^+ \cup M)$. Let $x \in N_X^+$, say $x = \langle u, v \rangle$. As above, we may assume $v \notin M$. ¿From $x \in N_X^+$, we can find $y \in X$ with $x <_X y$ and $(x, y)_X = \emptyset$. By $(v, \to)_{X_1} \neq \emptyset$, y has to be $\langle u, v' \rangle$ for some $v' \in X_1$ with $v <_{X_1} v'$. Then we have $(v, v')_{X_1} = \emptyset$, therefore $v \in N_{X_1}^+$, so $x \in X_0 \times (N_{X_1}^+ \cup M)$.

Claim 3. $|X^+| \leq \kappa$.

Proof. It suffices to see $X^+ \subset X_0 \times (X_1^+ \cup M)$. Let $x \in X^+$, say $x = \langle u, v \rangle$. As above, we may assume $v \notin M$. ¿From $x \in X^+$, note $(\leftarrow, x]_X \in \tau_X \setminus \lambda_X$. If $(\leftarrow, v]_{X_1} \in \lambda_{X_1}$ were true, then there is $v' \in X_1$ with $v <_{X_1} v'$ and $(v, v')_{X_1} = \emptyset$. Then we have $(\leftarrow, x]_X = (\leftarrow, \langle u, v' \rangle)_X \in \lambda_X$, a contradiction. So we have $(\leftarrow, v]_{X_1} \notin \lambda_{X_1}$. By $(\leftarrow, x]_X \in \tau_X$, we can find $y \in \hat{X}$ with $x <_{\hat{X}} y$ and $(x, y)_{\hat{X}} \cap X = \emptyset$. Since $(v, \rightarrow)_{X_1} \neq \emptyset$ holds, y can be represented as $\langle u, v^* \rangle$ with $v <_{X_1^*} v^* \in X_1^*$. Then we have $(v, v^*)_{X_1^*} = \emptyset$, otherwise $(x, y)_{\hat{X}} \cap X \neq \emptyset$. Now we have $(\leftarrow, v]_{X_1} = (\leftarrow, v^*)_{X_1^*} \cap X_1 \in \tau_{X_1}$, which implies, by $(\leftarrow, v]_{X_1} \notin \lambda_{X_1}$, $v \in X_1^+$ thus $x \in X_0 \times (X_1^+ \cup M)$.

Similarly we see the following.

Claim 4. $|X^-| \leq \kappa$.

Lemma 3.2. Let $X = \prod_{\alpha < \gamma} X_{\alpha}$ be a lexicographic product of GOspaces and κ an infinite cardinal. Assume that γ is a limit ordinal. Then $w(X) \leq \kappa$ holds if and only if $\gamma \leq \kappa$ holds and for every $\beta < \gamma$, $|\prod_{\alpha < \beta} X_{\alpha}| \leq \kappa$ holds.

Proof. Let $\hat{X} = \prod_{\alpha < \gamma} X_{\alpha}^*$.

Assume $w(X) \leq \kappa$ and $\beta < \gamma$. It follows from $X = (\prod_{\alpha \leq \beta} X_{\alpha}) \times (\prod_{\beta < \alpha} X_{\alpha})$, see [8, Lemma 1.5], that $|\prod_{\alpha \leq \beta} X_{\alpha}| \leq \kappa$ has to be true from the lemma above. If $\gamma > \kappa$ were true, then by $X = (\prod_{\alpha < \kappa} X_{\alpha}) \times$

 $(\prod_{\kappa \leq \alpha} X_{\alpha})$, applying the lemma above, we see $\kappa < 2^{\kappa} \leq |\prod_{\alpha < \kappa} X_{\alpha}| \leq \kappa$, a contradiction.

To see the other direction, let $\gamma \leq \kappa$ and for every $\beta < \gamma$, $|\prod_{\alpha \leq \beta} X_{\alpha}| \leq \kappa$. Define

 $J^+ = \{ \alpha < \gamma : X_\alpha \text{ has no maximal element.} \},\$

 $J^- = \{ \alpha < \gamma : X_\alpha \text{ has no minimal element.} \}.$

By Lemma 2.2, it suffices to see the following claims.

Claim 1. $d(X) \leq \kappa$.

Proof. Fix $x_0 \in X$ and let

$$D = \bigcup_{\beta < \gamma} \{ y^{\wedge}(x_0 \upharpoonright (\beta, \gamma)) : y \in \prod_{\alpha \le \beta} X_{\alpha} \}.$$

The assumption ensures $|D| \leq \kappa$, so it suffices to see that D is dense in X. Let $x \in X$ and U be a neighborhood of x in X. We consider some cases.

Case 1. $(\leftarrow, x) = \emptyset$.

Because of $x = \min X$ and $(x, \to) \neq \emptyset$, we can find $b \in \hat{X}$ with $x <_{\hat{X}} b$ and $[x, b)_{\hat{X}} \cap X \subset U$. Set $\alpha_0 = \min\{\alpha < \gamma : x(\alpha) \neq b(\alpha)\}$. Then $(x \upharpoonright (\alpha_0 + 1))^{\wedge}(x_0 \upharpoonright (\alpha_0, \gamma)) \in D \cap U$.

Similarly we see the following case.

Case 2. $(x, \rightarrow) = \emptyset$.

Case 3. $(\leftarrow, x) \neq \emptyset$ and $(x, \rightarrow) \neq \emptyset$.

Take $a, b \in \hat{X}$ with $a <_{\hat{X}} x <_{\hat{X}} b$ and $(a, b)_{\hat{X}} \cap X \subset U$. Set $\alpha_0 = \min\{\alpha < \gamma : a(\alpha) \neq b(\alpha)\}$. By a < x < b, we have $a \upharpoonright \alpha_0 = x \upharpoonright \alpha_0 = b \upharpoonright \alpha_0$. We consider further 3 cases.

Case 3-1. $x \upharpoonright (\alpha_0 + 1) = a \upharpoonright (\alpha_0 + 1).$

Let $\alpha_1 = \min\{\alpha < \gamma : a(\alpha) \neq x(\alpha)\}$. Then noting $\alpha_0 < \alpha_1$, we see $(x \upharpoonright (\alpha_1 + 1))^{\wedge}(x_0 \upharpoonright (\alpha_1, \gamma)) \in D \cap U$.

Similarly we see the following case.

Case 3-2. $x \upharpoonright (\alpha_0 + 1) = b \upharpoonright (\alpha_0 + 1).$

Case 3-3. $x \upharpoonright (\alpha_0 + 1) \neq a \upharpoonright (\alpha_0 + 1)$ and $x \upharpoonright (\alpha_0 + 1) \neq b \upharpoonright (\alpha_0 + 1)$. In this case, we have $a \upharpoonright \alpha_0 = x \upharpoonright \alpha_0 = b \upharpoonright \alpha_0$ and $a(\alpha_0) < x(\alpha_0) < b(\alpha_0)$. Therefore we have $(x \upharpoonright (\alpha_0 + 1))^{\wedge}(x_0 \upharpoonright (\alpha_0, \gamma)) \in D \cap U$. \Box

Claim 2. $|N_X^+| \leq \kappa$.

Proof. We consider 2 cases.

Case 1. $\sup J^- = \gamma$ or $\sup J^+ = \gamma$.

We will see $N_X^+ = \emptyset$. Assuming $N_X^+ \neq \emptyset$, take $x \in N_X^+$. Then we can take $y \in X$ with x < y and $(x, y) = \emptyset$. Let $\alpha_0 = \min\{\alpha < \gamma : x(\alpha) \neq y(\alpha)\}$. We consider further 2 subcases.

Case 1-1. $\sup J^+ = \gamma$.

Let $\alpha_1 = \min(J^+ \cap (\alpha_0, \gamma))$ and take $u \in X_{\alpha_1}$ with $x(\alpha_1) < u$. Then we have $(x \upharpoonright \alpha_1)^{\wedge} \langle u \rangle^{\wedge} (x \upharpoonright (\alpha_1, \gamma)) \in (x, y)$, a contradiction.

Case 1-2. sup $J^- = \gamma$.

Let $\alpha_1 = \min(J^- \cap (\alpha_0, \gamma))$ and take $u \in X_{\alpha_1}$ with $u < y(\alpha_1)$. Then we have $(y \upharpoonright \alpha_1)^{\wedge} \langle u \rangle^{\wedge} (y \upharpoonright (\alpha_1, \gamma)) \in (x, y)$, a contradiction.

Case 2. $\sup J^- < \gamma$ and $\sup J^+ < \gamma$.

Let $\alpha_0 = \max\{\sup J^-, \sup J^+\}$. We consider 2 subcases.

Case 2-1. sup $J^+ = \alpha_0$.

It suffices to see

$$N_X^+ \subset \bigcup_{\alpha_0 \le \beta < \gamma} (\prod_{\alpha \le \beta} X_\alpha) \times \{ \langle \max X_\alpha : \alpha > \beta \rangle \},\$$

because the cardinality of the right hand set is of $\leq \kappa$. To see this, let $x \in N_X^+$. Then there is $y \in X$ with x < y and $(x, y) = \emptyset$. Let $\alpha_1 = \min\{\alpha < \gamma : x(\alpha) \neq y(\alpha)\}$. Then for every $\alpha < \gamma$ with $\alpha_1 < \alpha$, X_α has a maximal element and $x(\alpha) = \max X_\alpha$, otherwise, taking some $\alpha > \alpha_1$ and $u \in X_\alpha$ with $x(\alpha) < u$, we see $(x \upharpoonright \alpha)^{\wedge} \langle u \rangle^{\wedge} (x \upharpoonright (\alpha, \gamma)) \in (x, y)$, a contradiction. Therefore $\alpha_0 \leq \alpha_1$ and $x \in (\prod_{\alpha \leq \alpha_1} X_\alpha) \times \{\langle \max X_\alpha : \alpha > \alpha_1 \rangle\}$.

Case 2-2. sup $J^{-} = \alpha_0$.

In this case, as above, we can see

$$N_X^- \subset \bigcup_{\alpha_0 \le \beta < \gamma} (\prod_{\alpha \le \beta} X_\alpha) \times \{ \langle \min X_\alpha : \alpha > \beta \rangle \}.$$

Then we see $|N_X^+| = |N_X^-| \le \kappa$.

Claim 3. $|X^+| \leq \kappa$.

Proof. We consider 2 cases.

Case 1. $\sup J^+ = \gamma$.

In this case, we prove $X^+ = \emptyset$. Assume $x \in X^+$, that is, $(\leftarrow, x]_X \in \tau_X \setminus \lambda_X$. We will get a contradiction. Note $(x, \rightarrow)_X \neq \emptyset$ because

of $(\leftarrow, x]_X \notin \lambda_X$. Since $(\leftarrow, x]_X$ is open in X and X is a subspace of \hat{X} , we can find $b \in \hat{X}$ with $x <_{\hat{X}} b$ and $(x, b)_{\hat{X}} \cap X = \emptyset$. Let $\alpha_0 = \min\{\alpha < \gamma : x(\alpha) \neq b(\alpha)\}$. Then we have $x \upharpoonright \alpha_0 = b \upharpoonright \alpha_0$ and $X_{\alpha_0} \ni x(\alpha_0) <_{X^*_{\alpha_0}} b(\alpha_0) \in X^*_{\alpha_0}$. Further let $\alpha_1 = \min(J^+ \cap (\alpha_0, \gamma))$ and take $u \in X_{\alpha_1}$ with $x(\alpha_1) < u$. Then $(x \upharpoonright \alpha_1)^{\wedge} \langle u \rangle^{\wedge} (x \upharpoonright (\alpha_1.\gamma)) \in$ $(x, b)_{\hat{X}} \cap X$, a contradiction. Thus we have $X^+ = \emptyset$.

Case 2.
$$\sup J^+ < \gamma$$
.

Let $\alpha_0 = \sup J^+$. As in Case 2-1 of Claim 2, it suffices to see

$$X^+ \subset \bigcup_{\alpha_0 \le \beta < \gamma} (\prod_{\alpha \le \beta} X_\alpha) \times \{ \langle \max X_\alpha : \alpha > \beta \rangle \}.$$

Let $x \in X^+$. As in Case 1 above, take $b \in \hat{X}$ with $x <_{\hat{X}} b$ and $(x,b)_{\hat{X}} \cap X = \emptyset$. Let $\alpha_1 = \min\{\alpha < \gamma : x(\alpha) \neq b(\alpha)\}$. Then for every $\alpha > \alpha_1$, a maximal element of X_α exists and $x(\alpha) = \max X_\alpha$, otherwise for some $\alpha > \alpha_1$ and $u \in X_\alpha$, $x(\alpha) < u$ holds, now $(x \upharpoonright \alpha)^{\wedge} \langle u \rangle^{\wedge} (x \upharpoonright (\alpha, \gamma)) \in (x,b)_{\hat{X}} \cap X$, a contradiction. Thus we have $\alpha_0 \leq \alpha_1$ and $x \in (\prod_{\alpha \leq \alpha_1} X_\alpha) \times \{\langle \max X_\alpha : \alpha > \alpha_1 \rangle\}$.

Similarly we see the following and the proof is complete.

Claim 4.
$$|X^-| \leq \kappa$$
.

Theorem 3.3. Let $X = \prod_{\alpha < \gamma} X_{\alpha}$ be a lexicographic product of GOspaces with $|X| \ge \omega$. Then

$$w(X) = \begin{cases} \sup\{|\prod_{\alpha \le \beta} X_{\alpha}| : \beta < \gamma\} & \text{if } \gamma \text{ is limit,} \\ \max\{|\prod_{\alpha < \gamma - 1} X_{\alpha}|, w(X_{\gamma - 1})\} & \text{if } \gamma \text{ is successor.} \end{cases}$$

Proof. First assume that γ is limit. The inequality " \geq " is obvious from Lemma 3.2. To see the inequality " \leq ", let $\kappa = \sup\{|\prod_{\alpha \leq \beta} X_{\alpha}| : \beta < \gamma\}$. If $\gamma > \kappa$ were true, then we have $\kappa < 2^{\kappa} \leq |\prod_{\alpha \leq \kappa} X_{\alpha}| \leq \kappa$, a contradiction. So we have $\gamma \leq \kappa$. Now Lemma 3.2 shows $w(X) \leq \kappa$.

Next let γ be a successor. Because of $X = (\prod_{\alpha < \gamma - 1} X_{\alpha}) \times X_{\gamma - 1}$, Lemma 3.1 directly shows $w(X) = \max\{|\prod_{\alpha < \gamma - 1} X_{\alpha}|, w(X_{\gamma - 1})\}$. \Box

Example 3.4. Applying $\gamma = 2$ in the theorem above, we see $w(\mathbb{Q} \times \mathbb{R}) = \aleph_0$ but $w(\mathbb{R} \times \mathbb{Q}) = 2^{\aleph_0}$. This fact is also directly checked by the fact that $\mathbb{Q} \times \mathbb{R}$ is the topological sum of $|\mathbb{Q}|$ -many \mathbb{R} 's but $\mathbb{R} \times \mathbb{Q}$ is the topological sum of $|\mathbb{R}|$ -many \mathbb{Q} 's. Also note $w(\omega \times [0,1]_{\mathbb{R}}) = \aleph_0$ but $w([0,1]_{\mathbb{R}} \times \omega) = 2^{\aleph_0}$, where $[0,1]_{\mathbb{R}}$ denotes the interval [0,1) in \mathbb{R} .

The theorem above extends Theorem 4.3.1 in [2] for lexicographic products of GO-spaces.

Corollary 3.5. [2, Theorem 4.3.1] Let $X = \prod_{\alpha < \gamma} X_{\alpha}$ be an infinite lexicographic product of GO-spaces. Then X is second countable if and only if the following clauses hold.

- (1) $\gamma \leq \omega$,
- (2) if $\gamma = \omega$, then for every $\alpha < \gamma$, X_{α} is countable,
- (3) if $\gamma < \omega$, then the GO-space $X_{\gamma-1}$ is second countable and for every $\alpha < \gamma 1$, X_{α} is countable.

4. Applications

For a cardinal μ , μ^+ denotes the the smallest cardinal greater than μ . An uncountable cardinal λ with $\lambda = \mu^+$ for some cardinal μ is said to be a successor cardinal. A limit cardinal is an uncountable cardinal which is not a successor cardinal. For a cardinal κ and a limit cardinal λ , the cardinal function $\kappa^{<\lambda}$ is defined as follows:

$$\kappa^{<\lambda} = \sup\{\kappa^{\mu}: \mu \text{ is a cardinal and } \mu < \lambda\},\$$

see [4, p.52, (5.10)]. However this cardinal function can be further extended as follows, for a cardinal κ and an ordinal γ ,

 $\kappa^{<\gamma} = \sup\{\kappa^{\mu}: \ \mu \text{ is a cardinal and } \mu < \gamma \}, \text{ equivalently,}$

 $\kappa^{<\gamma} = \sup \{ \kappa^{|\alpha|} : \alpha \text{ is an ordinal and } \alpha < \gamma \}.$

Note that under this definition, whenever μ^+ is a successor cardinal, we have $\kappa^{<\mu^+} = \kappa^{\mu}$. Obviously, whenever $\omega \leq \kappa < \gamma$, $\kappa^{<\gamma} = 2^{<\gamma}$ holds because of $\kappa^{\mu} = 2^{\mu}$ for $\omega \leq \kappa \leq \mu$. For every infinite cardinal κ , also note that $\kappa \leq 2^{<\kappa} \leq \kappa^{<\kappa}$ and $\kappa < \kappa^{cf\kappa}$ hold, and that whenever the Generalized Continuum Hypothesis (GCH) is assumed, κ is a regular cardinal (that is, $cf\kappa = \kappa$) if and only if $2^{<\kappa} = \kappa^{<\kappa}$, see [4, Theorem 5.15]. Moreover for example, we see $2^{<\omega} = \aleph_0^{<\omega} = \aleph_0, 2^{<\omega+1} = \aleph_0^{<\omega+1} = 2^{\aleph_0}, \aleph_1^{<\omega} = \aleph_1, \aleph_1^{<\omega+1} = \aleph_1^{<\omega_1} = 2^{\aleph_0}, \aleph_1^{<\omega_1+1} = 2^{\aleph_1}, \cdots$, etc.

In this section, using this cardinal function, we will calculate the weight of special types of lexicographic products.

Corollary 4.1. Let γ be an infinite ordinal, then the weight of the lexicographic product 2^{γ} is the cardinality $2^{<\gamma}$, that is, $w(2^{\gamma}) = 2^{<\gamma}$.

Proof. When γ is limit, from Theorem 3.3, we see $w(2^{\gamma}) = \sup\{|2^{\beta+1}| : \beta < \gamma\} = \sup\{2^{|\beta|} : \beta < \gamma\} = 2^{<\gamma}$. When γ is successor, from Theorem 3.3, we see $w(2^{\gamma}) = \max\{|2^{\gamma-1}|, w(2)\} = 2^{|\gamma-1|} = 2^{<\gamma}$.

Example 4.2. Applying the corollary above, we see $w(2^{\omega}) = \aleph_0$, $w(2^{\omega+1}) = w(2^{\omega_1}) = 2^{\aleph_0}$, $w(2^{\omega_1+1}) = w(2^{\omega_2}) = 2^{\aleph_1}$, $w(2^{\omega_\omega}) = 2^{<\aleph_\omega} \ge \aleph_\omega$, more generally for infinite cardinal κ , $w(2^{\kappa}) = 2^{<\kappa} \ge \kappa$ and $w(2^{\gamma}) = 2^{\kappa}$ whenever $\kappa < \gamma \le \kappa^+$.

So we have:

Corollary 4.3. The following hold.

- (1) the assertion $w(2^{\omega_1}) = \aleph_1$ is equivalent to the Continuum Hypothesis (CH), that is, $2^{\aleph_0} = \aleph_1$,
- (2) the assertion $w(2^{\omega_1}) = w(2^{\omega_1+1})$ is equivalent to the assertion $2^{\aleph_0} = 2^{\aleph_1}$,
- (3) $w(2^{\omega_{\omega}}) > \aleph_{\omega}$ is equivalent to the assertion that $\aleph_{\omega} < 2^{\aleph_n}$ holds for some $n \in \omega$.

Corollary 4.3 (1) shows that if the negation of CH is assumed, then the lexicographic product 2^{ω_1} and the usual Tychonoff product 2^{ω_1} are not homeomorphic. However, we will see in the next section that they are not homeomorphic without additional set theoretical assumptions.

Next we calculate the weight of lexicographic product $\prod_{\alpha < \gamma} X_{\alpha}$, where all X_{α} 's have the same infinite cardinality κ .

Corollary 4.4. Let $X = \prod_{\alpha < \gamma} X_{\alpha}$ be a lexicographic product of GOspaces and κ an infinite cardinal. If for every $\alpha < \gamma$, the cardinality of X_{α} is κ , then the weight of X is the cardinality $\kappa^{<\gamma}$.

Proof. Noting $w(X_{\gamma-1}) \leq |X_{\gamma-1}| = \kappa \leq \kappa^{<\gamma}$, the proof is similar to Corollary 4.1.

Example 4.5. Note that the weight of the real line \mathbb{R} and the Sorgenfrey line \mathbb{S} are \aleph_0 and 2^{\aleph_0} respectively. Applying the corollary above, we see $w(\mathbb{R}^2) = w(\mathbb{S}^2) = (2^{\aleph_0})^{<2} = 2^{\aleph_0}$, $w(\mathbb{R}^{\omega}) = w(\mathbb{S}^{\omega}) = (2^{\aleph_0})^{<\omega} = 2^{\aleph_0}$, $w(\mathbb{R}^{\omega+1}) = w(\mathbb{S}^{\omega+1}) = (2^{\aleph_0})^{<\omega+1} = (2^{\aleph_0})^{\aleph_0} = 2^{\aleph_0}$, $w(\mathbb{R}^{\omega_1}) = w(\mathbb{S}^{\omega_1}) = (2^{\aleph_0})^{<\omega_1} = (2^{\aleph_0})^{\aleph_0} = 2^{\aleph_0}$, $w(\mathbb{R}^{\omega_1+1}) = w(\mathbb{S}^{\omega_1+1}) = (2^{\aleph_0})^{<\omega_1+1} = (2^{\aleph_0})^{\aleph_1} = 2^{\aleph_1}, \cdots$, etc., whereas $w(\mathbb{Q}^2) = w(\mathbb{Q}^{\omega}) = \aleph_0$, $w(\mathbb{Q}^{\omega+1}) = w(\mathbb{Q}^{\omega_1}) = 2^{\aleph_0}$ and $w(\mathbb{Q}^{\omega_1+1}) = 2^{\aleph_1}$.

For ordinal spaces, we see $w(\omega^2) = w(\omega^\omega) = \aleph_0, w(\omega^{\omega+1}) = w(\omega^{\omega_1}) = 2^{\aleph_0}, w(\omega^{\omega_1+1}) = w(\omega^{\omega_2}) = 2^{\aleph_1}, w(\omega_1^2) = w(\omega_1^\omega) = \aleph_1, w(\omega_1^{\omega+1}) = w(\omega_1^{\omega_1}) = 2^{\aleph_0}, w(\omega_1^{\omega_1+1}) = w(\omega_1^{\omega_2}) = 2^{\aleph_1}, \cdots$, etc. Also note $w((\omega_\omega)^{\omega_\omega}) = (\aleph_\omega)^{<\omega_\omega} \ge (\aleph_\omega)^{\aleph_0} > \aleph_\omega$, but note that if GCH is assumed, then $w(2^{\omega_\omega}) = 2^{<\omega_\omega} = \aleph_\omega$.

Similar to Corollary 4.3, we see:

Corollary 4.6. The following hold.

- (1) the assertions $w(\mathbb{S}^2) = \aleph_1$, $w(\mathbb{S}^{\omega_1}) = \aleph_1$, $w(\omega^{\omega+1}) = \aleph_1$ and $w(\omega^{\omega_1}) = \aleph_1$ are equivalent to CH,
- (2) the assertions $w(\mathbb{R}^{\omega_1}) = w(\mathbb{R}^{\omega_1+1}), w(\mathbb{S}^{\omega_1}) = w(\mathbb{S}^{\omega_1+1}), w(\omega^{\omega_1}) = w(\omega^{\omega_1+1})$ and $w(\omega^{\omega_1}) = w(\omega^{\omega_1+1})$ are equivalent to the assertion $2^{\aleph_0} = 2^{\aleph_1}.$

Finally, we calculate the weight of other types of lexicographic products.

Corollary 4.7. Let γ be an infinite ordinal. Then the weight of the lexicographic product $\prod_{2 \leq \alpha \leq \gamma} \alpha$ is the cardinality $2^{\leq \gamma}$.

Proof. First let γ be limit. For every $\beta < \gamma$ with $2 \leq \beta$, note $2^{|[2,\beta]|} = |\prod_{2 \leq \alpha \leq \beta} \alpha| \leq |\prod_{2 \leq \alpha \leq \beta} \beta| \leq |\beta|^{|[2,\beta]|}$. Therefore moreover if we assume $\omega \leq \beta$, then we have $|\prod_{2 \leq \alpha \leq \beta} \alpha| = 2^{|\beta|}$. So, whenever $\gamma = \omega$, we have $w(\prod_{2 \leq \alpha < \gamma} \alpha) = \sup\{|\prod_{2 \leq \alpha \leq \beta} \alpha| : 2 \leq \beta < \gamma\} = \omega = 2^{<\gamma}$. Whenever $\gamma > \omega$, we have $w(\prod_{2 \leq \alpha < \gamma} \alpha) = \sup\{|\prod_{2 \leq \alpha \leq \beta} \alpha| : 2 \leq \beta < \gamma\} = \sup\{2^{|\beta|} : \omega \leq \beta < \gamma\} = 2^{<\gamma}$.

Next let γ be successor. From $\gamma > \omega$, we have

$$2^{|\gamma|} = |\prod_{2 \le \alpha < \gamma - 1} 2| \le |\prod_{2 \le \alpha < \gamma - 1} \alpha| \le |\prod_{2 \le \alpha < \gamma - 1} (\gamma - 1)| = 2^{|\gamma|},$$

thus $|\prod_{2 \le \alpha < \gamma - 1} \alpha| = 2^{|\gamma|} = 2^{<\gamma}$. Moreover by $w(\gamma - 1) \le |\gamma - 1| \le |\gamma| < 2^{|\gamma|} = 2^{<\gamma}$, we also have $w(\prod_{2 \le \alpha < \gamma} \alpha) = \max\{|\prod_{2 \le \alpha \le \gamma - 1} \alpha|, w(\gamma - 1)\} = 2^{<\gamma}$.

Example 4.8. Using the corollary above, we see $w(\prod_{2 \le \alpha < \omega} \alpha) = \aleph_0$, $w(\prod_{2 \le \alpha < \omega+1} \alpha) = w(\prod_{2 \le \alpha < \omega_1} \alpha) = 2^{\aleph_0}, w(\prod_{2 \le \alpha < \omega_1+1} \alpha) = 2^{\aleph_1}, \cdots,$ etc. Also we remark $w(\prod_{\alpha < \omega} \omega_\alpha) = \sup\{|\prod_{\alpha \le \beta} \omega_\alpha| : \beta < \omega\} =$ $\sup\{\aleph_\beta : \beta < \omega\} = \aleph_\omega \text{ and } w(\prod_{\alpha < \omega+1} \omega_\alpha) = \max\{|\prod_{\alpha < \omega} \omega_\alpha|, w(\omega_\omega)\} =$ $|\prod_{\alpha < \omega} \omega_\alpha| = (\sup\{\aleph_\alpha : \alpha < \omega\})^{\aleph_0} = \aleph_\omega^{\aleph_0} > \aleph_\omega, \text{ where for } |\prod_{\alpha < \omega} \omega_\alpha| =$ $(\sup\{\aleph_\alpha : \alpha < \omega\})^{\aleph_0}, \text{ use } [4, \text{ Lemma 5.9}].$

5. The lexicographic products versus the Tychonoff products

In this section, we compare the lexicographic product 2^{γ} with the usual Tychonoff product 2^{γ} .

First recall that a topological space X is said to be *homogeneous* if for every $x, y \in X$, there is a homeomorphism h from X onto X with h(x) = y. Obviously:

- if topological spaces X_{α} 's ($\alpha \in \Lambda$) are homogeneous, then the usual Tychonoff product $\prod_{\alpha \in \Lambda} X_{\alpha}$ is also homogeneous,
- if a topological space X is homogeneous, then there is a unique cardinal number κ such that $\chi(x, X) = \kappa$ for every $x \in X$, where $\chi(x, X) = \min\{|\mathcal{U}| : \mathcal{U} \text{ is a neighborhood base at } x\}$, which is called the *character* at x, see [1],

• if a topological space X is homogeneous with an isolated point, then it is discrete, thus whenever Λ is infinite, the usual Tychonoff product 2^{Λ} is homogeneous without isolated points.

Next we remember the cofinality of a compact LOTS discussed in [5]. Let L be a compact LOTS and $x \in L$. Note that every subset A of L has a least upper bound $\sup_{L} A$ (and greatest lower bound $\inf_{L} A$), see [1, 3.12.3 (a)]. A subset A of $(\leftarrow, x)_{L}$ is said to be 0-unbounded for x in L if for every y < x, there is $a \in A$ with $y \leq a$. Let

$$0-\operatorname{cf}_L x = \min\{|A|: A \text{ is } 0\text{-unbounded for } x\}.$$

Obviously $0 - \operatorname{cf}_L x$ can be 0, 1 or an infinite regular cardinal, also $0 - \operatorname{cf}_L x = 0$ $(0 - \operatorname{cf}_L x = 1)$ means that x is the minimal element of L (x has an immediate predecessor in L, respectively). Usually $0 - \operatorname{cf}_L x$ is denoted by $0 - \operatorname{cf} x$. Since L is a compact LOTS, for every $x \in L$, there is a sequence $\{x_\alpha : \alpha < 0 - \operatorname{cf} x\}$, which is called a 0-normal sequence for x, such that:

- if $\beta < \alpha < 0$ cf x, then $x_{\beta} <_L x_{\alpha}$,
- if $\alpha < 0$ cf x and α is limit, then $x_{\alpha} = \sup_{L} \{ x_{\beta} : \beta < \alpha \},\$
- the set $\{x_{\alpha} : \alpha < 0 \text{- cf } x\}$ is 0-unbounded for x.

Analogous notions "1- cf x", "1-normal sequence for x"..., etc can be defined, see [5, section 3]. Note $\chi(x, L) = \max\{0 \text{ - cf } x, 1 \text{ - cf } x\}$ for every $x \in L$ and also note that the lexicographic product 2^{γ} is a compact LOTS.

Lemma 5.1. Let 2^{γ} be a lexicographic product and $x \in 2^{\gamma}$. Then the following hold:

- (1) if $x^{-1}[\{1\}]$ has no maximal element, say $\delta = \sup x^{-1}[\{1\}]$, then 0- cf $x = \operatorname{cf} \delta$, where we consider as $\sup \emptyset = 0$ and cf 0 = 0,
- (2) if $x^{-1}[\{1\}]$ has a maximal element, say $\delta = \max x^{-1}[\{1\}]$, then 0- cf x = 1.

Proof. (1) Assume that $x^{-1}[\{1\}]$ has no maximal element and let $\delta = \sup x^{-1}[\{1\}]$. Fix a strictly increasing sequence $\{\delta_{\xi} : \xi < \operatorname{cf} \delta\}$ in δ such that

- $(\delta_{\xi}, \delta_{\xi+1}) \cap x^{-1}[\{1\}] \neq \emptyset$ for every $\xi < \operatorname{cf} \delta$,
- $\delta_{\xi} = \sup\{\delta_{\zeta} : \zeta < \xi\}$ if ξ is limit,
- $\{\delta_{\xi} : \xi < \operatorname{cf} \delta\}$ is (0-)unbounded in δ .

Now for every $\xi < \operatorname{cf} \delta$, let $x_{\xi} = (x \upharpoonright \delta_{\xi})^{\wedge} \langle 0 : \delta_{\xi} \leq \alpha < \gamma \rangle$. Then obviously $\{x_{\xi} : \xi < \operatorname{cf} \delta\}$ is a 0-normal sequence for x in 2^{γ} , therefore 0- $\operatorname{cf} x = \operatorname{cf} \delta$.

(2) Assume that $x^{-1}[\{1\}]$ has a maximal element δ . Let $y = (x \upharpoonright \delta)^{\wedge}\langle 0 \rangle^{\wedge}\langle 1 : \delta < \alpha < \gamma \rangle$, then y < x and $(y, x) = \emptyset$, which shows 0- cf x = 1.

Changing 0 and 1 by 1 and 0, respectively, in the lemma above, we can get an analogous result for 1- cf x. For example, if x is an element of 2^{ω_1} so that both $x^{-1}[\{1\}]$ and $x^{-1}[\{0\}]$ are unbounded in ω_1 , then we have 0- cf x = 1- cf $x = \omega_1$, thus $\chi(x, 2^{\omega_1}) = \aleph_1$.

Definition 5.2. Let *L* be a compact LOTS. A point *x* in *L* is said to have *type I* if $\min\{0 \text{-} \operatorname{cf} x, 1 \text{-} \operatorname{cf} x\} \leq 1$. Otherwise, we say that *x* has *type II*, that is, $\omega \leq 0 \text{-} \operatorname{cf} x$ and $\omega \leq 1 \text{-} \operatorname{cf} x$.

Lemma 5.3. Let L be a compact LOTS. If there are a type I point x with $\omega_1 \leq \max\{0 - \operatorname{cf} x, 1 - \operatorname{cf} x\}$ and a type II point y in L, then L is not homogeneous.

Proof. Assume that there is a homeomorphism $h: X \to X$ with h(y) = x, we may assume $\omega_1 \leq 0$ - cf x and 1- cf $x \leq 1$. For each $i \in 2$, fix an i-normal sequence $A_i := \{y_i(\alpha) : \alpha < i$ - cf $y\}$ for y. Since y has type II, A_0 and A_1 are infinite and $\{y\} = \operatorname{Cl}_L A_0 \cap \operatorname{Cl}_L A_1$. Since h is a homeomorphism, we have $\{x\} = \operatorname{Cl}_L h[A_0] \cap \operatorname{Cl}_L h[A_1]$. It follows from 1- cf $x \leq 1$ that $\{x\} = \operatorname{Cl}_L B_0 \cap \operatorname{Cl}_L B_1$, where $B_i = h[A_i] \cap (\leftarrow, x)$. Fix a 0-normal sequence $\{x(\alpha) : \alpha < 0$ - cf $x\}$ for x. Since B_i 's are 0-unbounded for x, by induction, for every $i \in 2$ and $n \in \omega$, we can fix $b_{in} \in B_i$ and $\alpha_n < 0$ - cf x with $b_{0n} < b_{1n} < x(\alpha_n) < b_{0n+1}$. Then by letting $\alpha = \sup\{\alpha_n : n \in \omega\}$, we see $x(\alpha) \in \operatorname{Cl}_L B_0 \cap \operatorname{Cl}_L B_1$ and $x(\alpha) < x$, which contradicts $\{x\} = \operatorname{Cl}_L B_0 \cap \operatorname{Cl}_L B_1$.

Lemma 5.4. The following hold:

- (1) if γ is a successor ordinal with $\gamma > \omega$, then the lexicographic product 2^{γ} is not homogeneous,
- (2) if γ is a limit ordinal with $\gamma \geq \omega_1$, then the lexicographic product 2^{γ} is not homogeneous.

Proof. (1) Let γ be a successor ordinal with $\gamma > \omega$. Then the maximal element $x = \langle 1 : \alpha < \gamma \rangle$ is isolated, because of 0- cf x = 1 and 1- cf x = 0, see Lemma 5.1. On the other hand, the element $y = \langle 1 : \alpha < \omega \rangle^{\wedge} \langle 0 : \omega \leq \alpha < \gamma \rangle$ is not isolated, in fact, 0- cf $y = \omega$. Since y is not isolated, 2^{γ} is not homogeneous.

(2) Let γ be a limit ordinal with $\gamma \geq \omega_1$. First assume $\operatorname{cf} \gamma > \omega$. Let y be an element of 2^{γ} such that both $y^{-1}[\{1\}]$ and $y^{-1}[\{0\}]$ are unbounded in γ . Moreover let $x = \langle 0 \rangle^{\wedge} \langle 1 : 0 < \alpha < \gamma \rangle$. Then Lemma 5.1 shows 0- $\operatorname{cf} y = 1$ - $\operatorname{cf} y = \operatorname{cf} \gamma > \omega$, 0- $\operatorname{cf} x = \operatorname{cf} \gamma > \omega$ and 1- $\operatorname{cf} x = 1$. Thus x has type I with 0- cf $x \ge \omega_1$ and y has type II, now Lemma 5.3 shows that 2^{γ} is not homogeneous.

Next assume of $\gamma = \omega$ and $\gamma \geq \omega_1$. Note $\gamma > \omega_1$. Let $x = \langle 1 : \alpha < \omega_1 \rangle^{\wedge} \langle 0 : \omega_1 \leq \alpha < \gamma \rangle$ and $y = \langle 0 : \alpha \leq \omega_1 \rangle^{\wedge} \langle 1 : \omega_1 < \alpha < \gamma \rangle$. Then Lemma 5.1 shows 0- of $x = \omega_1$, 1- of $x = \omega$, 0- of $y = \omega$ and 1- of y = 1, thus we have $\chi(x, 2^{\gamma}) = \aleph_1$ and $\chi(y, 2^{\gamma}) = \aleph_0$. So 2^{γ} is not homogeneous.

Theorem 5.5. Let γ be an ordinal, then the following are equivalent:

- (1) the lexicographic product 2^{γ} and the usual Tychonoff product 2^{γ} are homeomorphic,
- the identity map from the lexicographic product 2^γ onto the usual Tychonoff product 2^γ is a homeomorphism,
- (3) the lexicographic product 2^{γ} is homeomorphic to the usual Tychonoff product 2^{Λ} for some Λ ,
- (4) $\gamma \leq \omega$.

Proof. The implication $(2) \Rightarrow (1) \Rightarrow (3)$ is obvious.

(3) \Rightarrow (4) Assume $\gamma > \omega$ and that the lexicographic product 2^{γ} is homeomorphic to the usual Tychonoff product 2^{Λ} for some Λ . Note $2^{|\Lambda|} = 2^{|\gamma|}$. Since the usual Tychonoff product 2^{Λ} is homogeneous, from Lemma 5.4, we see that γ is limit with $\omega < \gamma < \omega_1$. It follows from Corollary 4.1 that the weight of the the lexicographic product 2^{γ} is $2^{<\gamma} = 2^{|\gamma|}$. On the other hand, the weight of the product 2^{Λ} is at most $|\Lambda|$, which contradicts $|\Lambda| < 2^{|\Lambda|} = 2^{|\gamma|}$.

 $(4) \Rightarrow (2)$ Assume $\gamma \leq \omega$. Since the case " $\gamma < \omega$ " is obvious, we may assume $\gamma = \omega$. Let L and T be the lexicographic product and the usual Tychonoff product 2^{ω} respectively, and $id : L \to T$ be the identity map. The following claims complete the proof. Also note that in [2, p78, Example 4], the fact that L and T are homeomorphic is proved by using a characterization theorem of the Cantor set.

Claim 1. *id* is continuous.

Proof. For every $n \in \omega$ and $i \in 2$, let $U_{ni} := \{x \in T : x(n) = i\}$. Since $\{U_{ni} : n \in \omega, i \in 2\}$ is a subbase for T, it suffices to see that each U_{ni} is open in L. So let $x \in U_{ni}$. We may assume i = 0, then note $(x, \rightarrow) \neq \emptyset$.

Fact 1. If $(\leftarrow, x) \neq \emptyset$, then there is $a \in L$ with a < x and $(a, x] \subset U_{n0}$.

Proof. Let $(\leftarrow, x) \neq \emptyset$, then note $x^{-1}[\{1\}] \neq \emptyset$. Whenever $x^{-1}[\{1\}]$ has a maximal element m_0 , let $a = (x \upharpoonright m_0)^{\wedge} \langle 0 \rangle^{\wedge} \langle 1 : m_0 < m < \omega \rangle$. Whenever $x^{-1}[\{1\}]$ has no maximal element, putting $m_0 = \min(x^{-1}[\{1\}] \cap (n, \omega))$, let $a = (x \upharpoonright m_0)^{\wedge} \langle 0 \rangle^{\wedge} \langle 1 : m_0 < m < \omega \rangle$. Then a is the required, see Lemma 5.1 Similarly wee see:

Fact 2. There is $b \in L$ with x < b and $[x, b) \subset U_{n0}$.

Now let

$$V = \begin{cases} [x,b) & \text{ if } (\leftarrow, x) = \emptyset, \\ (a,b) & \text{ if } (\leftarrow, x) \neq \emptyset. \end{cases}$$

Then V is a neighborhood of x in L contained in U_{n0} , so U_{n0} is open in L.

Claim 2. id^{-1} is continuous.

Proof. Since $\{(a, \rightarrow) : a \in 2^{\omega}\} \cup \{(\leftarrow, a) : a \in 2^{\omega}\}$ is a subbase for L, it suffices to see that (a, \rightarrow) and (\leftarrow, a) are open in T for every $a \in 2^{\omega}$. We check the former, because the latter is similar. Let $a \in 2^{\omega}$ and $x \in (a, \rightarrow)$. Putting $m_0 = \min\{m \in \omega : x(m) \neq a(m)\}$, let $V = \{y \in 2^{\omega} : y \upharpoonright (m_0 + 1) = x \upharpoonright (m_0 + 1)\}$. Then V is a neighborhood of x in T contained in (a, \rightarrow) , so (a, \rightarrow) is open in T. \Box

References

- R. Engelking, General Topology-Revised and completed ed.. Heldermann Verlag, Berlin (1989).
- [2] M. J. Faber, *Metrizability in generalized ordered spaces*, Mathematical Centre Tracts, No. 53. Mathematisch Centrum, Amsterdam, 1974.
- [3] Y. Hirata and N. Kemoto, Countable metacompactness of products of LOTS', Top. Appl., 178 (2014) 1-16.
- [4] T. Jech, Set theory. The third millennium edition, revised and expanded, Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2003.
- [5] N. Kemoto, Normality of products of GO-spaces and cardinals, Top. Proc. 18 (1993) 133-142.
- [6] N. Kemoto, The lexicographic ordered products and the usual Tychonoff products, Top. Appl., 162 (2014) 20-33.
- [7] N. Kemoto, Orderability of products, Top. Proc., 50 (2017) 67-78.
- [8] N. Kemoto, Lexicographic products of GO-spaces, Top. Appl., 232 (2017), 267-280.
- [9] N. Kemoto, Paracompactness of Lexicographic products of GO-spaces, Top. Appl., 240 (2018) 35-58.
- [10] N. Kemoto, Hereditary paracompactness of lexicographic products, Top. Proc., 53 (2019) 301-317.
- [11] K. Kunen, Set Theory. An Introduction to Independence Proofs, Studies in Logic and the Foundations of Mathematics, vol. 102, North-Holland, Amsterdam, 1980.
- [12] D.J. Lutzer, On generalized ordered spaces, Dissertationes Math. Rozprawy Mat. 89 (1971).

YASUSHI HIRATA AND NOBUYUKI KEMOTO

[13] T. Miwa and N. Kemoto, Linearly ordered extensions of GO-spaces, Top. Appl., 54 (1993), 133-140.

Department of Mathematics, Kanagawa University, Yokohama, 221-8686 Japan

E-mail address: hirata-y@kanagawa-u.ac.jp

DEPARTMENT OF MATHEMATICS, OITA UNIVERSITY, OITA, 870-1192 JAPAN *E-mail address*: nkemoto@cc.oita-u.ac.jp