# THE WEIGHT OF LEXICOGRAPHIC PRODUCTS 

YASUSHI HIRATA AND NOBUYUKI KEMOTO

```
Abstract. We will calculate the weight of lexicographic products of GO-spaces, using this we will see:
- the assertion that the weight of the lexicographic product \(2^{\omega_{1}}\) is \(\aleph_{1}\) is equivalent to the Continuum Hypothesis (CH), that is, \(2^{\aleph_{0}}=\aleph_{1}\),
- the assertion that the weight of both lexicographic products \(2^{\omega_{1}}\) and \(2^{\omega_{1}+1}\) coincide is equivalent to the assertion \(2^{\aleph_{0}}=\) \(2^{\aleph_{1}}\),
- the assertion that the lexicographic product \(2^{\gamma}\) is homeomorphic to the usual Tychonoff product \(2^{\gamma}\) is equivalent to \(\gamma \leq \omega\).
```


## 1. Introduction

We will work on the usual ZFC-set theory including the Axiom of Choice (AC) $[4,11]$. All spaces are assumed to be regular $T_{1}$ containing at least 2 points and when we consider a product $\prod_{\alpha<\gamma} X_{\alpha}$, all $X_{\alpha}$ 's are also assumed to have cardinality at least 2 with $\gamma \geq 2$. Set theoretical and topological terminologies follow $[4,11,1]$.

In [2], second countability of lexicographic products of LOTS's is characterized. It is known in [2, p.78, Example 4] that the usual Tychonoff product $2^{\omega}$, which is homeomorphic to the Cantor set $\mathbb{C}$, is also homeomorphic to the lexicographic product $2^{\omega}$, where $2=\{0,1\}$ with $0<1$. So they are second countable, that is, the weight is at most countable. On the other hand, the weight of the usual Tychonoff product $2^{\omega_{1}}$ is easily seen to be $\aleph_{1}$. So it is natural to conjecture:
(1) the lexicographic product $2^{\omega_{1}}$ is homeomorphic to the usual Tychonoff product $2^{\omega_{1}}$,
(2) the weight of the lexicographic product $2^{\omega_{1}}$ is $\aleph_{1}$.

[^0]Recently, the notion of lexicographic products of GO-spaces is introduced and discussed in $[8,9,10]$, also see $[3,6,7]$ for products of LOTS's. In this paper, we will calculate the weight of lexicographic products of GO-spaces. As corollaries, we see:

- the conjecture (1) is false, in fact, the assertion that the lexicographic product $2^{\gamma}$ is homeomorphic to the usual Tychonoff product $2^{\gamma}$ is equivalent to $\gamma \leq \omega$,
- the conjecture (2) is equivalent to the Continuum Hypothesis $(\mathrm{CH})$, that is, $2^{\aleph_{0}}=\aleph_{1}$.
Obviously the usual Tychonoff products $2^{\omega_{1}}$ and $2^{\omega_{1}+1}$ are homeomorphic, however we will also see:
- the assertion that the weight of both lexicographic products $2^{\omega_{1}}$ and $2^{\omega_{1}+1}$ coincide is equivalent to the assertion $2^{\aleph_{0}}=2^{\aleph_{1}}$.
A linearly ordered set $\left\langle L,<_{L}\right\rangle$ has a natural topology $\lambda_{L}$, which is called an interval topology, generated by $\left\{(\leftarrow, x)_{L}: x \in L\right\} \cup\{(x, \rightarrow$ $\left.)_{L}: x \in L\right\}$ as a subbase, where $(x, \rightarrow)_{L}=\left\{z \in L: x<_{L} z\right\},(x, y)_{L}=$ $\left\{z \in L: x<_{L} z<_{L} y\right\},(x, y]_{L}=\left\{z \in L: x<_{L} z \leq_{L} y\right\}$ and so on. The triple $\left\langle L,<_{L}, \lambda_{L}\right\rangle$, which is simply denoted by $L$, is called a LOTS.

A triple $\left\langle X,<_{X}, \tau_{X}\right\rangle$ is said to be a GO-space, which is also simply denoted by $X$, if $\left\langle X,<_{X}\right\rangle$ is a linearly ordered set and $\tau_{X}$ is a $T_{2^{-}}$ topology on $X$ having a base consisting of convex sets, where a subset $C$ of $X$ is convex if for every $x, y \in C$ with $x<_{X} y,[x, y]_{X} \subset C$ holds. In this situation, $\left\langle X,<_{X}\right\rangle$ is called an underlying linearly ordered set of $X$. The symbols $\mathbb{R}$ and $\mathbb{Q}$ denote the reals and the rationals respectively. Note that they are LOTS's. On the other hand, the Sorgenfrey line $\mathbb{S}$, whose underlying linearly ordered set is $\mathbb{R}$ and the sets of type $[a, b)$ are declared to be open, is known to be a GO-space but not a LOTS. For more information on LOTS's or GO-spaces, see [12]. Usually $<_{L}$, $(x, y)_{L}, \lambda_{L}$ or $\tau_{X}$ are written simply $<,(x, y), \lambda$ or $\tau$ if contexts are clear.
$\omega$ and $\omega_{1}$ denote the first infinite ordinal and the first uncountable ordinal, respectively. Ordinals, which are usually denoted by Greek letters $\alpha, \beta, \gamma, \delta \cdots$, are considered to be LOTS's with the usual interval topology. $\operatorname{cf} \alpha$ denotes the cofinality of the ordinal $\alpha$. When $\alpha$ is a successor ordinal, i.e., $\alpha=\delta+1$ for some ordinal $\delta$, this $\delta$ is denoted by $\alpha-1$. A non-zero ordinal which is not successor is said to be a limit ordinal.

An ordinal $\alpha$ is said to be a cardinal if $\alpha=|\alpha|$, where $|X|$ denotes the cardinality of a set $X$, that is, $|X|$ is the smallest ordinal $\delta$ such that there is a 1-1 map from $X$ onto $\delta$ [11, I Definition 10.3], where note that the existence of $|X|$ is ensured by AC. When we want to
emphasize that $\omega$ and $\omega_{1}$ are cardinals, we write them by $\aleph_{0}$ and $\aleph_{1}$, respectively. Generally, the $\alpha$-th uncountable cardinal is denoted by $\omega_{\alpha}$ or $\aleph_{\alpha}$. Cardinals are usually denoted by Greek letters $\kappa, \lambda, \mu, \cdots$. For cardinals $\kappa$ and $\lambda, \kappa^{\lambda}$ denotes the cardinal $\left|X^{Y}\right|$ with $|X|=\kappa$ and $|Y|=\lambda$, where $X^{Y}$ denotes the set of all functions on $Y$ to $X$.

It is well known that for a $\operatorname{LOTS}\left\langle Y,<_{Y}, \lambda_{Y}\right\rangle$, if $X \subset Y$, then $\left\langle X,<_{X}\right.$ , $\left.\tau_{X}\right\rangle$ is a GO-space with $<_{X}=<_{Y} \upharpoonright X$ and $\tau_{X}$ is the subspace topology $\lambda_{Y} \upharpoonright X$. For every GO-space $X$, there is a LOTS $X^{*}$ such that $X$ is a dense subspace of $X^{*}$ and $X^{*}$ has the property that if $L$ is a LOTS containing $X$ as a dense subspace, then $L$ also contains the LOTS $X^{*}$ as a subspace, see [13]. Such a $X^{*}$ is called the minimal $d$-extension of a GO-space $X$. Indeed, the LOTS $X^{*}$ is constructed as follows, see also [8]. Let

$$
\begin{aligned}
& X^{+}=\left\{x \in X:(\leftarrow, x] \in \tau_{X} \backslash \lambda_{X}\right\}, \\
& X^{-}=\left\{x \in X:[x, \rightarrow) \in \tau_{X} \backslash \lambda_{X}\right\} .
\end{aligned}
$$

Then

$$
X^{*}=\left(X^{-} \times\{-1\}\right) \cup(X \times\{0\}) \cup\left(X^{+} \times\{1\}\right)
$$

where the order $<_{X^{*}}$ on $X^{*}$ is the restriction of the usual lexicographic order on $X \times\{-1,0,1\}$ with $-1<0<1$. Also we identify $X \times\{0\}$ with $X$ in the obvious way. Obviously, we can see:

- if $X$ is a LOTS, then $X^{*}=X$,
- $X$ has a maximal element $\max X$ if and only if $X^{*}$ has a maximal element $\max X^{*}$, in this case, $\max X=\max X^{*}$ (similarly for minimal elements).
For every $\alpha<\gamma$, let $X_{\alpha}$ be a LOTS and $X=\prod_{\alpha<\gamma} X_{\alpha}$. Every element $x \in X$ is identified with the sequence $\langle x(\alpha): \alpha<\gamma\rangle$. In the present paper, a sequence means a function whose domain is an ordinal. For notational convenience, $\prod_{\alpha<\gamma} X_{\alpha}$ is considered as $\{\emptyset\}$ whenever $\gamma=0$, where $\emptyset$ is considered to be a function whose domain is 0 . When $0 \leq \beta<\gamma, y_{0} \in \prod_{\alpha<\beta} X_{\alpha}$ and $y_{1} \in \prod_{\beta \leq \alpha} X_{\alpha}, y_{0}{ }^{\wedge} y_{1}$ denotes the sequence $y \in \prod_{\alpha<\gamma} X_{\alpha}$ defined by

$$
y(\alpha)= \begin{cases}y_{0}(\alpha) & \text { if } \alpha<\beta \\ y_{1}(\alpha) & \text { if } \beta \leq \alpha\end{cases}
$$

In this case, whenever $\beta=0, \emptyset^{\wedge} y_{1}$ is considered as $y_{1}$. In case $0 \leq$ $\beta<\gamma, y_{0} \in \prod_{\alpha<\beta} X_{\alpha}, u \in X_{\beta}$ and $y_{1} \in \prod_{\beta<\alpha} X_{\alpha}, y_{0}{ }^{\wedge}\langle u\rangle^{\wedge} y_{1}$ denotes
the sequence $y \in \prod_{\alpha<\gamma} X_{\alpha}$ defined by

$$
y(\alpha)= \begin{cases}y_{0}(\alpha) & \text { if } \alpha<\beta \\ u & \text { if } \alpha=\beta \\ y_{1}(\alpha) & \text { if } \beta<\alpha\end{cases}
$$

More general cases are similarly defined.
The lexicographic order $<_{X}$ on $X=\prod_{\alpha<\gamma} X_{\alpha}$, where all $X_{\alpha}$ 's are LOTS's, is defined as follows: for every $x, x^{\prime} \in X$,

$$
x<_{X} x^{\prime} \text { iff for some } \alpha<\gamma, x \upharpoonright \alpha=x^{\prime} \upharpoonright \alpha \text { and } x(\alpha)<_{X_{\alpha}} x^{\prime}(\alpha),
$$

where $x \upharpoonright \alpha=\langle x(\beta): \beta<\alpha\rangle$ and $<_{X_{\alpha}}$ is the order on $X_{\alpha}$. Now for every $\alpha<\gamma$, let $X_{\alpha}$ be a GO-space and $X=\prod_{\alpha<\gamma} X_{\alpha}$. The subspace $X$ of the lexicographic product $\hat{X}=\prod_{\alpha<\gamma} X_{\alpha}^{*}$ is said to be the lexicographic product of GO-spaces $X_{\alpha}$ 's, for more details see [8]. $\prod_{i \in \omega} X_{i}\left(\prod_{i \leq n} X_{i}\right.$ where $\left.n \in \omega\right)$ is denoted by $X_{0} \times X_{1} \times X_{2} \times \cdots$ ( $X_{0} \times X_{1} \times X_{2} \times \cdots \times X_{n}$, respectively). $\prod_{\alpha<\gamma} X_{\alpha}$ is also denoted by $X^{\gamma}$ whenever $X_{\alpha}=X$ for all $\alpha<\gamma$. When $X_{\alpha}$ 's are GO-spaces, $\prod_{\alpha<\gamma} X_{\alpha}$ usually means the lexicographic product otherwise stated.

## 2. The weight of GO-spaces

Recall that the weight $w(X)$ and the density $d(X)$ of a topological space $X$ are defined as follows:

$$
\begin{aligned}
w(X) & =\min \{|\mathcal{B}|: \mathcal{B} \text { is a base for } X\} \\
d(X) & =\min \{|D|: D \text { is dense in } X\} .
\end{aligned}
$$

Because $X$ is regular $T_{1}$, note that if $X$ is infinite, then $\aleph_{0} \leq d(X) \leq$ $w(X)$ and $d(X) \leq|X|$ hold, and also that if $X$ is finite, then $d(X)=$ $w(X)=|X|$. For a GO-space $X$, let

$$
N_{X}^{+}=\{x \in X: \text { there is } y \in X \text { with } x<y \text { and }(x, y)=\emptyset\},
$$

$N_{X}^{-}=\{x \in X:$ there is $y \in X$ with $y<x$ and $(y, x)=\emptyset\}$.
In other words, an element of $N_{X}^{+}$is called a left neighbor of neighbors in the sense of [2, p.6]. For every $x \in N_{X}^{+}$, assign $y \in X$ with $x<y$ and $(x, y)=\emptyset$. Then this assignment defines a 1-1 map on $N_{X}^{+}$onto $N_{X}^{-}$, so we have $\left|N_{X}^{+}\right|=\left|N_{X}^{-}\right|$. Obviously we have :

- if $x \in N_{X}^{+}$, then $(\leftarrow, x] \in \lambda_{X} \subset \tau_{X}$,
- $x \in X^{+} \cup N_{X}^{+}$iff $(x, \rightarrow)_{X} \neq \emptyset$ and $(\leftarrow, x]_{X} \in \tau_{X}$.

Lemma 2.1. Let $X$ be a GO-space and $x \in X$. Then $x \notin X^{+} \cup N_{X}^{+}$ holds if and only if $(x, y)_{X^{*}} \neq \emptyset$ for every $y \in X^{*}$ with $x<_{X^{*}} y$, in other words, $x$ has no immediate successor in $X^{*}$. Therefore, if $x \notin X^{+} \cup N_{X}^{+},(x, \rightarrow)_{X} \neq \emptyset, D$ is dense in $X$ and $U$ is a neighborhood of $x$ in $X$, then there is $d \in D$ with $x<d$ and $[x, d]_{X} \subset U$.
Proof. The necessity is obvious. To see the the sufficiency, let $x \notin X^{+} \cup$ $N_{X}^{+},(x, \rightarrow) \neq \emptyset$. If $y_{0} \in X^{*}$ were an immediate successor of $x$, then $y_{0}$ would not belong to $X$ otherwise $x \in N_{X}^{+}$and $(\leftarrow, x]=\left(\leftarrow y_{0}\right)_{X^{*}} \cap X$ would be open in $X$. Thus $x \in X^{+}$, a contradiction.

To see the latter half, let $x \notin X^{+} \cup N_{X}^{+},(x, \rightarrow)_{X} \neq \emptyset, D$ be dense in $X$ and $U$ a neighborhood of $x$. Take $y \in X^{*}$ with $x<_{X^{*}} y$ and $[x, y)_{X^{*}} \cap X \subset U$. Then $y$ is not the immediate successor of $x$ in $X^{*}$, so $(x, y)_{X^{*}} \neq \emptyset$ and $(x, y)_{X^{*}} \cap X$ is a non-empty open set in $X$. Therefore there exists a $d \in D$ such that $d \in(x, y)_{X^{*}} \cap X$, then $[x, d]_{X} \subset U$.

We can also verify an analogous Lemma above for $x \notin X^{-} \cup N_{X}^{-}$. The weight $w(X)$ of a GO-space $X$ is decided from $d(X),\left|N_{X}^{+}\right|,\left|X^{+}\right|$ and $\left|X^{-}\right|$.

Lemma 2.2. Let $X$ be a GO-space. Then

$$
w(X)=\max \left\{d(X),\left|N_{X}^{+}\right|,\left|X^{+}\right|,\left|X^{-}\right|\right\} .
$$

Proof. If $X$ is finite, then we have $\left|N_{X}^{+}\right| \leq|X|=w(X)=d(X)$ and $X^{+}=X^{-}=\emptyset$. So we assume that $X$ is infinite.

To see the inequality " $\geq$ ", let $\kappa=w(X)$ and $\mathcal{B}$ be a base for $X$ with $|\mathcal{B}|=\kappa$. For each $x \in N_{X}^{+}$, assign $B_{x} \in \mathcal{B}$ with $x \in B_{x} \subset(\leftarrow, x]_{X}$. Then this assignment defines an injective function on $N_{X}^{+}$to $\mathcal{B}$, so we have $\left|N_{X}^{+}\right| \leq \kappa$. Similarly we can see $\left|X^{+}\right| \leq \kappa$ and $\left|X^{-}\right| \leq \kappa$.

To see the other inequality, let $\kappa=\max \left\{d(X),\left|N_{X}^{+}\right|,\left|X^{+}\right|,\left|X^{-}\right|\right\}$ and fix a dense set $D$ in $X$ with $|D|=d(X)$. Since $\left|N_{X}^{+}\right|=\left|N_{X}^{-}\right|$holds, it suffices to see the following claim.
Claim 1. The collection

$$
\begin{gathered}
\mathcal{S}:=\{(\leftarrow, x): x \in D\} \cup\{(x, \rightarrow): x \in D\} \\
\cup\left\{(\leftarrow, x]: x \in N_{X}^{+} \cup X^{+}\right\} \cup\left\{[x, \rightarrow): x \in N_{X}^{-} \cup X^{-}\right\}
\end{gathered}
$$

is a subbase for $X$, in fact, the collection of all non-empty intersections of at most two members of $\mathcal{S}$ is a base for $X$.

Proof. Let $U$ be a non-empty open set with $x \in U$. We consider several cases.
Case 1. $(\leftarrow, x)=\emptyset$, that is, $x=\min X$.

Note $(x, \rightarrow) \neq \emptyset$. Whenever $x \in N_{X}^{+} \cup X^{+}$, we have $x \in(\leftarrow, x]=$ $\{x\} \subset U$. So let $x \notin N_{X}^{+} \cup X^{+}$. ¿From Lemma 2.1, we can take $d \in D$ with $x<d$ and $[x, d] \subset U$. Then $x \in(\leftarrow, d)_{X} \subset U$ with $(\leftarrow, d)_{X} \in \mathcal{S}$.

Similarly we see:
Case 2. $(x, \rightarrow)=\emptyset$, that is, $x=\max X$.
Case 3. $(\leftarrow, x) \neq \emptyset$ and $(x, \rightarrow) \neq \emptyset$.
Whenever $x \notin N_{X}^{+} \cup X^{+}$and $x \notin N_{X}^{-} \cup X^{-}$, taking $d^{\prime}, d \in D$ with $d^{\prime}<$ $x<d$ and $\left[d^{\prime}, d\right] \subset U$ from Lemma 2.1, we have $x \in(\leftarrow, d) \cap\left(d^{\prime}, \rightarrow\right) \subset U$ with $(\leftarrow, d),\left(d^{\prime}, \rightarrow\right) \in \mathcal{S}$. Whenever $x \notin N_{X}^{+} \cup X^{+}$and $x \in N_{X}^{-} \cup X^{-}$, taking $d \in D$ with $x<d$ and $[x, d] \subset U$ from Lemma 2.1, we have $x \in(\leftarrow, d) \cap[x, \rightarrow) \subset U$ with $(\leftarrow, d),[x, \rightarrow) \in \mathcal{S}$. The case $x \in N_{X}^{+} \cup X^{+}$ and $x \notin N_{X}^{-} \cup X^{-}$is similar. Whenever $x \in N_{X}^{+} \cup X^{+}$and $x \in N_{X}^{-} \cup X^{-}$, we have $x \in(\leftarrow, x] \cap[x, \rightarrow)=\{x\} \subset U$ with $(\leftarrow, x],[x, \rightarrow) \in \mathcal{S}$.

Remark that this lemma also shows the well-known fact $w(X) \leq|X|$ about a GO-space $X$.

## 3. The weight of lexicographic products

In this section, we calculate the weight of the lexicographic products.
Lemma 3.1. Let $X=X_{0} \times X_{1}$ be a lexicographic product of GO-spaces with $|X| \geq \omega$ and $\kappa$ an infinite cardinal. Then $w(X) \leq \kappa$ holds if and only if $\left|X_{0}\right| \leq \kappa$ and $w\left(X_{1}\right) \leq \kappa$.

Proof. Let $\hat{X}=X_{0}^{*} \times X_{1}^{*}$.
To see "only if" part, let $w(X) \leq \kappa$ and $\mathcal{B}$ be a base for $X$ with $|\mathcal{B}|=w(X)$. Take $v^{\prime}, v \in X_{1}$ with $v^{\prime}<v$. Then for every $u \in$ $X_{0},\left(\left\langle u, v^{\prime}\right\rangle, \rightarrow\right)_{X}$ is a neighborhood of $\langle u, v\rangle$. So for every $u \in X_{0}$ assign $B_{u} \in \mathcal{B}$ with $\langle u, v\rangle \in B_{u} \subset\left(\left\langle u, v^{\prime}\right\rangle, \rightarrow\right)_{X}$. Then this assignment witnesses $\left|X_{0}\right| \leq|\mathcal{B}| \leq \kappa$. Now fix $u_{0} \in X_{0}$, then obviously $X_{1}$ can be identified with the subspace $\left\{u_{0}\right\} \times X_{1}$, see also [9, Lemma 3.4]. Then we have $w\left(X_{1}\right)=w\left(\left\{u_{0}\right\} \times X_{1}\right) \leq w(X) \leq \kappa$.

To see "if" part, let $\left|X_{0}\right| \leq \kappa$ and $w\left(X_{1}\right) \leq \kappa$. Then by Lemma 2.2, we see $d\left(X_{1}\right) \leq \kappa,\left|N_{X_{1}}^{+}\right| \leq \kappa,\left|X_{1}^{+}\right| \leq \kappa$ and $\left|X_{1}^{-}\right| \leq \kappa$. So we can fix a dense set $D_{1}$ in $X_{1}$ with $\left|D_{1}\right|=d\left(X_{1}\right)$. Let

$$
M=\left\{v \in X_{1}:(\leftarrow, v)=\emptyset \text { or }(v, \rightarrow)=\emptyset\right\},
$$

that is, $M$ is the set of a maximal element and a minimal element if exists, so $|M| \leq 2$. ¿From Lemma 2.2, it suffices to see the following claims.

Claim 1. $d(X) \leq \kappa$.
Proof. Let $D=X_{0} \times\left(D_{1} \cup M\right)$. The assumption ensures $|D| \leq \kappa$, so it suffices to see that $D$ is dense in $X$. Let $x \in X$ and $U$ be a neighborhood of $x$ in $X$, say $x=\langle u, v\rangle$. When $v \in M$, obviously $U \cap D$ is non-empty. So assume $v \notin M$, then we can take $v_{0}^{*}, v_{1}^{*} \in X_{1}^{*}$ with $v_{0}^{*}<v<v_{1}^{*}$ and $\left(\left\langle u, v_{0}^{*}\right\rangle,\left\langle u, v_{1}^{*}\right\rangle\right)_{\hat{X}} \cap X \subset U$. Since $\left(v_{0}^{*}, v_{1}^{*}\right)_{X_{1}^{*}} \cap X_{1}$ is non-empty open set in $X_{1}$, we can find $d \in D_{1} \cap\left(\left(v_{0}^{*}, v_{1}^{*}\right)_{X_{1}^{*}} \cap X_{1}\right)$. Now we have $\langle u, d\rangle \in U \cap D$.

Claim 2. $\left|N_{X}^{+}\right| \leq \kappa$.
Proof. It suffices to see $N_{X}^{+} \subset X_{0} \times\left(N_{X_{1}}^{+} \cup M\right)$. Let $x \in N_{X}^{+}$, say $x=\langle u, v\rangle$. As above, we may assume $v \notin M$. ¿From $x \in N_{X}^{+}$, we can find $y \in X$ with $x<_{X} y$ and $(x, y)_{X}=\emptyset$. By $(v, \rightarrow)_{X_{1}} \neq \emptyset, y$ has to be $\left\langle u, v^{\prime}\right\rangle$ for some $v^{\prime} \in X_{1}$ with $v<_{X_{1}} v^{\prime}$. Then we have $\left(v, v^{\prime}\right)_{X_{1}}=\emptyset$, therefore $v \in N_{X_{1}}^{+}$, so $x \in X_{0} \times\left(N_{X_{1}}^{+} \cup M\right)$.

Claim 3. $\left|X^{+}\right| \leq \kappa$.
Proof. It suffices to see $X^{+} \subset X_{0} \times\left(X_{1}^{+} \cup M\right)$. Let $x \in X^{+}$, say $x=\langle u, v\rangle$. As above, we may assume $v \notin M$. ¿From $x \in X^{+}$, note $(\leftarrow$ $, x]_{X} \in \tau_{X} \backslash \lambda_{X}$. If $(\leftarrow, v]_{X_{1}} \in \lambda_{X_{1}}$ were true, then there is $v^{\prime} \in X_{1}$ with $v<_{X_{1}} v^{\prime}$ and $\left(v, v^{\prime}\right)_{X_{1}}=\emptyset$. Then we have $(\leftarrow, x]_{X}=\left(\leftarrow,\left\langle u, v^{\prime}\right\rangle\right)_{X} \in$ $\lambda_{X}$, a contradiction. So we have $(\leftarrow, v]_{X_{1}} \notin \lambda_{X_{1}}$. By $(\leftarrow, x]_{X} \in \tau_{X}$, we can find $y \in \hat{X}$ with $x<_{\hat{X}} y$ and $(x, y)_{\hat{X}} \cap X=\emptyset$. Since $(v, \rightarrow)_{X_{1}} \neq \emptyset$ holds, $y$ can be represented as $\left\langle u, v^{*}\right\rangle$ with $v<_{X_{1}^{*}} v^{*} \in X_{1}^{*}$. Then we have $\left(v, v^{*}\right)_{X_{1}^{*}}=\emptyset$, otherwise $(x, y)_{\hat{X}} \cap X \neq \emptyset$. Now we have $(\leftarrow, v]_{X_{1}}=\left(\leftarrow, v^{*}\right)_{X_{1}^{*}} \cap X_{1} \in \tau_{X_{1}}$, which implies, by $(\leftarrow, v]_{X_{1}} \notin \lambda_{X_{1}}$, $v \in X_{1}^{+}$thus $x \in X_{0} \times\left(X_{1}^{+} \cup M\right)$.

Similarly we see the following.
Claim 4. $\left|X^{-}\right| \leq \kappa$.
Lemma 3.2. Let $X=\prod_{\alpha<\gamma} X_{\alpha}$ be a lexicographic product of $G O$ spaces and $\kappa$ an infinite cardinal. Assume that $\gamma$ is a limit ordinal. Then $w(X) \leq \kappa$ holds if and only if $\gamma \leq \kappa$ holds and for every $\beta<\gamma$, $\left|\prod_{\alpha \leq \beta} X_{\alpha}\right| \leq \kappa$ holds.

Proof. Let $\hat{X}=\prod_{\alpha<\gamma} X_{\alpha}^{*}$.
Assume $w(X) \leq \kappa$ and $\beta<\gamma$. It follows from $X=\left(\prod_{\alpha \leq \beta} X_{\alpha}\right) \times$ $\left(\prod_{\beta<\alpha} X_{\alpha}\right)$, see $\left[8\right.$, Lemma 1.5], that $\left|\prod_{\alpha \leq \beta} X_{\alpha}\right| \leq \kappa$ has to be true from the lemma above. If $\gamma>\kappa$ were true, then by $X=\left(\prod_{\alpha<\kappa} X_{\alpha}\right) \times$
( $\prod_{\kappa \leq \alpha} X_{\alpha}$ ), applying the lemma above, we see $\kappa<2^{\kappa} \leq\left|\prod_{\alpha<\kappa} X_{\alpha}\right| \leq$ $\kappa$, a contradiction.
To see the other direction, let $\gamma \leq \kappa$ and for every $\beta<\gamma,\left|\prod_{\alpha \leq \beta} X_{\alpha}\right| \leq$ $\kappa$. Define

$$
\begin{aligned}
J^{+} & =\left\{\alpha<\gamma: X_{\alpha} \text { has no maximal element. }\right\} \\
J^{-} & =\left\{\alpha<\gamma: X_{\alpha} \text { has no minimal element. }\right\} .
\end{aligned}
$$

By Lemma 2.2 , it suffices to see the following claims.
Claim 1. $d(X) \leq \kappa$.
Proof. Fix $x_{0} \in X$ and let

$$
D=\bigcup_{\beta<\gamma}\left\{y^{\wedge}\left(x_{0} \upharpoonright(\beta, \gamma)\right): y \in \prod_{\alpha \leq \beta} X_{\alpha}\right\} .
$$

The assumption ensures $|D| \leq \kappa$, so it suffices to see that $D$ is dense in $X$. Let $x \in X$ and $U$ be a neighborhood of $x$ in $X$. We consider some cases.
Case 1. $(\leftarrow, x)=\emptyset$.
Because of $x=\min X$ and $(x, \rightarrow) \neq \emptyset$, we can find $b \in \hat{X}$ with $x<_{\hat{x}} b$ and $[x, b)_{\hat{X}} \cap X \subset U$. Set $\alpha_{0}=\min \{\alpha<\gamma: x(\alpha) \neq b(\alpha)\}$. Then $\left(x \upharpoonright\left(\alpha_{0}+1\right)\right)^{\wedge}\left(x_{0} \upharpoonright\left(\alpha_{0}, \gamma\right)\right) \in D \cap U$.
Similarly we see the following case.
Case 2. $(x, \rightarrow)=\emptyset$.
Case 3. $(\leftarrow, x) \neq \emptyset$ and $(x, \rightarrow) \neq \emptyset$.
Take $a, b \in \hat{X}$ with $a<_{\hat{X}} x<_{\hat{X}} b$ and $(a, b)_{\hat{X}} \cap X \subset U$. Set $\alpha_{0}=$ $\min \{\alpha<\gamma: a(\alpha) \neq b(\alpha)\}$. By $a<x<b$, we have $a \upharpoonright \alpha_{0}=x \upharpoonright \alpha_{0}=$ $b \upharpoonright \alpha_{0}$. We consider further 3 cases.
Case 3-1. $x \upharpoonright\left(\alpha_{0}+1\right)=a \upharpoonright\left(\alpha_{0}+1\right)$.
Let $\alpha_{1}=\min \{\alpha<\gamma: a(\alpha) \neq x(\alpha)\}$. Then noting $\alpha_{0}<\alpha_{1}$, we see $\left(x \upharpoonright\left(\alpha_{1}+1\right)\right)^{\wedge}\left(x_{0} \upharpoonright\left(\alpha_{1}, \gamma\right)\right) \in D \cap U$.
Similarly we see the following case.
Case 3-2. $x \upharpoonright\left(\alpha_{0}+1\right)=b \upharpoonright\left(\alpha_{0}+1\right)$.
Case 3-3. $x \upharpoonright\left(\alpha_{0}+1\right) \neq a \upharpoonright\left(\alpha_{0}+1\right)$ and $x \upharpoonright\left(\alpha_{0}+1\right) \neq b \upharpoonright\left(\alpha_{0}+1\right)$.
In this case, we have $a \upharpoonright \alpha_{0}=x \upharpoonright \alpha_{0}=b \upharpoonright \alpha_{0}$ and $a\left(\alpha_{0}\right)<x\left(\alpha_{0}\right)<$ $b\left(\alpha_{0}\right)$. Therefore we have $\left(x \upharpoonright\left(\alpha_{0}+1\right)\right)^{\wedge}\left(x_{0} \upharpoonright\left(\alpha_{0}, \gamma\right)\right) \in D \cap U$.

Claim 2. $\left|N_{X}^{+}\right| \leq \kappa$.

Proof. We consider 2 cases.
Case 1. $\sup J^{-}=\gamma$ or $\sup J^{+}=\gamma$.
We will see $N_{X}^{+}=\emptyset$. Assuming $N_{X}^{+} \neq \emptyset$, take $x \in N_{X}^{+}$. Then we can take $y \in X$ with $x<y$ and $(x, y)=\emptyset$. Let $\alpha_{0}=\min \{\alpha<\gamma: x(\alpha) \neq$ $y(\alpha)\}$. We consider further 2 subcases.
Case 1-1. $\sup J^{+}=\gamma$.
Let $\alpha_{1}=\min \left(J^{+} \cap\left(\alpha_{0}, \gamma\right)\right)$ and take $u \in X_{\alpha_{1}}$ with $x\left(\alpha_{1}\right)<u$. Then we have $\left(x \upharpoonright \alpha_{1}\right)^{\wedge}\langle u\rangle^{\wedge}\left(x \upharpoonright\left(\alpha_{1}, \gamma\right)\right) \in(x, y)$, a contradiction.
Case 1-2. $\sup J^{-}=\gamma$.
Let $\alpha_{1}=\min \left(J^{-} \cap\left(\alpha_{0}, \gamma\right)\right)$ and take $u \in X_{\alpha_{1}}$ with $u<y\left(\alpha_{1}\right)$. Then we have $\left(y \upharpoonright \alpha_{1}\right)^{\wedge}\langle u\rangle^{\wedge}\left(y \upharpoonright\left(\alpha_{1}, \gamma\right)\right) \in(x, y)$, a contradiction.
Case 2. $\sup J^{-}<\gamma$ and $\sup J^{+}<\gamma$.
Let $\alpha_{0}=\max \left\{\sup J^{-}, \sup J^{+}\right\}$. We consider 2 subcases.
Case 2-1. $\sup J^{+}=\alpha_{0}$.
It suffices to see

$$
N_{X}^{+} \subset \bigcup_{\alpha_{0} \leq \beta<\gamma}\left(\prod_{\alpha \leq \beta} X_{\alpha}\right) \times\left\{\left\langle\max X_{\alpha}: \alpha>\beta\right\rangle\right\},
$$

because the cardinality of the right hand set is of $\leq \kappa$. To see this, let $x \in N_{X}^{+}$. Then there is $y \in X$ with $x<y$ and $(x, y)=\emptyset$. Let $\alpha_{1}=$ $\min \{\alpha<\gamma: x(\alpha) \neq y(\alpha)\}$. Then for every $\alpha<\gamma$ with $\alpha_{1}<\alpha, X_{\alpha}$ has a maximal element and $x(\alpha)=\max X_{\alpha}$, otherwise, taking some $\alpha>\alpha_{1}$ and $u \in X_{\alpha}$ with $x(\alpha)<u$, we see $(x \upharpoonright \alpha)^{\wedge}\langle u\rangle^{\wedge}(x \upharpoonright(\alpha, \gamma)) \in(x, y)$, a contradiction. Therefore $\alpha_{0} \leq \alpha_{1}$ and $x \in\left(\prod_{\alpha \leq \alpha_{1}} X_{\alpha}\right) \times\left\{\left\langle\max X_{\alpha}\right.\right.$ : $\left.\alpha>\alpha_{1}\right\rangle$.
Case 2-2. $\sup J^{-}=\alpha_{0}$.
In this case, as above, we can see

$$
N_{X}^{-} \subset \bigcup_{\alpha_{0} \leq \beta<\gamma}\left(\prod_{\alpha \leq \beta} X_{\alpha}\right) \times\left\{\left\langle\min X_{\alpha}: \alpha>\beta\right\rangle\right\} .
$$

Then we see $\left|N_{X}^{+}\right|=\left|N_{X}^{-}\right| \leq \kappa$.
Claim 3. $\left|X^{+}\right| \leq \kappa$.
Proof. We consider 2 cases.
Case 1. $\sup J^{+}=\gamma$.
In this case, we prove $X^{+}=\emptyset$. Assume $x \in X^{+}$, that is, $(\leftarrow, x]_{X} \in$ $\tau_{X} \backslash \lambda_{X}$. We will get a contradiction. Note $(x, \rightarrow)_{X} \neq \emptyset$ because
of $(\leftarrow, x]_{X} \notin \lambda_{X}$. Since $(\leftarrow, x]_{X}$ is open in $X$ and $X$ is a subspace of $\hat{X}$, we can find $b \in \hat{X}$ with $x<_{\hat{X}} b$ and $(x, b)_{\hat{X}} \cap X=\emptyset$. Let $\alpha_{0}=\min \{\alpha<\gamma: x(\alpha) \neq b(\alpha)\}$. Then we have $x \upharpoonright \alpha_{0}=b \upharpoonright \alpha_{0}$ and $X_{\alpha_{0}} \ni x\left(\alpha_{0}\right)<X_{\alpha_{0}}^{*} b\left(\alpha_{0}\right) \in X_{\alpha_{0}}^{*}$. Further let $\alpha_{1}=\min \left(J^{+} \cap\left(\alpha_{0}, \gamma\right)\right)$ and take $u \in X_{\alpha_{1}}$ with $x\left(\alpha_{1}\right)<u$. Then $\left(x \upharpoonright \alpha_{1}\right)^{\wedge}\langle u\rangle^{\wedge}\left(x \upharpoonright\left(\alpha_{1} \cdot \gamma\right)\right) \in$ $(x, b)_{\hat{X}} \cap X$, a contradiction. Thus we have $X^{+}=\emptyset$.

Case 2. $\sup J^{+}<\gamma$.
Let $\alpha_{0}=\sup J^{+}$. As in Case 2-1 of Claim 2, it suffices to see

$$
X^{+} \subset \bigcup_{\alpha 0 \leq \beta<\gamma}\left(\prod_{\alpha \leq \beta} X_{\alpha}\right) \times\left\{\left\langle\max X_{\alpha}: \alpha>\beta\right\rangle\right\} .
$$

Let $x \in X^{+}$. As in Case 1 above, take $b \in \hat{X}$ with $x<_{\hat{X}} b$ and $(x, b)_{\hat{X}} \cap X=\emptyset$. Let $\alpha_{1}=\min \{\alpha<\gamma: x(\alpha) \neq b(\alpha)\}$. Then for every $\alpha>\alpha_{1}$, a maximal element of $X_{\alpha}$ exists and $x(\alpha)=\max X_{\alpha}$, otherwise for some $\alpha>\alpha_{1}$ and $u \in X_{\alpha}, x(\alpha)<u$ holds, now $(x \upharpoonright \alpha)^{\wedge}\langle u\rangle^{\wedge}(x \upharpoonright$ $(\alpha, \gamma)) \in(x, b)_{\hat{X}} \cap X$, a contradiction. Thus we have $\alpha_{0} \leq \alpha_{1}$ and $x \in\left(\prod_{\alpha \leq \alpha_{1}} X_{\alpha}\right) \times\left\{\left\langle\max X_{\alpha}: \alpha>\alpha_{1}\right\rangle\right\}$.

Similarly we see the following and the proof is complete.
Claim 4. $\left|X^{-}\right| \leq \kappa$.
Theorem 3.3. Let $X=\prod_{\alpha<\gamma} X_{\alpha}$ be a lexicographic product of GOspaces with $|X| \geq \omega$. Then

$$
w(X)= \begin{cases}\sup \left\{\left|\prod_{\alpha \leq \beta} X_{\alpha}\right|: \beta<\gamma\right\} & \text { if } \gamma \text { is limit, } \\ \max \left\{\left|\prod_{\alpha<\gamma-1} X_{\alpha}\right|, w\left(X_{\gamma-1}\right)\right\} & \text { if } \gamma \text { is successor. }\end{cases}
$$

Proof. First assume that $\gamma$ is limit. The inequality " $\geq$ " is obvious from Lemma 3.2. To see the inequality " $\leq$ ", let $\kappa=\sup \left\{\left|\prod_{\alpha \leq \beta} X_{\alpha}\right|: \beta<\right.$ $\gamma\}$. If $\gamma>\kappa$ were true, then we have $\kappa<2^{\kappa} \leq\left|\prod_{\alpha \leq \kappa} X_{\alpha}\right| \leq \kappa$, a contradiction. So we have $\gamma \leq \kappa$. Now Lemma 3.2 shows $w(X) \leq \kappa$.

Next let $\gamma$ be a successor. Because of $X=\left(\prod_{\alpha<\gamma-1} X_{\alpha}\right) \times X_{\gamma-1}$, Lemma 3.1 directly shows $w(X)=\max \left\{\left|\prod_{\alpha<\gamma-1} X_{\alpha}\right|, w\left(X_{\gamma-1}\right)\right\}$.

Example 3.4. Applying $\gamma=2$ in the theorem above, we see $w(\mathbb{Q} \times$ $\mathbb{R})=\aleph_{0}$ but $w(\mathbb{R} \times \mathbb{Q})=2^{\aleph_{0}}$. This fact is also directly checked by the fact that $\mathbb{Q} \times \mathbb{R}$ is the topological sum of $|\mathbb{Q}|$-many $\mathbb{R}$ 's but $\mathbb{R} \times \mathbb{Q}$ is the topological sum of $|\mathbb{R}|$-many $\mathbb{Q}$ 's. Also note $w\left(\omega \times[0,1)_{\mathbb{R}}\right)=\aleph_{0}$ but $w\left([0,1)_{\mathbb{R}} \times \omega\right)=2^{\aleph_{0}}$, where $[0,1)_{\mathbb{R}}$ denotes the interval $[0,1)$ in $\mathbb{R}$.

The theorem above extends Theorem 4.3.1 in [2] for lexicographic products of GO-spaces.

Corollary 3.5. [2, Theorem 4.3.1] Let $X=\prod_{\alpha<\gamma} X_{\alpha}$ be an infinite lexicographic product of GO-spaces. Then $X$ is second countable if and only if the following clauses hold.
(1) $\gamma \leq \omega$,
(2) if $\gamma=\omega$, then for every $\alpha<\gamma, X_{\alpha}$ is countable,
(3) if $\gamma<\omega$, then the GO-space $X_{\gamma-1}$ is second countable and for every $\alpha<\gamma-1$, $X_{\alpha}$ is countable.

## 4. Applications

For a cardinal $\mu, \mu^{+}$denotes the the smallest cardinal greater than $\mu$. An uncountable cardinal $\lambda$ with $\lambda=\mu^{+}$for some cardinal $\mu$ is said to be a successor cardinal. A limit cardinal is an uncountable cardinal which is not a successor cardinal. For a cardinal $\kappa$ and a limit cardinal $\lambda$, the cardinal function $\kappa^{<\lambda}$ is defined as follows:

$$
\kappa^{<\lambda}=\sup \left\{\kappa^{\mu}: \mu \text { is a cardinal and } \mu<\lambda\right\},
$$

see $[4$, p.52, (5.10)]. However this cardinal function can be further extended as follows, for a cardinal $\kappa$ and an ordinal $\gamma$,

$$
\begin{gathered}
\kappa^{<\gamma}=\sup \left\{\kappa^{\mu}: \mu \text { is a cardinal and } \mu<\gamma\right\}, \text { equivalently, } \\
\kappa^{<\gamma}=\sup \left\{\kappa^{|\alpha|}: \alpha \text { is an ordinal and } \alpha<\gamma\right\} .
\end{gathered}
$$

Note that under this definition, whenever $\mu^{+}$is a successor cardinal, we have $\kappa^{<\mu^{+}}=\kappa^{\mu}$. Obviously, whenever $\omega \leq \kappa<\gamma, \kappa^{<\gamma}=2^{<\gamma}$ holds because of $\kappa^{\mu}=2^{\mu}$ for $\omega \leq \kappa \leq \mu$. For every infinite cardinal $\kappa$, also note that $\kappa \leq 2^{<\kappa} \leq \kappa^{<\kappa}$ and $\kappa<\kappa^{\mathrm{cf} \kappa}$ hold, and that whenever the Generalized Continuum Hypothesis (GCH) is assumed, $\kappa$ is a regular cardinal (that is, cf $\kappa=\kappa$ ) if and only if $2^{<\kappa}=\kappa^{<\kappa}$, see [4, Theorem 5.15]. Moreover for example, we see $2^{<\omega}=\aleph_{0}^{<\omega}=\aleph_{0}, 2^{<\omega+1}=\aleph_{0}^{<\omega+1}=$ $2^{\aleph_{0}}, \aleph_{1}^{<\omega}=\aleph_{1}, \aleph_{1}^{<\omega+1}=\aleph_{1}^{<\omega_{1}}=2^{\aleph_{0}}, \aleph_{1}^{<\omega_{1}+1}=2^{\aleph_{1}}, \cdots$, etc.

In this section, using this cardinal function, we will calculate the weight of special types of lexicographic products.
Corollary 4.1. Let $\gamma$ be an infinite ordinal, then the weight of the lexicographic product $2^{\gamma}$ is the cardinality $2^{<\gamma}$, that is, $w\left(2^{\gamma}\right)=2^{<\gamma}$.
Proof. When $\gamma$ is limit, from Theorem 3.3, we see $w\left(2^{\gamma}\right)=\sup \left\{\left|2^{\beta+1}\right|\right.$ : $\beta<\gamma\}=\sup \left\{2^{|\beta|}: \beta<\gamma\right\}=2^{<\gamma}$. When $\gamma$ is successor, from Theorem 3.3, we see $w\left(2^{\gamma}\right)=\max \left\{\left|2^{\gamma-1}\right|, w(2)\right\}=2^{|\gamma-1|}=2^{<\gamma}$.

Example 4.2. Applying the corollary above, we see $w\left(2^{\omega}\right)=\aleph_{0}$, $w\left(2^{\omega+1}\right)=w\left(2^{\omega_{1}}\right)=2^{\aleph_{0}}, w\left(2^{\omega_{1}+1}\right)=w\left(2^{\omega_{2}}\right)=2^{\aleph_{1}}, w\left(2^{\omega_{\omega}}\right)=2^{<\aleph_{\omega}} \geq$ $\aleph_{\omega}$, more generally for infinite cardinal $\kappa, w\left(2^{\kappa}\right)=2^{<\kappa} \geq \kappa$ and $w\left(2^{\gamma}\right)=2^{\kappa}$ whenever $\kappa<\gamma \leq \kappa^{+}$.

So we have:
Corollary 4.3. The following hold.
(1) the assertion $w\left(2^{\omega_{1}}\right)=\aleph_{1}$ is equivalent to the Continuum Hypothesis $(\mathrm{CH})$, that is, $2^{\aleph_{0}}=\aleph_{1}$,
(2) the assertion $w\left(2^{\omega_{1}}\right)=w\left(2^{\omega_{1}+1}\right)$ is equivalent to the assertion $2^{\aleph_{0}}=2^{\aleph_{1}}$,
(3) $w\left(2^{\omega_{\omega}}\right)>\aleph_{\omega}$ is equivalent to the assertion that $\aleph_{\omega}<2^{\aleph_{n}}$ holds for some $n \in \omega$.

Corollary 4.3 (1) shows that if the negation of CH is assumed, then the lexicographic product $2^{\omega_{1}}$ and the usual Tychonoff product $2^{\omega_{1}}$ are not homeomorphic. However, we will see in the next section that they are not homeomorphic without additional set theoretical assumptions.

Next we calculate the weight of lexicographic product $\prod_{\alpha<\gamma} X_{\alpha}$, where all $X_{\alpha}$ 's have the same infinite cardinality $\kappa$.

Corollary 4.4. Let $X=\prod_{\alpha<\gamma} X_{\alpha}$ be a lexicographic product of GOspaces and $\kappa$ an infinite cardinal. If for every $\alpha<\gamma$, the cardinality of $X_{\alpha}$ is $\kappa$, then the weight of $X$ is the cardinality $\kappa^{<\gamma}$.
Proof. Noting $w\left(X_{\gamma-1}\right) \leq\left|X_{\gamma-1}\right|=\kappa \leq \kappa^{<\gamma}$, the proof is similar to Corollary 4.1.

Example 4.5. Note that the weight of the real line $\mathbb{R}$ and the Sorgenfrey line $\mathbb{S}$ are $\aleph_{0}$ and $2^{\aleph_{0}}$ respectively. Applying the corollary above, we see $w\left(\mathbb{R}^{2}\right)=w\left(\mathbb{S}^{2}\right)=\left(2^{\aleph_{0}}\right)^{<2}=2^{\aleph_{0}}, w\left(\mathbb{R}^{\omega}\right)=w\left(\mathbb{S}^{\omega}\right)=$ $\left(2^{\aleph_{0}}\right)^{<\omega}=2^{\aleph_{0}}, w\left(\mathbb{R}^{\omega+1}\right)=w\left(\mathbb{S}^{\omega+1}\right)=\left(2^{\aleph_{0}}\right)^{<\omega+1}=\left(2^{\aleph_{0}}\right)^{\aleph_{0}}=2^{\aleph_{0}}$, $w\left(\mathbb{R}^{\omega_{1}}\right)=w\left(\mathbb{S}^{\omega_{1}}\right)=\left(2^{\aleph_{0}}\right)^{<\omega_{1}}=\left(2^{\aleph_{0}}\right)^{\aleph_{0}}=2^{\aleph_{0}}, w\left(\mathbb{R}^{\omega_{1}+1}\right)=w\left(\mathbb{S}^{\omega_{1}+1}\right)=$ $\left(2^{\aleph_{0}}\right)^{<\omega_{1}+1}=\left(2^{\aleph_{0}}\right)^{\aleph_{1}}=2^{\aleph_{1}}, \cdots$, etc., whereas $w\left(\mathbb{Q}^{2}\right)=w\left(\mathbb{Q}^{\omega}\right)=\aleph_{0}$, $w\left(\mathbb{Q}^{\omega+1}\right)=w\left(\mathbb{Q}^{\omega_{1}}\right)=2^{\aleph_{0}}$ and $w\left(\mathbb{Q}^{\omega_{1}+1}\right)=2^{\aleph_{1}}$.

For ordinal spaces, we see $w\left(\omega^{2}\right)=w\left(\omega^{\omega}\right)=\aleph_{0}, w\left(\omega^{\omega+1}\right)=w\left(\omega^{\omega_{1}}\right)=$ $2^{\aleph_{0}}, w\left(\omega^{\omega_{1}+1}\right)=w\left(\omega^{\omega_{2}}\right)=2^{\aleph_{1}}, w\left(\omega_{1}^{2}\right)=w\left(\omega_{1}^{\omega}\right)=\aleph_{1}, w\left(\omega_{1}^{\omega+1}\right)=$ $w\left(\omega_{1}^{\omega_{1}}\right)=2^{\aleph_{0}}, w\left(\omega_{1}^{\omega_{1}+1}\right)=w\left(\omega_{1}^{\omega_{2}}\right)=2^{\aleph_{1}}, \cdots$, etc. Also note $w\left(\left(\omega_{\omega}\right)^{\omega_{\omega}}\right)=$ $\left(\aleph_{\omega}\right)^{<\omega_{\omega}} \geq\left(\aleph_{\omega}\right)^{\aleph_{0}}>\aleph_{\omega}$, but note that if GCH is assumed, then $w\left(2^{\omega_{\omega}}\right)=2^{<\omega_{\omega}}=\aleph_{\omega}$.

Similar to Corollary 4.3, we see:
Corollary 4.6. The following hold.
(1) the assertions $w\left(\mathbb{S}^{2}\right)=\aleph_{1}, w\left(\mathbb{S}^{\omega_{1}}\right)=\aleph_{1}, w\left(\omega^{\omega+1}\right)=\aleph_{1}$ and $w\left(\omega^{\omega_{1}}\right)=\aleph_{1}$ are equivalent to CH ,
(2) the assertions $w\left(\mathbb{R}^{\omega_{1}}\right)=w\left(\mathbb{R}^{\omega_{1}+1}\right), w\left(\mathbb{S}^{\omega_{1}}\right)=w\left(\mathbb{S}^{\omega_{1}+1}\right), w\left(w^{\omega_{1}}\right)=$ $w\left(\omega^{\omega_{1}+1}\right)$ and $w\left(\omega_{1}^{\omega_{1}}\right)=w\left(\omega_{1}^{\omega_{1}+1}\right)$ are equivalent to the assertion $2^{\aleph_{0}}=2^{\aleph_{1}}$.

Finally, we calculate the weight of other types of lexicographic products.

Corollary 4.7. Let $\gamma$ be an infinite ordinal. Then the weight of the lexicographic product $\prod_{2 \leq \alpha<\gamma} \alpha$ is the cardinality $2^{<\gamma}$.

Proof. First let $\gamma$ be limit. For every $\beta<\gamma$ with $2 \leq \beta$, note $2^{[2, \beta] \mid}=$ $\left|\prod_{2 \leq \alpha \leq \beta} \alpha\right| \leq\left|\prod_{2 \leq \alpha \leq \beta} \beta\right| \leq|\beta|^{|[2, \beta]|}$. Therefore moreover if we assume $\omega \leq \beta$, then we have $\left|\prod_{2 \leq \alpha \leq \beta} \alpha\right|=2^{|\beta|}$. So, whenever $\gamma=\omega$, we have $w\left(\prod_{2 \leq \alpha<\gamma} \alpha\right)=\sup \left\{\left|\prod_{2 \leq \alpha \leq \beta} \alpha\right|: 2 \leq \beta<\gamma\right\}=\omega=2^{<\gamma}$. Whenever $\gamma>\omega$, we have $w\left(\prod_{2 \leq \alpha<\gamma} \alpha\right)=\sup \left\{\left|\prod_{2 \leq \alpha \leq \beta} \alpha\right|: 2 \leq \beta<\gamma\right\}=$ $\sup \left\{2^{|\beta|}: \omega \leq \beta<\gamma\right\}=2^{<\gamma}$.

Next let $\gamma$ be successor. ¿From $\gamma>\omega$, we have

$$
2^{|\gamma|}=\left|\prod_{2 \leq \alpha<\gamma-1} 2\right| \leq\left|\prod_{2 \leq \alpha<\gamma-1} \alpha\right| \leq\left|\prod_{2 \leq \alpha<\gamma-1}(\gamma-1)\right|=2^{|\gamma|}
$$

thus $\left|\prod_{2 \leq \alpha<\gamma-1} \alpha\right|=2^{|\gamma|}=2^{<\gamma}$. Moreover by $w(\gamma-1) \leq|\gamma-1| \leq|\gamma|<$ $2^{|\gamma|}=2^{<\gamma}$, we also have $w\left(\prod_{2 \leq \alpha<\gamma} \alpha\right)=\max \left\{\left|\prod_{2 \leq \alpha \leq \gamma-1} \alpha\right|, w(\gamma-\right.$ 1) $\}=2^{<\gamma}$.

Example 4.8. Using the corollary above, we see $w\left(\prod_{2 \leq \alpha<\omega} \alpha\right)=\aleph_{0}$, $w\left(\prod_{2 \leq \alpha<\omega+1} \alpha\right)=w\left(\prod_{2 \leq \alpha<\omega_{1}} \alpha\right)=2^{\aleph_{0}}, w\left(\prod_{2 \leq \alpha<\omega_{1}+1} \alpha\right)=2^{\aleph_{1}}, \cdots$, etc. Also we remark $w\left(\prod_{\alpha<\omega} \omega_{\alpha}\right)=\sup \left\{\left|\prod_{\alpha \leq \beta} \omega_{\alpha}\right|: \beta<\omega\right\}=$ $\sup \left\{\aleph_{\beta}: \beta<\omega\right\}=\aleph_{\omega}$ and $w\left(\prod_{\alpha<\omega+1} \omega_{\alpha}\right)=\max \left\{\left|\prod_{\alpha<\omega} \omega_{\alpha}\right|, w\left(\omega_{\omega}\right)\right\}=$ $\left|\prod_{\alpha<\omega} \omega_{\alpha}\right|=\left(\sup \left\{\aleph_{\alpha}: \alpha<\omega\right\}\right)^{\aleph_{0}}=\aleph_{\omega}^{\aleph_{0}}>\aleph_{\omega}$, where for $\left|\prod_{\alpha<\omega} \omega_{\alpha}\right|=$ $\left(\sup \left\{\aleph_{\alpha}: \alpha<\omega\right\}\right)^{\aleph_{0}}$, use [4, Lemma 5.9].

## 5. the lexicographic products versus the Tychonoff PRODUCTS

In this section, we compare the lexicographic product $2^{\gamma}$ with the usual Tychonoff product $2^{\gamma}$.

First recall that a topological space $X$ is said to be homogeneous if for every $x, y \in X$, there is a homeomorphism $h$ from $X$ onto $X$ with $h(x)=y$. Obviously:

- if topological spaces $X_{\alpha}$ 's $(\alpha \in \Lambda)$ are homogeneous, then the usual Tychonoff product $\prod_{\alpha \in \Lambda} X_{\alpha}$ is also homogeneous,
- if a topological space $X$ is homogeneous, then there is a unique cardinal number $\kappa$ such that $\chi(x, X)=\kappa$ for every $x \in X$, where $\chi(x, X)=\min \{|\mathcal{U}|: \mathcal{U}$ is a neighborhood base at $x\}$, which is called the character at $x$, see [1],
- if a topological space $X$ is homogeneous with an isolated point, then it is discrete, thus whenever $\Lambda$ is infinite, the usual Tychonoff product $2^{\Lambda}$ is homogeneous without isolated points.
Next we remember the cofinality of a compact LOTS discussed in [5]. Let $L$ be a compact LOTS and $x \in L$. Note that every subset $A$ of $L$ has a least upper bound $\sup _{L} A$ (and greatest lower bound $\inf _{L} A$ ), see $\left[1,3.12 .3\right.$ (a)]. A subset $A$ of $(\leftarrow, x)_{L}$ is said to be 0 -unbounded for $x$ in $L$ if for every $y<x$, there is $a \in A$ with $y \leq a$. Let

$$
0-\mathrm{cf}_{L} x=\min \{|A|: A \text { is } 0 \text {-unbounded for } x\} .
$$

Obviously $0-\operatorname{cf}_{L} x$ can be 0,1 or an infinite regular cardinal, also $0-\mathrm{cf}_{L} x=0\left(0-\mathrm{cf}_{L} x=1\right)$ means that $x$ is the minimal element of $L$ ( $x$ has an immediate predecessor in $L$, respectively). Usually $0-\mathrm{cf}_{L} x$ is denoted by $0-\mathrm{cf} x$. Since $L$ is a compact LOTS, for every $x \in L$, there is a sequence $\left\{x_{\alpha}: \alpha<0-\operatorname{cf} x\right\}$, which is called a 0 -normal sequence for $x$, such that:

- if $\beta<\alpha<0$ - cf $x$, then $x_{\beta}<_{L} x_{\alpha}$,
- if $\alpha<0-\mathrm{cf} x$ and $\alpha$ is limit, then $x_{\alpha}=\sup _{L}\left\{x_{\beta}: \beta<\alpha\right\}$,
- the set $\left\{x_{\alpha}: \alpha<0-\operatorname{cf} x\right\}$ is 0 -unbounded for $x$.

Analogous notions " 1 - cf $x$ ", "1-normal sequence for $x$ "..., etc can be defined, see [5, section 3]. Note $\chi(x, L)=\max \{0-\mathrm{cf} x, 1-\operatorname{cf} x\}$ for every $x \in L$ and also note that the lexicographic product $2^{\gamma}$ is a compact LOTS.

Lemma 5.1. Let $2^{\gamma}$ be a lexicographic product and $x \in 2^{\gamma}$. Then the following hold:
(1) if $x^{-1}[\{1\}]$ has no maximal element, say $\delta=\sup x^{-1}[\{1\}]$, then $0-\operatorname{cf} x=\operatorname{cf} \delta$, where we consider as $\sup \emptyset=0$ and $\operatorname{cf} 0=0$,
(2) if $x^{-1}[\{1\}]$ has a maximal element, say $\delta=\max x^{-1}[\{1\}]$, then $0-\mathrm{cf} x=1$.

Proof. (1) Assume that $x^{-1}[\{1\}]$ has no maximal element and let $\delta=$ $\sup x^{-1}[\{1\}]$. Fix a strictly increasing sequence $\left\{\delta_{\xi}: \xi<\operatorname{cf} \delta\right\}$ in $\delta$ such that

- $\left(\delta_{\xi}, \delta_{\xi+1}\right) \cap x^{-1}[\{1\}] \neq \emptyset$ for every $\xi<\operatorname{cf} \delta$,
- $\delta_{\xi}=\sup \left\{\delta_{\zeta}: \zeta<\xi\right\}$ if $\xi$ is limit,
- $\left\{\delta_{\xi}: \xi<\operatorname{cf} \delta\right\}$ is $(0-)$ unbounded in $\delta$.

Now for every $\xi<\operatorname{cf} \delta$, let $x_{\xi}=\left(x \upharpoonright \delta_{\xi}\right)^{\wedge}\left\langle 0: \delta_{\xi} \leq \alpha<\gamma\right\rangle$. Then obviously $\left\{x_{\xi}: \xi<\operatorname{cf} \delta\right\}$ is a 0 -normal sequence for $x$ in $2^{\gamma}$, therefore $0-\mathrm{cf} x=\operatorname{cf} \delta$.
(2) Assume that $x^{-1}[\{1\}]$ has a maximal element $\delta$. Let $y=(x \upharpoonright$ $\delta)^{\wedge}\langle 0\rangle^{\wedge}\langle 1: \delta<\alpha<\gamma\rangle$, then $y<x$ and $(y, x)=\emptyset$, which shows $0-\operatorname{cf} x=1$.

Changing 0 and 1 by 1 and 0 , respectively, in the lemma above, we can get an analogous result for $1-\operatorname{cf} x$. For example, if $x$ is an element of $2^{\omega_{1}}$ so that both $x^{-1}[\{1\}]$ and $x^{-1}[\{0\}]$ are unbounded in $\omega_{1}$, then we have $0-\operatorname{cf} x=1$ - $\operatorname{cf} x=\omega_{1}$, thus $\chi\left(x, 2^{\omega_{1}}\right)=\aleph_{1}$.

Definition 5.2. Let $L$ be a compact LOTS. A point $x$ in $L$ is said to have type $I$ if $\min \{0-\operatorname{cf} x, 1-\operatorname{cf} x\} \leq 1$. Otherwise, we say that $x$ has type $I I$, that is, $\omega \leq 0-\operatorname{cf} x$ and $\omega \leq 1-\operatorname{cf} x$.

Lemma 5.3. Let $L$ be a compact LOTS. If there are a type I point $x$ with $\omega_{1} \leq \max \{0-\operatorname{cf} x, 1-\operatorname{cf} x\}$ and a type II point $y$ in $L$, then $L$ is not homogeneous. .

Proof. Assume that there is a homeomorphism $h: X \rightarrow X$ with $h(y)=$ $x$, we may assume $\omega_{1} \leq 0-\operatorname{cf} x$ and $1-\operatorname{cf} x \leq 1$. For each $i \in 2$, fix an $i$-normal sequence $A_{i}:=\left\{y_{i}(\alpha): \alpha<i\right.$-cf $\left.y\right\}$ for $y$. Since $y$ has type II, $A_{0}$ and $A_{1}$ are infinite and $\{y\}=\mathrm{Cl}_{L} A_{0} \cap \mathrm{Cl}_{L} A_{1}$. Since $h$ is a homeomorphism, we have $\{x\}=\mathrm{Cl}_{L} h\left[A_{0}\right] \cap \mathrm{Cl}_{L} h\left[A_{1}\right]$. It follows from 1 - $\mathrm{cf} x \leq 1$ that $\{x\}=\mathrm{Cl}_{L} B_{0} \cap \mathrm{Cl}_{L} B_{1}$, where $B_{i}=h\left[A_{i}\right] \cap(\leftarrow, x)$. Fix a 0-normal sequence $\{x(\alpha): \alpha<0$ - cf $x\}$ for $x$. Since $B_{i}$ 's are 0 -unbounded for $x$, by induction, for every $i \in 2$ and $n \in \omega$, we can fix $b_{i n} \in B_{i}$ and $\alpha_{n}<0-\operatorname{cf} x$ with $b_{0 n}<b_{1 n}<x\left(\alpha_{n}\right)<b_{0 n+1}$. Then by letting $\alpha=\sup \left\{\alpha_{n}: n \in \omega\right\}$, we see $x(\alpha) \in \mathrm{Cl}_{L} B_{0} \cap \mathrm{Cl}_{L} B_{1}$ and $x(\alpha)<x$, which contradicts $\{x\}=\mathrm{Cl}_{L} B_{0} \cap \mathrm{Cl}_{L} B_{1}$.

Lemma 5.4. The following hold:
(1) if $\gamma$ is a successor ordinal with $\gamma>\omega$, then the lexicographic product $2^{\gamma}$ is not homogeneous,
(2) if $\gamma$ is a limit ordinal with $\gamma \geq \omega_{1}$, then the lexicographic product $2^{\gamma}$ is not homogeneous.

Proof. (1) Let $\gamma$ be a successor ordinal with $\gamma>\omega$. Then the maximal element $x=\langle 1: \alpha<\gamma\rangle$ is isolated, because of $0-\operatorname{cf} x=1$ and $1-\operatorname{cf} x=$ 0 , see Lemma 5.1. On the other hand, the element $y=\langle 1: \alpha<\omega\rangle^{\wedge}\langle 0$ : $\omega \leq \alpha<\gamma\rangle$ is not isolated, in fact, $0-\mathrm{cf} y=\omega$. Since $y$ is not isolated, $2^{\gamma}$ is not homogeneous.
(2) Let $\gamma$ be a limit ordinal with $\gamma \geq \omega_{1}$. First assume cf $\gamma>\omega$. Let $y$ be an element of $2^{\gamma}$ such that both $y^{-1}[\{1\}]$ and $y^{-1}[\{0\}]$ are unbounded in $\gamma$. Moreover let $x=\langle 0\rangle^{\wedge}\langle 1: 0<\alpha<\gamma\rangle$. Then Lemma 5.1 shows $0-\operatorname{cf} y=1-\operatorname{cf} y=\operatorname{cf} \gamma>\omega, 0-\operatorname{cf} x=\operatorname{cf} \gamma>\omega$ and $1-\operatorname{cf} x=1$.

Thus $x$ has type I with 0 - $\operatorname{cf} x \geq \omega_{1}$ and $y$ has type II, now Lemma 5.3 shows that $2^{\gamma}$ is not homogeneous.

Next assume of $\gamma=\omega$ and $\gamma \geq \omega_{1}$. Note $\gamma>\omega_{1}$. Let $x=\langle 1$ : $\left.\alpha<\omega_{1}\right\rangle^{\wedge}\left\langle 0: \omega_{1} \leq \alpha<\gamma\right\rangle$ and $y=\left\langle 0: \alpha \leq \omega_{1}\right\rangle^{\wedge}\left\langle 1: \omega_{1}<\alpha<\gamma\right\rangle$. Then Lemma 5.1 shows $0-\operatorname{cf} x=\omega_{1}, 1-\operatorname{cf} x=\omega, 0-\operatorname{cf} y=\omega$ and 1 - cf $y=1$, thus we we have $\chi\left(x, 2^{\gamma}\right)=\aleph_{1}$ and $\chi\left(y, 2^{\gamma}\right)=\aleph_{0}$. So $2^{\gamma}$ is not homogeneous.
Theorem 5.5. Let $\gamma$ be an ordinal, then the following are equivalent:
(1) the lexicographic product $2^{\gamma}$ and the usual Tychonoff product $2^{\gamma}$ are homeomorphic,
(2) the identity map from the lexicographic product $2^{\gamma}$ onto the usual Tychonoff product $2^{\gamma}$ is a homeomorphism,
(3) the lexicographic product $2^{\gamma}$ is homeomorphic to the usual Ty chonoff product $2^{\Lambda}$ for some $\Lambda$,
(4) $\gamma \leq \omega$.

Proof. The implication $(2) \Rightarrow(1) \Rightarrow(3)$ is obvious.
$(3) \Rightarrow(4)$ Assume $\gamma>\omega$ and that the lexicographic product $2^{\gamma}$ is homeomorphic to the usual Tychonoff product $2^{\Lambda}$ for some $\Lambda$. Note $2^{|\Lambda|}=2^{|\gamma|}$. Since the usual Tychonoff product $2^{\Lambda}$ is homogeneous, from Lemma 5.4, we see that $\gamma$ is limit with $\omega<\gamma<\omega_{1}$. It follows from Corollary 4.1 that the weight of the the lexicographic product $2^{\gamma}$ is $2^{<\gamma}=2^{|\gamma|}$. On the other hand, the weight of the product $2^{\Lambda}$ is at most $|\Lambda|$, which contradicts $|\Lambda|<2^{|\Lambda|}=2^{|\gamma|}$.
(4) $\Rightarrow$ (2) Assume $\gamma \leq \omega$. Since the case " $\gamma<\omega$ " is obvious, we may assume $\gamma=\omega$. Let $L$ and $T$ be the lexicographic product and the usual Tychonoff product $2^{\omega}$ respectively, and $i d: L \rightarrow T$ be the identity map. The following claims complete the proof. Also note that in $[2, \mathrm{p} 78$, Example 4], the fact that $L$ and $T$ are homeomorphic is proved by using a characterization theorem of the Cantor set.
Claim 1. id is continuous.
Proof. For every $n \in \omega$ and $i \in 2$, let $U_{n i}:=\{x \in T: x(n)=i\}$. Since $\left\{U_{n i}: n \in \omega, i \in 2\right\}$ is a subbase for $T$, it suffices to see that each $U_{n i}$ is open in $L$. So let $x \in U_{n i}$. We may assume $i=0$, then note $(x, \rightarrow) \neq \emptyset$.

Fact 1. If $(\leftarrow, x) \neq \emptyset$, then there is $a \in L$ with $a<x$ and $(a, x] \subset U_{n 0}$.
Proof. Let $(\leftarrow, x) \neq \emptyset$, then note $x^{-1}[\{1\}] \neq \emptyset$. Whenever $x^{-1}[\{1\}]$ has a maximal element $m_{0}$, let $a=\left(x \upharpoonright m_{0}\right)^{\wedge}\langle 0\rangle^{\wedge}\left\langle 1: m_{0}<m<\omega\right\rangle$. Whenever $x^{-1}[\{1\}]$ has no maximal element, putting $m_{0}=\min \left(x^{-1}[\{1\}] \cap\right.$ $(n, \omega))$, let $a=\left(x \upharpoonright m_{0}\right)^{\wedge}\langle 0\rangle^{\wedge}\left\langle 1: m_{0}<m<\omega\right\rangle$. Then $a$ is the required, see Lemma 5.1

Similarly wee see:
Fact 2. There is $b \in L$ with $x<b$ and $[x, b) \subset U_{n 0}$.
Now let

$$
V= \begin{cases}{[x, b)} & \text { if }(\leftarrow, x)=\emptyset, \\ (a, b) & \text { if }(\leftarrow, x) \neq \emptyset .\end{cases}
$$

Then $V$ is a neighborhood of $x$ in $L$ contained in $U_{n 0}$, so $U_{n 0}$ is open in $L$.

Claim 2. $i d^{-1}$ is continuous.
Proof. Since $\left\{(a, \rightarrow): a \in 2^{\omega}\right\} \cup\left\{(\leftarrow, a): a \in 2^{\omega}\right\}$ is a subbase for $L$, it suffices to see that $(a, \rightarrow)$ and $(\leftarrow, a)$ are open in $T$ for every $a \in 2^{\omega}$. We check the former, because the latter is similar. Let $a \in 2^{\omega}$ and $x \in(a, \rightarrow)$. Putting $m_{0}=\min \{m \in \omega: x(m) \neq a(m)\}$, let $V=\left\{y \in 2^{\omega}: y \upharpoonright\left(m_{0}+1\right)=x \upharpoonright\left(m_{0}+1\right)\right\}$. Then $V$ is a neighborhood of $x$ in $T$ contained in $(a, \rightarrow)$, so $(a, \rightarrow)$ is open in $T$.

## References

[1] R. Engelking, General Topology-Revised and completed ed.. Heldermann Verlag, Berlin (1989).
[2] M. J. Faber, Metrizability in generalized ordered spaces, Mathematical Centre Tracts, No. 53. Mathematisch Centrum, Amsterdam, 1974.
[3] Y. Hirata and N. Kemoto, Countable metacompactness of products of LOTS', Top. Appl., 178 (2014) 1-16.
[4] T. Jech, Set theory. The third millennium edition, revised and expanded, Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2003.
[5] N. Kemoto, Normality of products of GO-spaces and cardinals, Top. Proc. 18 (1993) 133-142.
[6] N. Kemoto, The lexicographic ordered products and the usual Tychonoff products, Top. Appl., 162 (2014) 20-33.
[7] N. Kemoto, Orderability of products, Top. Proc., 50 (2017) 67-78.
[8] N. Kemoto, Lexicographic products of GO-spaces, Top. Appl., 232 (2017), 267280.
[9] N. Kemoto, Paracompactness of Lexicographic products of GO-spaces, Top. Appl., 240 (2018) 35-58.
[10] N. Kemoto, Hereditary paracompactness of lexicographic products, Top. Proc., 53 (2019) 301-317.
[11] K. Kunen, Set Theory. An Introduction to Independence Proofs, Studies in Logic and the Foundations of Mathematics, vol. 102, North-Holland, Amsterdam, 1980.
[12] D.J. Lutzer, On generalized ordered spaces, Dissertationes Math. Rozprawy Mat. 89 (1971).
[13] T. Miwa and N. Kemoto, Linearly ordered extensions of GO-spaces, Top. Appl., 54 (1993), 133-140.

Department of Mathematics, Kanagawa University, Yokohama, 2218686 Japan

E-mail address: hirata-y@kanagawa-u.ac.jp
Department of Mathematics, Oita University, Oita, 870-1192 Japan
E-mail address: nkemoto@cc.oita-u.ac.jp


[^0]:    Date: August 5, 2020.
    2010 Mathematics Subject Classification. Primary 54F05, 54B10, 54B05 . Secondary 54 C 05 .

    Key words and phrases. lexicographic product, GO-space, LOTS, weight, homogeneous, the continuum hypothesis.

    This research was supported by Grant-in-Aid for Scientific Research (C) 19K03606.

