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Abstract. Variations of Dedekind completeness of lexicographic
products of GO-spaces are studied. As a corollary, we see that
whenever γ is limit and all GO-spaces Xα’s have minimal elements
but have no maximal elements, connectedness of a lexicographic
product

∏
α<γ Xα implies non-connectedness of all Xα’s.

1. Introduction

All spaces are assumed to be regular T1 and when we consider a
product

∏
α<γ Xα, all Xα are assumed to have cardinality at least 2

with γ ≥ 2. Set theoretical and topological terminology follow [9] and
[1]. The following are well known:

• a LOTS X is compact iff every subset A of X has a least up-
per bound supX A, where supX ∅ is defined to be the minimal
element minX of X, see [1, Problem 3.12.3(a)],
• a lexicographic product

∏
α<γ Xα of LOTS’s is compact iff all

Xα’s are compact, see [2, Theorem 4.2.1].

Obviously a LOTS X is compact iff both of the following properties
hold:

(a) every non-empty subset A ofX has a least upper bound supX A,
(b) every non-empty subset A of X has a greatest lower bound

infX A.

One might conjecture that if a LOTS Xα satisfies the property (a)
for every α < γ, then the lexicographic product

∏
α<γ Xα also sat-

isfies the property (a). But immediately we see that this conjecture
is false, for instance, the lexicographic product (0, 1]R × (0, 1]R with
A = (0, 1

2
)R × (0, 1]R, where (0, 1]R denotes the half open interval (0, 1]
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in the real line R, is a counter example. Recently the notion of lex-
icographic products of GO-spaces is defined and discussed in [5, 6].
In this paper, we will define properties, so called 0-completeness and
1-completeness, on GO-spaces which are related to (a) and (b) re-
spectively, and characterize when a lexicographic product

∏
α<γ Xα of

GO-spaces has such properties. As corollaries, we see:

• whenever all Xα’s have minimal and maximal elements, a lex-
icographic product

∏
α<γ Xα is 0-complete iff all Xα’s are 0-

complete,
• whenever γ is limit and all Xα’s have minimal elements but
have no maximal elements, a lexicographic product

∏
α<γ Xα is

0-complete iff γ = ω and all Xα’s are ordinals, this yields:
• whenever γ is limit and allXα’s have minimal elements but have
no maximal elements, connectedness of a lexicographic product∏

α<γ Xα implies non-connectedness of all Xα’s.

A linearly ordered set ⟨L,<L⟩ has a natural topology λL, which is
called an interval topology, generated by {(←, x)L : x ∈ L} ∪ {(x,→
)L : x ∈ L} as a subbase, where (x,→)L = {z ∈ L : x <L z}, (x, y)L =
{z ∈ L : x <L z <L y}, (x, y]L = {z ∈ L : x <L z ≤L y} and so on.
The triple ⟨L,<L, λL⟩, which is simply denoted by L, is called a LOTS.

A triple ⟨X,<X , τX⟩ is said to be a GO-space, which is also simply
denoted by X, if ⟨X,<X⟩ is a linearly ordered set and τX is a T2-
topology onX having a base consisting of convex sets, where a subset C
ofX is convex if for every x, y ∈ C with x <X y, [x, y]X ⊂ C holds. The
linearly ordered set ⟨X,<X⟩ is called the underlying linearly ordered set
of the GO-space X. Usually <L, (x, y)L, λL or τX are written simply <,
(x, y), λ or τ if contexts are clear. For a GO-spaceX, X+ (X−) denotes
the set {x ∈ X : (←, x] ∈ τX \ λX} ({x ∈ X : [x,→) ∈ τX \ λX}).
Obviously if x ∈ X+, then (x,→) is non-empty and has no minimal
element. Note that a GO-space X is a LOTS iff X+ ∪ X− = ∅. The
Sorgenfrey line S is known to be a GO-space but not a LOTS, where
the underlying linearly ordered set of S is R and sets of type [a, b)
are declared to be open in S. For more information on LOTS’s or
GO-spaces, see [10].

ω and ω1 denote the first infinite ordinal and the first uncountable
ordinal, respectively. Ordinals, which are usually denoted by Greek
letters α, β, γ, · · · , are considered to be LOTS’s with the usual intereval
topology.

For GO-spaces X = ⟨X,<X , τX⟩ and Y = ⟨Y,<Y , τY ⟩, X is said to
be a subspace of Y if X ⊂ Y , the linear order <X is the restriction
<Y ↾ X of the order <Y and the topology τX is the subspace topology
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τY ↾ X (= {U ∩X : U ∈ τY }) on X of the topology τY . So a subset of a
GO-space is naturally considered as a GO-space. For every GO-space
X, there is a LOTS X∗ such that X is a dense subspace of X∗ and X∗

has the property that if L is a LOTS containing X as a dense subspace,
then L also contains the LOTS X∗ as a subspace, see [11]. Such a X∗

is called the minimal d-extension of a GO-space X. The construction
of X∗ is also shown in [5]. Obviously, we can see:

• if X is a LOTS, then X∗ = X,
• X has a maximal element maxX if and only if X∗ has a maxi-
mal element maxX∗, in this case, maxX = maxX∗ (similarly
for minimal elements).

For every α < γ, let Xα be a LOTS and X =
∏

α<γ Xα. Every

element x ∈ X is identified with ⟨x(α) : α < γ⟩. The lexicographic
order <X on X is defined as follows: for every x, x′ ∈ X,

x <X x′ iff for some α < γ, x ↾ α = x′ ↾ α and x(α) <Xα x′(α),

where x ↾ α = ⟨x(β) : β < α⟩ and <Xα is the order on Xα. Now
for every α < γ, let Xα be a GO-space and X =

∏
α<γ Xα. The

subspace X of the lexicographic product X̂ =
∏

α<γ X
∗
α is said to be

the lexicographic product of GO-spaces Xα’s, for more details see [5].∏
i∈ω Xi (

∏
i≤n Xi where n ∈ ω) is denoted by X0 × X1 × X2 × · · ·

(X0 ×X1 ×X2 × · · · ×Xn, respectively).
∏

α<γ Xα is also denoted by
Xγ whenever Xα = X for all α < γ.

Let X and Y be LOTS’s. A map f : X → Y is said to be order
preserving or 0-order preserving if f(x) <Y f(x′) whenever x <X x′.
Similarly a map f : X → Y is said to be order reversing or 1-order
preserving if f(x) >Y f(x′) whenever x <X x′. Obviously a 0-order
preserving map (also 1-order preserving map) f : X → Y between
LOTS’s X and Y , which is onto, is a homeomorphism, i.e., both f
and f−1 are continuous. Now let X and Y be GO-spaces. A 0-order
preserving map f : X → Y is said to be 0-order preserving embedding
if f is a homeomorphism between X and f [X], where f [X] is the
subspace of the GO-space Y . In this case, we identify X with f [X] as
a GO-space and write X = f [X].

Let X be a GO-space. A subset A of X is called a 0-segment of X
if for every x, x′ ∈ X with x ≤ x′, if x′ ∈ A, then x ∈ A. A 0-segment
A is said to be bounded if X \ A is non-empty. Similarly the notion
of (bounded) 1-segment can be defined. Both ∅ and X are 0-segments
and 1-segments.

In our discussion, we mainly consider the following properties.
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Definition 1.1. A GO-space X is said to be 0-complete (1-complete) if
every non-empty bounded closed 0-segment (1-segment) has a maximal
(minimal) element. When a GO-space X is 0-complete and 1-complete,
it is simply called complete. Similarly a GO-space X is said to be 0-
compact (1-compact) if every non-empty closed 0-segment (1-segment)
has a maximal (minimal) element.

A linearly ordered set (or LOTS) X is called Dedekind 0-complete
(Dedekind 1-complete) if every non-empty subset A having an upper
bound (lower bound) has a least upper bound supX A (a greatest lower
bound infX A). A LOTS is Dedekind complete if it is both Dedekind
0-complete and Dedekind 1-complete.

Obviously a GO-space X is 0-compact iff it is 0-complete and has a
maximal element maxX. We emphasize that Dedekind completeness
is a property on LOTS’s (or underlying linearly ordered sets of GO-
spaces), on the other hand, completeness is a property on GO-spaces.

Remark 1.2. These notions above can be represented by using classi-
cal terms cut, gap, ... etc., as follows. An ordered pair ⟨A,B⟩ of open
sets (equivalently, closed sets) in a GO-space X is said to be a cut if it
satisfies

(i) X = A ∪B and
(ii) ∀a ∈ A ∀b ∈ B(a < b).

A cut ⟨A,B⟩ is a gap if it satisfies
(iii) A has no maximal element, and B has no minimal element.

Furthermore a gap ⟨A,B⟩ is an internal gap if it satisfies
(iv) A ̸= ∅ and B ̸= ∅.

A cut ⟨A,B⟩ with (iv) is a pseudogap from left if it also satisfies
(v) A has no maximal element, but B has a minimal element.

A pseudogap from right can be similarly defined. Now it is easy to see
that a GO-space X is 0-complete in our sense if and only if there exist
neither internal gaps nor pseudogaps from left.

Recently using our notation, (hereditary) paracompactness, count-
able compactness, the weight ... and so on of lexicographic products
have been discussed, see [3, 4, 5, 6, 7, 8].

First we clarify the relationship between 0-completeness and Dedekind
0-completeness.

Lemma 1.3. Let X be a GO-space. Then the following are equivalent

(1) X is 0-complete,
(2) the following properties hold:

(a) X− = ∅,
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(b) the underlying linearly ordered set of X is Dedekind 0-
complete.

Proof. (1) ⇒ (2) Assume (1). (a) is obvious, because if x ∈ X− then
(←, x) is a non-empty bounded closed 0-segment of X with no maximal
element.
(b) If there were a non-empty subset C having an upper bound such
that C does not have a least upper bound, then A := {x ∈ X : ∃c ∈
C(x ≤ c)} is a non-empty closed 0-segment with no maximal element.

(2) ⇒ (1) Assuming that X is not 0-complete, take a non-empty
bounded closed 0-segment A with no maximal element. It follows from
(2b) that supX A exists and obviously supX A /∈ A. Since A is closed,
take x ∈ X∗ with x <X∗ supX A and A ∩ ((x,→)X∗ ∩ X) = ∅. By
(2a), we have supX A /∈ X−, so we may assume x ∈ X. Then we
have x ∈ A by x < supX A. Take a ∈ A with x < a, then we see
a ∈ A ∩ ((x,→)X∗ ∩X), a contradiction. □

This lemma shows that whenever X is a LOTS, 0-completeness of X
is equivalent to Dedekind 0-completeness. So with the analogous result
of Lemma 1.3, we see:

Corollary 1.4. The following hold:

(1) a GO-space X is complete iff it is a Dedekind complete LOTS,
(2) a GO-space X is 0-compact and 1-compact iff it is a compact

LOTS.

Since the underlying linearly ordered set of a subspace of an ordinal
is Dedekind complete, the corollary above yields:

Corollary 1.5. A subspace of an ordinal is complete iff it is a LOTS.
In particular, ordinals are complete.

In our discussion, we will consider 0-completeness and 1-completeness
separately.

Example 1.6. The following hold:

(1) the LOTS (0, 1]R is a 0-compact and 1-complete, but not 1-
compact,

(2) the Sorgenfrey line (where intervals of type [a, b)R are declared
to be open) is 1-complete, but neither 0-complete nor 1-compact.
Note that S is a GO-space but not a LOTS.

(3) ω1 is 0-complete and 1-compact, but −ω1 is 1-complete and 0-
compact, where −X denotes the GO-space ⟨X,>X , τX⟩ for a
GO-space X = ⟨X,<X , τX⟩, see [6],
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(4) the subspace ω1 \ {ω} of ω1 is 1-compact but not 0-complete,
thus it is not a LOTS. Note that the underlying linearly ordered
set of ω1 \ {ω}, which can be identified with ω1, is Dedekind
complete.

2. Characterizations

In this section, we characterize 0-(1-)completeness of lexicographic
products of GO-spaces. First we consider a special case.

Lemma 2.1. Let X = X0 ×X1 be a lexicographic product of two GO-
spaces. Then X is 0-complete iff the following clauses hold:

(1) both X0 and X1 are 0-complete,
(2) X1 has a minimal element or a maximal element,
(3) if X1 has no minimal element, then for every u ∈ X0 with

(←, u) ̸= ∅, (←, u) has a maximal element,
(4) if X1 has no maximal element, then for every u ∈ X0 with

(u,→) ̸= ∅, (u,→) has a minimal element.

Proof. Set X̂ = X∗
0 ×X∗

1 . To see one direction, let X be 0-complete.
(1) Assuming thatX0 is not 0-complete, letA0 be a non-empty bounded
closed 0-segment of X0 with no maximal element. Let A = A0 × X1,
obviously it is a non-empty bounded 0-segment in X with no maximal
element.

Claim 1. A is closed.

Proof. Let x ∈ X \A. Since x(0) /∈ A0, (←, x(0)) ̸= ∅ and A0 is closed,
there is u∗ ∈ X∗

0 with u∗ < x(0) such that A0 ∩ ((u∗,→)X∗
0
∩X0) = ∅.

Fixing v ∈ X1, let U = (⟨u∗, v⟩,→)X̂ ∩X. Then U is a neighborhood
of x in X. To see U ∩ A = ∅, assume a ∈ U ∩ A for some a. Since
u∗ ≤ a(0) ∈ A0 and A0 has no maximal element, take u ∈ A0 with
a(0) < u. Then we have u ∈ A0 ∩ ((u∗,→)X∗

0
∩ X0), a contradiction.

So U is a neighborhood of x disjoint from A. □
Next assuming that X1 is not 0-complete, let A1 be a non-empty

bounded closed 0-segment of X1 with no maximal element. Fixing
u ∈ X0, let A = {x ∈ X : ∃v ∈ A1(x ≤ ⟨u, v⟩}. Obviously it is
a non-empty bounded 0-segment with no maximal element. Now the
following claim contradicts 0-completeness of X.

Claim 2. A is closed.

Proof. Let x ∈ X \ A. Since the 0-segment A1 is bounded, fix v ∈
X1 \ A1. Whenever ⟨u, v⟩ < x, (⟨u, v⟩,→)X is a neighborhood of x
disjoint from A. So let x ≤ ⟨u, v⟩, then by x /∈ A, we have x(0) = u
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and x(1) /∈ A1. Since A1 is closed, there is v∗ ∈ X∗
1 with v∗ <X∗

1
x(1)

such that A1 ∩ ((v∗,→)X∗
1
∩ X1) = ∅. Then (⟨u, v∗⟩,→)X̂ ∩ X is a

neighborhood of x disjoint from A. □
(2) Assume that X1 has neither a minimal nor a maximal element.
Fixing u ∈ X0 with (←, u)X0 ̸= ∅, let A = (←, u) × X1. Then A is a
non-empty bounded closed 0-segment of X with no maximal element,
a contradiction.
(3) Assume that X1 has no minimal element but there is u ∈ X0 with
(←, u) ̸= ∅ such that (←, u) has no maximal element. Let A = (←
, u)×X1. Then A is a non-empty bounded closed 0-segment of X with
no maximal element, a contradiction.
(4) Assume that X1 has no maximal element but there is u ∈ X0 with
(u,→) ̸= ∅ such that (u,→) has no minimal element. Let A = (←
, u]×X1. Then A is a non-empty bounded closed 0-segment of X with
no maximal element, a contradiction.

To see the other direction, assuming the clauses (1)-(4) and that X
is not 0-complete, take a non-empty bounded closed 0-segment A of X
with no maximal element. Let A0 = {u ∈ X0 : ∃v ∈ X1(⟨u, v⟩ ∈ A)}.
Obviously A0 is a non-empty 0-segment of X0. We consider 2 cases,
and in both cases we will get contradictions.

Case 1. A0 has a maximal element.

In this case, let A1 = {v ∈ X1 : ⟨maxA0, v⟩ ∈ A}. Then A1 is
a non-empty 0-segment of X1. If A1 ̸= X1 were true, then A1 is a
non-empty bounded in X1 and {maxA0} × A1 is a 1-segment (i.e.,
final segment) of the 0-segment A. So A1 is closed in X1 and has
no maximal element, which contradicts (1). So we have A1 = X1,
therefore A = (←,maxA0] × X1. Since the 0-segment A is bounded
and has no maximal element, the 0-segment A0 is bounded in X0 and
X1 has no maximal element. So by (maxA0,→) ̸= ∅ with the condition
(4), min(maxA0,→) exists. Moreover the condition (2) shows that X1

has a minimal element. Now we have min(X \ A) = ⟨min(maxA0,→
),minX1⟩ /∈ A. Since A is closed in X, there is ⟨u∗, v∗⟩ ∈ X̂ with
⟨u∗, v∗⟩ < ⟨min(maxA0,→),minX1⟩ such that A ∩ ((⟨u∗, v∗⟩,→)X̂ ∩
X) = ∅. Since minX1 ≤ v∗, u∗ < min(maxA0,→) has to be true.
Moreover since X0 is dense in X∗

0 , we have u∗ ≤ maxA0. If u∗ <
maxA0 were true, then ⟨maxA0,minX1⟩ ∈ A ∩ (⟨u∗, v∗⟩,→)X̂ ∩ X,
a contradiction. So we have u∗ = maxA0. Since X1 has no maximal
element, take v ∈ X1 with v∗ < v. Then ⟨maxA0, v⟩ ∈ A∩((⟨u∗, v∗⟩,→
)X̂ ∩X), a contradiction.

Case 2. A0 has no maximal element.
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In this case, we have:

Claim 3. A = A0 ×X1.

Proof. A ⊂ A0 ×X1 is obvious. To see A ⊃ A0 ×X1, let x ∈ A0 ×X1.
Since A0 has no maximal element, one can take u ∈ A0 with x(0) < u.
Then for some v ∈ X1, we have ⟨u, v⟩ ∈ A. Since A is a 0-segment and
x < ⟨u, v⟩ ∈ A, we have x ∈ A. □

Since A is bounded, the 0-segment A0 is also bounded in X0. If
X0 \ A0 have no minimal element, then the 0-segment A0 is closed,
which contradicts (1). So X0\A0 has a minimal element. The following
claim yields a contradiction to (3) with u = min(X0 \ A0).

Claim 4. X1 has no minimal element.

Proof. Assume that X1 has a minimal element. Since A is closed and
⟨min(X0 \ A0),minX1⟩ /∈ A, there is ⟨u∗, v∗⟩ ∈ X̂ with ⟨u∗, v∗⟩ <
⟨min(X0 \ A0),minX1⟩ such that A ∩ ((⟨u∗, v∗⟩,→)X̂ ∩X) = ∅. Then
(u∗,→)X∗

0
∩ X0 is a neighborhood of min(X0 \ A0) disjoint from A0,

which shows thatA0 is closed inX0. SoA0 witnesses non-0-completeness
of X0, which contradicts (1). □

□
Remark that 0-compactness is equivalent to 0-completeness + the

existence of a maximal element and also that X0 ×X1 has a maximal
element iff both X0 and X1 have maximal elements. So we have:

Lemma 2.2. Let X = X0 ×X1 be a lexicographic product of two GO-
spaces. Then X is 0-compact iff the following clauses hold:

(1) both X0 and X1 are 0-compact,
(2) if X1 has no minimal element, then for every u ∈ X0 with

(←, u) ̸= ∅, (←, u) has a maximal element.

Replacing 0-, minimal, maximal, (←, u) and (u,→) by 1-, maximal,
minimal, (u,→) and (←, u) respectively, we have analogous results of
Lemma 2.1 and 2.2.

Example 2.3. Applying the lemmas above, we see:

(1) R×I is complete, but I×R is neither 0-complete nor 1-complete,
where I = [0, 1]R,

(2) S × I and S × [0, 1]S are 1-complete, where [0, 1]S denotes the
subspace [0, 1] of S,

(3) (0, 1]R × I and (−ω1) × (0, 1]R are 0-compact, but (0, 1)2R and
ω1 × (0, 1]R are not 0-complete,

(4) ω1 × I, ω1 × [0, 1)R and (ω1 + 1)× [0, 1)R are complete,
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(5) I × ω1 and [0, 1)R × ω1 are neither 0-complete nor 1-complete,
but [0, 1)R × (ω1 + 1) is complete.

Next, we consider general cases.

Definition 2.4. Let X =
∏

α<γ Xα be a lexicographic product of GO-

spaces. We use the following notation in [5].

J+ = {α < γ : Xα has no maximal element },
J− = {α < γ : Xα has no minimal element },

Theorem 2.5. Let X =
∏

α<γ Xα be a lexicographic product of GO-
spaces. Then X is 0-complete iff the following clauses hold:

(1) for every α < γ, Xα is 0-complete,
(2) J− ⊂ {0} or J+ ⊂ {0},
(3) J− ∪ J+ ⊂ ω,
(4) for every α < sup J− and u ∈ Xα, if (←, u) ̸= ∅, then (←, u)

has a maximal element,
(5) for every α < sup J+ and u ∈ Xα, if (u,→) ̸= ∅, then (u,→)

has a minimal element,

Proof. Let X̂ =
∏

α<γ X
∗
α. First assuming that X is 0-complete, we

will see the clauses (1) - (5).
(1) Assuming that (1) is false, fix α0 < γ such that Xα0 is not 0-
complete, moreover let Y0 =

∏
α≤α0

Xα and Y1 =
∏

α0<αXα. Since
X = Y0 × Y1 (see [5, Lemma 1.5]) and X is 0-complete, from Lemma
2.1, we see that Y0 is 0-complete. Now since Y0 =

∏
α<α0

Xα × Xα0 ,
again by Lemma 2.1, we see that Xα0 is 0-complete.
(2) Assume J− \{0} ̸= ∅ and J+ \ {0} ̸= ∅. Then

∏
0<αXα has neither

a minimal nor a maximal elements. Since X (= X0 ×
∏

0<αXα) is
0-complete, we get a contradiction from Lemma 2.1 (2).
(3) Assume J−∪J+ ̸⊂ ω. We may assume J− ̸⊂ ω. Let α0 = min(J− \
ω) and fix u ∈

∏
α<ω Xα with (←, u(α))Xα ̸= ∅ for every α < ω.

Since X (=
∏

α≤α0
Xα ×

∏
α0<αXα) is 0-complete, by Lemma 2.1 (1),∏

α≤α0
Xα (=

∏
α<α0

Xα × Xα0) is 0-complete. Let z = u ∧⟨minXα :
ω ≤ α < α0⟩, that is, z ∈

∏
α<α0

Xα with z(α) = u(α) in case α < ω
and z(α) = minXα in case ω ≤ α < α0. Then (←, z) ̸= ∅ and it has
no maximal element. Since Xα0 has no minimal element, it contradicts
Lemma 2.1 (3).
(4) Let α0 < sup J− and

α1 = min{α > α0 : Xα has no minimal element.}.
Then for each α ∈ (α0, α1), Xα has a minimal element. Assume that
for some u0 ∈ Xα0 with (←, u0) ̸= ∅, (←, u0) has no maximal element.
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By Lemma 2.1 (1),
∏

α≤α1
Xα is 0-complete. Fixing y0 ∈

∏
α<α0

Xα,
let z0 = y0

∧⟨u0⟩∧⟨minXα : α0 < α < α1⟩. Then obviously z0 ∈∏
α<α1

Xα and (←, z0) is non-empty having no maximal element, which
contradicts Lemma 2.1 (3). (5) is similar to (4).

To see the other direction. Assume that the clauses (1) - (5) holds,
but X is not 0-complete. Then we can fix a non-empty bounded closed
0-segment A in X with no maximal element. Let B = X \ A. Note
B ̸= ∅.
Claim 1. B has no minimal element.

Proof. Assume that B has a minimal element, say b = minB. Since A
is closed and b /∈ A, there is x∗ ∈ X̂ with x∗ <X̂ b and (x∗, b)X̂ = ∅.
Let α0 = min{α < γ : x∗(α) ̸= b(α)}. Then (x∗(α0), b(α0))X∗

α0
= ∅,

otherwise, taking u ∈ (x∗(α0), b(α0))X∗
α0
, (b ↾ α0)

∧⟨u⟩∧(b ↾ (α0, γ)) ∈
(x∗, b)X̂ , a contradiction. Therefore we have (←, b(α0))Xα0

is equal to
(←, x∗(α0)]X∗

α0
∩Xα0 , so it is a non-empty bounded closed 0-segment in

Xα0 . Since Xα0 is 0-complete, from (1), (←, b(α0))Xα0
has a maximal

element u ∈ Xα0 . Also by (x∗(α0), b(α0))X∗
α0

= ∅, we see u = x∗(α0).

Fact. For every α > α0, Xα has a maximal element and x∗(α) =
maxXα.

Proof. Otherwise, set α1 = min{α > α0 : ∃u ∈ Xα(x
∗(α) < u)} and

take u1 ∈ Xα1 with x∗(α1) < u1. Then we have (x∗ ↾ α1)
∧⟨u1⟩∧(x∗ ↾

(α1, γ)) ∈ (x∗, b)X̂ , a contradiction. □
This fact with x∗(α0) = u ∈ Xα0 shows x∗ ∈ X, so A = (←, b)X

has a maximal element x∗, a contradiction. This completes the proof
of Claim 1. □

Now let I = {α < γ : ∃a ∈ A∃b ∈ B(a ↾ (α + 1) = b ↾ (α + 1))}.
Since I is a 0-segment (= initial segment) of γ, I is equal to α0 for
some α0 ≤ γ. For every α < α0, fix aα ∈ A and bα ∈ B with aα ↾
(α + 1) = bα ↾ (α + 1). Letting Y0 =

∏
α<α0

Xα and Y1 =
∏

α0≤α Xα,
define y0 ∈ Y0 by y0(α) = aα(α) for every α < α0. These arguments
below are somewhat similar to the arguments in [6, Theorem 4.8]. But
since there are some technical differences, we will give their details.

Claim 2. For every α < α0, y0 ↾ (α+1) = aα ↾ (α+1) = bα ↾ (α+1).

Proof. Assuming y0 ↾ (α + 1) ̸= aα ↾ (α + 1) for some α < α0, put
α1 = min{α < α0 : y0 ↾ (α+1) ̸= aα ↾ (α+1)} and α2 = min{α ≤ α1 :
y0(α) ̸= aα1(α)}. Then α2 < α1 and y0 ↾ (α2 + 1) = aα2 ↾ (α2 + 1) =
bα2 ↾ (α2+1) holds. When y0(α2) < aα1(α2), we see B ∋ bα2 < aα1 ∈ A,
a contradiction. When y0(α2) > aα1(α2), we see B ∋ bα1 < aα2 ∈ A,
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a contradiction. The second equality follows from the definitions of aα
and bα. □

Claim 3. α0 < γ.

Proof. Assume α0 = γ, then we may assume y0 ∈ A. Since A has no
maximal element, fix a ∈ A with y0 < a. Letting β0 = min{α < γ :
y0(α) ̸= a(α)}, we see B ∋ bβ0 < a ∈ A, a contradiction. □

Claim 4. The following hold:

(1) for every a ∈ A, a ↾ α0 ≤ y0 holds,
(2) for every b ∈ B, b ↾ α0 ≥ y0 holds,
(3) for every x ∈ X, if x ↾ α0 < y0 holds, then x ∈ A,
(4) for every x ∈ X, if x ↾ α0 > y0 holds, then x ∈ B.

Proof. (1) Assuming a ↾ α0 > y0 for some a ∈ A, let β0 = min{α <
α0 : a(α) ̸= y0(α)}. Then we see B ∋ bβ0 < a ∈ A, a contradiction. (2)
is similar.
(3) Assuming x ↾ α0 < y0, let β0 = min{α < α0 : x(α) ̸= y0(α)}. Then
we see x < aβ0 ∈ A. Since A is a 0-segment, we have x ∈ A. (4) is
similar. □

Let A0 = {a(α0) : a ∈ A, a ↾ α0 = y0} and B0 = {b(α0) : b ∈ B, b ↾
α0 = y0}.
Claim 5. A0 is a 0-segment of Xα0 and B0 = Xα0 \ A0.

Proof. Letting u′ < u ∈ A0, take a ∈ A with a ↾ (α0 + 1) = y0
∧⟨u⟩.

Set a′ = (a ↾ α0)
∧⟨u′⟩∧(a ↾ (α0, γ)), then a′ < a ∈ A. Since A is a

0-segment, we see a′ ∈ A thus u′ ∈ A0. So A0 is a 0-segment of Xα0 .
To see B0 ⊂ Xα0 \ A0, let u ∈ B0. Take b ∈ B with b ↾ (α0 +

1) = y0
∧⟨u⟩. If u ∈ A0 were true, then one can take a ∈ A with

a ↾ (α0 + 1) = y0
∧⟨u⟩ (= b ↾ (α0 + 1)), thus we have α0 ∈ I = α0, a

contradiction. So we have u ∈ Xα0 \ A0.
To see B0 ⊃ Xα0 \ A0, let u ∈ Xα0 \ A0. Take x ∈ X with x ↾

(α0 + 1) = y0
∧⟨u⟩. Then obviously x ∈ B has to be true, so we have

u ∈ B0. □

Claim 6. A0 ̸= ∅.

Proof. Assume A0 = ∅. Then from Claim 4, we see (←, y0)× Y1 = A,
so we have (←, y0) ̸= ∅. If α0 = 0 were true, then by taking a ∈ A, we
see a(α0) ∈ A0, a contradiction. So we have α0 > 0. If α0 = β0 + 1
were true for some ordinal β0, then by β0 ∈ I = α0 and aβ0 ↾ α0 = y0,
we have aβ0(α0) ∈ A0, a contradiction. So α0 is limit. If (←, y0) has a
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maximal element, say y1 = max(←, y0), then by letting β0 = min{α <
α0 : y1(α) ̸= y0(α)}, we see y1 < aβ0 ↾ α0 < y0, a contradiction. So
(←, y0) has no maximal element. From our condition (3), we have
J− ⊂ ω ≤ α0, so Y1 (=

∏
α0≤α Xα) has a minimal element. Then

⟨y0,minY1⟩ is the minimal element of B = X \ A, which contradicts
Claim 1. □

Claim 7. A0 ̸= Xα0 .

Proof. Assume A0 = Xα0 . It follows from Claim 4 that A = (←
, y0]×Y1. If α0 = 0 were true, then by taking b ∈ B, we see b(α0) ∈ B0,
a contradiction. So we have α0 > 0. Now if α0 = β0 + 1 were true
for some ordinal β0, then by β0 ∈ I = α0 and bβ0 ↾ α0 = y0, we see
bβ0(α0) ∈ B0, a contradiction. So α0 is limit. Since A has no maximal
element, it follows from A = (←, y0] × Y1 that Y1 has no maximal
element, so there is α ≥ α0 such that Xα has no maximal element, but
this contradicts J+ ⊂ ω ≤ α0. □

Now let Z0 =
∏

α≤α0
Xα, Z1 =

∏
α0<αXα and A∗ = {z ∈ Z0 : z ↾

α0 < y0 or (z ↾ α0 = y0, z(α0) ∈ A0)}. Note A∗ = (←, y0) × Xα0 ∪
{y0} × A0, therefore {y0} × A0 is a 1-segment of the 0-segment A∗

in Z0. Using Claim 4, we can easily check A = A∗ × Z1, so A∗ is a
non-empty bounded 0-segment of Z0.

Assume that A∗ has a maximal element, that is, A0 has a maximal
element. It follows from A = A∗×Z1 that Z1 has no maximal element,
which means α0 < sup J+. The clause (5) shows that (maxA0,→)
(= B0) has a minimal element. On the other hand, since B has no
minimal element, there is α > α0 such thatXα has no minimal element,
which contradicts the clause (2). So we see that A∗ has no maximal
element, i.e., A0 has no maximal element.

Claim 8. Z1 has a minimal element.

Proof. Assuming that Z1 has no minimal element, let α1 = min{α >
α0 : Xα has no minimal element }. Since α0 < α1 ∈ J− ⊂ ω holds by
the clause (3), we have α0 < sup J−. If minB0 exists, then applying
clause (4) with u = minB0, we see that A0 (= (←,minB0)) has a
maximal element, a contradiction. So B0 has no minimal element, thus
A0 is a non-empty bounded closed 0-segment of Xα0 with no maximal
element, and this contradicts the clause (1). □

Claim 9. A0 is closed in Xα0 .

Proof. Let u ∈ Xα0 \ A0 and x = y0
∧⟨u⟩∧⟨minXα : α0 < α⟩. Then

x ∈ X \ A. Since A is closed, there is x∗ ∈ X̂ such that x∗ < x and
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A ∩ (x∗, x)X̂ = ∅. Let β0 = min{α < γ : x∗(α) ̸= x(α)}. Note β0 ≤ α0.
If β0 < α0 were true, then we have aβ0 ∈ (x∗, x)X̂ , a contradiction.
So we have β0 = α0 and A0 ∩ (x∗(α0), u)X∗

α0
= ∅, which means that

(x∗(α0),→)X∗
α0
∩Xα0 is a neighborhood of u disjoint from A0. □

We have seen that A0 is a non-empty bounded closed 0-segment of
Xα0 with no maximal element, which contradicts the clause (1). □

With the analogous result of Theorem 2.5, we have:

Corollary 2.6. Let X =
∏

α<γ Xα be a lexicographic product of GO-
spaces. Then X is complete iff the following clauses hold:

(1) for every α < γ, Xα is complete,
(2) J− ⊂ {0} or J+ ⊂ {0},
(3) J− ∪ J+ ⊂ ω,
(4) for every α < sup J− and u ∈ Xα, if (←, u) ̸= ∅, then (←, u)

has a maximal element,
(5) for every α < sup J+ and u ∈ Xα, if (u,→) ̸= ∅, then (u,→)

has a minimal element,

3. Applications

In this section, we apply the results of previous section. With the
fact “0-compactness = 0-completeness with a maximal element”, the
theorem above shows:

Corollary 3.1. Let X =
∏

α<γ Xα be a lexicographic product of GO-
spaces. Then X is 0-compact iff the following clauses hold:

(1) for every α < γ, Xα is 0-compact,
(2) J− ⊂ ω,
(3) for every α < sup J− and u ∈ Xα, if (←, u) ̸= ∅, then (←, u)

has a maximal element,

With the analogous result of the corollary above, we see:

Corollary 3.2. [2, Theorem 4.2.1] Let X =
∏

α<γ Xα be a lexicographic
product of GO-spaces. Then X is compact iff for every α < γ, Xα is
compact.

Example 3.3. Note that [0, 1]γS is 1-compact for every ordinal γ, but
[0, 1]S is not 0-complete. Moreover note that [0, 1)S is 1-compact but
[0, 1)2S is not 1-complete. [0, 1)S × [0, 1]γS is 1-compact for every γ.

For later use, we discuss GO-spaces which are similar to ordinals.
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Definition 3.4. A GO-space X is called an almost ordinal if for every
x ∈ X, the subspace [x,→)X of X is identified with some ordinal α
(we say “[x,→)X is an ordinal”), that is, there is a 0-order preserving
onto map f : α → [x,→)X such that both f and f−1 are continuous.
A GO-space X is called a almost reverse ordinal if −X is an almost
ordinal. When α is ordinal, −α is called a reverse ordinal.

We can easily check:

• almost (reverse) ordinals are complete LOTS’s,
• an almost ordinal with a minimal element is (identified with)
an ordinal,
• if α is an ordinal, then the lexicographic product (−ω) × α is
an almost ordinal,
• the lexicographic product ω × (−ω) is complete but not an
almost ordinal,
• −ω is an almost ordinal, but −ω1 is not an almost ordinal.

The property “almost ordinal” is just equivalent to both properties
in (1) and (5) in Theorem 2.5.

Lemma 3.5. A GO-space X is almost ordinal iff the following prop-
erties hold:

(1) X is 0-complete,
(2) for every u ∈ X, if (u,→)X ̸= ∅, then (u,→)X has a minimal

element.

Proof. One direction is obvious. To see the other direction, let x0 ∈ X
and f(0) = x0. Inductively we define a 0-order preserving onto map f :
α0 → [x0,→) for some ordinal α0 such that f and f−1 are continuous.
Assume that α > 0 and a 0-order preserving map f ↾ α : α→ [x0,→) is
defined so that for every β < α with β + 1 < α, (f(β), f(β + 1))X = ∅
holds. Let A(f ↾ α) = {x ∈ X : ∃β < α(x ≤X f(β))}. Obviously
A(f ↾ α) is a non-empty 0-segment of X. Whenever A(f ↾ α) = X,
stop the induction and let α0 = α. So let A(f ↾ α) ̸= X. If X \ A(f ↾
α) has no minimal element, then A(f ↾ α) is a non-empty bounded
closed 0-segment, so by (1), A(f ↾ α) has a maximal element. Then
by (2), X \ A(f ↾ α) has a minimal element, a contradiction. Thus
X \A(f ↾ α) has a minimal element, so let f(α) = min(X \A(f ↾ α)).
After finishing the induction, we have got a 0-order preserving onto
map f : α0 → [x0,→). It suffices to see that both f and f−1 are
continuous.

To see that f is continuous at α < α0, let U be a convex open set inX
with f(α) ∈ U . We may assume that α is limit. Then since (←, f(α)) is
a non-empty bounded 0-segment with no maximal element, (←, f(α))
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is not closed in X, so f(α) ∈ ClX(←, f(α)), where ClX denotes the
closure in X. Then one can pick β < α with f(β) ∈ U . Now by
convexity of U , we see f [(β, α]] ⊂ U . This shows the continuity of f .

To see that f−1 is continuous at f(α) with α < α0, let β < α. Put

U =

{
(f(β),→)X if α+ 1 = α0,

(f(β), f(α + 1))X otherwise.

Then (β, α] = f−1[U ]. This shows the continuity of f−1. □

Theorem 2.5 and the lemma above yields:

Corollary 3.6. If a lexicographic product
∏

α<γ Xα is 0-complete (1-

complete), then for every α < sup J+ ( α < sup J−), Xα is an almost
ordinal (almost reverse ordinal, respectively). In particular, Xα is an
ordinal (reverse ordinal) for every α < sup J+ ( α < sup J−) with
0 < α.

Corollary 3.7. If a GO-space Y has no maximal element, then the
lexicographic products R× Y , I× Y , (−S)× Y , [0, 1)R× Y , (−ω1)× Y
and ω × (−ω)× Y are not 0-complete.

Applying Theorem 2.5, we consider completeness of a lexicographic
product

∏
α<γ Xα on the following typical cases:

(a) all Xα’s have neither minimal nor maximal elements, that is,
J− = J+ = γ,

(b) all Xα’s have a minimal and a maximal elements, that is, J− =
J+ = ∅,

(c) all Xα’s have a minimal element, that is, J− = ∅.
The case (a) is not interesting, e.g., consider the lexicographic prod-

uct R× R. More generally we have:

Corollary 3.8. Let X =
∏

α<γ Xα be a lexicographic product of GO-

spaces. If J− \{0} ̸= ∅ and J+ \{0} ̸= ∅, then X is neither 0-complete
nor 1-complete.

About (b), we have:

Corollary 3.9. Let X =
∏

α<γ Xα be a lexicographic product of GO-

spaces. If J− = J+ = ∅, then X is 0-complete (1-complete, complete)
iff for every α < γ, Xα is 0-complete (1-complete, complete, respec-
tively).

(c) is the most interesting case.
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Corollary 3.10. Let X =
∏

α<γ Xα be a lexicographic product of GO-

spaces. If J− = ∅, then X is 0-complete (1-complete) iff the following
clauses hold:

(1) Xα is 0-complete (1-complete) for every α < γ,
(2) J+ ⊂ ω,
(3) for every α < sup J+ and u ∈ Xα, if (u,→) ̸= ∅, then (u,→)

has a minimal element,

Example 3.11. Applying the corollary above, we see:

(1) [0, 1)ωR is neither 0-complete nor 1-complete,
(2) ω3

1 × [0, 1)S is 1-complete but not 0-complete, but [0, 1)S×ω3
1 is

neither 0-complete nor 1-complete,
(3) ω3

1× [1, 0)−S is 0-complete but not 1-complete, but [1, 0)−S×ω3
1

is neither 0-complete nor 1-complete,
(4) ωω

1 is complete but ωω+1
1 is neither 0-complete nor 1-complete,

or the lexicographic product of a ω-sequence of ordinals is com-
plete, e.g.,

∏
n∈ω ωn,

(5) ωω
1 × (ω1 + 1)ω and ωω

1 × Iω are complete,
(6) (ω1×(ω1+1))ω and

∏
n∈ω(ωn×(ωn+1)) are complete, but (ω1×

I)ω and
∏

n∈ω(ωn × I) are neither 0-complete nor 1-complete.

Now we consider further special case:

(c∗) γ is limit, all Xα’s have a minimal element and Xα has no
maximal element for cofinally many α < γ, that is, J− = ∅ and
sup J+ = γ.

Corollary 3.12. Let X =
∏

α<γ Xα be a lexicographic product of GO-

spaces. If J− = ∅ and sup J+ = γ, then the following hold:

(1) X is 0-complete iff γ = ω and all Xα’s are ordinals,
(2) if X is 0-complete, then it is 1-complete thus complete.

Proof. (1) follows from Corollary 3.10 and Lemma 3.5.
(2) If X is 0-complete, then by (1), γ = ω and all Xα’s are ordinal

so 1-complete. Again applying Corollary 3.10, we see that X is 1-
complete. □

Example 3.13. The reverse implication of (2) in the corollary above
is not true. Note that the subspace ω1 \ {ω} of ω1 is 1-complete but
not 0-complete. So from Corollary 3.10, we see that (ω1 \ {ω})ω is
1-complete but not 0-complete. Also note that (ω1 \ {ω})ω is not a
LOTS, because of ⟨ω + 1, 0, 0, 0, . . . ⟩ ∈ X−.
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4. connectedness

It is well known that the usual Tychonoff product
∏

α<γ Xα is con-

nected iff all Xα’s are connected [1, Theorem 6.1.15] and that the lex-
icographic product ωω

1 is connected [2, p.68, Remark]. Obviously con-
nected GO-spaces are a complete LOTS. In this section, we will clarify
the relationship between connectedness and completeness, also we will
prove that in some situations, connectedness of a lexicographic product∏

α<γ Xα implies non-connectedness of all Xα’s.

Lemma 4.1. A GO-space X is connected iff the following clauses hold:

(1) X is complete (hence a LOTS),
(2) for every u ∈ X, if (u,→) ̸= ∅, then (u →) has no minimal

element, that is, X has no jumps in the sense of [2].

Proof. One direction is obvious. Assume (1) and (2) and that X is
not connected. Take non-empty disjoint open sets U and V with X =
U ∪ V , moreover fix u ∈ U and v ∈ V . We may assume u < v. Let
A = {x ∈ X : ∃w ∈ X(u ≤ w, x ≤ w, [u,w] ⊂ U)}. Then obviously
(←, u] ⊂ A and A is a 0-segment of X with v /∈ A. Let B = X \ A.

Claim 1. A is open in X.

Proof. Let x ∈ A. When x < u, (←, u) is a neighborhood of x contained
in A. So assume u ≤ x. Then there is w ∈ X such that x ≤ w and
[u,w] ⊂ U . Since w ∈ U and U is open in X, there is w′ ∈ X with
w < w′ and [w,w′) ⊂ U . Then it is easy to see that (←, w′) is a
neighborhood of x contained in A. □

This claim shows that B is a non-empty bounded closed 1-segment
of X. So by 1-completeness of X, B has a minimal element, say b =
minB.

Claim 2. b ∈ V .

Proof. Assume b ∈ U . To see [u, b) ⊂ U , let x ∈ [u, b). Then by
x ∈ A, we have x ∈ [u,w] ⊂ U for some w ∈ X with x ≤ w, so we
have [x, b) ⊂ U . Now we see [u, b] = [u, b) ∪ {b} ⊂ U , thus b ∈ A, a
contradiction. □

Since V is open, there is b′ ∈ X with b′ < b such that (b′, b]∩X ⊂ V .
Then we have (b′, b] ⊂ B, which shows that B is open in X. Thus A is
a non-empty bounded closed 0-segment of X. By the 0-completeness
of X, A has a maximal element, say u = maxA. Now we have b =
min(u,→), which contradicts our assumption (2). □
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Now we also discuss connectedness of lexicographic products in some
cases. Note from Corollary 3.8 that a lexicographic product

∏
α<γ Xα

is not connected whenever J− \ {0} ̸= ∅ and J+ \ {0} ̸= ∅, e.g., for
every GO-space X, lexicographic products X×R, X× [0, 1)S× (0, 1]R,
... etc. are not connected.

When all Xα’s have a minimal and a maximal elements, we have an
expected result:

Corollary 4.2. Let X =
∏

α<γ Xα be a lexicographic product of GO-

spaces. If J− = J+ = ∅, then X is connected iff for every α < γ, Xα

is connected.

Proof. Assume that X is connected. Since X is complete, by Corol-
lary 3.9, all Xα’s are complete. It suffices to see that all Xα’s have
the property in (2) in Lemma 4.1. So assume that for some α0 < γ
and u0, u1 ∈ Xα0 , u0 < u1 and (u0, u1)Xα0

= ∅ are true. Fixing
y0 ∈

∏
α<α0

Xα, let x0 = y0
∧⟨u0⟩∧⟨maxXα : α0 < α⟩ and x1 =

y0
∧⟨u1⟩∧⟨minXα : α0 < α⟩. Then we have x0 < x1 and (x0, x1)X = ∅

which contradicts connectedness of X.
To see the other direction, assume that Xα’s are connected. From

Corollary 3.9, X is complete. It suffices to see (2) in the lemma above.
If there were x0, x1 ∈ X with x0 < x1 and (x0, x1)X = ∅, then letting
α0 = min{α < γ : x0(α) ̸= x1(α)}, we see x0(α0) < x1(α0) and
(x0(α0), x1(α0))Xα0

= ∅, a contradiction. □
Finally we discuss connectedness in the special case (c∗) of the pre-

vious section, that is, J− = ∅ and sup J+ = γ.

Corollary 4.3. Let X =
∏

α<γ Xα be a lexicographic product of GO-

spaces. Assume J− = ∅ and sup J+ = γ. Then X is 0-complete iff X
is connected.

Proof. One direction is obvious. Assume that X is 0-complete. From
Corollary 3.12 (2), it suffices to see the property (2) in Lemma 4.1. So
let u, u′ ∈ X with u < u′ and fix vα ∈ Xα with u(α) < vα for every
α ∈ J+. Let α0 = min{α < γ : u(α) ̸= u′(α)}. Noting sup J+ = γ,
take α1 ∈ J+ with α0 < α1. Then we have u < (u ↾ α1)

∧⟨vα1⟩∧(u ↾
(α1, γ)) < u′. □

From Corollary 3.12 (1), we get a strange result:

Corollary 4.4. Let X =
∏

α<γ Xα be a lexicographic product of GO-

spaces. Assume J− = ∅ and sup J+ = γ. If X is 0-complete, then
γ = ω and all Xα’s are ordinals. In particular, if X is connected, then
all Xα’s are not connected.
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Comparing with the above two corollaries, remark that (ω1 \ {ω})ω
is a 1-complete non-connected GO-space which is not a LOTS, see
Example 3.13.

Example 4.5. Using the corollaries above, we see:

(1) the lexicographic product Iγ is connected for every ordinal γ,
(2) the lexicographic product (ω1 + 1)ω is not connected,
(3) the lexicographic products (ω1 × (ω1 + 1))ω and

∏
n∈ω((ωn ×

(ωn+1)) are connected, but (ω1× I)ω is not connected (in fact,
not complete),

(4) the lexicographic products ωω
1 ×(ω1+1)ω,

∏
n∈ω ωn×

∏
n∈ω(ωn+

1) and ωω
1 ×Iω are complete, moreover we see that ωω

1 ×(ω1+1)ω

and
∏

n∈ω ωn×
∏

n∈ω(ωn +1) are not connected, but ωω
1 × Iω is

connected.

Question 4.6. Find a topological property P so that, in some situa-
tions such as in Corollary 4.4, if a lexicographic product

∏
α<γ Xα of

GO-spaces satisfies the property P , then for every α < γ, Xα does not
satisfy P .
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