HEREDITARY PARACOMPACTNESS OF
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ABSTRACT. Paracompactness and hereditary paracompactness of
lexicographic products of LOTS’s are discussed in [2]. For instance,
it is known in [2]:

e a lexicographic product X = Ha<,y X, of LOTS’s is para-
compact whenever all X,’s are paracompact [2, Theorem
4.2.2],

e a lexicographic product X = H(K,Y X, of LOTS’s is heredi-
tarily paracompact whenever v < w; and all X,,’s are hered-
itarily paracompact [2, Theorem 4.2.3],

e the lexicographic product [0, 1]3* is not hereditarily paracom-
pact, where [0, 1]Jg denotes the unit interval in the real line R
[2, page 73].

Recently the author defined the notion of lexicographic prod-
ucts of GO-spaces and extended the first result above in [2] for
lexicographic products of GO-spaces [4]. In this paper, we charac-
terize the hereditary paracompactness of lexicographic products of
GO-spaces and get some applications. For example, we see:

e the lexicographic products S7, M”, R” and (0, 1)} are heredi-
tarily paracompact for every ordinal v, where S and M denote
the Sorgenfrey line and Michael line respectively,

o the lexicographic product [0, 1) is hereditarily paracompact,
but the lexicographic product [0, 1)g* is not hereditarily para-
compact,

e the lexicographic product w; x (0,1]g is hereditarily para-
compact but the lexicographic product w; x [0,1)g is not
paracompact,

e the lexicographic product (w? x (—wy)?)“* is hereditarily para-
compact, but the lexicographic products wy and w}* are not
paracompact, where for a GO-space X = (X, <x,7x), =X
denotes the GO-space (X, >x,7x).
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1. INTRODUCTION

All spaces are assumed to be regular 7} and when we consider a
product [], < Xa, all Xy’s are assumed to have cardinality at least
2 with v > 2. Moreover, in this paper, Ha<’y X, usually means a
lexicographic product defined below. Set theoretical and topological
terminology follow [7] and [1]. The following are known:

e a lexicographic product X =[], - Xa of LOTS’s is paracom-
pact whenever all X,’s are paracompact [2, Theorem 4.2.2],

e a lexicographic product X =[], _ +Xa of LOTS’s is hereditarily
paracompact whenever v < w; and all X,’s are hereditarily
paracompact [2, Theorem 4.2.3],

e the lexicographic product [0,1]g" is not hereditarily paracom-
pact, where [0, 1]z denotes the unit interval in the real line R
2, page 73].

Recently the author defined the notion of lexicographic product of
GO-spaces and extended the first result above for lexicographic prod-
ucts of GO-spaces [4]. Therefore we see:

e lexicographic products S7, M7, R7, (0, 1) and [0, 1)}, are para-
compact for every ordinal v, where S and M denote the Sorgen-
frey line and Michael line respectively.

Since R, S and M are hereditarily paracompact, it is natural to ask
whether S7, M7, R, (0,1) and [0,1)} are hereditarily paracompact
even if v > wy. In this paper, we characterize the hereditary para-
compactness of lexicographic products of GO-spaces. Applying this
characterization, we see:

e lexicographic products S7, M?, R” and (0,1)} are hereditarily
paracompact for every ordinal +,

e the lexicographic product [0,1)§ is hereditarily paracompact,
but the lexicographic product [0,1)3" is paracompact but not
hereditarily paracompact,

e the lexicographic product w; x (0, 1|g is hereditarily paracom-
pact but the lexicographic product wy x [0, 1)g is not paracom-
pact,

e the lexicographic product (w? x (—wi)®)*! is hereditarily para-
compact, but the lexicographic products w{ and wj' are not
paracompact, where for a GO-space X = (X, <x,7x), —X de-
notes the GO-space (X, >x, Tx).

A linearly ordered set (L, <) has a natural topology A, which is

called an interval topology, generated by {(+—,z), : x € L} U {(z,—
)L :x € L} as a subbase, where (v, =), ={z € L:x <y z}, (z,y)r =
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{zeL:z<pz<py}, (z,ylp ={2€ L:2 <y 2 <py} and so on.
The triple (L, <r, A1), which is simply denoted by L, is called a LOTS.

A triple (X, <x,7x) is said to be a GO-space, which is also simply
denoted by X, if (X, <x) is a linearly ordered set and 7x is a Ts-
topology on X having a base consisting of convex sets, where a subset
C of X is conver if for every z,y € C with x <x y, [z,y]x C C holds.
For more information on LOTS’s or GO-spaces, see [8]. Usually <,
(x,y)r, A or Tx are written simply <, (x,y), A or 7 if contexts are
clear.

The symbols w and w; denote the first infinite ordinal and the first
uncountable ordinal, respectively. Ordinals, which are usually denoted
by Greek letters «, 3,7, - - -, are considered to be LOTS’s with the usual
intereval topology. For a subset A of an ordinal «, Lim(A) denotes the
set {f < a:p =sup(ANp)}, that is, the set of all cluster points of A
in the topological space a. The cofinality of « is denoted by cf a..

For GO-spaces X = (X, <y,7x) and Y = (Y, <y,7y), X is said to
be a subspace of Y if X C Y, the linear order <y is the restriction
<y| X of the order <y and the topology Tx is the subspace topology
v | X (={UNX :U € 7v}) on X of the topology 7y. So a subset
of a GO-space is naturally considered as a GO-space. For every GO-
space X, there is a LOTS X* such that X is a dense subspace of X*
and X* has the property that if L is a LOTS containing X as a dense
subspace, then L also contains the LOTS X* as a subspace, see [9].
Such a X* is called the minimal d-extension of a GO-space X. Indeed,
X* is constructed as follows, also see [4]. Let XT ={z € X : («,z] €
Tx\Ax}and X~ ={z € X : [z,—) € 7x \ Ax}. Then X* is the LOTS
X~ x{-1}UX x{0}UX x {1}, where the order <y« is the restriction
of the usual lexicographic order on X x {—1,0,1}. Also we identify as
X = X x {0} in the obvious way.

Then, we can see:

e if X is a LOTS, then X* = X,

e X has a maximal element max X if and only if X* has a maxi-
mal element max X* in this case, max X = max X* (similarly
for minimal elements).

For every a < 7, let X, be a LOTS and X = Ha<'y Xo. Every
element z € X is identified with the sequence (z(a) : a < ). The

lexicographic order <x on X is defined as follows: for every x, 2’ € X,
r <x o' iff for some a <,z [ a=2' | a and z(a) <x, 2'(c),

where z [ a = (z(f) : B < a) and <y, is the order on X,. Now
for every a < 7, let X, be a GO-space and X = Haq Xo. The
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subspace X of the lexicographic product X = IL, - Xo 18 said to be
the lexicographic product of GO-spaces X,’s, for more details see [4].
[Lico Xi (I;<,, Xi where n € w) is denoted by Xy x X7 x X5 x ---
(Xo x X1 x Xy x --- x X,,, respectively). Ha<7 X, is also denoted by
X7 whenever X, = X for all a < 7.

Let X and Y be LOTS’s. A map f : X — Y is said to be order
preserving or 0-order preserving if f(x) <y f(2') whenever x <x 2’
Similarly a map f : X — Y is said to be order reversing or 1-order
preserving if f(x) >y f(2') whenever x <x a’. Obviously a 0-order
preserving map (also l-order preserving map) f : X — Y between
LOTS’s X and Y, which is onto, is a homeomorphism, i.e., both f
and f~! are continuous. Now let X and Y be GO-spaces. A 0O-order
preserving map f : X — Y is said to be 0-order preserving embedding
if f is a homeomorphism between X and f[X], where f[X] is the
subspace of the GO-space Y. In this case, we identify X with f[X] as
a GO-space and write X = f[X] and X C Y.

Recall that a subset of a regular uncountable cardinal x is called
stationary if it intersects with all closed unbounded (= club) sets in &.

Let X be a GO-space. A subset A of X is called a 0-segment of X
if for every xz, 2’ € X with x < 2/, if 2’ € A, then x € A. Similarly the
notion of 1-segment can be defined. Both () and X are 0-segments and
1-segments. Obviously, if A is a 0-segment, then X \ A is a 1-segment.

Let A be a 0-segment of a GO-space X. A subset U of A is unbounded
in A if for every x € A, there is 2’ € U such that x < /. Let

0-cfx A =min{|U|: U is unbounded in A.}.

0-cfx A can be 0,1 or a regular infinite cardinal, see also [3, 5, 6]. If
contexts are clear, 0-cfx A is denoted by 0-cf A. A 0-segment A of a
GO-space X is said to be stationary if k := 0-cf A > w; and there are
a stationary set S of £ and a continuous map 7 : S — A such that =[5
is unbounded in A (we say such a 7 “an unbounded continuous map”).

Note that for a subspace S of a regular uncountable cardinal x, S is
stationary in & in the usual sense if and only if the 0-segment S in the
GO-space S is stationary in the sense above (e.g., use [5, Lemma 2.7]).
So this new term “stationarity of 0-segments” extends the usual term
“stationarity of subsets of a regular uncountable cardinal”.

A GO-space X is said to be 0-paracompact if every closed 0-segment
is not stationary. Similarly the notions of 1-cf A, stationarity of a
1-segment and 1-paracompactness are defined. Remember that a GO-
space is paracompact if and only if it is both O-paracompact and 1-
paracompact, see [4], where a topological space is paracompact if every
open cover has a locally finite open refinement [1]. It is well-known
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that stationary sets of some regular uncountable cardinal are not para-
compact. We frequently use the following basic lemmas from [5].

Lemma 1.1. [5, Lemma 2.7] Let A be a 0-segment of a GO-space X
with k := 0-cf A > wy. If there are a stationary set S of k and an
unbounded continuous map ™ : S — A, then there is a club set C' in k
such that m [ (SN C): SNC — A is 0-order preserving embedding.

Lemma 1.2. [5, Lemma 3.4] Let X = Xy x X; be a lexicographic
product of GO-spaces and v € Xy. Then the map k, : X; — {u} x Xj
by ku(v) = (u,v) is a 0-order preserving homeomorphism.

Lemma 1.3. [5, Lemma 3.6] Let X = Xy x X be a lexicographic
product of GO-spaces and Ay a 0-segment of Xy. Put A = Ay x X7.
Then the following hold:
(1) A is a 0-segment of X,
(2) if 0-cfx, Ag =1, then
(a) 0- CfX A= 0- Cle Xl,
(b) A is stationary if and only if the 0-segment X1 is station-
ary,
(3) if 0-cfx, Ag > w, then
(a) 0-cfx A =0-cfx, Ao,
(b) A is stationary if and only if Xi has a minimal element
and Ay 1s stationary,

A GO-space X is said to be hereditarily 0-paracompact if every 0-
segment A of X is not stationary, similarly the notion of hereditary 1-
paracompactness is defined. We can see the naming of these definitions
are reasonable from the lemma below, where a topological space is
hereditarily paracompact if all subspaces are paracompact.

Lemma 1.4. Let X be a GO-space. Then X 1is hereditarily paracom-
pact if and only if it s both hereditarily O-paracompact and hereditarily
1-paracompact.

Proof. First assume that X is hereditarily paracompact and that X is
not hereditarily 0-paracompact, then there is a stationary 0-segment A
of X. Lemma 1.1 shows that A has a copy of a stationary set of some
regular uncountable cardinal, a contradiction. So X is hereditarily
O-paracompact. Similarly X is hereditarily 1-paracompact.

Next assume that there is a non-paracompact subspace Y of X.
We may assume that Y is not O-paracompact. So there is a closed
stationary O-segment A of Y. Set A’ = {x € X : Jy € A(x < y)}.
Then it is easy to verify that A’ is also a stationary (need not be
closed) 0O-segment of X, which means that X is not hereditarily 0-
paracompact. [
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2. ProbpucTs OF TWO GO-SPACES

In this section, we characterize the hereditary paracompactness of a
lexicographic product X = Xy x X; of two GO-spaces.

Lemma 2.1. Let X = Xyx X, be a lexicographic product of GO-spaces.
Then the following are equivalent:

(1) X is hereditarily 0-paracompact,
(2) the following clauses hold:
(a) X is hereditarily 0-paracompact,
(b) if X1 has a minimal element, then X, is hereditarily 0O-
paracompact.

Proof. (1) = (2) Assume that X is hereditarily 0-paracompact.

(a) Assuming that X; is not hereditarily O-paracompact, take a sta-
tionary 0-segment A; of X;. Fixing u € Xy, let A={r € X : Jv €
Aj(x < (u,v))}. Obviously A is a 0-segment of X. Since {u} x A;
is a l-segment (i.e., final segment) of A, Lemma 1.2 shows that the
0-segment A is also stationary, a contradiction.

(b) Assume that X; has a minimal element but Xj is not hereditarily
O-paracompact. Taking a stationary O-segment Ay of X, let A =
A x X;. Then Lemma 1.3 (3b) shows that A is a stationary 0-segment
of X, a contradiction.

(2) = (1) Assumimg (2) and the negation of (1), take a staionary 0-
segment A of X. Let Ay = {u € Xy : Jv € X;1((u,v) € A)}. Obviously
Ay is a non-empty 0-segment of X, with A C Agx X;. Assume that Ag
has a maximal element max Ay and let A; = {v € X; : (max Ap,v) €
A}. Since {max Ap} x A; is a 1-segment of A, Lemma 1.2 shows that A,
is a stationary O-segment of X;, which contradicts the condition (2a).
Thus we see that Ay has no maximal element, that is 0-cfx, Ag > w.

Claim. A = Ao X Xl-

Proof. The inclusion C is obvious. To see the inclusion D, let x €
Ag x Xi. Since Ay has no maximal element, we can take u € Ay with
z(0) < u. By u € Ay, we can find v € X; with (u,v) € A. Then we
have = < (u,v). Now since A is a O-segment, we see x € A. O

Now Lemma 1.3 (3b) shows that X; has a minimal element and the
0-segment Ay is stationary, which contradicts the condition (2b). O

Analogously we see:

Lemma 2.2. Let X = Xyx X, be a lexicographic product of GO-spaces.
Then the following are equivalent:
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(1) X s hereditarily 1-paracompact,
(2) the following clauses hold:
(a) X is hereditarily 1-paracompact,
(b) if Xy has a mazimal element, then X is hereditarily 1-
paracompact.

The lemmas above show:

Lemma 2.3. Let X = Xox X7 be a lexicographic product of GO-spaces.
Then the following are equivalent:
(1) X is hereditarily paracompact,
(2) the following clauses hold:
(a) X is hereditarily paracompact,
(b) if Xy has a minimal element, then X, is hereditarily 0-
paracompact.
(c) if X1 has a maximal element, then Xy is hereditarily 1-
paracompact.

Example 2.4. The lemma above shows that w; xR, w; xS and wy x M
are hereditarily paracompact. But w; x [0, 1)g is not paracompact [5].
On the other hand, w; x (0, 1]g is hereditarily paracompact, indeed w;
is hereditarily 1-paracompact because it is well-ordered.

3. PRODUCTS OF ANY LENGTH OF GO-SPACES

In this section, we characterize the hereditarily paracompactness of
lexicographic products of any length of GO-spaces. The following no-
tations are introduced in [4, Theorem 2.5]

Definition 3.1. Let X = Ha<7 X, be a lexicographic product of GO-
spaces. We use the following notations.

Jt ={a <~v: X, has no maximal element.},

J~ ={a <vy: X, has no minimal element.}.
Note sup J© <~ and sup J~ < 7.

Theorem 3.2. Let X = Ha<~, Xo be a lexicographic product of GO-
spaces. Then the following are equivalent:
(1) X is hereditarily 0-paracompact,
(2) the following clauses hold:
(a) v < supJ~ + wq, where sup J~ + wy is the usual ordinal
sum,
(b) for every a < ~ with supJ~ < «, X, is hereditarily 0-
paracompact,
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Proof. Let X = Ha@ X be the lexicographic product of LOTS’s X’s.

(1) = (2) Assume that X is hereditarily 0-paracompact.

(a) Assume sup J~+w; < 7. Letting ag = sup J ™, fix z € [] <o, Xo-
For every a < v with oy < a, noting that min X,, exists, fix u(a) €
X, with min X, < u(«). First let z = 2™ (u(a) : a9 < o < ag +
w)M(min X, : ap + w; < a < 7), that is, x is an element in X such
that x(a) = z(a) when a < ap, z(a) = u(a) when ap < o < ap + w;
and z(a) = min X, when oy + w; < a < v. Next for f < w; with
1< B, let 25 = 2Mu(a) : ap < a < ap + F) " (min X, : ag + f <
a < 7). Set A= (+,z)x and S = (1,w), and define 7 : S — A
by 7(8) = x3. Obviously 7 is 0-order preserving and unbounded (i.e.,
“B'< = m(f) <w(B)” and 7[S] is unbounded in the 0-segment A).

Claim 1. 7 is continuous.

Proof. Let § € S and U be an open neighborhood of (). We may
assume [ € Lim(S). Note (<, 7(8))x # 0. Then there is y* € X with
y* < 7(fB) and (y*,7(5)]¢ N X C U. Let fy = min{a < v : y*(a) #
7(B)(a)}. The definition of x5 (= w(8)) shows [y < ap + 5. When
Bo < ayp, obviously 7[S N (8 + 1)] C U holds. So assumeing ay < fy <
ag + B, By can be represented as Sy = ag + [1 for some 5; < S with
0 < f1. Then for each ' € (B4, 8], we have y* < g < xg. Therefore
we see w[S N (61, B]] C U, so we have seen that 7 is continuous. O

Now since S is stationary in wy, the O-segment A is stationary, which
contradicts the hereditary O-paracompactness of X.

(b) Let sup J~ < ap < v and let Yy = Ha§a0 Xoand Y1 =[], oo Xo
be lexicographic products. Then X is identified with the lexicographic
product Yy x Y] [4, Lemma 1.5], where X is identified with Y, whenever
ap+ 1 =+. Since X (=Y, x Y7) is hereditarily 0-paracompact and Y;
has the minimal element (min X, : @y < «), Lemma 2.1 (2b) shows that
Y) is hereditarily O-paracompact. Here note that Yj is itself hereditarily
0-paracompact whenever X = Y}, so we will not mention such special
cases. Now Yy = [, .o, Xo X Xa, and Lemma 2.1 (2a) shows that X,
is hereditarily O-paracompact.

(2) = (1) Assume (2) and the negation of (1), then one can take
a stationary O-segment A of X. We consider three cases and their
subcases and in all cases, we will get contradictions. This argument is

shown in [5, Theorem 4.8].
Case 1. A=X.

Since A (= X) has no maximal element, X, has no maximal element
for some av < 7. Let ap = min{a < 7 : X, has no maximal element.}.
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Since A = X = [[,<0, Xa X [[4y<a Xa, the O-segment A is stationary
and [],<,, Xo has no maximal element, Lemma 1.3 (3b) shows that
the O-segment [To<a, Xo is stationary and [], _, Xo has a minimal
element. Therefore X, has a minimal element for every a > g, which
means sup.J~ < «ap. By the minimality of g, X, has a maximal
element for every o« < «p. Then {(max X, : @ < ag)} x X,, is a
I-segment of [], ., Xa X Xa,. Now since the 0-segment [],_, Xa X
Xq, is stationary, Lemma 1.2 shows that the 0-segment X, is also
stationary, this contradicts the condition (2b).

Case 2. A# X and X \ A has a minimal element.

Let B = X \ A and b = min B, then note A = («<—,b)x. Set [ = {a <
v:3da€ Ala | (a+1) =0 (a+1))}. Since I is obviously a 0-segment
of v, for some ay < v, I = ag holds. Now for every a < «, fix a, € A
with a, [ (a+1)=b ] (a+1).

Claim 2. For every a € (ag,7), X, has a minimal element and b(a) =
min X,, thus sup J~ < ay.

Proof. Note that still we do not know whether oy < v or not. Assume
that for some o € (ap,7), there is u € X, with u < b(a). Let ag =
min{a > o : Ju € X,(u < b(a))} and take u € X,, with u < b(ay).
Let a =b [ a; "{(u)b | (a1,7). Then by a < b, we have a € A and
alar =0 a;. Now ag < aj shows a | (g +1) =b | (o + 1), which
means oy € I = «g, a contradiction. OJ

We divide Case 2 into further two subcases.
Case 2-1. «p is a successor ordinal.
Say ag = [y + 1.
Claim 3. oy < 7.

Proof. It oy = =y were true, then by By € a9y = I, we have B 3 b
blay=b] Bo+1) =ag [ (bo+1) =ag [ ap = ag € A, a
contradiction. d

Claim 4. b(«y) is not a minimal element of X, .

Proof. 1f b(cy) were a minimal element of X, then we have A 5 ag, >
b € B because of b(a) = min X, for every o > vy, a contradiction. [

Let Yy = Ha§a0
Claim 5. A= (<,b [ (ap+ 1))y, x Y1.

Xoand Vi =], _. X

ap<a “ o



10 NOBUYUKI KEMOTO

Proof. To see the inclusion D, let a € (<—,b [ (o + 1)) x Y;. Then
al(a+1) <b| (a+1)shows a <b=minB. So we have a € A.
To see the inclusion C, let @ € A. Since a < b and b(«) = min X,
for every av > oy, we have a [ (g + 1) < b [ (g + 1), thus a € (+,b |
(ap+1)) x Yi. O

We further divide Case 2-1 into two subcases.
Case 2-1-1. (+,b(ap))x,, has no maximal element.

In this case, (+—,b [ (ap + 1))y, has no maximal element, so Claim 5
and Lemma 1.3 (3b) show that the 0-segment («—,b | (o + 1)) in Yj
is stationary. Then it is easy to see:

Claim 6. (<, b | (g4 1))y, = (4=, b | ap) X Xog U{b | g} x (
,b(ao))x%.

Now Lemma 1.2 show that the O-segment (<—,b(a))x,, is stationary,
because {b | ag} x (¢, b(aw))x,, is a 1-segment of (<=, b [ (ag+1))y, by
Claim 6. This contradicts the condition (2b) because of sup J~ < ap.

Case 2-1-2. (+,b(a))x,, has a maximal element.

Say uy = max(<—, b(ayp)), then note that (b | ap)”(up) is the immediate
predecessor of b [ (ag + 1) in Yy, so we see («<—,b | (g + 1)) = (+
(b ] ap)™{ug)]. Since A has no maximal element and A = («, (b |
ap)™(ug)] x Y7 (Claim 5), Y has no maximal element. So let oy =
min{a > ap : X, has no maximal element.}. Now since A = (+<—,b |
(a0 +1)) x Y1 = (4=, (b [ ap)™(uo)] X [Toyca Xa = (<= (b ] an)"(ug)] X
(Ha0<a§a1 Xao X Ha1<a Xa) = ((<_7 (b r Oéo)/\<UO>] X Ha0<a§a1 XOé) X
[Ta,<a Xa» (5= (b T ag)™(uo)] X [[4,<aca, Xa has no maximal element
and the O-segment A is stationary, Lemma 1.3 (3b) shows that the
O-segment (<, (b | a0)"(uo)] X [[oycaca, Xa N [[a<q, Xao is also sta-
tionary. Now since {(b [ ap)”(uo)"(max X, :ap < a <o)} X X,, is a
L-segment of (<, (b | )" (u0)] X [ 14, <a<a, Xa, Lemma 1.2 shows that
X4, is stationary. Since sup J~ < ap < a3, X,, has to be hereditarily
0-paracompact (condition (2b)), a contradiction.

Case 2-2. q is limit.

Claim 2 and the condition (2a) show sup J~ < ag < v <supJ~ + wy,
therefore we have cf ag = w.

Claim 7. ap < 7.

Proof. Assume «y = 7, then note c¢fy = cfay = w, so fix a 0-order
preserving unbounded (i.e., strictly increasing cofinal) sequence {~, :
n € w}in . Then {a,, : n € w} is unbounded in the 0-segment (+—, b)
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(= A), so we have 0-cfxy A = w, which contradicts the stationarity of
the 0-segment A. O

We divide Case 2-2 into three subcases.
Case 2-2-1. («-,b(a))x,, is non-empty and has no maximal element.

In this case, using a similar argument to Case 2-1-1, we can get a
contradiction.

Case 2-2-2. (+,b(ap))x,, is non-empty and has a maximal element.

In this case, using a similar argument to Case 2-1-2, we can get a
contradiction.

Case 2-2-3. (+,b(a0))x,, is empty, that is, b(ag) = min X,,.

In this case, fix a 0-order preserving unbounded sequence {v, : n €
w} in ag. Since b(cr) = min X, for every a > o, we see that {a,, : n €
w} is unbounded in the 0-segment (<—,b) (= A), so we have 0-cfy A =
w, which contradicts the stationarity of the 0-segment A.

Case 3. A # X and X \ A has no minimal element.
Let B= X\ A and
I={a<y:JacATbeB(al(a+1)=>b](a+1))}.
Since [ is a 0-segment in ~, for some oy < v, I = ap holds. For
every a < ayp, fix a, € A and b, € B with a, [ (a+ 1) = b, |

(a+ 1) and consider the lexicographic products Yy = [],.,, Xa and
Y = Haoga X, Define yo € Yy by yo(a) = aq(a) for every a < ayp.

Claim 8. For every a < ap, yo [ (a+1) =a, [ (a+1) =0b, | (a+1)
holds.

Proof. Tt suffices to see the first equality. Assuming yo [ (o + 1) #
ao | (v + 1) for some a < ap, let @y = min{a < ap : yo [ (o +
1) # aq [ (a+ 1)} and ay = min{a < a; : yo(a) # aq, ()} Then
yo(ay) = aq,(a1) shows ay < ay. Also the minimality of «; shows
Yo r (a2+1) = Qay r (042—|—1) (: baz f (a2+1)) When yO(OQ) < Aoy (042),
we see B 3 by, < an, € A, a contradiction. When yp(ag) > aq, (a2),
we also see B 3 by, < a4, € A, a contradiction. U

Claim 9. o < 7.

Proof. Assume oy = 7, then yg € Yy = X = AUB. Assume yp € A and
take a € A with yo < a. Let Sy = min{s < v : yo(8) # a(5)}. Then
we have B 3 bg, < a € A, a contradiction. When yy € B, similarly we
also get a contradiction. 0
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Let Ag = {a(ap) :a € Aja [ ag = yo} and By = {b(cy) : b € B,b |
Qo = yo}-
Claim 10. The following hold:

(1) for every a € A, a | ap <y, Yo holds,
(2) for every x € X, if z [ ap <y, Yo, then x € A.

Proof. (1) Assume a [ ag > yp for some a € A and let Sy = min{f <
ap s a(f) # yo(B)}. Now we have B 3 bg, < a € A, a contradiction.

(2) Assume = [ ag < yo and let Gy = min{s < ag : (B) # yo(B)}.
Then we have z < ag, € A, so we see © € A because A is a 0-
segment. U

We similarly see:

Claim 11. The following hold:

(1) for every b € B, b | ag >y, yo holds,
(2) for every x € X, if x [ ag >y, Yo, then z € B.

Claim 12. Aj is a 0-segment of X,, and By = X, \ Ao.

Proof. Let v/ < u € Ap and take a € A with a [ (g + 1) = yo "(u).
Let @’ = (a | ap)™ ()" (a | (a,7)). Since A is a 0-segment with
a < a€ A, we have d’ € A, thus ' € Ay. So we have seen that Ag is
a (-segment.

To see By C X, \ Ao, let uw € By. Take b € B with b | (g + 1) =
yo M(u). If u € Ay were true, then by taking a € A with a [ (g +1) =
yo Mu), wesee a [ (g +1) =0 ] (ag+ 1) thus ag € T = ap, a
contradiction. So we have u € X, \ Ap.

To see By D X, \ Ao, let u € X,, \ Ag. Take x € X with = |
(ap + 1) = yo "(u). Then obviously we have x € B, thus u € By. O

Claim 13. A, # (.

Proof. Assume Ay = (). We prove the following facts.

Fact 1. (+,yo)y, X Y1 = A.

Proof. Claim 10 (2) shows the inclusion C. To see the other inclusion,
let a € A. Then Claim 10 (1) shows a [ g < yo. If @ | g = yo were

true, then we have a(ap) € Ay, which contradicts Ay = (). O

Fact 2. oy > 0 and o is limit.
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Proof. If ag = 0 were true, then taking a € A, we see a(ag) € Ay, a
contradiction. If for some ordinal §y, ag = Py + 1 were true, then by

Bo€l=apand ag, [ ag=ag, [ (Bo+1) =y [ (Bo+1)=uwo [ o, we
see ag,(ap) € Ao, a contradiction. O

Fact 3. 0O- ny0(<—,y0)y0 > w.

Proof. Fact 1 with A # () shows (+,yo) # 0, that is, 0-cfy, (+—, y0) >
1. If 0-cfy, («—,90) = 1 were true, then letting y; = max(<—,yo) and

By = min{B < ao : 1u(8) # w(B)}, we sce g1 < ag | ap < o, a
contradiction. O

Since the 0-segment A is stationary, Lemma 1.3 (3) with Fact 1 and
3 shows that Y has a minimal element. Now Claim 11 (1) shows
that yo "(min X, : ap < @) is the minimal element of B in X, which
contradicts our case (=Case 3). O

Now let Zy =[] Xo, 721 = Ha0<a X, and
A ={z€Zy: 2z ag <y, yoor (2 | ap =yo and z(ag) € Ag).}.

Observe that A* is a 0-segment of Zy and A* = (<—, yo)yy X Xag U{¥0} X
Ag. Since {yo} x A is a 1-segment of A* because of Ag # ), Lemma 1.2
shows that 0-cfz, A* is equal to 0-cfy, Ap and that the stationarity
of A* is equivalent to the stationarity of Ay.

Claim 14. A = A* x Z;.

a<ap

Proof. The inclusion C follows from Claim 10 (1) and the definition of
Ap. The inclusion D follows from Claim 10 (2) and the definition of
Ap. O

We divide Case 3 into two subcases.
Case 3-1. 0-cfz, A* > w.

In this case, since A is stationary, Lemma 1.3 (3b) with Claim 14 shows
that Z; has a minimal element (so sup J~ < «p) and the 0-segment A*
is stationary (so the 0-segment Ay is stationary), which contradicts our
condition (2b).

Case 3-2. 0-cfy, A* =1, that is, max A* exists.

In this case, note max A* = y, "(max Ap). Since A = A* x Z;, A has no
maximal element but A* has a maximal element, we see Z; has no maxi-
mal element. So let oy = min{oy < o : X, has no maximal element.}.
Note that X, has a maximal element for each o € (ag, ). Since
A=A"xZy = (A" X[ ]oycaca, Xa) X 1o, ca Xa and A< ]] Xa

ap<a<lal
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is a O-segment in [[,.,, Xo With no maximal element, Lemma 1.3
(3b) shows that the O-segment A* X [[, _o<a, Xa is stationary and
1. <o Xo has a minimal element (so sup J~ < ay). Moreover since
{yo M(max Ag)"(max X, : ap < a < a1)} X X,, is a l-segment in
the stationary 0-segment A* X Ha0<a§a1 Xo, Lemma 1.2 shows that

the 0-segment X, is also stationary, which contradicts our condition
(2b). O

Analogously we see the following.

Theorem 3.3. Let X = Ha<7 X be a lexicographic product of GO-
spaces. Then the following are equivalent:
(1) X s hereditarily 1-paracompact,
(2) the following clauses hold:
(a) v <supJ" + wy,
(b) for every a < v with supJ™ < «, X, is hereditarily 1-
paracompact,

4. SOME APPLICATIONS

In this section, we apply the theorems in the previous section to some
special cases.

Corollary 4.1. Let X = HK,Y X, be a lexicographic product of GO-
spaces. If X, has both a minimal and a mazimal element for every
a < 7, then the following are equivalent:
(1) X is hereditarily paracompact,
(2) the following clauses hold:
(a) v <wi,
(b) for every a <y, X, is hereditarily paracompact,

Proof. By the assumption, we have J~ = J* = (), then apply Theorems
3.2 and 3.3. 0

Corollary 4.2. Let X = Ha<v X, be a lexicographic product of GO-
spaces. If X, has neither a minimal nor a mazximal element for every
a < v, then the following are equivalent:
(1) X is hereditarily paracompact,
(2) if v is successor, then X, 1 is hereditarily paracompact, where
v — 1 is the immediate predecessor of 7,
thus note that if v is limit, then X is hereditarily paracompact.

Proof. By the assumption, we have J~ = Jt = 7. So note that

sup J~ = sup J* = v whenever ~ is limit and that supJ~ = sup J* =
v — 1 whenever 7 is successor. Then apply Theorems 3.2 and 3.3. U
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Example 4.3. The corollary above shows that the lexicographic prod-
ucts S7, M”, R” and (0,1)} are hereditarily paracompact for every
ordinal 7.

Applying the theorems directly we can also see the following.

Corollary 4.4. Let X = HCK7 X be a lexicographic product of GO-
spaces. If sup J~ =sup J™ =+, then X is hereditarily paracompact,

Here remark that sup J~ = « implies that v is limit.

Example 4.5. The corollary above shows that (w$ x (—w;)?)“! is hered-
itarily paracompact, where for a GO-space X = (X, <x,7x), —X de-
notes the GO-space (X, >y, 7yx) which is called the reverse of X, see
[5]. Note that —X is topologically homeomorphic to X, because the
identity map on X to —X (= X) is l-order preserving and homeomor-
phism. Also note that the lexicographic products wf and wj* are not
paracompact [5].

Next we consider the case that all X,’s have minimal elements. The-
orems 3.2 and 3.3 yield the following.

Corollary 4.6. Let X = Ha<,y X, be a lexicographic product of GO-
spaces. If X, has a minimal element for every a < =, then the following
are equivalent:
(1) X is hereditarily paracompact,
(2) the following clauses hold:
(a) v < wi,
(b) for every a <y, X, is hereditarily 0-paracompact,
(c) for every a < ~ with sup Jt < a, X, is hereditarily 1-
paracompact.

Therefore we have the following.

Corollary 4.7. Let X = HCK7 X be a lexicographic product of GO-
spaces. If X, has a minimal element but has no mazximal element for
every a < v, then the following are equivalent:

(1) X s hereditarily paracompact,
(2) the following clauses hold:

(a) Y < Wi,
(b) for every a < v, X, is hereditarily 0-paracompact,
(c) if v is successor, then X,_1 is hereditarily 1-paracompact.

Now we consider hereditary paracompactness of X7.

Corollary 4.8. Let X be a GO-space. Then the following hold:
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(1) when X has both a minimal and a maximal element, the lexico-
graphic product X" is hereditarily paracompact iff v < wy and
X s hereditarily paracompact,

(2) when X has neither a minimal nor a mazximal element, the
lexicographic product X7 is hereditarily paracompact iff X 1is
hereditarily paracompact whenever v is successor,

(3) when X has a minimal element but has no mazimal element, the
lexicographic product X7 1s hereditarily paracompact iff v < wy,
X is hereditarily 0-paracompact and “if v is successor, then X
1s hereditarily 1-paracompact”.

Example 4.9. The corollary above shows the following:
(1) the lexicographic product [0, 1]} is hereditarily paracompact iff
v < wy, see [2, page T3],
(2) the lexicographic product 27 is hereditarily paracompact iff v <
wi, where 2 = {0, 1} with 0 < 1,
(3) the lexicographic product [0, 1)3 is hereditarily paracompact iff
¥ < wi.

Example 4.10. Applying Theorems 3.2 and 3.3 directly, we see:
(1) the lexicographic product [0, 1]g" x S** is hereditarily paracom-

pact,

(2) the lexicographic product S** x [0, 1]z is not hereditarily para-
compact,

(3) the lexicographic product S** x [0, 1]% is hereditarily paracom-
pact,

(4) the lexicographic product (w; + 1)¥ x St is hereditarily para-
compact,

(5) the lexicographic product S** x (w; + 1)* is not hereditarily
paracompact,

(6) the lexicographic product S“* x [0, 1)§ is hereditarily paracom-
pact,

(7) the lexicographic product S** x [0, 1)g' is not hereditarily para-
compact,

(8) the lexicographic product [0, 1)§ x S“* is hereditarily paracom-
pact,

Note that all spaces in Examples 4.9 and 4.10 are paracompact.

Finally we discuss on hereditarily paracompactness of lexicographic
products of ordinal subspaces. Note that whenever X is a subspace
of an ordinal, then X has a minimal element, more generally, all non-
empty l-segment of X has a minimal element. Therefore when X =
[I.- N X, is a lexicographic product of subspaces of ordinals, we see:
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o J =10,
e X, is hereditarily 1-paracompact for every a < .

So Corollary 4.6 yields the following.

Corollary 4.11. Let X = Haq X, be a lexicographic product of sub-
spaces of ordinals. Then the following are equivalent:

(1) X is hereditarily paracompact,
(2) the following clauses hold:
(a) Y < Wi,
(b) for every a <y, X, is hereditarily (0-)paracompact,

In particular, when X is an ordinal, X is hereditarily paracompact
iff it is a countable ordinal. So we have the following.

Corollary 4.12. Let X = Haq X, be a lexicographic product of ordi-
nals. Then the following are equivalent:

(1) X is hereditarily paracompact,
(2) v < wy and for every o < 7y, X, is a countable ordinal.

Example 4.13. The corollary above shows the following, where Z
denotes the GO-space of all integers with the usual order:

(1) the lexicographic product (w + w)“** is hereditarily paracom-
pact,

(2) the lexicographic product (w + w)*! is paracompact but not
hereditarily paracompact, on the other hand, the lexicographic
product Z** is hereditarily paracompact
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