HEREDITARY PARACOMPACTNESS OF LEXICOGRAPHIC PRODUCTS

NOBUYUKI KEMOTO

Abstract. Paracompactness and hereditary paracompactness of lexicographic products of LOTS's are discussed in [2]. For instance, it is known in [2]:

- a lexicographic product $X=\prod_{\alpha<\gamma} X_{\alpha}$ of LOTS's is paracompact whenever all X_{α} 's are paracompact [2, Theorem 4.2.2],
- a lexicographic product $X=\prod_{\alpha<\gamma} X_{\alpha}$ of LOTS's is hereditarily paracompact whenever $\gamma<\omega_{1}$ and all X_{α} 's are hereditarily paracompact [2, Theorem 4.2.3],
- the lexicographic product $[0,1]_{\mathbb{R}}^{\omega_{1}}$ is not hereditarily paracompact, where $[0,1]_{\mathbb{R}}$ denotes the unit interval in the real line \mathbb{R} [2, page 73].
Recently the author defined the notion of lexicographic products of GO-spaces and extended the first result above in [2] for lexicographic products of GO-spaces [4]. In this paper, we characterize the hereditary paracompactness of lexicographic products of GO-spaces and get some applications. For example, we see:
- the lexicographic products $\mathbb{S}^{\gamma}, \mathbb{M}^{\gamma}, \mathbb{R}^{\gamma}$ and $(0,1)_{\mathbb{R}}^{\gamma}$ are hereditarily paracompact for every ordinal γ, where \mathbb{S} and \mathbb{M} denote the Sorgenfrey line and Michael line respectively,
- the lexicographic product $[0,1)_{\mathbb{R}}^{\omega}$ is hereditarily paracompact, but the lexicographic product $[0,1)_{\mathbb{R}}^{\omega_{1}}$ is not hereditarily paracompact,
- the lexicographic product $\omega_{1} \times(0,1]_{\mathbb{R}}$ is hereditarily paracompact but the lexicographic product $\omega_{1} \times[0,1)_{\mathbb{R}}$ is not paracompact,
- the lexicographic product $\left(\omega_{1}^{2} \times\left(-\omega_{1}\right)^{3}\right)^{\omega_{1}}$ is hereditarily paracompact, but the lexicographic products ω_{1}^{ω} and $\omega_{1}^{\omega_{1}}$ are not paracompact, where for a GO-space $X=\left\langle X,<_{X}, \tau_{X}\right\rangle,-X$ denotes the GO-space $\left\langle X,>_{X}, \tau_{X}\right\rangle$.

[^0]
1. Introduction

All spaces are assumed to be regular T_{1} and when we consider a product $\prod_{\alpha<\gamma} X_{\alpha}$, all X_{α} 's are assumed to have cardinality at least 2 with $\gamma \geq 2$. Moreover, in this paper, $\prod_{\alpha<\gamma} X_{\alpha}$ usually means a lexicographic product defined below. Set theoretical and topological terminology follow [7] and [1]. The following are known:

- a lexicographic product $X=\prod_{\alpha<\gamma} X_{\alpha}$ of LOTS's is paracompact whenever all X_{α} 's are paracompact [2, Theorem 4.2.2],
- a lexicographic product $X=\prod_{\alpha<\gamma} X_{\alpha}$ of LOTS's is hereditarily paracompact whenever $\gamma<\omega_{1}$ and all X_{α} 's are hereditarily paracompact [2, Theorem 4.2.3],
- the lexicographic product $[0,1]_{\mathbb{R}}^{\omega_{1}}$ is not hereditarily paracompact, where $[0,1]_{\mathbb{R}}$ denotes the unit interval in the real line \mathbb{R} [2, page 73].
Recently the author defined the notion of lexicographic product of GO-spaces and extended the first result above for lexicographic products of GO-spaces [4]. Therefore we see:
- lexicographic products $\mathbb{S}^{\gamma}, \mathbb{M}^{\gamma}, \mathbb{R}^{\gamma},(0,1)_{\mathbb{R}}^{\gamma}$ and $[0,1)_{\mathbb{R}}^{\gamma}$ are paracompact for every ordinal γ, where \mathbb{S} and \mathbb{M} denote the Sorgenfrey line and Michael line respectively.
Since \mathbb{R}, \mathbb{S} and \mathbb{M} are hereditarily paracompact, it is natural to ask whether $\mathbb{S}^{\gamma}, \mathbb{M}^{\gamma}, \mathbb{R}^{\gamma},(0,1)_{\mathbb{R}}^{\gamma}$ and $[0,1)_{\mathbb{R}}^{\gamma}$ are hereditarily paracompact even if $\gamma \geq \omega_{1}$. In this paper, we characterize the hereditary paracompactness of lexicographic products of GO-spaces. Applying this characterization, we see:
- lexicographic products $\mathbb{S}^{\gamma}, \mathbb{M}^{\gamma}, \mathbb{R}^{\gamma}$ and $(0,1)_{\mathbb{R}}^{\gamma}$ are hereditarily paracompact for every ordinal γ,
- the lexicographic product $[0,1)_{\mathbb{R}}^{\omega}$ is hereditarily paracompact, but the lexicographic product $[0,1)_{\mathbb{R}}^{\omega_{1}}$ is paracompact but not hereditarily paracompact,
- the lexicographic product $\omega_{1} \times(0,1]_{\mathbb{R}}$ is hereditarily paracompact but the lexicographic product $\omega_{1} \times[0,1)_{\mathbb{R}}$ is not paracompact,
- the lexicographic product $\left(\omega_{1}^{2} \times\left(-\omega_{1}\right)^{3}\right)^{\omega_{1}}$ is hereditarily paracompact, but the lexicographic products ω_{1}^{ω} and $\omega_{1}^{\omega_{1}}$ are not paracompact, where for a GO-space $X=\left\langle X,<_{X}, \tau_{X}\right\rangle,-X$ denotes the GO-space $\left\langle X,>_{X}, \tau_{X}\right\rangle$.
A linearly ordered set $\left\langle L,<_{L}\right\rangle$ has a natural topology λ_{L}, which is called an interval topology, generated by $\left\{(\leftarrow, x)_{L}: x \in L\right\} \cup\{(x, \rightarrow$ $\left.)_{L}: x \in L\right\}$ as a subbase, where $(x, \rightarrow)_{L}=\left\{z \in L: x<_{L} z\right\},(x, y)_{L}=$
$\left\{z \in L: x<_{L} z<_{L} y\right\},(x, y]_{L}=\left\{z \in L: x<_{L} z \leq_{L} y\right\}$ and so on. The triple $\left\langle L,<_{L}, \lambda_{L}\right\rangle$, which is simply denoted by L, is called a LOTS.

A triple $\left\langle X,<_{X}, \tau_{X}\right\rangle$ is said to be a $G O$-space, which is also simply denoted by X, if $\left\langle X,<_{X}\right\rangle$ is a linearly ordered set and τ_{X} is a $T_{2^{-}}$ topology on X having a base consisting of convex sets, where a subset C of X is convex if for every $x, y \in C$ with $x<_{X} y,[x, y]_{X} \subseteq C$ holds. For more information on LOTS's or GO-spaces, see [8]. Usually $<_{L}$, $(x, y)_{L}, \lambda_{L}$ or τ_{X} are written simply $<,(x, y), \lambda$ or τ if contexts are clear.

The symbols ω and ω_{1} denote the first infinite ordinal and the first uncountable ordinal, respectively. Ordinals, which are usually denoted by Greek letters $\alpha, \beta, \gamma, \cdots$, are considered to be LOTS's with the usual intereval topology. For a subset A of an ordinal $\alpha, \operatorname{Lim}(A)$ denotes the set $\{\beta<\alpha: \beta=\sup (A \cap \beta)\}$, that is, the set of all cluster points of A in the topological space α. The cofinality of α is denoted by $\mathrm{cf} \alpha$..

For GO-spaces $X=\left\langle X,<_{X}, \tau_{X}\right\rangle$ and $Y=\left\langle Y,<_{Y}, \tau_{Y}\right\rangle, X$ is said to be a subspace of Y if $X \subseteq Y$, the linear order $<_{X}$ is the restriction $<_{Y} \upharpoonright X$ of the order $<_{Y}$ and the topology τ_{X} is the subspace topology $\tau_{Y} \upharpoonright X\left(=\left\{U \cap X: U \in \tau_{Y}\right\}\right)$ on X of the topology τ_{Y}. So a subset of a GO-space is naturally considered as a GO-space. For every GOspace X, there is a LOTS X^{*} such that X is a dense subspace of X^{*} and X^{*} has the property that if L is a LOTS containing X as a dense subspace, then L also contains the LOTS X^{*} as a subspace, see [9]. Such a X^{*} is called the minimal d-extension of a GO-space X. Indeed, X^{*} is constructed as follows, also see [4]. Let $X^{+}=\{x \in X:(\leftarrow, x] \in$ $\left.\tau_{X} \backslash \lambda_{X}\right\}$ and $X^{-}=\left\{x \in X:[x, \rightarrow) \in \tau_{X} \backslash \lambda_{X}\right\}$. Then X^{*} is the LOTS $X^{-} \times\{-1\} \cup X \times\{0\} \cup X \times\{1\}$, where the order $<_{X^{*}}$ is the restriction of the usual lexicographic order on $X \times\{-1,0,1\}$. Also we identify as $X=X \times\{0\}$ in the obvious way.

Then, we can see:

- if X is a LOTS, then $X^{*}=X$,
- X has a maximal element max X if and only if X^{*} has a maximal element $\max X^{*}$, in this case, $\max X=\max X^{*}$ (similarly for minimal elements).
For every $\alpha<\gamma$, let X_{α} be a LOTS and $X=\prod_{\alpha<\gamma} X_{\alpha}$. Every element $x \in X$ is identified with the sequence $\langle x(\alpha): \alpha<\gamma\rangle$. The lexicographic order $<_{X}$ on X is defined as follows: for every $x, x^{\prime} \in X$,

$$
x<_{X} x^{\prime} \text { iff for some } \alpha<\gamma, x \upharpoonright \alpha=x^{\prime} \upharpoonright \alpha \text { and } x(\alpha)<_{X_{\alpha}} x^{\prime}(\alpha),
$$

where $x \upharpoonright \alpha=\langle x(\beta): \beta<\alpha\rangle$ and $<_{X_{\alpha}}$ is the order on X_{α}. Now for every $\alpha<\gamma$, let X_{α} be a GO-space and $X=\prod_{\alpha<\gamma} X_{\alpha}$. The
subspace X of the lexicographic product $\hat{X}=\prod_{\alpha<\gamma} X_{\alpha}^{*}$ is said to be the lexicographic product of GO-spaces X_{α} 's, for more details see [4]. $\prod_{i \in \omega} X_{i}\left(\prod_{i \leq n} X_{i}\right.$ where $\left.n \in \omega\right)$ is denoted by $X_{0} \times X_{1} \times X_{2} \times \cdots$ ($X_{0} \times X_{1} \times \bar{X}_{2} \times \cdots \times X_{n}$, respectively). $\prod_{\alpha<\gamma} X_{\alpha}$ is also denoted by X^{γ} whenever $X_{\alpha}=X$ for all $\alpha<\gamma$.

Let X and Y be LOTS's. A map $f: X \rightarrow Y$ is said to be order preserving or 0-order preserving if $f(x)<_{Y} f\left(x^{\prime}\right)$ whenever $x<_{X} x^{\prime}$. Similarly a map $f: X \rightarrow Y$ is said to be order reversing or 1-order preserving if $f(x)>_{Y} f\left(x^{\prime}\right)$ whenever $x<_{X} x^{\prime}$. Obviously a 0 -order preserving map (also 1-order preserving map) $f: X \rightarrow Y$ between LOTS's X and Y, which is onto, is a homeomorphism, i.e., both f and f^{-1} are continuous. Now let X and Y be GO-spaces. A 0 -order preserving map $f: X \rightarrow Y$ is said to be 0 -order preserving embedding if f is a homeomorphism between X and $f[X]$, where $f[X]$ is the subspace of the GO-space Y. In this case, we identify X with $f[X]$ as a GO-space and write $X=f[X]$ and $X \subseteq Y$.

Recall that a subset of a regular uncountable cardinal κ is called stationary if it intersects with all closed unbounded (= club) sets in κ.

Let X be a GO-space. A subset A of X is called a 0 -segment of X if for every $x, x^{\prime} \in X$ with $x \leq x^{\prime}$, if $x^{\prime} \in A$, then $x \in A$. Similarly the notion of 1 -segment can be defined. Both \emptyset and X are 0 -segments and 1 -segments. Obviously, if A is a 0 -segment, then $X \backslash A$ is a 1 -segment.

Let A be a 0 -segment of a GO-space X. A subset U of A is unbounded in A if for every $x \in A$, there is $x^{\prime} \in U$ such that $x \leq x^{\prime}$. Let

$$
0-\mathrm{cf}_{X} A=\min \{|U|: U \text { is unbounded in } A .\} .
$$

$0-\mathrm{cf}_{X} A$ can be 0,1 or a regular infinite cardinal, see also $[3,5,6]$. If contexts are clear, $0-\operatorname{cf}_{X} A$ is denoted by $0-\mathrm{cf} A$. A 0 -segment A of a GO-space X is said to be stationary if $\kappa:=0$ - cf $A \geq \omega_{1}$ and there are a stationary set S of κ and a continuous map $\pi: S \rightarrow A$ such that $\pi[S]$ is unbounded in A (we say such a π "an unbounded continuous map").

Note that for a subspace S of a regular uncountable cardinal κ, S is stationary in κ in the usual sense if and only if the 0 -segment S in the GO-space S is stationary in the sense above (e.g., use [5, Lemma 2.7]). So this new term "stationarity of 0 -segments" extends the usual term "stationarity of subsets of a regular uncountable cardinal".

A GO-space X is said to be 0 -paracompact if every closed 0 -segment is not stationary. Similarly the notions of $1-\mathrm{cf} A$, stationarity of a 1 -segment and 1-paracompactness are defined. Remember that a GOspace is paracompact if and only if it is both 0-paracompact and 1paracompact, see [4], where a topological space is paracompact if every open cover has a locally finite open refinement [1]. It is well-known
that stationary sets of some regular uncountable cardinal are not paracompact. We frequently use the following basic lemmas from [5].
Lemma 1.1. [5, Lemma 2.7] Let A be a 0 -segment of a GO-space X with $\kappa:=0-\operatorname{cf} A \geq \omega_{1}$. If there are a stationary set S of κ and an unbounded continuous map $\pi: S \rightarrow A$, then there is a club set C in κ such that $\pi \upharpoonright(S \cap C): S \cap C \rightarrow A$ is 0 -order preserving embedding.
Lemma 1.2. [5, Lemma 3.4] Let $X=X_{0} \times X_{1}$ be a lexicographic product of GO-spaces and $u \in X_{0}$. Then the map $k_{u}: X_{1} \rightarrow\{u\} \times X_{1}$ by $k_{u}(v)=\langle u, v\rangle$ is a 0 -order preserving homeomorphism.
Lemma 1.3. [5, Lemma 3.6] Let $X=X_{0} \times X_{1}$ be a lexicographic product of GO-spaces and A_{0} a 0 -segment of X_{0}. Put $A=A_{0} \times X_{1}$. Then the following hold:
(1) A is a 0 -segment of X,
(2) if $0-\mathrm{cf}_{X_{0}} A_{0}=1$, then
(a) $0-\mathrm{cf}_{X} A=0-\mathrm{cf}_{X_{1}} X_{1}$,
(b) A is stationary if and only if the 0 -segment X_{1} is stationary,
(3) if $0-\mathrm{cf}_{X_{0}} A_{0} \geq \omega$, then
(a) $0-\mathrm{cf}_{X} A=0-\mathrm{cf}_{X_{0}} A_{0}$,
(b) A is stationary if and only if X_{1} has a minimal element and A_{0} is stationary,
A GO-space X is said to be hereditarily 0-paracompact if every 0 segment A of X is not stationary, similarly the notion of hereditary 1paracompactness is defined. We can see the naming of these definitions are reasonable from the lemma below, where a topological space is hereditarily paracompact if all subspaces are paracompact.
Lemma 1.4. Let X be a GO-space. Then X is hereditarily paracompact if and only if it is both hereditarily 0-paracompact and hereditarily 1-paracompact.
Proof. First assume that X is hereditarily paracompact and that X is not hereditarily 0 -paracompact, then there is a stationary 0 -segment A of X. Lemma 1.1 shows that A has a copy of a stationary set of some regular uncountable cardinal, a contradiction. So X is hereditarily 0 -paracompact. Similarly X is hereditarily 1-paracompact.

Next assume that there is a non-paracompact subspace Y of X. We may assume that Y is not 0-paracompact. So there is a closed stationary 0 -segment A of Y. Set $A^{\prime}=\{x \in X: \exists y \in A(x \leq y)\}$. Then it is easy to verify that A^{\prime} is also a stationary (need not be closed) 0 -segment of X, which means that X is not hereditarily 0 paracompact.

2. Products of two GO-spaces

In this section, we characterize the hereditary paracompactness of a lexicographic product $X=X_{0} \times X_{1}$ of two GO-spaces.

Lemma 2.1. Let $X=X_{0} \times X_{1}$ be a lexicographic product of $G O$-spaces. Then the following are equivalent:
(1) X is hereditarily 0-paracompact,
(2) the following clauses hold:
(a) X_{1} is hereditarily 0-paracompact,
(b) if X_{1} has a minimal element, then X_{0} is hereditarily 0paracompact.

Proof. (1) \Rightarrow (2) Assume that X is hereditarily 0-paracompact.
(a) Assuming that X_{1} is not hereditarily 0-paracompact, take a stationary 0-segment A_{1} of X_{1}. Fixing $u \in X_{0}$, let $A=\{x \in X: \exists v \in$ $\left.A_{1}(x \leq\langle u, v\rangle)\right\}$. Obviously A is a 0 -segment of X. Since $\{u\} \times A_{1}$ is a 1 -segment (i.e., final segment) of A, Lemma 1.2 shows that the 0 -segment A is also stationary, a contradiction.
(b) Assume that X_{1} has a minimal element but X_{0} is not hereditarily 0 -paracompact. Taking a stationary 0 -segment A_{0} of X_{0}, let $A=$ $A_{0} \times X_{1}$. Then Lemma 1.3 (3b) shows that A is a stationary 0 -segment of X, a contradiction.
$(2) \Rightarrow(1)$ Assumimg (2) and the negation of (1), take a staionary 0segment A of X. Let $A_{0}=\left\{u \in X_{0}: \exists v \in X_{1}(\langle u, v\rangle \in A)\right\}$. Obviously A_{0} is a non-empty 0 -segment of X_{0} with $A \subseteq A_{0} \times X_{1}$. Assume that A_{0} has a maximal element $\max A_{0}$ and let $A_{1}=\left\{v \in X_{1}:\left\langle\max A_{0}, v\right\rangle \in\right.$ $A\}$. Since $\left\{\max A_{0}\right\} \times A_{1}$ is a 1 -segment of A, Lemma 1.2 shows that A_{1} is a stationary 0 -segment of X_{1}, which contradicts the condition (2a). Thus we see that A_{0} has no maximal element, that is $0-\operatorname{cf}_{X_{0}} A_{0} \geq \omega$.

Claim. $A=A_{0} \times X_{1}$.
Proof. The inclusion \subseteq is obvious. To see the inclusion \supset, let $x \in$ $A_{0} \times X_{1}$. Since A_{0} has no maximal element, we can take $u \in A_{0}$ with $x(0)<u$. By $u \in A_{0}$, we can find $v \in X_{1}$ with $\langle u, v\rangle \in A$. Then we have $x<\langle u, v\rangle$. Now since A is a 0 -segment, we see $x \in A$.

Now Lemma 1.3 (3b) shows that X_{1} has a minimal element and the 0 -segment A_{0} is stationary, which contradicts the condition (2b).

Analogously we see:
Lemma 2.2. Let $X=X_{0} \times X_{1}$ be a lexicographic product of GO-spaces. Then the following are equivalent:
(1) X is hereditarily 1-paracompact,
(2) the following clauses hold:
(a) X_{1} is hereditarily 1-paracompact,
(b) if X_{1} has a maximal element, then X_{0} is hereditarily 1paracompact.

The lemmas above show:
Lemma 2.3. Let $X=X_{0} \times X_{1}$ be a lexicographic product of GO-spaces. Then the following are equivalent:
(1) X is hereditarily paracompact,
(2) the following clauses hold:
(a) X_{1} is hereditarily paracompact,
(b) if X_{1} has a minimal element, then X_{0} is hereditarily 0paracompact.
(c) if X_{1} has a maximal element, then X_{0} is hereditarily 1paracompact.

Example 2.4. The lemma above shows that $\omega_{1} \times \mathbb{R}, \omega_{1} \times \mathbb{S}$ and $\omega_{1} \times \mathbb{M}$ are hereditarily paracompact. But $\omega_{1} \times[0,1)_{\mathbb{R}}$ is not paracompact [5]. On the other hand, $\omega_{1} \times(0,1]_{\mathbb{R}}$ is hereditarily paracompact, indeed ω_{1} is hereditarily 1 -paracompact because it is well-ordered.

3. Products of any length of GO-spaces

In this section, we characterize the hereditarily paracompactness of lexicographic products of any length of GO-spaces. The following notations are introduced in [4, Theorem 2.5]

Definition 3.1. Let $X=\prod_{\alpha<\gamma} X_{\alpha}$ be a lexicographic product of GOspaces. We use the following notations.
$J^{+}=\left\{\alpha<\gamma: X_{\alpha}\right.$ has no maximal element. $\}$,
$J^{-}=\left\{\alpha<\gamma: X_{\alpha}\right.$ has no minimal element. $\}$.

Note $\sup J^{+} \leq \gamma$ and $\sup J^{-} \leq \gamma$.
Theorem 3.2. Let $X=\prod_{\alpha<\gamma} X_{\alpha}$ be a lexicographic product of GOspaces. Then the following are equivalent:
(1) X is hereditarily 0-paracompact,
(2) the following clauses hold:
(a) $\gamma<\sup J^{-}+\omega_{1}$, where $\sup J^{-}+\omega_{1}$ is the usual ordinal sum,
(b) for every $\alpha<\gamma$ with $\sup J^{-} \leq \alpha, X_{\alpha}$ is hereditarily 0paracompact,

Proof. Let $\hat{X}=\prod_{\alpha<\gamma} X_{\alpha}^{*}$ be the lexicographic product of LOTS's X_{α}^{*} s. (1) \Rightarrow (2) Assume that X is hereditarily 0-paracompact.
(a) Assume sup $J^{-}+\omega_{1} \leq \gamma$. Letting $\alpha_{0}=\sup J^{-}$, fix $z \in \prod_{\alpha \leq \alpha_{0}} X_{\alpha}$. For every $\alpha<\gamma$ with $\alpha_{0}<\alpha$, noting that $\min X_{\alpha}$ exists, fix $u(\alpha) \in$ X_{α} with $\min X_{\alpha}<u(\alpha)$. First let $x=z^{\wedge}\left\langle u(\alpha): \alpha_{0}<\alpha<\alpha_{0}+\right.$ $\left.\omega_{1}\right\rangle^{\wedge}\left\langle\min X_{\alpha}: \alpha_{0}+\omega_{1} \leq \alpha<\gamma\right\rangle$, that is, x is an element in X such that $x(\alpha)=z(\alpha)$ when $\alpha \leq \alpha_{0}, x(\alpha)=u(\alpha)$ when $\alpha_{0}<\alpha<\alpha_{0}+\omega_{1}$ and $x(\alpha)=\min X_{\alpha}$ when $\alpha_{0}+\omega_{1} \leq \alpha<\gamma$. Next for $\beta<\omega_{1}$ with $1<\beta$, let $x_{\beta}=z^{\wedge}\left\langle u(\alpha): \alpha_{0}<\alpha<\alpha_{0}+\beta\right\rangle^{\wedge}\left\langle\min X_{\alpha}: \alpha_{0}+\beta \leq\right.$ $\alpha<\gamma\rangle$. Set $A=(\leftarrow, x)_{X}$ and $S=\left(1, \omega_{1}\right)$, and define $\pi: S \rightarrow A$ by $\pi(\beta)=x_{\beta}$. Obviously π is 0 -order preserving and unbounded (i.e., " $\beta^{\prime}<\beta \rightarrow \pi\left(\beta^{\prime}\right)<\pi(\beta)$ " and $\pi[S]$ is unbounded in the 0 -segment A).
Claim 1. π is continuous.
Proof. Let $\beta \in S$ and U be an open neighborhood of $\pi(\beta)$. We may assume $\beta \in \operatorname{Lim}(S)$. Note $(\leftarrow, \pi(\beta))_{X} \neq \emptyset$. Then there is $y^{*} \in \hat{X}$ with $y^{*}<\pi(\beta)$ and $\left(y^{*}, \pi(\beta)\right]_{\hat{X}} \cap X \subseteq U$. Let $\beta_{0}=\min \left\{\alpha<\gamma: y^{*}(\alpha) \neq\right.$ $\pi(\beta)(\alpha)\}$. The definition of $x_{\beta}(=\pi(\beta))$ shows $\beta_{0}<\alpha_{0}+\beta$. When $\beta_{0} \leq \alpha_{0}$, obviously $\pi[S \cap(\beta+1)] \subseteq U$ holds. So assumeing $\alpha_{0}<\beta_{0}<$ $\alpha_{0}+\beta, \beta_{0}$ can be represented as $\beta_{0}=\alpha_{0}+\beta_{1}$ for some $\beta_{1}<\beta$ with $0<\beta_{1}$. Then for each $\beta^{\prime} \in\left(\beta_{1}, \beta\right]$, we have $y^{*}<x_{\beta^{\prime}} \leq x_{\beta}$. Therefore we see $\pi\left[S \cap\left(\beta_{1}, \beta\right]\right] \subseteq U$, so we have seen that π is continuous.

Now since S is stationary in ω_{1}, the 0 -segment A is stationary, which contradicts the hereditary 0-paracompactness of X.
(b) Let $\sup J^{-} \leq \alpha_{0}<\gamma$ and let $Y_{0}=\prod_{\alpha \leq \alpha_{0}} X_{\alpha}$ and $Y_{1}=\prod_{\alpha_{0}<\alpha} X_{\alpha}$ be lexicographic products. Then X is identified with the lexicographic product $Y_{0} \times Y_{1}$ [4, Lemma 1.5], where X is identified with Y_{0} whenever $\alpha_{0}+1=\gamma$. Since $X\left(=Y_{0} \times Y_{1}\right)$ is hereditarily 0-paracompact and Y_{1} has the minimal element $\left\langle\min X_{\alpha}: \alpha_{0}<\alpha\right\rangle$, Lemma 2.1 (2b) shows that Y_{0} is hereditarily 0-paracompact. Here note that Y_{0} is itself hereditarily 0 -paracompact whenever $X=Y_{0}$, so we will not mention such special cases. Now $Y_{0}=\prod_{\alpha<\alpha_{0}} X_{\alpha} \times X_{\alpha_{0}}$ and Lemma 2.1 (2a) shows that $X_{\alpha_{0}}$ is hereditarily 0 -paracompact.
$(2) \Rightarrow(1)$ Assume (2) and the negation of (1), then one can take a stationary 0 -segment A of X. We consider three cases and their subcases and in all cases, we will get contradictions. This argument is shown in [5, Theorem 4.8].
Case 1. $A=X$.
Since $A(=X)$ has no maximal element, X_{α} has no maximal element for some $\alpha<\gamma$. Let $\alpha_{0}=\min \left\{\alpha<\gamma: X_{\alpha}\right.$ has no maximal element. $\}$.

Since $A=X=\prod_{\alpha \leq \alpha_{0}} X_{\alpha} \times \prod_{\alpha_{0}<\alpha} X_{\alpha}$, the 0 -segment A is stationary and $\prod_{\alpha \leq \alpha_{0}} X_{\alpha}$ has no maximal element, Lemma 1.3 (3b) shows that the 0 -segment $\prod_{\alpha \leq \alpha_{0}} X_{\alpha}$ is stationary and $\prod_{\alpha_{0}<\alpha} X_{\alpha}$ has a minimal element. Therefore X_{α} has a minimal element for every $\alpha>\alpha_{0}$, which means $\sup J^{-} \leq \alpha_{0}$. By the minimality of α_{0}, X_{α} has a maximal element for every $\alpha<\alpha_{0}$. Then $\left\{\left\langle\max X_{\alpha}: \alpha<\alpha_{0}\right\rangle\right\} \times X_{\alpha_{0}}$ is a 1 -segment of $\prod_{\alpha<\alpha_{0}} X_{\alpha} \times X_{\alpha_{0}}$. Now since the 0 -segment $\prod_{\alpha<\alpha_{0}} X_{\alpha} \times$ $X_{\alpha_{0}}$ is stationary, Lemma 1.2 shows that the 0 -segment $X_{\alpha_{0}}$ is also stationary, this contradicts the condition (2b).

Case 2. $A \neq X$ and $X \backslash A$ has a minimal element.
Let $B=X \backslash A$ and $b=\min B$, then note $A=(\leftarrow, b)_{X}$. Set $I=\{\alpha<$ $\gamma: \exists a \in A(a \upharpoonright(\alpha+1)=b \upharpoonright(\alpha+1))\}$. Since I is obviously a 0 -segment of γ, for some $\alpha_{0} \leq \gamma, I=\alpha_{0}$ holds. Now for every $\alpha<\alpha_{0}$, fix $a_{\alpha} \in A$ with $a_{\alpha} \upharpoonright(\alpha+1)=b \upharpoonright(\alpha+1)$.

Claim 2. For every $\alpha \in\left(\alpha_{0}, \gamma\right), X_{\alpha}$ has a minimal element and $b(\alpha)=$ $\min X_{\alpha}$, thus $\sup J^{-} \leq \alpha_{0}$.

Proof. Note that still we do not know whether $\alpha_{0}<\gamma$ or not. Assume that for some $\alpha \in\left(\alpha_{0}, \gamma\right)$, there is $u \in X_{\alpha}$ with $u<b(\alpha)$. Let $\alpha_{1}=$ $\min \left\{\alpha>\alpha_{0}: \exists u \in X_{\alpha}(u<b(\alpha))\right\}$ and take $u \in X_{\alpha_{1}}$ with $u<b\left(\alpha_{1}\right)$. Let $a=b \upharpoonright \alpha_{1} \wedge\langle u\rangle^{\wedge} b \upharpoonright\left(\alpha_{1}, \gamma\right)$. Then by $a<b$, we have $a \in A$ and $a \upharpoonright \alpha_{1}=b \upharpoonright \alpha_{1}$. Now $\alpha_{0}<\alpha_{1}$ shows $a \upharpoonright\left(\alpha_{0}+1\right)=b \upharpoonright\left(\alpha_{0}+1\right)$, which means $\alpha_{0} \in I=\alpha_{0}$, a contradiction.

We divide Case 2 into further two subcases.
Case 2-1. α_{0} is a successor ordinal.
Say $\alpha_{0}=\beta_{0}+1$.
Claim 3. $\alpha_{0}<\gamma$.
Proof. If $\alpha_{0}=\gamma$ were true, then by $\beta_{0} \in \alpha_{0}=I$, we have $B \ni b=$ $b \upharpoonright \alpha_{0}=b \upharpoonright\left(\beta_{0}+1\right)=a_{\beta_{0}} \upharpoonright\left(\beta_{0}+1\right)=a_{\beta_{0}} \upharpoonright \alpha_{0}=a_{\beta_{0}} \in A, \mathrm{a}$ contradiction.

Claim 4. $b\left(\alpha_{0}\right)$ is not a minimal element of $X_{\alpha_{0}}$.
Proof. If $b\left(\alpha_{0}\right)$ were a minimal element of $X_{\alpha_{0}}$, then we have $A \ni a_{\beta_{0}} \geq$ $b \in B$ because of $b(\alpha)=\min X_{\alpha}$ for every $\alpha \geq \alpha_{0}$, a contradiction.

Let $Y_{0}=\prod_{\alpha \leq \alpha_{0}} X_{\alpha}$ and $Y_{1}=\prod_{\alpha_{0}<\alpha} X_{\alpha}$.
Claim 5. $A=\left(\leftarrow, b \upharpoonright\left(\alpha_{0}+1\right)\right)_{Y_{0}} \times Y_{1}$.

Proof. To see the inclusion \supset, let $a \in\left(\leftarrow, b \upharpoonright\left(\alpha_{0}+1\right)\right) \times Y_{1}$. Then $a \upharpoonright\left(\alpha_{0}+1\right)<b \upharpoonright\left(\alpha_{0}+1\right)$ shows $a<b=\min B$. So we have $a \in A$.

To see the inclusion \subseteq, let $a \in A$. Since $a<b$ and $b(\alpha)=\min X_{\alpha}$ for every $\alpha>\alpha_{0}$, we have $a \upharpoonright\left(\alpha_{0}+1\right)<b \upharpoonright\left(\alpha_{0}+1\right)$, thus $a \in(\leftarrow, b \upharpoonright$ $\left.\left(\alpha_{0}+1\right)\right) \times Y_{1}$.

We further divide Case 2-1 into two subcases.
Case 2-1-1. $\left(\leftarrow, b\left(\alpha_{0}\right)\right)_{X_{\alpha_{0}}}$ has no maximal element.
In this case, $\left(\leftarrow, b \upharpoonright\left(\alpha_{0}+1\right)\right)_{Y_{0}}$ has no maximal element, so Claim 5 and Lemma $1.3(3 \mathrm{~b})$ show that the 0 -segment $\left(\leftarrow, b \upharpoonright\left(\alpha_{0}+1\right)\right)$ in Y_{0} is stationary. Then it is easy to see:
Claim 6. $\left(\leftarrow, b \upharpoonright\left(\alpha_{0}+1\right)\right)_{Y_{0}}=\left(\leftarrow, b \upharpoonright \alpha_{0}\right) \times X_{\alpha_{0}} \cup\left\{b \upharpoonright \alpha_{0}\right\} \times(\leftarrow$,$\left.b\left(\alpha_{0}\right)\right)_{X_{\alpha_{0}}}$.
Now Lemma 1.2 show that the 0 -segment $\left(\leftarrow, b\left(\alpha_{0}\right)\right)_{X_{\alpha_{0}}}$ is stationary, because $\left\{b \upharpoonright \alpha_{0}\right\} \times\left(\leftarrow, b\left(\alpha_{0}\right)\right)_{X_{\alpha_{0}}}$ is a 1 -segment of $\left(\leftarrow, b \upharpoonright\left(\alpha_{0}+1\right)\right)_{Y_{0}}$ by Claim 6. This contradicts the condition (2b) because of sup $J^{-} \leq \alpha_{0}$.

Case 2-1-2. $\left(\leftarrow, b\left(\alpha_{0}\right)\right)_{X_{\alpha_{0}}}$ has a maximal element.
Say $u_{0}=\max \left(\leftarrow, b\left(\alpha_{0}\right)\right)$, then note that $\left(b \upharpoonright \alpha_{0}\right)^{\wedge}\left\langle u_{0}\right\rangle$ is the immediate predecessor of $b \upharpoonright\left(\alpha_{0}+1\right)$ in Y_{0}, so we see $\left(\leftarrow, b \upharpoonright\left(\alpha_{0}+1\right)\right)=(\leftarrow$,$\left.\left(b \upharpoonright \alpha_{0}\right)^{\wedge}\left\langle u_{0}\right\rangle\right]$. Since A has no maximal element and $A=(\leftarrow,(b \upharpoonright$ $\left.\left.\alpha_{0}\right)^{\wedge}\left\langle u_{0}\right\rangle\right] \times Y_{1}\left(\right.$ Claim 5), Y_{1} has no maximal element. So let $\alpha_{1}=$ $\min \left\{\alpha>\alpha_{0}: X_{\alpha}\right.$ has no maximal element. $\}$. Now since $A=(\leftarrow, b \upharpoonright$ $\left.\left(\alpha_{0}+1\right)\right) \times Y_{1}=\left(\leftarrow,\left(b \upharpoonright \alpha_{0}\right)^{\wedge}\left\langle u_{0}\right\rangle\right] \times \prod_{\alpha_{0}<\alpha} X_{\alpha}=\left(\leftarrow,\left(b \upharpoonright \alpha_{0}\right)^{\wedge}\left\langle u_{0}\right\rangle\right] \times$ $\left(\prod_{\alpha_{0}<\alpha \leq \alpha_{1}} X_{\alpha} \times \prod_{\alpha_{1}<\alpha} X_{\alpha}\right)=\left(\left(\leftarrow,\left(b \upharpoonright \alpha_{0}\right)^{\wedge}\left\langle u_{0}\right\rangle\right] \times \prod_{\alpha_{0}<\alpha \leq \alpha_{1}} X_{\alpha}\right) \times$ $\prod_{\alpha_{1}<\alpha} \bar{X}_{\alpha},\left(\leftarrow,\left(b \upharpoonright \alpha_{0}\right)^{\wedge}\left\langle u_{0}\right\rangle\right] \times \prod_{\alpha_{0}<\alpha \leq \alpha_{1}} X_{\alpha}$ has no maximal element and the 0 -segment A is stationary, Lemma 1.3 (3b) shows that the 0 -segment $\left(\leftarrow,\left(b \upharpoonright \alpha_{0}\right)^{\wedge}\left\langle u_{0}\right\rangle\right] \times \prod_{\alpha_{0}<\alpha \leq \alpha_{1}} X_{\alpha}$ in $\prod_{\alpha \leq \alpha_{1}} X_{\alpha}$ is also stationary. Now since $\left\{\left(b \upharpoonright \alpha_{0}\right)^{\wedge}\left\langle u_{0}\right\rangle^{\wedge}\left\langle\max X_{\alpha}: \alpha_{0}<\alpha<\alpha_{1}\right\rangle\right\} \times X_{\alpha_{1}}$ is a 1-segment of $\left(\leftarrow,\left(b \upharpoonright \alpha_{0}\right)^{\wedge}\left\langle u_{0}\right\rangle\right] \times \prod_{\alpha_{0}<\alpha \leq \alpha_{1}} X_{\alpha}$, Lemma 1.2 shows that $X_{\alpha_{1}}$ is stationary. Since $\sup J^{-} \leq \alpha_{0}<\alpha_{1}, X_{\alpha_{1}}$ has to be hereditarily 0 -paracompact (condition (2b)), a contradiction.
Case 2-2. α_{0} is limit.
Claim 2 and the condition (2a) show $\sup J^{-} \leq \alpha_{0} \leq \gamma<\sup J^{-}+\omega_{1}$, therefore we have cf $\alpha_{0}=\omega$.
Claim 7. $\alpha_{0}<\gamma$.
Proof. Assume $\alpha_{0}=\gamma$, then note cf $\gamma=\operatorname{cf} \alpha_{0}=\omega$, so fix a 0 -order preserving unbounded (i.e., strictly increasing cofinal) sequence $\left\{\gamma_{n}\right.$: $n \in \omega\}$ in γ. Then $\left\{a_{\gamma_{n}}: n \in \omega\right\}$ is unbounded in the 0 -segment (\leftarrow, b)
($=A$), so we have $0-\operatorname{cf}_{X} A=\omega$, which contradicts the stationarity of the 0 -segment A.

We divide Case 2-2 into three subcases.
Case 2-2-1. $\left(\leftarrow, b\left(\alpha_{0}\right)\right)_{X_{\alpha_{0}}}$ is non-empty and has no maximal element. In this case, using a similar argument to Case 2-1-1, we can get a contradiction.
Case 2-2-2. $\left(\leftarrow, b\left(\alpha_{0}\right)\right)_{X_{\alpha_{0}}}$ is non-empty and has a maximal element.
In this case, using a similar argument to Case 2-1-2, we can get a contradiction.
Case 2-2-3. $\left(\leftarrow, b\left(\alpha_{0}\right)\right)_{X_{\alpha_{0}}}$ is empty, that is, $b\left(\alpha_{0}\right)=\min X_{\alpha_{0}}$.
In this case, fix a 0 -order preserving unbounded sequence $\left\{\gamma_{n}: n \in\right.$ $\omega\}$ in α_{0}. Since $b(\alpha)=\min X_{\alpha}$ for every $\alpha \geq \alpha_{0}$, we see that $\left\{a_{\gamma_{n}}: n \in\right.$ $\omega\}$ is unbounded in the 0 -segment $(\leftarrow, b)(=A)$, so we have 0 - cf ${ }_{X} A=$ ω, which contradicts the stationarity of the 0 -segment A.
Case 3. $A \neq X$ and $X \backslash A$ has no minimal element.
Let $B=X \backslash A$ and

$$
I=\{\alpha<\gamma: \exists a \in A \exists b \in B(a \upharpoonright(\alpha+1)=b \upharpoonright(\alpha+1))\} .
$$

Since I is a 0 -segment in γ, for some $\alpha_{0} \leq \gamma, I=\alpha_{0}$ holds. For every $\alpha<\alpha_{0}$, fix $a_{\alpha} \in A$ and $b_{\alpha} \in B$ with $a_{\alpha} \upharpoonright(\alpha+1)=b_{\alpha} \upharpoonright$ $(\alpha+1)$ and consider the lexicographic products $Y_{0}=\prod_{\alpha<\alpha_{0}} X_{\alpha}$ and $Y_{1}=\prod_{\alpha_{0} \leq \alpha} X_{\alpha}$. Define $y_{0} \in Y_{0}$ by $y_{0}(\alpha)=a_{\alpha}(\alpha)$ for every $\alpha<\alpha_{0}$.
Claim 8. For every $\alpha<\alpha_{0}, y_{0} \upharpoonright(\alpha+1)=a_{\alpha} \upharpoonright(\alpha+1)=b_{\alpha} \upharpoonright(\alpha+1)$ holds.

Proof. It suffices to see the first equality. Assuming $y_{0} \upharpoonright(\alpha+1) \neq$ $a_{\alpha} \upharpoonright(\alpha+1)$ for some $\alpha<\alpha_{0}$, let $\alpha_{1}=\min \left\{\alpha<\alpha_{0}: y_{0} \upharpoonright(\alpha+\right.$ 1) $\left.\neq a_{\alpha} \upharpoonright(\alpha+1)\right\}$ and $\alpha_{2}=\min \left\{\alpha \leq \alpha_{1}: y_{0}(\alpha) \neq a_{\alpha_{1}}(\alpha)\right\}$. Then $y_{0}\left(\alpha_{1}\right)=a_{\alpha_{1}}\left(\alpha_{1}\right)$ shows $\alpha_{2}<\alpha_{1}$. Also the minimality of α_{1} shows $y_{0} \upharpoonright\left(\alpha_{2}+1\right)=a_{\alpha_{2}} \upharpoonright\left(\alpha_{2}+1\right)\left(=b_{\alpha_{2}} \upharpoonright\left(\alpha_{2}+1\right)\right)$. When $y_{0}\left(\alpha_{2}\right)<a_{\alpha_{1}}\left(\alpha_{2}\right)$, we see $B \ni b_{\alpha_{2}}<a_{\alpha_{1}} \in A$, a contradiction. When $y_{0}\left(\alpha_{2}\right)>a_{\alpha_{1}}\left(\alpha_{2}\right)$, we also see $B \ni b_{\alpha_{1}}<a_{\alpha_{2}} \in A$, a contradiction.

Claim 9. $\alpha_{0}<\gamma$.
Proof. Assume $\alpha_{0}=\gamma$, then $y_{0} \in Y_{0}=X=A \cup B$. Assume $y_{0} \in A$ and take $a \in A$ with $y_{0}<a$. Let $\beta_{0}=\min \left\{\beta<\gamma: y_{0}(\beta) \neq a(\beta)\right\}$. Then we have $B \ni b_{\beta_{0}}<a \in A$, a contradiction. When $y_{0} \in B$, similarly we also get a contradiction.

Let $A_{0}=\left\{a\left(\alpha_{0}\right): a \in A, a \upharpoonright \alpha_{0}=y_{0}\right\}$ and $B_{0}=\left\{b\left(\alpha_{0}\right): b \in B, b \upharpoonright\right.$ $\left.\alpha_{0}=y_{0}\right\}$.

Claim 10. The following hold:
(1) for every $a \in A, a \upharpoonright \alpha_{0} \leq_{Y_{0}} y_{0}$ holds,
(2) for every $x \in X$, if $x \upharpoonright \alpha_{0}<Y_{0} y_{0}$, then $x \in A$.

Proof. (1) Assume $a \upharpoonright \alpha_{0}>y_{0}$ for some $a \in A$ and let $\beta_{0}=\min \{\beta<$ $\left.\alpha_{0}: a(\beta) \neq y_{0}(\beta)\right\}$. Now we have $B \ni b_{\beta_{0}}<a \in A$, a contradiction.
(2) Assume $x \upharpoonright \alpha_{0}<y_{0}$ and let $\beta_{0}=\min \left\{\beta<\alpha_{0}: x(\beta) \neq y_{0}(\beta)\right\}$. Then we have $x<a_{\beta_{0}} \in A$, so we see $x \in A$ because A is a 0 segment.

We similarly see:
Claim 11. The following hold:
(1) for every $b \in B, b \upharpoonright \alpha_{0} \geq_{Y_{0}} y_{0}$ holds,
(2) for every $x \in X$, if $x \upharpoonright \alpha_{0}>_{Y_{0}} y_{0}$, then $x \in B$.

Claim 12. A_{0} is a 0-segment of $X_{\alpha_{0}}$ and $B_{0}=X_{\alpha_{0}} \backslash A_{0}$.
Proof. Let $u^{\prime}<u \in A_{0}$ and take $a \in A$ with $a \upharpoonright\left(\alpha_{0}+1\right)=y_{0}{ }^{\wedge}\langle u\rangle$. Let $a^{\prime}=\left(a \upharpoonright \alpha_{0}\right)^{\wedge}\left\langle u^{\prime}\right\rangle^{\wedge}\left(a \upharpoonright\left(\alpha_{0}, \gamma\right)\right)$. Since A is a 0 -segment with $a^{\prime}<a \in A$, we have $a^{\prime} \in A$, thus $u^{\prime} \in A_{0}$. So we have seen that A_{0} is a 0 -segment.

To see $B_{0} \subseteq X_{\alpha_{0}} \backslash A_{0}$, let $u \in B_{0}$. Take $b \in B$ with $b \upharpoonright\left(\alpha_{0}+1\right)=$ $y_{0}{ }^{\wedge}\langle u\rangle$. If $u \in A_{0}$ were true, then by taking $a \in A$ with $a \upharpoonright\left(\alpha_{0}+1\right)=$ $y_{0}{ }^{\wedge}\langle u\rangle$, we see $a \upharpoonright\left(\alpha_{0}+1\right)=b \upharpoonright\left(\alpha_{0}+1\right)$ thus $\alpha_{0} \in I=\alpha_{0}$, a contradiction. So we have $u \in X_{\alpha_{0}} \backslash A_{0}$.

To see $B_{0} \supset X_{\alpha_{0}} \backslash A_{0}$, let $u \in X_{\alpha_{0}} \backslash A_{0}$. Take $x \in X$ with $x \upharpoonright$ $\left(\alpha_{0}+1\right)=y_{0} \wedge\langle u\rangle$. Then obviously we have $x \in B$, thus $u \in B_{0}$.

Claim 13. $A_{0} \neq \emptyset$.
Proof. Assume $A_{0}=\emptyset$. We prove the following facts.
Fact 1. $\left(\leftarrow, y_{0}\right)_{Y_{0}} \times Y_{1}=A$.
Proof. Claim 10 (2) shows the inclusion \subseteq. To see the other inclusion, let $a \in A$. Then Claim 10 (1) shows $a \upharpoonright \alpha_{0} \leq y_{0}$. If $a \upharpoonright \alpha_{0}=y_{0}$ were true, then we have $a\left(\alpha_{0}\right) \in A_{0}$, which contradicts $A_{0}=\emptyset$.

Fact 2. $\alpha_{0}>0$ and α_{0} is limit.

Proof. If $\alpha_{0}=0$ were true, then taking $a \in A$, we see $a\left(\alpha_{0}\right) \in A_{0}$, a contradiction. If for some ordinal $\beta_{0}, \alpha_{0}=\beta_{0}+1$ were true, then by $\beta_{0} \in I=\alpha_{0}$ and $a_{\beta_{0}} \upharpoonright \alpha_{0}=a_{\beta_{0}} \upharpoonright\left(\beta_{0}+1\right)=y_{0} \upharpoonright\left(\beta_{0}+1\right)=y_{0} \upharpoonright \alpha_{0}$, we see $a_{\beta_{0}}\left(\alpha_{0}\right) \in A_{0}$, a contradiction.

Fact 3. $0-\mathrm{cf}_{Y_{0}}\left(\leftarrow, y_{0}\right)_{Y_{0}} \geq \omega$.
Proof. Fact 1 with $A \neq \emptyset$ shows $\left(\leftarrow, y_{0}\right) \neq \emptyset$, that is, $0-\operatorname{cf}_{Y_{0}}\left(\leftarrow, y_{0}\right) \geq$ 1. If $0-\operatorname{cf}_{Y_{0}}\left(\leftarrow, y_{0}\right)=1$ were true, then letting $y_{1}=\max \left(\leftarrow, y_{0}\right)$ and $\beta_{0}=\min \left\{\beta<\alpha_{0}: y_{1}(\beta) \neq y_{0}(\beta)\right\}$, we see $y_{1}<a_{\beta_{0}} \upharpoonright \alpha_{0}<y_{0}$, a contradiction.

Since the 0 -segment A is stationary, Lemma 1.3 (3) with Fact 1 and 3 shows that Y_{1} has a minimal element. Now Claim 11 (1) shows that $y_{0}{ }^{\wedge}\left\langle\min X_{\alpha}: \alpha_{0} \leq \alpha\right\rangle$ is the minimal element of B in X, which contradicts our case ($=$ Case 3).

Now let $Z_{0}=\prod_{\alpha \leq \alpha_{0}} X_{\alpha}, Z_{1}=\prod_{\alpha_{0}<\alpha} X_{\alpha}$ and

$$
A^{*}=\left\{z \in Z_{0}: z \upharpoonright \alpha_{0}<_{Y_{0}} y_{0} \text { or }\left(z \upharpoonright \alpha_{0}=y_{0} \text { and } z\left(\alpha_{0}\right) \in A_{0}\right) .\right\} .
$$

Observe that A^{*} is a 0 -segment of Z_{0} and $A^{*}=\left(\leftarrow, y_{0}\right)_{Y_{0}} \times X_{\alpha_{0}} \cup\left\{y_{0}\right\} \times$ A_{0}. Since $\left\{y_{0}\right\} \times A_{0}$ is a 1 -segment of A^{*} because of $A_{0} \neq \emptyset$, Lemma 1.2 shows that $0-\mathrm{cf}_{Z_{0}} A^{*}$ is equal to $0-\mathrm{cf}_{X_{\alpha_{0}}} A_{0}$ and that the stationarity of A^{*} is equivalent to the stationarity of A_{0}.
Claim 14. $A=A^{*} \times Z_{1}$.
Proof. The inclusion \subseteq follows from Claim 10 (1) and the definition of A_{0}. The inclusion \supseteq follows from Claim 10 (2) and the definition of A_{0}.

We divide Case 3 into two subcases.
Case 3-1. $0-\operatorname{cf}_{Z_{0}} A^{*} \geq \omega$.
In this case, since A is stationary, Lemma 1.3 (3b) with Claim 14 shows that Z_{1} has a minimal element (so $\sup J^{-} \leq \alpha_{0}$) and the 0 -segment A^{*} is stationary (so the 0 -segment A_{0} is stationary), which contradicts our condition (2b).

Case 3-2. $0-\operatorname{cf}_{Z_{0}} A^{*}=1$, that is, $\max A^{*}$ exists.
In this case, note max $A^{*}=y_{0}{ }^{\wedge}\left\langle\max A_{0}\right\rangle$. Since $A=A^{*} \times Z_{1}, A$ has no maximal element but A^{*} has a maximal element, we see Z_{1} has no maximal element. So let $\alpha_{1}=\min \left\{\alpha_{0}<\alpha: X_{\alpha}\right.$ has no maximal element. $\}$. Note that X_{α} has a maximal element for each $\alpha \in\left(\alpha_{0}, \alpha_{1}\right)$. Since $A=A^{*} \times Z_{1}=\left(A^{*} \times \prod_{\alpha_{0}<\alpha \leq \alpha_{1}} X_{\alpha}\right) \times \prod_{\alpha_{1}<\alpha} X_{\alpha}$ and $A^{*} \times \prod_{\alpha_{0}<\alpha \leq \alpha_{1}} X_{\alpha}$
is a 0 -segment in $\prod_{\alpha \leq \alpha_{1}} X_{\alpha}$ with no maximal element, Lemma 1.3 (3b) shows that the 0 -segment $A^{*} \times \prod_{\alpha_{0}<\alpha \leq \alpha_{1}} X_{\alpha}$ is stationary and $\prod_{\alpha_{1}<\alpha} X_{\alpha}$ has a minimal element (so sup $J^{-} \leq \alpha_{1}$). Moreover since $\left\{y_{0}{ }^{\wedge}\left\langle\max A_{0}\right\rangle^{\wedge}\left\langle\max X_{\alpha}: \alpha_{0}<\alpha<\alpha_{1}\right\rangle\right\} \times X_{\alpha_{1}}$ is a 1-segment in the stationary 0 -segment $A^{*} \times \prod_{\alpha_{0}<\alpha \leq \alpha_{1}} X_{\alpha}$, Lemma 1.2 shows that the 0 -segment $X_{\alpha_{1}}$ is also stationary, which contradicts our condition (2b).

Analogously we see the following.
Theorem 3.3. Let $X=\prod_{\alpha<\gamma} X_{\alpha}$ be a lexicographic product of GOspaces. Then the following are equivalent:
(1) X is hereditarily 1-paracompact,
(2) the following clauses hold:
(a) $\gamma<\sup J^{+}+\omega_{1}$,
(b) for every $\alpha<\gamma$ with $\sup J^{+} \leq \alpha, X_{\alpha}$ is hereditarily 1paracompact,

4. Some applications

In this section, we apply the theorems in the previous section to some special cases.

Corollary 4.1. Let $X=\prod_{\alpha<\gamma} X_{\alpha}$ be a lexicographic product of GOspaces. If X_{α} has both a minimal and a maximal element for every $\alpha<\gamma$, then the following are equivalent:
(1) X is hereditarily paracompact,
(2) the following clauses hold:
(a) $\gamma<\omega_{1}$,
(b) for every $\alpha<\gamma, X_{\alpha}$ is hereditarily paracompact,

Proof. By the assumption, we have $J^{-}=J^{+}=\emptyset$, then apply Theorems 3.2 and 3.3.

Corollary 4.2. Let $X=\prod_{\alpha<\gamma} X_{\alpha}$ be a lexicographic product of GOspaces. If X_{α} has neither a minimal nor a maximal element for every $\alpha<\gamma$, then the following are equivalent:
(1) X is hereditarily paracompact,
(2) if γ is successor, then $X_{\gamma-1}$ is hereditarily paracompact, where $\gamma-1$ is the immediate predecessor of γ,
thus note that if γ is limit, then X is hereditarily paracompact.
Proof. By the assumption, we have $J^{-}=J^{+}=\gamma$. So note that $\sup J^{-}=\sup J^{+}=\gamma$ whenever γ is limit and that $\sup J^{-}=\sup J^{+}=$ $\gamma-1$ whenever γ is successor. Then apply Theorems 3.2 and 3.3.

Example 4.3. The corollary above shows that the lexicographic products $\mathbb{S}^{\gamma}, \mathbb{M}^{\gamma}, \mathbb{R}^{\gamma}$ and $(0,1)_{\mathbb{R}}^{\gamma}$ are hereditarily paracompact for every ordinal γ.

Applying the theorems directly we can also see the following.
Corollary 4.4. Let $X=\prod_{\alpha<\gamma} X_{\alpha}$ be a lexicographic product of GOspaces. If $\sup J^{-}=\sup J^{+}=\gamma$, then X is hereditarily paracompact,

Here remark that $\sup J^{-}=\gamma$ implies that γ is limit.
Example 4.5. The corollary above shows that $\left(\omega_{1}^{2} \times\left(-\omega_{1}\right)^{3}\right)^{\omega_{1}}$ is hereditarily paracompact, where for a GO-space $X=\left\langle X,<_{X}, \tau_{X}\right\rangle,-X$ denotes the GO-space $\left\langle X,>_{X}, \tau_{X}\right\rangle$ which is called the reverse of X, see [5]. Note that $-X$ is topologically homeomorphic to X, because the identity map on X to $-X(=X)$ is 1-order preserving and homeomorphism. Also note that the lexicographic products ω_{1}^{ω} and $\omega_{1}^{\omega_{1}}$ are not paracompact [5].

Next we consider the case that all X_{α} 's have minimal elements. Theorems 3.2 and 3.3 yield the following.

Corollary 4.6. Let $X=\prod_{\alpha<\gamma} X_{\alpha}$ be a lexicographic product of GOspaces. If X_{α} has a minimal element for every $\alpha<\gamma$, then the following are equivalent:
(1) X is hereditarily paracompact,
(2) the following clauses hold:
(a) $\gamma<\omega_{1}$,
(b) for every $\alpha<\gamma, X_{\alpha}$ is hereditarily 0-paracompact,
(c) for every $\alpha<\gamma$ with sup $J^{+} \leq \alpha, X_{\alpha}$ is hereditarily 1paracompact.

Therefore we have the following.
Corollary 4.7. Let $X=\prod_{\alpha<\gamma} X_{\alpha}$ be a lexicographic product of GOspaces. If X_{α} has a minimal element but has no maximal element for every $\alpha<\gamma$, then the following are equivalent:
(1) X is hereditarily paracompact,
(2) the following clauses hold:
(a) $\gamma<\omega_{1}$,
(b) for every $\alpha<\gamma, X_{\alpha}$ is hereditarily 0-paracompact,
(c) if γ is successor, then $X_{\gamma-1}$ is hereditarily 1-paracompact.

Now we consider hereditary paracompactness of X^{γ}.
Corollary 4.8. Let X be a GO-space. Then the following hold:
(1) when X has both a minimal and a maximal element, the lexicographic product X^{γ} is hereditarily paracompact iff $\gamma<\omega_{1}$ and X is hereditarily paracompact,
(2) when X has neither a minimal nor a maximal element, the lexicographic product X^{γ} is hereditarily paracompact iff X is hereditarily paracompact whenever γ is successor,
(3) when X has a minimal element but has no maximal element, the lexicographic product X^{γ} is hereditarily paracompact iff $\gamma<\omega_{1}$, X is hereditarily 0-paracompact and "if γ is successor, then X is hereditarily 1-paracompact".

Example 4.9. The corollary above shows the following:
(1) the lexicographic product $[0,1]_{\mathbb{R}}^{\gamma}$ is hereditarily paracompact iff $\gamma<\omega_{1}$, see [2, page 73],
(2) the lexicographic product 2^{γ} is hereditarily paracompact iff $\gamma<$ ω_{1}, where $2=\{0,1\}$ with $0<1$,
(3) the lexicographic product $[0,1)_{\mathbb{R}}^{\gamma}$ is hereditarily paracompact iff $\gamma<\omega_{1}$.

Example 4.10. Applying Theorems 3.2 and 3.3 directly, we see:
(1) the lexicographic product $[0,1]_{\mathbb{R}}^{\omega_{1}} \times \mathbb{S}^{\omega_{1}}$ is hereditarily paracompact,
(2) the lexicographic product $\mathbb{S}^{\omega_{1}} \times[0,1]_{\mathbb{R}}^{\omega_{1}}$ is not hereditarily paracompact,
(3) the lexicographic product $\mathbb{S}^{\omega_{1}} \times[0,1]_{\mathbb{R}}^{\omega}$ is hereditarily paracompact,
(4) the lexicographic product $\left(\omega_{1}+1\right)^{\omega} \times \mathbb{S}^{\omega_{1}}$ is hereditarily paracompact,
(5) the lexicographic product $\mathbb{S}^{\omega_{1}} \times\left(\omega_{1}+1\right)^{\omega}$ is not hereditarily paracompact,
(6) the lexicographic product $\mathbb{S}^{\omega_{1}} \times[0,1)_{\mathbb{R}}^{\omega}$ is hereditarily paracompact,
(7) the lexicographic product $\mathbb{S}^{\omega_{1}} \times[0,1)_{\mathbb{R}}^{\omega_{1}}$ is not hereditarily paracompact,
(8) the lexicographic product $[0,1)_{\mathbb{R}}^{\omega} \times \mathbb{S}^{\omega_{1}}$ is hereditarily paracompact,

Note that all spaces in Examples 4.9 and 4.10 are paracompact.
Finally we discuss on hereditarily paracompactness of lexicographic products of ordinal subspaces. Note that whenever X is a subspace of an ordinal, then X has a minimal element, more generally, all nonempty 1 -segment of X has a minimal element. Therefore when $X=$ $\prod_{\alpha<\gamma} X_{\alpha}$ is a lexicographic product of subspaces of ordinals, we see:

- $J^{-}=\emptyset$,
- X_{α} is hereditarily 1-paracompact for every $\alpha<\gamma$.

So Corollary 4.6 yields the following.
Corollary 4.11. Let $X=\prod_{\alpha<\gamma} X_{\alpha}$ be a lexicographic product of subspaces of ordinals. Then the following are equivalent:
(1) X is hereditarily paracompact,
(2) the following clauses hold:
(a) $\gamma<\omega_{1}$,
(b) for every $\alpha<\gamma, X_{\alpha}$ is hereditarily (0-)paracompact,

In particular, when X is an ordinal, X is hereditarily paracompact iff it is a countable ordinal. So we have the following.

Corollary 4.12. Let $X=\prod_{\alpha<\gamma} X_{\alpha}$ be a lexicographic product of ordinals. Then the following are equivalent:
(1) X is hereditarily paracompact,
(2) $\gamma<\omega_{1}$ and for every $\alpha<\gamma, X_{\alpha}$ is a countable ordinal.

Example 4.13. The corollary above shows the following, where \mathbb{Z} denotes the GO-space of all integers with the usual order:
(1) the lexicographic product $(\omega+\omega)^{\omega+\omega}$ is hereditarily paracompact,
(2) the lexicographic product $(\omega+\omega)^{\omega_{1}}$ is paracompact but not hereditarily paracompact, on the other hand, the lexicographic product $\mathbb{Z}^{\omega_{1}}$ is hereditarily paracompact

Acknowledgment. The author thanks the reviewer for careful reading the manuscript and for giving useful comments.

References

[1] R. Engelking, General Topology-Revized and completed ed.. Herdermann Verlag, Berlin (1989).
[2] M. J. Faber, Metrizability in generalized ordered spaces, Mathematical Centre Tracts, No. 53. Mathematisch Centrum, Amsterdam, 1974.
[3] N. Kemoto, Normality of products of GO-spaces and cardinals, Topology Proc., 18 (1993), 133-142.
[4] N. Kemoto, Lexicographic products of GO-spaces, Top. Appl., 232 (2017), 267280.
[5] N. Kemoto, Paracompactness of Lexicographic products of GO-spaces, Top. Appl., 240 (2018) 35-58.
[6] N. Kemoto, The structure of the linearly ordered compactifications, Top. Proc., 52 (2018) 189-204.
[7] K. Kunnen, Set Theory. An Introduction to Independence Proofs, Studies in Logic and the Foundations of Mathematics, vol. 102, North-Holland, Amsterdam, 1980.
[8] D.J. Lutzer, On generalized ordered spaces, Dissertationes Math. Rozprawy Mat. 89 (1971).
[9] T. Miwa and N. Kemoto, Linearly ordered extensions of GO-spaces, Top. Appl., 54 (1993), 133-140.

Department of Mathematics, Oita University, Oita, 870-1192 Japan E-mail address: nkemoto@cc.oita-u.ac.jp

[^0]: Date: November 27, 2018.
 2010 Mathematics Subject Classification. Primary 54F05, 54B10, 54B05 . Secondary 54 C 05 .

 Key words and phrases. lexicographic product, GO-space, LOTS, paracompact, hereditarily paracompact.

