COUNTABLE COMPACTNESS OF LEXICOGRAPHIC PRODUCTS OF GO-SPACES

NOBUYUKI KEMOTO

Abstract. It is well-known:

• the usual Tychonoff product X^2 of a paracompact space X
 need not be paracompact, for instance, the Sorgenfrey line S
 is such an example.

On the other hand, the following is known:

• the lexicographic product $X = \prod_{\alpha<\gamma} X_\alpha$ of paracompact
 LOTS's is also paracompact [2].

In [6], the notion of the lexicographic product of GO-spaces is
 defined and the result above in [2] is extended for GO-spaces [6, 7],
 so the lexicographic product S^2 is paracompact. It is also known
 that:

• the usual Tychonoff product of countably compact GO-spaces
 is also countably compact, therefore the usual Tychonoff prod-
 uct ω^γ_1 is countably compact for every ordinal γ,

• the lexicographic product ω_1^γ is countably compact, but the
 lexicographic product $\omega_1^{\omega+1}$ is not countably compact [4].

In this paper, we will characterize the countable compactness of
 lexicographic products of GO-spaces. Applying this characteriza-
 tion, about lexicographic products, we see:

• the lexicographic product X^2 of a countably compact GO-
 space X need not be countably compact,

• ω_1^2, $\omega_1 \times \omega$, $(\omega+1) \times (\omega_1 + 1) \times \omega_1 \times \omega$, $\omega_1 \times \omega \times \omega_1$, $\omega_1 \times \omega \times \cdots$, $\omega_1 \times \omega_\omega^\omega$, $\omega_1 \times \omega_\omega \times (\omega+1)$, ω_1^γ, $\omega_1^{\omega+1}$ and $\prod_{\alpha \in \omega} \omega_\alpha$ are countably compact,

• $\omega \times \omega_1$, $(\omega+1) \times (\omega_1 + 1) \times \omega \times \omega_1$, $\omega \times \omega_1 \times \omega \times \omega_1 \times \cdots$, $\omega \times \omega_\omega^\omega$, $\omega_1 \times \omega_\omega \times \omega_1$, $\omega_1^\gamma \times \omega$, $\prod_{n \in \omega} \omega_1$ and $\prod_{n \geq \omega} \omega_1$ are not countably compact,

• $[0,1)_R \times \omega_1$, where $[0,1)_R$ denotes the half open interval
 in the real line \mathbb{R}, is not countably compact,

• $\omega_1 \times (0,1)_R$ is countably compact,

• both $S \times \omega_1$ and $\omega_1 \times S$ are not countably compact,

• $\omega_1 \times (\omega_1)$ is not countably compact, where for a GO-space
 $X = \langle X, \leq_X, \tau_X \rangle$, $-X$ denotes the GO-space $\langle X, >_X, \tau_X \rangle$.

Date: December 1, 2018.

2010 Mathematics Subject Classification. Primary 54F05, 54B10, 54B05 . Second-
ary 54C05.

Key words and phrases. lexicographic product, GO-space, LOTS, countably
compact.
1. Introduction

Lexicographic products of LOTS’s were studied in [2] and it was proved:

- a lexicographic product of LOTS’s is compact iff all factors are compact,
- a lexicographic products of paracompact LOTS’s is also paracompact,

Recently, the author defined the notion of the lexicographic product of GO-spaces and extended the results above for GO-spaces, see [6, 7]. It is also known:

- the usual Tychonoff product of GO-spaces is countably compact iff all factors are countably compact, therefore the usual Tychonoff product ω^γ is countably compact for every ordinal γ,
- the lexicographic product ω^ω is countably compact, but the lexicographic product $\omega^{\omega+1}$ is not countably compact [4].

In this paper, we will characterize the countable compactness of lexicographic products of GO-spaces, further give some applications.

When we consider a product $\prod_{\alpha<\gamma} X_\alpha$, all X_α are assumed to have cardinality at least 2 with $\gamma \geq 2$. Set theoretical and topological terminology follow [9] and [1].

A linearly ordered set $\langle L; <_L \rangle$ has a natural topology τ_L, which is called an interval topology, generated by $f((x, y)_L : x <_L y)$ as a subbase, where $(x, y)_L = \{z \in L : x <_L z <_L y\}$ and so on. The triple $\langle L; <_L; \lambda_L \rangle$, which is simply denoted by L, is called a LOTS.

A triple $\langle X; <_X; \tau_X \rangle$ is said to be a GO-space, which is also simply denoted by X, if $\langle X; <_X \rangle$ is a linearly ordered set and τ_X is a T_2-topology on X having a base consisting of convex sets, where a subset C of X is convex if for every $x, y \in C$ with $x <_X y$, $[x, y]_X \subseteq C$ holds. For more information on LOTS’s or GO-spaces, see [10]. Usually $<_L$, $(x, y)_L$, λ_L or τ_X are written simply $<$, (x, y), λ or τ if contexts are clear.

The symbols ω and ω_1 denote the first infinite ordinal and the first uncountable ordinal, respectively. Ordinals, which are usually denoted by Greek letters $\alpha, \beta, \gamma, \ldots$, are considered to be LOTS’s with the usual interval topologies. The cofinality of α is denoted by $\text{cf } \alpha$.

For GO-spaces $X = \langle X; <_X; \tau_X \rangle$ and $Y = \langle Y; <_Y, \tau_Y \rangle$, X is said to be a subspace of Y if $X \subseteq Y$, the linear order $<_X$ is the restriction $<_Y \upharpoonright X$ of the order $<_Y$ and the topology τ_X is the subspace topology $\tau_Y \upharpoonright X (= \{U \cap X : U \in \tau_Y\})$ on X of the topology τ_Y. So a subset of a
GO-space is naturally considered as a GO-space. For every GO-space X, there is a LOTS X^* such that X is a dense subspace of X^* and X^* has the property that if L is a LOTS containing X as a dense subspace, then L also contains the LOTS X^* as a subspace, see [11]. Such a X^* is called the minimal d-extension of a GO-space X. The construction of X^* is also shown in [6]. Obviously, we can see:

- if X is a LOTS, then $X^* = X$,
- X has a maximal element $\text{max } X$ if and only if X^* has a maximal element $\text{max } X^*$, in this case, $\text{max } X = \text{max } X^*$ (similarly for minimal elements).

For every $\alpha < \gamma$, let X_α be a LOTS and $X = \prod_{\alpha<\gamma} X_\alpha$. Every element $x \in X$ is identified with the sequence $(x(\alpha) : \alpha < \gamma)$. For notational convenience, $\prod_{\alpha<\gamma} X_\alpha$ is considered as the trivial one point LOTS $\{\emptyset\}$ whenever $\gamma = 0$, where \emptyset is considered to be a function whose domain is $0 (= \emptyset)$. When $0 \leq \beta < \gamma$, $y_0 \in \prod_{\alpha<\beta} X_\alpha$ and $y_1 \in \prod_{\beta \leq \alpha} X_\alpha$, $y_0 \wedge y_1$ denotes the sequence $y \in \prod_{\alpha<\gamma} X_\alpha$ defined by

$$y(\alpha) = \begin{cases} y_0(\alpha) & \text{if } \alpha < \beta, \\ y_1(\alpha) & \text{if } \beta \leq \alpha. \end{cases}$$

In this case, whenever $\beta = 0$, $\emptyset \wedge y_1$ is considered as y_1. In case $0 \leq \beta < \gamma$, $y_0 \in \prod_{\alpha<\beta} X_\alpha$, $u \in X_\beta$ and $y_1 \in \prod_{\beta \leq \alpha} X_\alpha$, $y_0 \wedge (u) \wedge y_1$ denotes the sequence $y \in \prod_{\alpha<\gamma} X_\alpha$ defined by

$$y(\alpha) = \begin{cases} y_0(\alpha) & \text{if } \alpha < \beta, \\ u & \text{if } \alpha = \beta, \\ y_1(\alpha) & \text{if } \beta < \alpha. \end{cases}$$

More general cases are similarly defined. The lexicographic order $<_X$ on X is defined as follows: for every $x, x' \in X$,

$$x <_X x' \text{ iff for some } \alpha < \gamma, x \upharpoonright \alpha = x' \upharpoonright \alpha \text{ and } x(\alpha) <_{X_\alpha} x'(\alpha),$$

where $x \upharpoonright \alpha = (x(\beta) : \beta < \alpha)$ (in particular $x \upharpoonright 0 = \emptyset$) and $<_X$ is the order on X_α. Now for every $\alpha < \gamma$, let X_α be a GO-space and $X = \prod_{\alpha<\gamma} X_\alpha$. The subspace X of the lexicographic product $\hat{X} = \prod_{\alpha<\gamma} X_\alpha^*$ is said to be the lexicographic product of GO-spaces X_α’s, for more details see [6]. $\prod_{i \in \omega} X_i \left(\prod_{i \leq n} X_i \right.$ where $n \in \omega$) is denoted by $X_0 \times X_1 \times X_2 \times \cdots$ ($X_0 \times X_1 \times X_2 \times \cdots \times X_n$, respectively).

$\prod_{\alpha<\gamma} X_\alpha$ is also denoted by X^γ whenever $X_\alpha = X$ for all $\alpha < \gamma$.

Let X and Y be LOTS’s. A map $f : X \to Y$ is said to be order preserving or 0-order preserving if $f(x) <_Y f(x')$ whenever $x <_X x'$. Similarly a map $f : X \to Y$ is said to be order reversing or 1-order preserving.
preserving if \(f(x) >_Y f(x') \) whenever \(x <_X x' \). Obviously a 0-order preserving map (also 1-order preserving map) \(f : X \to Y \) between LOTS’s \(X \) and \(Y \), which is onto, is a homeomorphism, i.e., both \(f \) and \(f^{-1} \) are continuous. Now let \(X \) and \(Y \) be GO-spaces. A 0-order preserving map \(f : X \to Y \) is said to be a 0-order preserving embedding if \(f \) is a homeomorphism between \(X \) and \(f[X] \), where \(f[X] \) is the subspace of the GO-space \(Y \). In this case, we identify \(X \) with \(f[X] \) as a GO-space and write \(X = f[X] \) and \(X \subseteq Y \).

Let \(X \) be a GO-space. A subset \(A \) of \(X \) is called a 0-segment of \(X \) if for every \(x, x' \in X \) with \(x \leq x' \), if \(x' \in A \), then \(x \in A \). A 0-segment \(A \) is said to be bounded if \(X \setminus A \) is non-empty. Similarly the notion of (bounded) 1-segment can be defined. Both \(\emptyset \) and \(X \) are 0-segments and 1-segments. Obviously if \(A \) is a 0-segment of \(X \), then \(X \setminus A \) is a 1-segment of \(X \).

Let \(A \) be a 0-segment of a GO-space \(X \). A subset \(U \) of \(A \) is unbounded in \(A \) if for every \(x \in A \), there is \(x' \in U \) such that \(x \leq x' \). Let

\[
0\text{-}cf_{X \setminus A} = \min\{|U| : U \text{ is unbounded in } A\}.
\]

0-\(cf_{X \setminus A} \) can be 0, 1 or regular infinite cardinals. 0-\(cf_{X \setminus A} = 0 \) means \(A = \emptyset \) and 0-\(cf_{X \setminus A} = 1 \) means that \(A \) has a maximal element. If contexts are clear, 0-\(cf_{X \setminus A} \) is denoted by 0-\(cf_A \). For cofinality in compact LOTS and linearly ordered compactifications, see also [3, 8].

Remember that a topological space is said to be countably compact if every infinite subset has a cluster point.

Definition 1.1. A GO-space \(X \) is (boundedly) countably 0-compact if for every (bounded) closed 0-segment \(A \) of \(X \), 0-\(cf_A \neq \omega \) holds. The term “Boundedly countably 1-compact” is analogously defined.

Obviously a GO-space \(X \) is countably 0-compact iff it is boundedly countably 0-compact and 0-\(cf_X \neq \omega \). Note that subspaces of ordinals are always countably 1-compact because they are well-ordered. Also note that ordinals are boundedly countably 0-compact but in general not countably 0-compact, e.g., \(\omega \), \(\mathfrak{N}_\omega \) etc.

We first check:

Lemma 1.2. A GO-space \(X \) is countably 0-compact if and only if every 0-order preserving sequence \(\{x_n : n \in \omega\} \) (i.e., \(m < n \to x_m < x_n \)) has a cluster point.

Proof. Assuming the existence of a 0-order preserving sequence \(\{x_n : n \in \omega\} \) with no cluster points, set \(A = \{x \in X : \exists n \in \omega(x \leq x_n)\} \).

Then \(A \) is closed 0-segment with 0-\(cf_A = \omega \).
To see the other direction, assuming the existence a closed 0-segment A with $0 \text{-cf } A = \omega$, by induction, we can construct a 0-order preserving sequence with no cluster points. □

Using the lemma, we can see that a GO-space is countably compact if and only if it is both countably 0-compact and countably 1-compact, see also [5].

2. A simple case

In this section, we characterize countable 0-compactness of lexicographic products of two GO-spaces. The following is easy to prove, see also [7, Lemma 3.6 (3a)].

Lemma 2.1. Let $X = X_0 \times X_1$ be a lexicographic product of two GO-spaces and A_0 a 0-segment of X_0 with $0 \text{-cf } X_0 A_0 \geq \omega$. Then $A = A_0 \times X_1$ is also a 0-segment of X with $0 \text{-cf } X A = 0 \text{-cf } X_0 A_0$.

The following lemma will be a useful tool for handling general cases.

Lemma 2.2. Let $X = X_0 \times X_1$ be a lexicographic product of two GO-spaces. Then the following are equivalent.

1. X is countably 0-compact,
2. the following clauses hold:
 a. X_0 is countably 0-compact,
 b. X_1 is boundedly countably 0-compact,
 c. if X_1 has no minimal element or $(u, \to)_{X_0}$ has no minimal element (that is, $1 \text{-cf } X_0 (u, \to) \neq 1$) for some $u \in X_0$, then $0 \text{-cf } X_1 X_1 \neq \omega$,
 d. if X_1 has no minimal element, then $0 \text{-cf } X_0 (\to, u) \neq \omega$ for every $u \in X_0$.

Proof. Set $\hat{X} = X_0^* \times X_1^*$.

1. \Rightarrow 2. Let X be countably 0-compact.

 a. Assuming that X_0 is not countably 0-compact, take a closed 0-segment A_0 of X_0 with $0 \text{-cf } X_0 A_0 = \omega$. By the lemma above, $A = A_0 \times X_1$ is a 0-segment of X with $0 \text{-cf } X A = \omega$. It suffices to see that A is closed, which contradicts countable 0-compactness of X. So let $x \notin A$, then $x(0) \notin A_0$. Since A_0 is closed in X_0, there is $u^* \in X_0^*$ such that $u^* <_{X_0^*} x(0)$ and $((u^*, \to)_{X_0^*} \cap X_0) \cap A_0 = \emptyset$ (this means $(u^*, x(0))_{X_0^*} = \emptyset$). Fix $w \in X_1$ and let $x^* = (w^*, w) \in \hat{X}$. Let $U = (x^*, \to)_{X} \cap X$, then U is a neighborhood of x. To see $U \cap A = \emptyset$, assume $a \in U \cap A$ for some a. By $a(0) \in A_0$, we can take $u \in A_0$ with $a(0) < u$. Now $u^* \leq a(0) < u$ shows $u \in (x^*, \to)_{X_0} \cap A_0$, a contradiction.
(b) Assuming that X_1 is not boundedly countably 0-compact, take a bounded closed 0-segment A_1 of X_1 with $0\text{-}\text{cf}_{X_1} A_1 = \omega$. Fix $u \in X_0$ and let $A = \{ x \in X : \exists v \in A_1 (x \leq_X \langle u, v \rangle) \}$. Obviously A is a 0-segment of X and $\{ u \} \times A_1$ is unbounded in the 0-segment A, so we see $0\text{-}\text{cf}_X A = 0\text{-}\text{cf}_{X_1} A_1 = \omega$. It suffices to see that A is closed, so let $x \in X \setminus A$. Note $u \leq x(0)$. Since A_1 is bounded, fix $v \in X_1 \setminus A_1$ and let $y = \langle u, v \rangle$. When $y < x$, $U = (y, \rightarrow)_X$ is a neighborhood of x disjoint from A. So let $x \leq y$, then we have $x(0) = u$ and $x(1) \notin A_1$. Since A_1 is closed in X_1, take $v^* \in X_1^*$ such that $v^* < x(1)$ and $\langle (v^*, \rightarrow) \rangle_X \cap A_1 = \emptyset$. Then $U = (\langle u, v^* \rangle, \rightarrow)_X \cap X$ is a neighborhood of x disjoint from A.

(c) First assume that X_1 has no minimal element. Fix $u \in X_0$. Then $A = (\leftarrow, u] \times X_1$ is a closed 0-segment of X and $\{ u \} \times X_1$ is unbounded in the 0-segment A, therefore $0\text{-}\text{cf}_{X_1} X_1 = 0\text{-}\text{cf}_X A \neq \omega$.

Next assume that $\langle u, \rightarrow \rangle_{X_0}$ has no minimal element. Then putting $A = (\leftarrow, u] \times X_1$, similarly we see $0\text{-}\text{cf}_{X_1} X_1 \neq \omega$.

(d) Assuming that X_1 has no minimal element and $0\text{-}\text{cf}_{X_0}(\leftarrow, u) = \omega$ for some $u \in X_0$, let $A = (\leftarrow, u] \times X_1$. Then A is a closed 0-segment of X with $0\text{-}\text{cf}_X A = 0\text{-}\text{cf}_{X_0}(\leftarrow, u)$ by Lemma 2.1. This contradicts countable 0-compactness of X.

(2) \Rightarrow (1) Assuming (2) and that X is not countably 0-compact, take a closed 0-segment A of X with $0\text{-}\text{cf}_X A = \omega$. Let $A_0 = \{ u \in X_0 : \exists v \in X_1 (\langle u, v \rangle \in A) \}$. Since A is a non-empty 0-segment of X, A_0 is also a non-empty 0-segment of X_0. We consider two cases, and in each case, we will derive a contradiction.

Case 1. A_0 has no maximal element, i.e., $0\text{-}\text{cf} A_0 \geq \omega$.

In this case, we have:

Claim 1. $A = A_0 \times X_1$.

Proof. The inclusion \subseteq is obvious. Let $\langle u, v \rangle \in A_0 \times X_1$. Since $u \in A_0$ and A_0 has no maximal element, we can take $u' \in A_0$ with $u < u'$. By $u' \in A_0$, there is $v' \in X_1$ with $\langle u', v' \rangle \in A$. Then from $\langle u, v \rangle < \langle u', v' \rangle \in A$, we see $\langle u, v \rangle \in A$, because A is a 0-segment. \square

Lemma 2.1 shows $0\text{-}\text{cf} A_0 = 0\text{-}\text{cf} A = \omega$. The following claim contradicts the condition (2a).

Claim 2. A_0 is closed in X_0.

Proof. Let $u \in X_0 \setminus A_0$. Whenever $u' < u$ for some $u' \in X_0 \setminus A_0$, (u', \rightarrow) is a neighborhood of u disjoint from A_0. So assume the other case, that is, $u = \min(X_0 \setminus A_0)$. Note $A_0 = (\leftarrow, u)$. If X_1 has no minimal element,
then by (2d), we have 0-cf$(\leftarrow, u) \neq \omega$, a contradiction. Thus X_1 has a minimal element, therefore $\langle u, \min X_1 \rangle = \min(X \setminus A) \notin A$. Since A is closed, there are $u^* \in X_0^*$ and $v^* \in X_1^*$ such that $\langle u^*, v^* \rangle < \langle u, \min X_1 \rangle$ and $\langle (\langle u^*, v^* \rangle, \rightarrow \rangle) \setminus X \rangle \cap A = \emptyset$. $\langle u^*, v^* \rangle < \langle u, \min X_1 \rangle$ shows $u^* < u$, so $(u^*, \rightarrow) \cap X_0$ is a neighborhood of u disjoint from A_0.

Case 2. A_0 has a maximal element.

In this case, let $A_1 = \{v \in X_1 : \langle \max A_0, v \rangle \in A\}$. Then A_1 is a non-empty 0-segment of X_1. Since $\{\max A_0\} \times A_1$ is unbounded in the 0-segment A, we see 0-cf$_{X_1} A_1 = 0$-cf$_X A = \omega$.

Claim 3. A_1 is closed in X_1.

Proof. Let $v \in X_1 \setminus A_1$. Since $\langle \max A_0, v \rangle \notin A$ and A is closed, there are $u^* \in X_0^*$ and $v^* \in X_1^*$ such that $\langle u^*, v^* \rangle < \langle \max A_0, v \rangle$ and $\langle (\langle u^*, v^* \rangle, \rightarrow) \setminus X \rangle \cap A = \emptyset$. It follows from $A_1 \neq \emptyset$ that $u^* = \max A_0$ and so $v^* < v$. Then we see that $\langle v^*, \rightarrow \rangle_{X_1} \cap X_1$ is a neighborhood of v disjoint from A_1.

This claim with the condition (2b) shows $A_1 = X_1$, which says $A = (\leftarrow, \max A_0) \times X_1$, in particular, we see that X_1 has no maximal element.

Claim 4. $\langle \max A_0, \rightarrow \rangle$ has no minimal element or X_1 has no minimal element.

Proof. Assume that $\langle \max A_0, \rightarrow \rangle$ has a minimal element u_0 and X_1 has a minimal element, then note $\langle u_0, \min X_1 \rangle = \min(X \setminus A)$. Since A is closed in X, there are $u^* \in X_0^*$ and $v^* \in X_1^*$ such that $\langle u^*, v^* \rangle < \langle u_0, \min X_1 \rangle$ and $\langle (\langle u^*, v^* \rangle, \rightarrow) \setminus X \rangle \cap A = \emptyset$. Then we have $u^* = \max A_0$. Since X_1 has no maximal element, pick $v \in X_1$ with $v^* < v$. Then we see $\langle \max A_0, v \rangle \in \langle (\langle u^*, v^* \rangle, \rightarrow) \setminus X \rangle \cap A$, a contradiction.

Now the condition (2c) shows 0-cf$_{X_1} X_1 \neq \omega$, a contradiction. This completes the proof of the lemma.

3. **A general case**

In this section, using the results in the previous section, we characterize the countable compactness of lexicographic products of any length of GO-spaces. We use the following notations.

Definition 3.1. Let $X = \prod_{\alpha < \gamma} X_\alpha$ be a lexicographic product of GO-spaces. Define:

$$J^+ = \{\alpha < \gamma : X_\alpha \text{ has no maximal element}\}.$$
\[J^- = \{ \alpha < \gamma : X_\alpha \text{ has no minimal element.} \}, \]

\[K^+ = \{ \alpha < \gamma : \text{there is } x \in X_\alpha \text{ such that } (x, \to)_{X_\alpha} \text{ is non-empty and has no minimal element.} \}, \]

\[K^- = \{ \alpha < \gamma : \text{there is } x \in X_\alpha \text{ such that } (\leftarrow, x)_{X_\alpha} \text{ is non-empty and has no maximal element.} \}, \]

\[L^+ = \{ \alpha \leq \gamma : \text{there is } u \in \prod_{\beta < \alpha} X_\beta \text{ with } 0-\text{cf}_{\prod_{\beta < \alpha}} x_\beta (\leftarrow, u) = \omega \}, \]

\[L^- = \{ \alpha \leq \gamma : \text{there is } u \in \prod_{\beta < \alpha} X_\beta \text{ with } 1-\text{cf}_{\prod_{\beta < \alpha}} x_\beta (u, \to) = \omega \}, \]

For an ordinal \(\alpha \), let

\[l(\alpha) = \begin{cases} 0 & \text{if } \alpha < \omega, \\ \sup \{ \beta \leq \alpha : \beta \text{ is limit.} \} & \text{if } \alpha \geq \omega. \end{cases} \]

Some of the definitions above are introduced in [7]. Note that 0 \(\notin \) \(L^+ \cup L^- \) and for an ordinal \(\alpha \geq \omega \), \(l(\alpha) \) is the largest limit ordinal less than or equal to \(\alpha \), therefore the half open interval \([l(\alpha), \alpha)\) of ordinals is finite.

We also remark:

Lemma 3.2. Let \(X = \prod_{\alpha \leq \gamma} X_\alpha \) be a lexicographic product of GO-spaces. If \(\omega \leq \gamma \), then \(\omega \in L^+ \cap L^- \) holds.

Proof. Assume \(\omega \leq \gamma \). For each \(n \in \omega \), fix \(u_0(n), u_1(n) \in X_n \) with \(u_0(n) < u_1(n) \). Set \(y = \langle u_1(n) : n \in \omega \rangle \). Moreover for each \(n \in \omega \), set \(y_n = \langle u_1(i) : i < n \rangle \wedge \langle u_0(i) : n \leq i \rangle \). Then \(\{y_n : n \in \omega \} \) is a 0-order preserving unbounded sequence in \((\leftarrow, y)\) in \(\prod_{n \in \omega} X_n \), therefore \(\omega \in L^+ \). The statement \(\omega \in L^- \) is similar. \(\square \)

Theorem 3.3. Let \(X = \prod_{\alpha \leq \gamma} X_\alpha \) be a lexicographic product of GO-spaces. Then the following are equivalent:

1. \(X \) is countably 0-compact,
2. the following clauses hold:
 a. \(X_\alpha \) is boundedly countably 0-compact for every \(\alpha < \gamma \),
 b. if \(L^+ \neq \emptyset \), then \(J^- \subset \min L^+ \),
 c. for every \(\alpha < \gamma \), if any one of the following cases holds, then \(0-\text{cf}_{X_\alpha} X_\alpha \neq \omega \) holds,
 i. \(J^+ \cap [l(\alpha), \alpha) = \emptyset \),
 ii. \(J^+ \cap [l(\alpha), \alpha) \neq \emptyset \) and \((\alpha_0, \alpha] \cap J^- \neq \emptyset \), where \(\alpha_0 = \max(J^+ \cap [l(\alpha), \alpha)) \),
 iii. \(J^+ \cap [l(\alpha), \alpha) \neq \emptyset \) and \([\alpha_0, \alpha) \cap K^+ \neq \emptyset \), where \(\alpha_0 = \max(J^+ \cap [l(\alpha), \alpha)) \).
Proof. Note that (2a)+(2ci) implies that X_0 is countably 0-compact. Let $X = \prod_{\alpha < \gamma} X^*_\alpha$.

(1) \Rightarrow (2) Assume that X is countably 0-compact.

(a) Let $\alpha_0 < \gamma$. Since $X = \prod_{\alpha \leq \alpha_0} X_\alpha \times \prod_{\alpha_0 < \alpha} X_\alpha$, see [6, Lemma 1.5], and X is countably 0-compact, Lemma 2.2 shows that $\prod_{\alpha \leq \alpha_0} X_\alpha$ is countably 0-compact. Now by $\prod_{\alpha < \alpha_0} X_\alpha = \prod_{\alpha < \alpha_0} X_\alpha \times \prod_{\alpha_0 < \alpha} X_\alpha$ and Lemma 2.2 again, we see that X_{α_0} is boundedly countably 0-compact.

(b) Assume $L^+ \neq \emptyset$ and $\alpha_0 = \min L^+$. Then Lemma 3.2 shows $\alpha_0 \leq \omega$. From $\alpha_0 \in L^+$, one can take $u \in \prod_{\alpha < \alpha_0} X_\alpha$ such that 0-$\text{cf}\prod_{\alpha < \alpha_0} X_\alpha(\leftarrow, u) = \omega$. Now since $X = \prod_{\alpha < \alpha_0} X_\alpha \times \prod_{\alpha_0 < \alpha} X_\alpha$ is countably 0-compact, Lemma 2.2 (d) shows that $\prod_{\alpha_0 < \alpha} X_\alpha$ has a minimal element. Therefore X_α has a minimal element for every $\alpha \geq \alpha_0$, which shows $J^- \subset \alpha_0$.

(c) Let $\alpha_0 < \gamma$. We will see 0-$\text{cf}_{X_{\alpha_0}} X_{\alpha_0} \neq \omega$ in each case of (i), (ii) and (iii).

Case (i), i.e., $J^+ \cap [l(\alpha_0), \alpha_0) = \emptyset$.

Since X is countably 0-compact and $X = \prod_{\alpha \leq \alpha_0} X_\alpha \times \prod_{\alpha_0 < \alpha} X_\alpha$, Lemma 2.2 shows that $\prod_{\alpha \leq \alpha_0} X_\alpha$ is also countably 0-compact. When $\alpha_0 = 0$, by countable 0-compactness of $\prod_{\alpha \leq \alpha_0} X_\alpha = X_{\alpha_0}$, we see 0-$\text{cf}_{X_{\alpha_0}} X_{\alpha_0} \neq \omega$. So let $\alpha_0 > 0$. We divide into two cases.

Case (i)-1. $l(\alpha_0) = 0$, i.e., $\alpha_0 < \omega$.

In this case, since $\prod_{\alpha < \alpha_0} X_\alpha$ has a maximal element, which implies $(\max_{\alpha < \alpha_0} X_\alpha, \to)$ has no minimal element, and $\prod_{\alpha < \alpha_0} X_\alpha \times X_{\alpha_0}$ is countably 0-compact, Lemma 2.2 (2c) shows 0-$\text{cf}_{X_{\alpha_0}} X_{\alpha_0} \neq \omega$.

Case (i)-2. $l(\alpha_0) \geq \omega$ i.e., $\alpha_0 \geq \omega$.

In this case, note that for every $\alpha \in [l(\alpha_0), \alpha_0)$, X_α has a maximal element. For every $\alpha < l(\alpha_0)$, fix $x_0(\alpha), x_1(\alpha) \in X_\alpha$ with $x_0(\alpha) < x_1(\alpha)$, and let $y = (x_0(\alpha) : \alpha < l(\alpha_0))^\land (\max X_\alpha : l(\alpha_0) \leq \alpha < \alpha_0)$. Moreover for every $\beta < l(\alpha_0)$, let $y_\beta = (x_0(\alpha) : \alpha < \beta)^\land (x_1(\alpha) : \beta \leq \alpha < l(\alpha_0))^\land (\max X_\alpha : l(\alpha_0) \leq \alpha < \alpha_0)$. Then $\{y_\beta : \beta < l(\alpha_0)\}$ is 1-order preserving and unbounded in (y, \to), in particular, the interval (y, \to) in $\prod_{\alpha < \alpha_0} X_\alpha$ has no minimal element. Now Lemma 2.2 (2c) shows 0-$\text{cf}_{X_{\alpha_0}} X_{\alpha_0} \neq \omega$.

Case (ii), i.e., $J^+ \cap [l(\alpha_0), \alpha_0) \neq \emptyset$ and $(\alpha_1, \alpha_0) \cap J^- \neq \emptyset$, where $\alpha_1 = \max(J^+ \cap [l(\alpha_0), \alpha_0))$.

Note that α_1 is well-defined because $[l(\alpha_0), \alpha_0)$ is finite. Also let $\alpha_2 = \max((\alpha_1, \alpha_0) \cap J^-)$, then note $0 \leq l(\alpha_0) \leq \alpha_1 < \alpha_2 \leq \alpha_0$, in particular $[0, \alpha_2) \neq \emptyset$.

\textbf{COUNTABLE COMPACTNESS OF LEXICOGRAPHIC PRODUCTS} 9
Case (ii)-1. $\alpha_2 = \alpha_0$.

Since $\prod_{\alpha < \alpha_0} X_\alpha \times X_{\alpha_0}$ ($= \prod_{\alpha \leq \alpha_0} X_\alpha$) is countably 0-compact, Lemma 2.2 (2c) shows $0\text{-}\text{cf}_{X_{\alpha_0}} X_{\alpha_0} \neq \omega$.

Case (ii)-2. $\alpha_2 < \alpha_0$.

Note that by the definition of α_2, X_α has a minimal element for every $\alpha \in (\alpha_2, \alpha_0]$. Fixing $z \in \prod_{\alpha < \alpha_2} X_\alpha$, let $y = z^\langle \max X_\alpha : \alpha_2 \leq \alpha < \alpha_0 \rangle$, then $y \in \prod_{\alpha < \alpha_0} X_\alpha$.

Claim 1. $(y, \to)_{\prod_{\alpha < \alpha_0} X_\alpha}$ is non-empty and has no minimal element.

Proof. Because X_{α_2} has no maximal element, fix $u \in X_{\alpha_2}$ with $y(\alpha_1) < u$. Then $(y \upharpoonright \alpha_2)^\langle u \rangle \langle (\alpha_1, \alpha_0) \rangle \in (y, \to)$, which shows $(y, \to) \neq \emptyset$. Next assume $y < y' \in \prod_{\alpha < \alpha_0} X_\alpha$. Since $y(\alpha) = \max X_\alpha$ for every $\alpha \in [\alpha_2, \alpha_0)$, we have $y \upharpoonright \alpha_2 < y' \upharpoonright \alpha_2$. Since X_{α_2} has no minimal element, fix $u \in X_{\alpha_2}$ with $u < y'(\alpha_2)$. Then we have $y < (y' \upharpoonright \alpha_2)^\langle u \rangle \langle (\alpha_2, \alpha_0) \rangle < y'$, which shows that (y, \to) has no minimal element. \hfill \Box

Now because $\prod_{\alpha < \alpha_0} X_\alpha \times X_{\alpha_0}$ is countably 0-compact, Lemma 2.2 (2c) and the claim above show $0\text{-}\text{cf}_{X_{\alpha_0}} X_{\alpha_0} \neq \omega$.

Case (iii), i.e., $J^+ \cap [l(\alpha_0), \alpha_0) \neq \emptyset$ and $[\alpha_1, \alpha_0) \cap K^+ \neq \emptyset$, where $\alpha_1 = \max(J^+ \cap [l(\alpha_0), \alpha_0))$.

Let $\alpha_2 = \max([\alpha_1, \alpha_0) \cap K^+]$, then note $l(\alpha_0) \leq \alpha_1 \leq \alpha_2 < \alpha_0$. Fixing $z \in \prod_{\alpha < \alpha_2} X_\alpha$ and $u \in X_{\alpha_2}$ satisfying that (u, \to) is non-empty and has no minimal element, let $y = z^\langle u \rangle \langle \max X_\alpha : \alpha_2 < \alpha < \alpha_0 \rangle$. Then obviously $y \in \prod_{\alpha < \alpha_0} X_\alpha$ and (y, \to) has no minimal element. Since $\prod_{\alpha < \alpha_0} X_\alpha \times X_{\alpha_0}$ is countable 0-compact, Lemma 2.2 (2c) shows $0\text{-}\text{cf}_{X_{\alpha_0}} X_{\alpha_0} \neq \omega$.

$(2) \Rightarrow (1)$: Assuming (2) and the negation of (1), take a closed 0-segment A of X with $0\text{-}\text{cf}_X A = \omega$. Modifying the proof of Theorem 4.8 in [7], we consider 3 cases and their subcases. In each case, we will derive a contradiction.

Case 1. $A = X$.

In this case, since X has no maximal element, we have $J^+ \neq \emptyset$, so let $\alpha_0 = \min J^+$. Then $J^+ \cap [l(\alpha_0), \alpha_0) \subset J^+ \cap [0, \alpha_0) = \emptyset$ and the condition (2ci) shows $0\text{-}\text{cf}_{X_{\alpha_0}} X_{\alpha_0} \geq \omega_1$. Since $\{\max X_\alpha : \alpha < \alpha_0\} \times X_{\alpha_0}$ is unbounded in $\prod_{\alpha \leq \alpha_0} X_\alpha$, we have $0\text{-}\text{cf}_{\prod_{\alpha \leq \alpha_0} X_\alpha} \prod_{\alpha \leq \alpha_0} X_\alpha = 0\text{-}\text{cf}_{X_{\alpha_0}} X_{\alpha_0} \geq \omega_1$. Now by $X = \prod_{\alpha \leq \alpha_0} X_\alpha \times \prod_{\alpha \leq \alpha_0} X_\alpha$, Lemma 2.1 shows $0\text{-}\text{cf}_X A = 0\text{-}\text{cf}_X X = 0\text{-}\text{cf}_{\prod_{\alpha \leq \alpha_0} X_\alpha} \prod_{\alpha \leq \alpha_0} X_\alpha = 0\text{-}\text{cf}_{X_{\alpha_0}} X_{\alpha_0} \geq \omega_1$, a contradiction.
Case 2. $A \neq X$ and $X \setminus A$ has a minimal element.

Let $B = X \setminus A$ and $b = \min B$. Since A is non-empty closed and $B = [b, \to)$, there is $b^* \in X$ with $b^* < b$ and $((b^*, \to) \cap X) \cap A = \emptyset$, equivalently $(b^*, b) \notin X$. Note $b^* \notin X$ because A has no maximal element. Let $\alpha_0 = \min \{ \alpha < \gamma : b^*(\alpha) \neq b(\alpha) \}$.

Claim 2. For every $\alpha > \alpha_0$, X_α has a minimal element and $b(\alpha) = \min X_\alpha$.

Proof. Assuming $b(\alpha) > u$ for some $\alpha > \alpha_0$ and $u \in X_\alpha$, let $\alpha_1 = \min \{ \alpha > \alpha_0 : \exists u \in X_\alpha (b(\alpha) > u) \}$ and fix $u \in X_{\alpha_1}$ with $b(\alpha_1) > u$. Then we have $b^* < (b \upharpoonright \alpha_1)^{\langle u \rangle ^\wedge} (b \upharpoonright (\alpha_1, \gamma)) < b$, a contradiction. \hfill \square

Claim 3. $(b^*(\alpha_0), b(\alpha_0))_{X_{\alpha_0}} \cap X_{\alpha_0} = \emptyset$.

Proof. Assume $u \in (b^*(\alpha_0), b(\alpha_0))_{X_{\alpha_0}} \cap X_{\alpha_0}$ for some u. Then we have $b^* < (b \upharpoonright \alpha_0)^{\langle u \rangle ^\wedge} (b \upharpoonright (\alpha_0, \gamma)) < b$, a contradiction. \hfill \square

Claim 4. $[b(\alpha_0), \to)_{X_{\alpha_0}} \notin \lambda_{X_{\alpha_0}}$, therefore $b^*(\alpha_0) \notin X_{\alpha_0}$.

Proof. It follows from $b^*(\alpha_0) \in (\leftarrow, b(\alpha_0))_{X_{\alpha_0}}$ that $(\leftarrow, b(\alpha_0))_{X_{\alpha_0}} \neq \emptyset$. Assume $(b(\alpha_0), \to)_{X_{\alpha_0}} \in \lambda_{X_{\alpha_0}}$, then for some $u \in X_{\alpha_0}$ with $u < b(\alpha_0)$, $(u, b(\alpha_0)) = \emptyset$. Claim 3 shows $b^*(\alpha_0) = u \in X_{\alpha_0}$. If there were $\alpha > \alpha_0$ and $v \in X_\alpha$ with $v > b^*(\alpha)$, then by letting $\alpha_1 = \min \{ \alpha > \alpha_0 : \exists v \in X_\alpha (v > b^*(\alpha)) \}$ and taking $v \in X_{\alpha_1}$ with $v > b^*(\alpha_1)$, we have $b^* < (b^* \upharpoonright \alpha_1)^{\langle u \rangle ^\wedge} (b^* \upharpoonright (\alpha_1, \gamma)) < b$, a contradiction. Therefore for every $\alpha > \alpha_0$, max X_α exists and $b^*(\alpha) = \text{max } X_\alpha$. Thus we have $b^* = (b \upharpoonright \alpha_0)^{\langle u \rangle ^\wedge} (\text{max } X_\alpha : \alpha_0 < \alpha) \notin X$ a contradiction. \hfill \square

Claims 3 and 4 show that $A_0 := (\leftarrow, b(\alpha_0))$ is a bounded closed 0-segment of X_{α_0} without a maximal element. Now the condition (2a) shows 0-cf $X_{\alpha_0} A_0 \geq \omega_1$. Since $\{ b \upharpoonright \alpha_0 \} \times A_0 \times \{ b \upharpoonright (\alpha_0, \gamma) \}$ is unbounded in the 0-segment in $A (= (\leftarrow, b)_X)$, we have $\omega = 0$-cf $X = 0$-cf $X_{\alpha_0} A_0 \geq \omega_1$, a contradiction. This completes Case 2.

Case 3. $A \neq X$ and $X \setminus A$ has no minimal element.

Let $B = X \setminus A$ and

$$I = \{ \alpha < \gamma : \exists a \in A \exists b \in B (a \upharpoonright (\alpha + 1) = b \upharpoonright (\alpha + 1)) \}.$$

Obviously I is a 0-segment of γ, so $I = \alpha_0$ for some $\alpha_0 \leq \gamma$. For each $\alpha < \alpha_0$, fix $a_\alpha \in A$ and $b_\alpha \in B$ with $a_\alpha \upharpoonright (\alpha + 1) = b_\alpha \upharpoonright (\alpha + 1)$. By letting $Y_0 = \prod_{\alpha < \alpha_0} X_\alpha$ and $Y_1 = \prod_{\alpha_0 \leq \alpha} X_\alpha$, define $y_0 \in Y_0$ by $y_0(\alpha) = a_\alpha(\alpha)$ for every $\alpha < \alpha_0$. The ordinal α_0 can be 0, then in this case, $Y_0 = \{ \emptyset \}$ and $y_0 = \emptyset$.
Claim 5. For every $\alpha < \alpha_0$, $y_0 \upharpoonright (\alpha + 1) = a_\alpha \upharpoonright (\alpha + 1) = b_\alpha \upharpoonright (\alpha + 1)$ holds.

Proof. The second equality is obvious. To see the first equality, assuming $y_0 \upharpoonright (\alpha + 1) \neq a_\alpha \upharpoonright (\alpha + 1)$ for some $\alpha < \alpha_0$, let $\alpha_1 = \min\{\alpha < \alpha_0 : y_0 \upharpoonright (\alpha + 1) \neq a_\alpha \upharpoonright (\alpha + 1)\}$. Moreover let $\alpha_2 = \min\{\alpha \leq \alpha_1 : y_0(\alpha) \neq a_{\alpha_1}(\alpha)\}$. It follows from $y_0(\alpha_1) = a_{\alpha_1}(\alpha_1)$ that $\alpha_2 < \alpha_1$. Since $y_0 \upharpoonright \alpha_2 = a_{\alpha_1} \upharpoonright \alpha_2$, and $y_0(\alpha_2) \neq a_{\alpha_1}(\alpha_2)$ holds, by the minimality of α_1, we have $y_0 \upharpoonright (\alpha_2 + 1) = a_{\alpha_2} \upharpoonright (\alpha_2 + 1) = b_{\alpha_2} \upharpoonright (\alpha_2 + 1)$. When $y_0(\alpha_2) < a_{\alpha_1}(\alpha_2)$, we have $B \ni b_{\alpha_2} < a_{\alpha_1} \in A$, a contradiction. When $y_0(\alpha_2) > a_{\alpha_1}(\alpha_2)$, we have $B \ni b_{\alpha_2} < a_{\alpha_2} \in A$, a contradiction. □

Claim 5 remains true when $\alpha_0 = 0$, because there is no ordinal α with $\alpha < \alpha_0$.

Claim 6. $\alpha_0 < \gamma$.

Proof. Assume $\alpha_0 = \gamma$, then note $y_0 \in Y_0 = X = A \cup B$. Assume $y_0 \in A$. Since A has no maximal element, one can take $a \in A$ with $y_0 < a$. Letting $\beta_0 = \min\{\beta < \gamma : y_0(\beta) \neq a(\beta)\}$, we see $A \ni b_{\beta_0} < B$, a contradiction. The remaining case is similar. □

Let $A_0 = \{a(\alpha_0) : a \in A, a \upharpoonright \alpha_0 = y_0\}$ and $B_0 = \{b(\alpha_0) : b \in B, b \upharpoonright \alpha_0 = y_0\}$.

Claim 7. The following hold:

(1) for every $a \in A$, $a \upharpoonright \alpha_0 \leq y_0$ holds,

(2) for every $x \in X$, if $x \upharpoonright \alpha_0 < y_0$, then $x \in A$.

Proof. (1) Assume $a \upharpoonright \alpha_0 > y_0$ for some $a \in A$. Letting $\beta_0 = \min\{\beta < \alpha_0 : a(\beta) \neq y_0(\beta)\}$, we see $B \ni b_{\beta_0} < a \in A$, a contradiction.

(2) Assume $x \upharpoonright \alpha_0 < y_0$. Letting $\beta_0 = \min\{\beta < \alpha_0 : x(\beta) \neq y_0(\beta)\}$, we see $x < a_{\beta_0} \in A$. Since A is a 0-segment, we have $x \in A$. □

Similarly we have:

Claim 8. The following hold:

(1) for every $b \in B$, $b \upharpoonright \alpha_0 \geq y_0$ holds,

(2) for every $x \in X$, if $x \upharpoonright \alpha_0 > y_0$, then $x \in B$.

Claim 9. A_0 is a 0-segment of X_{α_0} and $B_0 = X_{\alpha_0} \setminus A_0$.

Proof. To see that A_0 is a 0-segment, let $u' < u \in A_0$. Pick $a \in A$ with $a \upharpoonright \alpha_0 = y_0$ and $u = a(\alpha_0)$. Let $a' = (a \upharpoonright \alpha_0)^\upharpoonright \langle u' \rangle^\upharpoonright (a \upharpoonright (\alpha_0, \gamma))$. Since A is a 0-segment and $a' < a \in A$, we have $a' \in A$. Now we see $u' = a'(\alpha_0) \in A_0$ because of $a' \upharpoonright \alpha_0 = y_0$.

To see $B_0 = X_{\alpha_0} \setminus A_0$, first let $u \in B_0$. Take $b \in B$ with $b \upharpoonright \alpha_0 = y_0$ and $b(\alpha_0) = u$. If $u \in A_0$ were true, then by taking $a \in A$ with
Assume one inclusion follows from Claim 7 (2). To see the other inclusion, let \(u \in X_{\alpha_0} \setminus A_0\). Take \(x \in X\) with \(x \uparrow (\alpha_0 + 1) = y_0 \wedge (u)\). If \(x \in A\) were true, then by \(x \uparrow \alpha_0 = y_0\), we have \(u = x(\alpha_0) \in A_0\), a contradiction. So we have \(x \in B\), therefore \(u \in B_0\).

\[\text{Claim 10. } A_0 \neq \emptyset.\]

Proof. Assume \(A_0 = \emptyset\). We prove the following facts.

Fact 1. \((\leftarrow, y_0) Y_0 \times Y_1 = A\).

Proof. One inclusion follows from Claim 7 (2). To see the other inclusion, let \(a \in A\). Claim 7 (1) shows \(a \uparrow \alpha_0 \leq y_0\). If \(a \uparrow \alpha_0 = y_0\) were true, then we have \(a(\alpha_0) \in A_0\), a contradiction. So we have \(a \uparrow \alpha_0 < y_0\) therefore \(a \in (\leftarrow, y_0) Y_0 \times Y_1\).

Fact 2. \(\alpha_0 > 0\) and \(\alpha_0\) is limit.

Proof. If \(\alpha_0 = 0\) were true, then by taking \(a \in A\), we have \(a(\alpha_0) \in A_0\), a contradiction. Therefore we have \(\alpha_0 > 0\). Next if \(\alpha_0 = \beta_0 + 1\) were true for some ordinal \(\beta_0\), then by \(\beta_0 \in \alpha_0\) and Claim 5, we have \(y_0 \uparrow \alpha_0 = y_0 \uparrow (\beta_0 + 1) = a_{\beta_0} \uparrow (\beta_0 + 1) = a_{\beta_0} \uparrow \alpha_0\), thus we have \(a_{\beta_0}(\alpha_0) \in A_0\), a contradiction. Thus \(\alpha_0\) is limit.

Now Claim 6 and Fact 2 show \(\omega \leq \alpha_0 < \gamma\), so Lemma 3.2 shows \(\omega \in L^+\). Moreover the condition (2b) shows \(J^- \subset \min L^+ \leq \omega \leq \alpha_0\), in particular, \(X_\alpha\) has a minimal element for every \(\alpha \geq \alpha_0\). This means \(Y_1 = \prod_{\alpha_0 \leq \alpha} X_\alpha\) has a minimal element. Now by Fact 1, we see \(y_0 \wedge \min Y_1 = \min(X \setminus A)\), which contradicts our case.

Next let \(Z_0 = \prod_{\alpha_0 \leq \alpha} X_\alpha\), \(Z_1 = \prod_{\alpha_0 < \alpha} X_\alpha\) and

\[A^* = \{z \in Z_0 : z \uparrow \alpha_0 < y_0\ \text{or}\ (z \uparrow \alpha_0 = y_0, z(\alpha_0) \in A_0)\}.\]

Note \(A^* = ((\leftarrow, y_0) X_{\alpha_0}) \cup \{y_0\} \times A_0\).

Claim 11. \(A^*\) is a 0-segment of \(Z_0\) and \(A = A^* \times Z_1\).

Proof. Since \(A_0\) is a 0-segment of \(X_{\alpha_0}\), \(A^*\) is obviously a 0-segment of \(Z_0\). To see \(A \subset A^* \times Z_1\), let \(a \in A\). Claim 7 (1) shows \(a \uparrow \alpha_0 \leq y_0\). When \(a \uparrow \alpha_0 < y_0\), obviously we have \(a \uparrow (\alpha_0 + 1) \in A^*\). When \(a \uparrow \alpha_0 = y_0\), \(a \in A\) shows \(a(\alpha_0) \in A_0\) thus \(a \uparrow (\alpha_0 + 1) \in A^*\). To see \(A \supset A^* \times Z_1\), let \(a \in A^* \times Z_1\). Then note \(a \uparrow (\alpha_0 + 1) \in A^*\). When \(a \uparrow \alpha_0 < y_0\), let \(\beta_0 = \min\{\beta < \alpha_0 : a(\beta) \neq y_0(\beta)\}\), we see \(a < a_{\beta_0} \in A\) thus \(a \in A\). When \(a \uparrow \alpha_0 = y_0\) and \(a(\alpha_0) \in A_0\), Claim 9 shows \(a \in A\).
Since \(\{y_0\} \times A_0 \) is unbounded in the 0-segment \(A^* \), we see \(1 \leq 0-\text{cf}_{Z_0} A^* = 0-\text{cf}_{X_{\alpha_0}} A_0 \). We divide Case 3 into two subcases.

Case 3-1. \(0-\text{cf}_{Z_0} A^* \geq \omega \).

In this case, Claim 11 and Lemma 2.1 show \(\omega = 0-\text{cf}_X A = 0-\text{cf}_{Z_0} A^* = 0-\text{cf}_{X_{\alpha_0}} A_0 \).

Claim 12. \(A_0 \neq X_{\alpha_0} \).

Proof. Assume \(A_0 = X_{\alpha_0} \). \(0-\text{cf}_{X_{\alpha_0}} X_{\alpha_0} = 0-\text{cf}_{X_{\alpha_0}} A_0 = \omega \) shows \(\alpha_0 \in J^+ \). Assume \(\alpha_0 = \beta_0 + 1 \) for some ordinal \(\beta_0 \). Then \(\beta_0 < \alpha_0 = I \) shows \(b_{\beta_0} \in B \). Now from \(b_{\beta_0} \downarrow \alpha_0 = b_{\beta_0} \downarrow (\beta_0 + 1) = y_0 \downarrow (\beta_0 + 1) = y_0 \downarrow \alpha_0 \), we have \(b_{\beta_0}(\alpha_0) \in B_0 = X_{\alpha_0} \setminus A_0 \), a contradiction. Thus we see that \(\alpha_0 = 0 \) or \(\alpha_0 \) is limit, that is, \([I(\alpha_0), \alpha_0) = \emptyset \). Now the condition (2ci) shows \(0-\text{cf}_{X_{\alpha_0}} X_{\alpha_0} \neq \omega \), a contradiction.

Claim 13. \(A_0 \) is closed in \(X_{\alpha_0} \).

Proof. When \(B_0 \) has no minimal element, obviously \(A_0 \) is closed. So assume that \(B_0 \) has a minimal element, say \(u = \min B_0 \). It suffices to find a neighborhood of \(u \) disjoint from \(A_0 \). \(A^* = (\leftarrow, y_0 \uparrow \langle u \rangle)_{Z_0} \) and \(0-\text{cf}_{Z_0} A^* = \omega \) show \(\alpha_0 + 1 \in L^+ \), therefore \(\min L^+ \leq \alpha_0 + 1 \). The condition (2b) ensures \(J^+ \subseteq \min L^+ \leq \alpha_0 + 1 \), so \(J^+ \subseteq [0, \alpha_0] \). Therefore \(X_{\alpha} \) has a minimal element for every \(\alpha > \alpha_0 \). Let \(b = y_0 \uparrow \langle u \rangle \uparrow (\min X_{\alpha} : \alpha < \alpha) \). Since \(b \in B (= X \setminus A) \) and \(A \) is closed in \(X \), there is \(b^* \in X \) such that \(b^* < b \) and \((b^*, b)_X \cap A = \emptyset \). Set \(\beta_0 = \min\{\beta < \gamma : b^*(\beta) \neq b(\beta)\} \), then obviously \(\beta_0 \leq \alpha_0 \). If \(\beta_0 < \alpha_0 \) were true, we have \(a_{\beta_0} \in (b^*, b)_X \cap A \), a contradiction. Thus we have \(\beta_0 = \alpha_0 \), so \(b^* \uparrow \alpha_0 = y_0 \) and \(b^*(\alpha_0) < u \). If there were \(v \in (b^*(\alpha_0), \rightarrow)_{X_{\alpha_0}} \cap A_0 \), then \(v < u \) shows \(y_0 \uparrow \langle v \rangle \uparrow (\min X_{\alpha} : \alpha < \alpha) \in (b^*, b) \cap A \), a contradiction. Therefore \((b^*(\alpha_0), \rightarrow)_{X_{\alpha_0}} \cap X_{\alpha_0} \) is a neighborhood of \(u \) disjoint from \(A_0 \).

These claims above show that \(A_0 \) is a bounded closed 0-segment of \(X_{\alpha_0} \). Now the condition (2a) shows \(0-\text{cf}_{X_{\alpha_0}} A_0 \neq \omega \), a contradiction.

Case 3-2. \(0-\text{cf}_{Z_0} A^* = 1 \).

Since \(A = A^* \times Z_1 \), \(A^* \) has a maximal element but \(A \) has no maximal element, we see that \(Z_1 \) has no maximal element. Therefore \(X_{\alpha} \) has no maximal element for some \(\alpha > \alpha_0 \), in particular \((\alpha_0, \gamma) \neq \emptyset \). Let \(\alpha_1 = \min\{\alpha > \alpha_0 : X_{\alpha} \) has no maximal element. \}. Then we have \(\alpha_0 < \alpha_1 \in J^+ \) and \((\alpha_0, \alpha_1) \cap J^+ = \emptyset \). Since \(A = A^* \times Z_1 = A^* \times (\prod_{\alpha_0<\alpha_\leq \alpha_1} X_{\alpha} \times \prod_{\alpha_1<\alpha} X_{\alpha}) = (A^* \times \prod_{\alpha_0<\alpha_\leq \alpha_1} X_{\alpha}) \times \prod_{\alpha_1<\alpha} X_{\alpha} \) and \(A^* \times \prod_{\alpha_0<\alpha_\leq \alpha_1} X_{\alpha} \) is a 0-segment in \(\prod_{\alpha \leq \alpha_1} X_{\alpha} \) with no maximal
element, Lemma 2.1 shows $\omega = 0\text{-}cf X A = 0\text{-}cf (A^* \times \prod_{a_0 < a < a_1} X_a) = 0\text{-}cf_{X_{a_1}} X_{a_1}$ (that $\{y_0 \wedge (\max A_0) \wedge (\max X_{a}: a_0 < a < a_1)\} \times X_{a_1}$ is unbounded in the 0-segment $A^* \times \prod_{a_0 < a < a_1} X_a$ witnesses the last equality).

Claim 14. $l(\alpha_1) \leq \alpha_0$ and $J^+ \cap [l(\alpha_1), \alpha_0] \neq \emptyset$ hold, in particular $J^+ \cap [l(\alpha_1), \alpha_1) \neq \emptyset$.

Proof. First assume $\alpha_0 < l(\alpha_1)$. Then $J^+ \cap [l(\alpha_1), \alpha_1) \subset J^+ \cap (\alpha_0, \alpha_1) = \emptyset$ and the condition (2ci) show $0\text{-}cf_{X_{a_1}} X_{a_1} \neq \omega$, a contradiction. Thus we have $l(\alpha_1) \leq \alpha_0$.

Next assume $J^+ \cap [l(\alpha_1), \alpha_0] = \emptyset$, then we have $J^+ \cap [l(\alpha_1), \alpha_1) = \emptyset$ because of $J^+ \cap (\alpha_0, \alpha_1) = \emptyset$. Therefore the condition (2ci) shows $0\text{-}cf_{X_{a_1}} X_{a_1} \neq \omega$, a contradiction. Thus $J^+ \cap [l(\alpha_1), \alpha_0] \neq \emptyset$. \hfill \Box

Using the above claim, set $\alpha_2 = \max(J^+ \cap [l(\alpha_1), \alpha_1))$. Note $0 \leq l(\alpha_1) \leq \alpha_2 \leq \alpha_0 < \alpha_1$ and $J^+ \cap (\alpha_2, \alpha_1) = \emptyset$.

Claim 15. B_0 has a minimal element.

Proof. First we check $B_0 \neq \emptyset$, so assume $B_0 = \emptyset$, i.e., $A_0 = X_{a_0}$. $1 = 0\text{-}cf_{Z_0} A^* = 0\text{-}cf_{X_{a_0}} A_0 = 0\text{-}cf_{X_{a_0}} X_{a_0}$ shows $\alpha_0 \notin J^+$. Also $\alpha_2 \leq \alpha_0$ and $\alpha_2 \in J^+$ show $0 \leq \alpha_2 < \alpha_0$. Assume that $\alpha_0 = \beta_0 + 1$ for some ordinal β_0, then by $\beta_0 < \alpha_0 = I$, we have $b_{\beta_0} \in B$ and $b_{\beta_0} \upharpoonright \alpha_0 = b_{\beta_0} \upharpoonright (\beta_0 + 1) = y_0 \upharpoonright (\beta_0 + 1) = y_0 \upharpoonright \alpha_0$. Therefore we have $b_{\beta_0}(\alpha_0) \in B_0$, a contradiction. So we have $0 < \alpha_0$ and α_0 is limit, therefore $\alpha_0 \leq l(\alpha_1) \leq \alpha_2$, which contradicts $\alpha_2 < \alpha_0$. We have seen $B_0 \neq \emptyset$.

Next we check that B_0 has a minimal element. Assume that B_0 has no minimal element, then max A_0 witnesses $\alpha_0 \in [\alpha_2, \alpha_1) \cap K^+$. The definition of α_2 and the condition (2ciii) show $0\text{-}cf_{X_{a_1}} X_{a_1} \neq \omega$, a contradiction. \hfill \Box

Now since B has no minimal element, by the claim above, there is $\alpha > \alpha_0$ such that X_α has no minimal element. So let $\alpha_3 = \min\{\alpha > \alpha_0 : X_\alpha \text{ has no minimal element.}\}$. Then we have $\alpha_0 < \alpha_3 \in J^-$. When $\omega \leq \gamma$, Lemma 3.2 and the condition (2b) show $J^- \subset \min L^+ \leq \omega$. When $\gamma < \omega$, obviously $J^- \subset \omega$. So in any case we have $J^- \subset \omega$. Therefore $l(\alpha_1) \leq \alpha_0 < \alpha_3 \in \omega$ so we have $\alpha_1 \in \omega$.

Claim 16. $\alpha_3 \leq \alpha_1$.

Proof. Assume $\alpha_1 < \alpha_3$, then X_α has a minimal element for every $\alpha \in (\alpha_0, \alpha_1]$. So let $y = y_0 \wedge (\min B_0) \wedge (\min X_{\alpha} : \alpha_0 < \alpha < \alpha_1 \in \alpha_1)$. Note $y \in \prod_{\alpha \leq \alpha_1} X_\alpha$ and consider the interval (\leftarrow, y) in $\prod_{\alpha \leq \alpha_1} X_\alpha$. The definition of α_2 and $\alpha_2 \leq \alpha_0$ show that X_α has a maximal element for
every \(\alpha \in (\alpha_0, \alpha_1) \). Since \(\{y_0 \wedge \langle \max A_0 \rangle \wedge (\max X_\alpha : \alpha_0 < \alpha < \alpha_1) \} \times X_{\alpha_1} \) is unbounded in \((\langle \cdot \rangle, y)\), we have \(0-\text{cf}(\langle \cdot \rangle, y) = 0-\text{cf}_{X_{\alpha_1}} X_{\alpha_1} = \omega \). Thus \(y \) witnesses \(\alpha_1 + 1 \in L^+ \). The condition (2b) ensures \(J^- \subset \min L^+ \leq \alpha_1 + 1 \), thus \(\alpha_3 \in J^- \subset [0, \alpha_1] \), a contradiction. Now we have \(\alpha_3 \leq \alpha_1 \).

Now \(\alpha_3 \in (\alpha_0, \alpha_1] \cap J^- \subset (\alpha_2, \alpha_1] \cap J^- \), \(\alpha_2 = \max(J^+ \cap [l(\alpha_1), \alpha_1]) \) and the condition (2cii) show \(0-\text{cf}_{X_{\alpha_1}} X_{\alpha_1} \neq \omega \), a contradiction. This completes the proof of the theorem.

Analogously we can see:

Theorem 3.4. Let \(X = \prod_{\alpha<\gamma} X_\alpha \) be a lexicographic product of GO-spaces. Then the following are equivalent:

1. \(X \) is countably \(1 \)-compact,
2. the following clauses hold:
 a. \(X_\alpha \) is boundedly countably \(1 \)-compact for every \(\alpha < \gamma \),
 b. if \(L^- \neq \emptyset \), then \(J^+ \subset \min L^- \),
 c. for every \(\alpha < \gamma \), if any one of the following cases holds,
 then \(1-\text{cf}_{X_\alpha} X_\alpha \neq \omega \) holds,
 i. \(J^- \cap [l(\alpha), \alpha] = \emptyset \),
 ii. \(J^- \cap [l(\alpha), \alpha] \neq \emptyset \) and \((\alpha_0, \alpha] \cap J^+ \neq \emptyset \), where \(\alpha_0 = \max(J^+ \cap [l(\alpha), \alpha]) \),
 iii. \(J^- \cap [l(\alpha), \alpha] \neq \emptyset \) and \([\alpha_0, \alpha) \cap K^- \neq \emptyset \), where \(\alpha_0 = \max(J^- \cap [l(\alpha), \alpha]) \).

4. Applications

In this section, we apply the theorems in the previous section

Corollary 4.1. Let \(X = \prod_{\alpha<\gamma} X_\alpha \) be a lexicographic product of GO-spaces. Then the following hold:

1. if \(X \) is countably \(0 \)-compact, then \(J^- \subset \omega \),
2. if \(X \) is countably \(1 \)-compact, then \(J^+ \subset \omega \),
3. if \(X \) is countably \(0 \)-compact, then for every \(\delta < \gamma \), the lexicographic product \(\prod_{\alpha<\delta} X_\alpha \) is countably \(0 \)-compact, in particular \(X_0 \) is countably \(0 \)-compact,
4. if \(X \) is countably \(1 \)-compact, then for every \(\delta < \gamma \), the lexicographic product \(\prod_{\alpha<\delta} X_\alpha \) is countably \(1 \)-compact, in particular \(X_0 \) is countably \(1 \)-compact,

Proof. Lemma 3.2 and the condition (2b) in Theorem 3.3 show (1). (3) obviously follows from Theorem 3.3 or Lemma 2.2 directly. The remaining is similar.
Corollary 4.2. Let X be a GO-space. Then the lexicographic product X^ω_1 is countably compact if and only if X is countably compact and has both a minimal and a maximal element.

Proof. That X^ω_1 is countably compact implies that X is countably compact and has both a minimal and a maximal element follows from the corollary above. The other implication follows from the theorems in the previous section because of $J^+ = J^- = \emptyset$.

Corollary 4.3. Let $X = \prod_{\alpha < \gamma} X_\alpha$ be a lexicographic product of countably compact GO-spaces. Then the following are equivalent:

1. X is countably compact,
2. the following clauses hold:
 a. if $L^+ \neq \emptyset$, then $J^- \subset \min L^+$,
 b. if $L^- \neq \emptyset$, then $J^+ \subset \min L^-$.

Proof. Since all X_α’s are countably compact, (2a)+(2c) in Theorems 3.3 and 3.4 of the previous section are true.

Example 4.4. Let $[0,1)_R$ denote the unit half open interval in the real line \mathbb{R} with the usual order. Let X be the lexicographic product $[0,1)_R \times \omega_1$. Since $[0,1)_R$ is not countably 0-compact, Corollary 4.1 shows that X is not countably 0-compact. Both $[0,1)_R$ and ω_1 are countably 1-compact. Considering $X_0 = [0,1)_R$ and $X_1 = \omega_1$, we see $1 \in L^-$ (0 in $[0,1)_R$ witnesses this) therefore $1 = \min L^-$. Moreover by $1 \in J^+$, (2b) in Theorem 3.4 does not hold. Therefore X is neither countably 0-compact nor countably 1-compact. Note that X is not paracompact, see [7, Example 4.6].

Example 4.5. Let X be the lexicographic product $\omega_1 \times [0,1)_R$. Checking all clauses in the theorems in the previous section, we see that X is countably compact. Since it is not compact, it is not paracompact. The lexicographic product $\omega_1 \times [0,1)_R$ is called the long line of length ω_1 and denoted by $L(\omega_1)$.

Example 4.6. Let S be the Sorgenfrey line, where half open intervals $[a,b)_R$’s are declared to be open. Then it is known that $\omega_1 \times S$ is paracompact but $S \times \omega_1$ is not paracompact, see [7]. On the other hand, both lexicographic products $\omega_1 \times S$ and $S \times \omega_1$ are not countably compact, because S is not boundedly 0-compact.

Example 4.7. Let X be the lexicographic product $\omega_1 \times [0,1)_R \times \omega_1$, and consider as $X_0 = \omega_1$, $X_1 = [0,1)_R$ and $X_2 = \omega_1$. Then $\text{1-cf}_{\omega_1 \times [0,1)_R}((0,0), \to) = \omega$ shows $2 \in L^-$. Since $0,1 \notin L^-$, we have $\min L^- = 2$. Now $2 \in J^+$ implies $J^+ \notin \min L^-$. Thus Theorem 3.4
shows that X is not countably (1-) compact. On the other hand, we will later see that the lexicographic product $\omega_1 \times \omega \times \omega_1$ is countably compact.

Corollary 4.8. There is a countably compact LOTS X whose lexicographic square X^2 is not countably compact.

Proof. $X = L(\omega_1)$ is such an example, because $L(\omega_1)^2 = (\omega_1 \times [0, 1]_{\mathbb{R}} \times \omega_1) \times [0, 1]_{\mathbb{R}}$ (use Example 4.7). We will later see that the lexicographic product $X = \omega_1^\omega$ is also such an example.

In the rest of the paper, we consider countable compactness of lexicographic products whose all factors have minimal elements. In the following, apply theorems with $J^- = \emptyset$.

Corollary 4.9. Let $X = \prod_{\alpha < \gamma} X_\alpha$ be a lexicographic product of G sober spaces. If all X_α’s have minimal elements, then the following are equivalent:

1. X is countably 0-compact,
2. the following clauses hold:
 - (a) X_α is (boundedly) countably 0-compact for every $\alpha < \gamma$,
 - (b) for every $\alpha < \gamma$, if either one of the following cases holds, then $0-\text{cf}_{X_\alpha} X_\alpha \neq \omega$ holds,
 - (i) $J^+ \cap [l(\alpha), \alpha) = \emptyset$,
 - (ii) $J^+ \cap [l(\alpha), \alpha) \neq 0$ and $[\alpha_0, \alpha) \cap K^+ \neq \emptyset$, where $\alpha_0 = \max(J^+ \cap [l(\alpha), \alpha))$.

Corollary 4.10. Let $X = \prod_{\alpha < \gamma} X_\alpha$ be a lexicographic product of G sober spaces. If all X_α’s have minimal elements, then the following are equivalent:

1. X is countably 1-compact,
2. the following clauses hold:
 - (a) X_α is (boundedly) countably 1-compact for every $\alpha < \gamma$,
 - (b) if $L^- \neq \emptyset$, then $J^+ \subset \min L^-$.

Now we consider the case that all factors are subspaces of ordinals. First let X be a subspace of an ordinal. Since X is well-ordered, the following hold:

- X is countably 1-compact,
- X has a minimal element,
- for every $u \in X$ with $(u, \rightarrow) \neq \emptyset$, (u, \rightarrow) has a minimal element,
- there is $u \in X$ such that (\leftarrow, u) is non-empty and has no maximal element if and only if the order type of X is greater than ω.

Note that a subspace X of ω_1 is countably compact if and only if it is closed in ω_1, and also note that the subspace $X = \{ \alpha < \omega_2 : \text{cf} \alpha \leq \omega \}$ is countably compact but not closed in ω_2.

Next let X_α be a subspace of an ordinal for every $\alpha < \gamma$ and $X = \prod_{\alpha < \gamma} X_\alpha$ be a lexicographic product. Then using the notation in section 3, we see:

- $J^- = \emptyset$,
- $K^+ = \emptyset$,
- $\alpha \in K^-$ iff the order type of X_α is greater than ω.

Remarking these facts with Corollaries above, we see:

Corollary 4.11. Let $X = \prod_{\alpha<\gamma} X_\alpha$ be a lexicographic product. If all X_α’s are subspaces of ordinals, then the following are equivalent:

1. X is countably 0-compact,
2. the following clauses hold:
 a. X_α is boundedly countably 0-compact for every $\alpha < \gamma$,
 b. for every $\alpha < \gamma$ with $J^+ \cap (l(\alpha), \alpha) = \emptyset$, $\text{0-cf}_{X_\alpha} X_\alpha \neq \omega$ holds,

Corollary 4.12. Let $X = \prod_{\alpha<\gamma} X_\alpha$ be a lexicographic product. If all X_α’s are subspaces of ordinals, then the following are equivalent:

1. X is countably 1-compact,
2. $J^+ \subseteq \omega$.

Proof. (1) \Rightarrow (2) Assume that X is countably 1-compact. By Corollary 4.10, if $L^- \neq \emptyset$, then $J^+ \subseteq \text{min} L^-$. When $\gamma \geq \omega$, because of $\omega \in L^-$, we see $J^+ \subseteq \text{min} (\omega, L^-) \leq \omega$. When $\gamma < \omega$, obviously we see $J^+ \subseteq \gamma < \omega$.

(2) \Rightarrow (1) Assume $J^+ \subseteq \omega$. It suffices to check (2a) and (2b) in Corollary 4.10. (2a) is obvious. To see (2b), let $L^- \neq \emptyset$. Now assume $\omega \cap L^- \neq \emptyset$, and take $n \in \omega \cap L^-$. Then we can take $u \in \prod_{m<n} X_m$ with $1-\text{cf} (u, \rightarrow) = \omega$. But this is a contradiction, because a lexicographic product of finite length of subspaces of ordinals are also a subspace of ordinal, see [7, Lemma 4.3]. Therefore we have $\omega \cap L^- = \emptyset$. $L^- \neq \emptyset$ and Lemma 3.2 show $J^+ \subseteq \omega = \text{min} L^-$. \qed

If X is an ordinal, then it is boundedly countably 0-compact and $0-\text{cf}_X X = \text{cf} X$. Therefore we have:

Corollary 4.13. Let $X = \prod_{\alpha<\gamma} X_\alpha$ be a lexicographic product of ordinals. Then the following are equivalent:

1. X is countably compact,
2. the following clauses hold:
 a. if $J^+ \neq \emptyset$, then $\text{cf} X_{\min J^+} \geq \omega_1$,

Corollary 4.14. [4] The following clauses hold:

1. the lexicographic product \(\omega_1^\gamma \) is countably \(0 \)-compact for every ordinal \(\gamma \),

2. the lexicographic product \(\omega_1^\gamma \) is countably \(1 \)-compact iff \(\gamma \leq \omega \).

Example 4.15. Using Corollary 4.13, we see:

1. lexicographic products \(\omega_2, \omega_1 \times \omega, (\omega + 1) \times (\omega_1 + 1) \times \omega_1 \times \omega, \omega_1 \times \omega \times \omega_1, \omega_1 \times \omega \times \omega_1 \times \omega \times \cdots, \omega_1 \times \omega^\omega, \omega_1 \times \omega^\omega \times (\omega + 1), \omega_1^\omega, \omega_1^\omega \times (\omega_1 + 1) \) and \(\prod_{n \in \omega} \omega_{n+1} \) are countably compact,

2. lexicographic products \(\omega \times \omega_1, (\omega + 1) \times (\omega_1 + 1) \times \omega \times \omega_1, \omega \times \omega_1 \times \omega \times \omega_1 \times \cdots, \omega \times \omega^\omega, \omega_1 \times \omega^\omega \times \omega_1, \omega_1^\omega \times \omega, \omega_1^\omega \times \omega, \prod_{n \in \omega} \omega_n \) and \(\prod_{n \leq \omega} \omega_{n+1} \) are not countably compact,

3. let \(X = \omega_1^\omega \), then the lexicographic product \(X^2 \) is not countably compact because of \(X^2 = \omega_1^\omega \times \omega_1^\omega = \omega_1^{\omega+\omega} \), so this shows also Corollary 4.8.

For a GO-space \(X = \langle X, <_X, \tau_X \rangle \), \(-X \) denotes the reverse of \(X \), that is, the GO-space \(\langle X, >_X, \tau_X \rangle \), see [7]. Note that \(X \) and \(-X \) are topologically homeomorphic.

Example 4.16. As above, the lexicographic product \(\omega_1^2 \) was countably compact. But the lexicographic product \(\omega_1 \times (\omega_1) \) is not countably compact. Indeed, let \(X = \omega_1 \times (\omega_1), X_0 = \omega_1 \) and \(X_1 = -\omega_1 \), \(\omega \in X_0 \) with \(0\text{-}cf_{X_0}(\omega, -\omega) = cf \omega = \omega \) witnesses \(1 \in L^+, \) therefore \(\min L^+ = 1 \).

On the other hand \(-\omega_1 \) has no minimal element, so we have \(1 \in J^- \).

Therefore (2b) of Theorem 3.3 does not hold, thus \(X \) is not countably \((0-)\)-compact.

Also note that \((\omega_1) \times (\omega_1) \) is countably compact but \((\omega_1) \times \omega_1 \) is not countably compact, because \((\omega_1) \times (\omega_1) \) and \((\omega_1) \times \omega_1 \) are topologically homeomorphic to \(\omega_1^2 \) and \(\omega_1 \times (\omega_1) \) respectively, see [7].

Moreover \(\omega_1 \times (\omega) \) is directly shown not to be countably \((1-)\)-compact, because the \(1 \)-order preserving sequence \(\{ \langle 0, n \rangle : n \in \omega \} \) has no cluster point in \(\omega_1 \times (\omega) \).

Acknowledgment. The author thanks the reviewer for careful reading the manuscript and for giving useful comments.

References

Department of Mathematics, Oita University, Oita, 870-1192 Japan
E-mail address: nkemoto@cc.oita-u.ac.jp