COUNTABLE COMPACTNESS OF LEXICOGRAPHIC PRODUCTS OF GO-SPACES

NOBUYUKI KEMOTO

ABSTRACT. It is well-known:

• the usual Tychonoff product X^2 of a paracompact space X need not be paracompact, for instance, the Sorgenfrey line S is such an example.

On the other hand, the following is known:

• the lexicographic product $X = \prod_{\alpha < \gamma} X_{\alpha}$ of paracompact LOTS's is also paracompact [2].

In [6], the notion of the lexicographic product of GO-spaces is defined and the result above in [2] is extended for GO-spaces [6, 7], so the lexicographic product \mathbb{S}^2 is paracompact. It is also known that:

- the usual Tychonoff product of countably compact GO-spaces is also countably compact, therefore the usual Tychonoff product ω_1^{γ} is countably compact for every ordinal γ ,
- the lexicographic product ω_1^{ω} is countably compact, but the lexicographic product $\omega_1^{\omega+1}$ is not countably compact [4].

In this paper, we will characterize the countable compactness of lexicographic products of GO-spaces. Applying this characterization, about lexicographic products, we see:

- the lexicographic product X^2 of a countably compact GOspace X need not be countably compact,
- $\omega_1^2, \omega_1 \times \omega, (\omega+1) \times (\omega_1+1) \times \omega_1 \times \omega, \omega_1 \times \omega \times \omega_1, \omega_1 \times \omega \times \omega_1, \omega_1 \times \omega \times \omega_1 \times \omega \times \omega_1, \omega_1 \times \omega^{\omega}, \omega_1 \times \omega^{\omega} \times (\omega+1), \omega_1^{\omega}, \omega_1^{\omega} \times (\omega_1+1)$ and $\prod_{n \in \omega} \omega_{n+1}$ are countably compact,
- $\omega \times \omega_1, (\omega + 1) \times (\omega_1 + 1) \times \omega \times \omega_1, \omega \times \omega_1 \times \omega \times \omega_1 \times \cdots, \omega \times \omega_1^{\omega}, \omega_1 \times \omega^{\omega} \times \omega_1, \omega_1^{\omega} \times \omega, \prod_{n \in \omega} \omega_n \text{ and } \prod_{n \leq \omega} \omega_{n+1} \text{ are not countably compact,}$
- [0,1)_ℝ × ω₁, where [0,1)_ℝ denotes the half open interval in the real line ℝ, is not countably compact,
- $\omega_1 \times [0,1)_{\mathbb{R}}$ is countably compact,
- both $\mathbb{S} \times \omega_1$ and $\omega_1 \times \mathbb{S}$ are not countably compact,
- $\omega_1 \times (-\omega_1)$ is not countably compact, where for a GO-space $X = \langle X, \langle X, \tau_X \rangle$, -X denotes the GO-space $\langle X, \rangle_X, \tau_X \rangle$.

Date: December 1, 2018.

²⁰¹⁰ Mathematics Subject Classification. Primary 54F05, 54B10, 54B05. Secondary 54C05.

Key words and phrases. lexicographic product, GO-space, LOTS, countably compact.

1. INTRODUCTION

Lexicographic products of LOTS's were studied in [2] and it was proved:

- a lexicographic product of LOTS's is compact iff all factors are compact,
- a lexicographic products of paracompact LOTS's is also paracompact,

Recently, the author defined the notion of the lexicographic product of GO-spaces and extended the results above for GO-spaces, see [6, 7]. It is also known:

- the usual Tychonoff product of GO-spaces is countably compact iff all factors are countably compact, therefore the usual Tychonoff product ω_1^{γ} is countably compact for every ordinal γ ,
- the lexicographic product ω_1^{ω} is countably compact, but the lexicographic product $\omega_1^{\omega+1}$ is not countably compact [4].

In this paper, we will characterize the countable compactness of lexicographic products of GO-spaces, further give some applications.

When we consider a product $\prod_{\alpha < \gamma} X_{\alpha}$, all X_{α} are assumed to have cardinality at least 2 with $\gamma \geq 2$. Set theoretical and topological terminology follow [9] and [1].

A linearly ordered set $\langle L, <_L \rangle$ has a natural topology λ_L , which is called an interval topology, generated by $\{(\leftarrow, x)_L : x \in L\} \cup \{(x, \rightarrow)_L : x \in L\}$ as a subbase, where $(x, \rightarrow)_L = \{z \in L : x <_L z\}, (x, y)_L = \{z \in L : x <_L z <_L y\}, (x, y]_L = \{z \in L : x <_L z \leq_L y\}$ and so on. The triple $\langle L, <_L, \lambda_L \rangle$, which is simply denoted by L, is called a *LOTS*.

A triple $\langle X, \langle X, \tau_X \rangle$ is said to be a *GO-space*, which is also simply denoted by X, if $\langle X, \langle X \rangle$ is a linearly ordered set and τ_X is a T_2 topology on X having a base consisting of convex sets, where a subset C of X is *convex* if for every $x, y \in C$ with $x \langle X, y, [x, y]_X \subset C$ holds. For more information on LOTS's or GO-spaces, see [10]. Usually $\langle L, (x, y)_L, \lambda_L$ or τ_X are written simply $\langle X, (x, y), \lambda$ or τ if contexts are clear.

The symbols ω and ω_1 denote the first infinite ordinal and the first uncountable ordinal, respectively. Ordinals, which are usually denoted by Greek letters $\alpha, \beta, \gamma, \cdots$, are considered to be LOTS's with the usual intereval topologies. The cofinality of α is denoted by cf α .

For GO-spaces $X = \langle X, \langle X, \tau_X \rangle$ and $Y = \langle Y, \langle Y, \tau_Y \rangle$, X is said to be a *subspace* of Y if $X \subset Y$, the linear order $\langle X$ is the restriction $\langle Y \upharpoonright X$ of the order $\langle Y$ and the topology τ_X is the subspace topology $\tau_Y \upharpoonright X$ (= { $U \cap X : U \in \tau_Y$ }) on X of the topology τ_Y . So a subset of a GO-space is naturally considered as a GO-space. For every GO-space X, there is a LOTS X^* such that X is a dense subspace of X^* and X^* has the property that if L is a LOTS containing X as a dense subspace, then L also contains the LOTS X^* as a subspace, see [11]. Such a X^* is called the *minimal d-extension of a GO-space* X. The construction of X^* is also shown in [6]. Obviously, we can see:

- if X is a LOTS, then $X^* = X$,
- X has a maximal element max X if and only if X^* has a maximal element max X^* , in this case, max $X = \max X^*$ (similarly for minimal elements).

For every $\alpha < \gamma$, let X_{α} be a LOTS and $X = \prod_{\alpha < \gamma} X_{\alpha}$. Every element $x \in X$ is identified with the sequence $\langle x(\alpha) : \alpha < \gamma \rangle$. For notational convenience, $\prod_{\alpha < \gamma} X_{\alpha}$ is considered as the trivial one point LOTS $\{\emptyset\}$ whenever $\gamma = 0$, where \emptyset is considered to be a function whose domain is $0 (= \emptyset)$. When $0 \le \beta < \gamma$, $y_0 \in \prod_{\alpha < \beta} X_{\alpha}$ and $y_1 \in \prod_{\beta \le \alpha} X_{\alpha}, y_0 \land y_1$ denotes the sequence $y \in \prod_{\alpha < \gamma} X_{\alpha}$ defined by

$$y(\alpha) = \begin{cases} y_0(\alpha) & \text{if } \alpha < \beta, \\ y_1(\alpha) & \text{if } \beta \le \alpha. \end{cases}$$

In this case, whenever $\beta = 0$, $\emptyset \wedge y_1$ is considered as y_1 . In case $0 \leq \beta < \gamma$, $y_0 \in \prod_{\alpha < \beta} X_{\alpha}$, $u \in X_{\beta}$ and $y_1 \in \prod_{\beta < \alpha} X_{\alpha}$, $y_0 \wedge \langle u \rangle \wedge y_1$ denotes the sequence $y \in \prod_{\alpha < \gamma} X_{\alpha}$ defined by

$$y(\alpha) = \begin{cases} y_0(\alpha) & \text{if } \alpha < \beta, \\ u & \text{if } \alpha = \beta, \\ y_1(\alpha) & \text{if } \beta < \alpha. \end{cases}$$

More general cases are similarly defined. The lexicographic order $<_X$ on X is defined as follows: for every $x, x' \in X$,

$$x <_X x'$$
 iff for some $\alpha < \gamma$, $x \upharpoonright \alpha = x' \upharpoonright \alpha$ and $x(\alpha) <_{X_\alpha} x'(\alpha)$,

where $x \upharpoonright \alpha = \langle x(\beta) : \beta < \alpha \rangle$ (in particular $x \upharpoonright 0 = \emptyset$) and $\langle X_{\alpha} \rangle$ is the order on X_{α} . Now for every $\alpha < \gamma$, let X_{α} be a GO-space and $X = \prod_{\alpha < \gamma} X_{\alpha}$. The subspace X of the lexicographic product $\hat{X} = \prod_{\alpha < \gamma} X_{\alpha}^{*}$ is said to be the *lexicographic product of GO-spaces* X_{α} 's, for more details see [6]. $\prod_{i \in \omega} X_{i}$ ($\prod_{i \le n} X_{i}$ where $n \in \omega$) is denoted by $X_{0} \times X_{1} \times X_{2} \times \cdots (X_{0} \times X_{1} \times X_{2} \times \cdots \times X_{n}, \text{ respectively})$. $\prod_{\alpha < \gamma} X_{\alpha}$ is also denoted by X^{γ} whenever $X_{\alpha} = X$ for all $\alpha < \gamma$.

Let X and Y be LOTS's. A map $f : X \to Y$ is said to be order preserving or 0-order preserving if $f(x) <_Y f(x')$ whenever $x <_X x'$. Similarly a map $f : X \to Y$ is said to be order reversing or 1-order

preserving if $f(x) >_Y f(x')$ whenever $x <_X x'$. Obviously a 0-order preserving map (also 1-order preserving map) $f : X \to Y$ between LOTS's X and Y, which is onto, is a homeomorphism, i.e., both f and f^{-1} are continuous. Now let X and Y be GO-spaces. A 0-order preserving map $f : X \to Y$ is said to be a 0-order preserving embedding if f is a homeomorphism between X and f[X], where f[X] is the subspace of the GO-space Y. In this case, we identify X with f[X] as a GO-space and write X = f[X] and $X \subset Y$.

Let X be a GO-space. A subset A of X is called a 0-segment of X if for every $x, x' \in X$ with $x \leq x'$, if $x' \in A$, then $x \in A$. A 0-segment A is said to be bounded if $X \setminus A$ is non-empty. Similarly the notion of (bounded) 1-segment can be defined. Both \emptyset and X are 0-segments and 1-segments. Obviously if A is a 0-segment of X, then $X \setminus A$ is a 1-segment of X.

Let A be a 0-segment of a GO-space X. A subset U of A is unbounded in A if for every $x \in A$, there is $x' \in U$ such that $x \leq x'$. Let

$$0-\operatorname{cf}_X A = \min\{|U|: U \text{ is unbounded in } A.\}.$$

 $0 - \operatorname{cf}_X A$ can be 0, 1 or regular infinite cardinals. $0 - \operatorname{cf}_X A = 0$ means $A = \emptyset$ and $0 - \operatorname{cf}_X A = 1$ means that A has a maximal element. If contexts are clear, $0 - \operatorname{cf}_X A$ is denoted by 0- cf A. For cofinality in compact LOTS and linearly ordered compactifications, see also [3, 8].

Remember that a topological space is said to be countably compact if every infinite subset has a cluster point.

Definition 1.1. A GO-space X is (boundedly) countably 0-compact if for every (bounded) closed 0-segment A of X, $0 - cf_X A \neq \omega$ holds. The term "(Boundedly) countably 1-compact" is analogously defined.

Obviously a GO-space X is countably 0-compact iff it is boundedly countably 0-compact and 0- cf $X \neq \omega$. Note that subspaces of ordinals are always countably 1-compact because they are well-ordered. Also note that ordinals are boundedly countably 0-compact but in general not countably 0-compact, e.g., ω , \aleph_{ω} etc.

We first check:

Lemma 1.2. A GO-space X is countably 0-compact if and only if every 0-order preserving sequence $\{x_n : n \in \omega\}$ (i.e., $m < n \rightarrow x_m < x_n$) has a cluster point.

Proof. Assuming the existence of a 0-order preserving sequence $\{x_n : n \in \omega\}$ with no cluster points, set $A = \{x \in X : \exists n \in \omega (x \leq x_n)\}$. Then A is closed 0-segment with 0- cf $A = \omega$. To see the other direction, assuming the existence a closed 0-segment A with 0- cf $A = \omega$, by induction, we can construct a 0-order preserving sequence with no cluster points.

Using the lemma, we can see that a GO-space is countably compact if and only if it is both countably 0-compact and countably 1-compact, see also [5].

2. A simple case

In this section, we characterize countable 0-compactness of lexicographic products of two GO-spaces. The following is easy to prove, see also [7, Lemma 3.6 (3a)].

Lemma 2.1. Let $X = X_0 \times X_1$ be a lexicographic product of two GOspaces and A_0 a 0-segment of X_0 with $0 - \operatorname{cf}_{X_0} A_0 \ge \omega$. Then $A = A_0 \times X_1$ is also a 0-segment of X with $0 - \operatorname{cf}_X A = 0 - \operatorname{cf}_{X_0} A_0$.

The following lemma will be a useful tool for handling general cases.

Lemma 2.2. Let $X = X_0 \times X_1$ be a lexicographic product of two GOspaces. Then the following are equivalent.

- (1) X is countably 0-compact,
- (2) the following clauses hold:
 - (a) X_0 is countably 0-compact,
 - (b) X_1 is boundedly countably 0-compact,
 - (c) if X_1 has no minimal element or $(u, \to)_{X_0}$ has no minimal element (that is, $1 \operatorname{cf}_{X_0}(u, \to) \neq 1$) for some $u \in X_0$, then $0 \operatorname{cf}_{X_1} X_1 \neq \omega$,
 - (d) if X_1 has no minimal element, then $0 cf_{X_0}(\leftarrow, u) \neq \omega$ for every $u \in X_0$.

Proof. Set $\hat{X} = X_0^* \times X_1^*$.

 $(1) \Rightarrow (2)$ Let X be countably 0-compact.

(a) Assuming that X_0 is not countably 0-compact, take a closed 0segment A_0 of X_0 with 0-cf_{X₀} $A_0 = \omega$. By the lemma above, $A = A_0 \times X_1$ is a 0-segment of X with 0-cf_X $A = \omega$. It suffices to see that A is closed, which contradicts countable 0-compactness of X. So let $x \notin A$, then $x(0) \notin A_0$. Since A_0 is closed in X_0 , there is $u^* \in X_0^*$ such that $u^* <_{X_0^*} x(0)$ and $((u^*, \rightarrow)_{X_0^*} \cap X_0) \cap A_0 = \emptyset$ (this means $(u^*, x(0))_{X_0^*} = \emptyset$). Fix $w \in X_1$ and let $x^* = \langle u^*, w \rangle \in \hat{X}$. Let $U = (x^*, \rightarrow)_{\hat{X}} \cap X$, then U is a neighborhood of x. To see $U \cap A = \emptyset$, assume $a \in U \cap A$ for some a. By $a(0) \in A_0$, we can take $u \in A_0$ with a(0) < u. Now $u^* \leq a(0) < u$ shows $u \in ((u^*, \rightarrow) \cap X_0) \cap A_0$, a contradiction.

(b) Assuming that X_1 is not boundedly countably 0-compact, take a bounded closed 0-segment A_1 of X_1 with 0- cf_{X1} $A_1 = \omega$. Fix $u \in X_0$ and let $A = \{x \in X : \exists v \in A_1(x \leq_X \langle u, v \rangle)\}$. Obviously A is a 0segment of X and $\{u\} \times A_1$ is unbounded in the 0-segment A, so we see 0- cf_X A = 0- cf_{X1} $A_1 = \omega$. It suffices to see that A is closed, so let $x \in X \setminus A$. Note $u \leq x(0)$. Since A_1 is bounded, fix $v \in X_1 \setminus A_1$ and let $y = \langle u, v \rangle$. When y < x, $U = (y, \to)_X$ is a neighborhood of xdisjoint from A. So let $x \leq y$, then we have x(0) = u and $x(1) \notin A_1$. Since A_1 is closed in X_1 , take $v^* \in X_1^*$ such that $v^* < x(1)$ and $((v^*, \to) \cap X_1) \cap A_1 = \emptyset$. Then $U = (\langle u, v^* \rangle, \to)_{\hat{X}} \cap X$ is a neighborhood of xdisjoint from A.

(c) First assume that X_1 has no minimal element. Fix $u \in X_0$. Then $A = (\leftarrow, u] \times X_1$ is a closed 0-segment of X and $\{u\} \times X_1$ is unbounded in the 0-segment A, therefore $0 - \operatorname{cf}_{X_1} X_1 = 0 - \operatorname{cf}_X A \neq \omega$.

Next assume that $(u, \to)_{X_0}$ has no minimal element. Then putting $A = (\leftarrow, u] \times X_1$, similarly we see 0- cf_{X1} $X_1 \neq \omega$.

(d) Assuming that X_1 has no minimal element and $0 - \operatorname{cf}_{X_0}(\leftarrow, u) = \omega$ for some $u \in X_0$, let $A = (\leftarrow, u) \times X_1$. Then A is a closed 0-segment of X with $0 - \operatorname{cf}_X A = 0 - \operatorname{cf}_{X_0}(\leftarrow, u)$ by Lemma 2.1. This contradicts countable 0-compactness of X.

 $(2) \Rightarrow (1)$ Assuming (2) and that X is not countably 0-compact, take a closed 0-segment A of X with 0- cf_X $A = \omega$. Let $A_0 = \{u \in X_0 : \exists v \in X_1(\langle u, v \rangle \in A)\}$. Since A is a non-empty 0-segment of X, A_0 is also a non-empty 0-segment of X_0 . We consider two cases, and in each cases, we will derive a contradiction.

Case 1. A_0 has no maximal element, i.e., 0- cf $A_0 \ge \omega$.

In this case, we have:

Claim 1. $A = A_0 \times X_1$.

Proof. The inclusion \subset is obvious. Let $\langle u, v \rangle \in A_0 \times X_1$. Since $u \in A_0$ and A_0 has no maximal element, we can take $u' \in A_0$ with u < u'. By $u' \in A_0$, there is $v' \in X_1$ with $\langle u', v' \rangle \in A$. Then from $\langle u, v \rangle < \langle u', v' \rangle \in A$, we see $\langle u, v \rangle \in A$, because A is a 0-segment. \Box

Lemma 2.1 shows 0- cf $A_0 = 0$ - cf $A = \omega$. The following claim contradicts the condition (2a).

Claim 2. A_0 is closed in X_0 .

Proof. Let $u \in X_0 \setminus A_0$. Whenever u' < u for some $u' \in X_0 \setminus A_0$, (u', \rightarrow) is a neighborhood of u disjoint from A_0 . So assume the other case, that is, $u = \min(X_0 \setminus A_0)$. Note $A_0 = (\leftarrow, u)$. If X_1 has no minimal element,

then by (2d), we have 0- cf(\leftarrow, u) $\neq \omega$, a contradiction. Thus X_1 has a minimal element, therefore $\langle u, \min X_1 \rangle = \min(X \setminus A) \notin A$. Since A is closed, there are $u^* \in X_0^*$ and $v^* \in X_1^*$ such that $\langle u^*, v^* \rangle < \langle u, \min X_1 \rangle$ and $((\langle u^*, v^* \rangle, \rightarrow)_{\hat{X}} \cap X) \cap A = \emptyset$. $\langle u^*, v^* \rangle < \langle u, \min X_1 \rangle$ shows $u^* < u$, so $(u^*, \rightarrow) \cap X_0$ is a neighborhood of u disjoint from A_0 .

Case 2. A_0 has a maximal element.

In this case, let $A_1 = \{v \in X_1 : (\max A_0, v) \in A\}$. Then A_1 is a non-empty 0-segment of X_1 . Since $\{\max A_0\} \times A_1$ is unbounded in the 0-segment A, we see 0- $\operatorname{cf}_{X_1} A_1 = 0$ - $\operatorname{cf}_X A = \omega$.

Claim 3. A_1 is closed in X_1 .

Proof. Let $v \in X_1 \setminus A_1$. Since $\langle \max A_0, v \rangle \notin A$ and A is closed, there are $u^* \in X_0^*$ amd $v^* \in X_1^*$ such that $\langle u^*, v^* \rangle < \langle \max A_0, v \rangle$ and $((\langle u^*, v^* \rangle, \rightarrow)_{\hat{X}} \cap X) \cap A = \emptyset$. It follows from $A_1 \neq \emptyset$ that $u^* = \max A_0$ and so $v^* < v$. Then we see that $(v^*, \rightarrow)_{X_1^*} \cap X_1$ is a neighborhood of v disjoint from A_1 .

This claim with the condition (2b) shows $A_1 = X_1$, which says $A = (\leftarrow, \max A_0] \times X_1$, in particular, we see that X_1 has no maximal element.

Claim 4. $(\max A_0, \rightarrow)$ has no minimal element or X_1 has no minimal element.

Proof. Assume that $(\max A_0, \rightarrow)$ has a minimal element u_0 and X_1 has a minimal element, then note $\langle u_0, \min X_1 \rangle = \min(X \setminus A)$. Since Ais closed in X, there are $u^* \in X_0^*$ and $v^* \in X_1^*$ such that $\langle u^*, v^* \rangle < \langle u_0, \min X_1 \rangle$ and $((\langle u^*, v^* \rangle, \rightarrow)_{\hat{X}} \cap X) \cap A = \emptyset$. Then we have $u^* = \max A_0$. Since X_1 has no maximal element, pick $v \in X_1$ with $v^* < v$. Then we see $\langle \max A_0, v \rangle \in ((\langle u^*, v^* \rangle, \rightarrow)_{\hat{X}} \cap X) \cap A$, a contradiction. \Box

Now the condition (2c) shows $0 - \operatorname{cf}_{X_1} X_1 \neq \omega$, a contradiction. This completes the proof of the lemma.

3. A GENERAL CASE

In this section, using the results in the previous section, we characterize the countable compactness of lexicographic products of any length of GO-spaces. We use the following notations.

Definition 3.1. Let $X = \prod_{\alpha < \gamma} X_{\alpha}$ be a lexicographic product of GO-spaces. Define:

 $J^+ = \{ \alpha < \gamma : X_\alpha \text{ has no maximal element.} \},$

 $J^{-} = \{ \alpha < \gamma : X_{\alpha} \text{ has no minimal element.} \},$

 $K^{+} = \{ \alpha < \gamma : \text{ there is } x \in X_{\alpha} \text{ such that } (x, \to)_{X_{\alpha}} \text{ is non-empty} \\ \text{ and has no minimal element.} \},$

 $K^{-} = \{ \alpha < \gamma : \text{ there is } x \in X_{\alpha} \text{ such that } (\leftarrow, x)_{X_{\alpha}} \text{ is non-empty} \\ \text{ and has no maximal element.} \},$

$$L^{+} = \{ \alpha \leq \gamma : \text{ there is } u \in \prod_{\beta < \alpha} X_{\beta} \text{ with } 0 \text{-} \operatorname{cf}_{\prod_{\beta < \alpha} X_{\beta}}(\leftarrow, u) = \omega \},\$$
$$L^{-} = \{ \alpha \leq \gamma : \text{ there is } u \in \prod_{\beta < \alpha} X_{\beta} \text{ with } 1 \text{-} \operatorname{cf}_{\prod_{\beta < \alpha} X_{\beta}}(u, \rightarrow) = \omega \},\$$

For an ordinal α , let

$$l(\alpha) = \begin{cases} 0 & \text{if } \alpha < \omega, \\ \sup\{\beta \le \alpha : \beta \text{ is limit.}\} & \text{if } \alpha \ge \omega. \end{cases}$$

Some of the definitions above are introduced in [7]. Note that $0 \notin L^+ \cup L^-$ and for an ordinal $\alpha \geq \omega$, $l(\alpha)$ is the largest limit ordinal less than or equal to α , therefore the half open interval $[l(\alpha), \alpha)$ of ordinals is finite.

We also remark:

Lemma 3.2. Let $X = \prod_{\alpha < \gamma} X_{\alpha}$ be a lexicographic product of GOspaces. If $\omega \leq \gamma$, then $\omega \in L^+ \cap L^-$ holds.

Proof. Assume $\omega \leq \gamma$. For each $n \in \omega$, fix $u_0(n), u_1(n) \in X_n$ with $u_0(n) < u_1(n)$. Set $y = \langle u_1(n) : n \in \omega \rangle$. Moreover for each $n \in \omega$, set $y_n = \langle u_1(i) : i < n \rangle^{\wedge} \langle u_0(i) : n \leq i \rangle$. Then $\{y_n : n \in \omega\}$ is a 0-order preserving unbounded sequence in (\leftarrow, y) in $\prod_{n \in \omega} X_n$, therefore $\omega \in L^+$. The statement $\omega \in L^-$ is similar.

Theorem 3.3. Let $X = \prod_{\alpha < \gamma} X_{\alpha}$ be a lexicographic product of GO-spaces. Then the following are equivalent:

- (1) X is countably 0-compact,
- (2) the following clauses hold:
 - (a) X_{α} is boundedly countably 0-compact for every $\alpha < \gamma$,
 - (b) if $L^+ \neq \emptyset$, then $J^- \subset \min L^+$,
 - (c) for every $\alpha < \gamma$, if any one of the following cases holds, then 0- $\operatorname{cf}_{X_{\alpha}} X_{\alpha} \neq \omega$ holds,
 - (i) $J^+ \cap [l(\alpha), \alpha) = \emptyset$,
 - (ii) $J^+ \cap [l(\alpha), \alpha) \neq \emptyset$ and $(\alpha_0, \alpha] \cap J^- \neq \emptyset$, where $\alpha_0 = \max(J^+ \cap [l(\alpha), \alpha))$,
 - (iii) $J^+ \cap [l(\alpha), \alpha) \neq \emptyset$ and $[\alpha_0, \alpha) \cap K^+ \neq \emptyset$, where $\alpha_0 = \max(J^+ \cap [l(\alpha), \alpha))$.

Proof. Note that (2a)+(2ci) implies that X_0 is countably 0-compact. Let $\hat{X} = \prod_{\alpha < \gamma} X_{\alpha}^*$.

 $(1) \Rightarrow (2)$ Assume that X is countably 0-compact.

(a) Let $\alpha_0 < \gamma$. Since $X = \prod_{\alpha \leq \alpha_0} X_{\alpha} \times \prod_{\alpha_0 < \alpha} X_{\alpha}$, see [6, Lemma 1.5], and X is countably 0-compact, Lemma 2.2 shows that $\prod_{\alpha \leq \alpha_0} X_{\alpha}$ is countably 0-compact. Now by $\prod_{\alpha \leq \alpha_0} X_{\alpha} = \prod_{\alpha < \alpha_0} X_{\alpha} \times X_{\alpha_0}$ and Lemma 2.2 again, we see that X_{α_0} is boundedly countably 0-compact.

(b) Assume $L^+ \neq \emptyset$ and $\alpha_0 = \min L^+$. Then Lemma 3.2 shows $\alpha_0 \leq \omega$. From $\alpha_0 \in L^+$, one can take $u \in \prod_{\alpha < \alpha_0} X_\alpha$ such that $0 - \operatorname{cf}_{\prod_{\alpha < \alpha_0} X_\alpha}(\leftarrow, u) = \omega$. Now since $X = \prod_{\alpha < \alpha_0} X_\alpha \times \prod_{\alpha_0 \leq \alpha} X_\alpha$ is countably 0-compact, Lemma 2.2 (d) shows that $\prod_{\alpha_0 \leq \alpha} X_\alpha$ has a minimal element. Therefore X_α has a minimal element for every $\alpha \geq \alpha_0$, which shows $J^- \subset \alpha_0$.

(c) Let $\alpha_0 < \gamma$. We will see $0 - \operatorname{cf}_{X_{\alpha_0}} X_{\alpha_0} \neq \omega$ in each case of (i), (ii) and (iii).

Case (i), i.e., $J^+ \cap [l(\alpha_0), \alpha_0) = \emptyset$.

Since X is countably 0-compact and $X = \prod_{\alpha \leq \alpha_0} X_{\alpha} \times \prod_{\alpha_0 < \alpha} X_{\alpha}$, Lemma 2.2 shows that $\prod_{\alpha \leq \alpha_0} X_{\alpha}$ is also countably 0-compact. When $\alpha_0 = 0$, by countable 0-compactness of $\prod_{\alpha \leq \alpha_0} X_{\alpha} = X_{\alpha_0}$, we see $0 - \operatorname{cf}_{X_{\alpha_0}} X_{\alpha_0} \neq \omega$. So let $\alpha_0 > 0$. We divide into two cases.

Case (i)-1. $l(\alpha_0) = 0$, i.e., $\alpha_0 < \omega$.

In this case, since $\prod_{\alpha < \alpha_0} X_{\alpha}$ has a maximal element, which implies $(\max \prod_{\alpha < \alpha_0} X_{\alpha}, \rightarrow)$ has no minimal element, and $\prod_{\alpha < \alpha_0} X_{\alpha} \times X_{\alpha_0}$ is countably 0-compact, Lemma 2.2 (2c) shows 0- cf_{X_{\alpha_0}} $X_{\alpha_0} \neq \omega$.

Case (i)-2. $l(\alpha_0) \geq \omega$ i.e., $\alpha_0 \geq \omega$.

In this case, note that for every $\alpha \in [l(\alpha_0), \alpha_0)$, X_{α} has a maximal element. For every $\alpha < l(\alpha_0)$, fix $x_0(\alpha), x_1(\alpha) \in X_{\alpha}$ with $x_0(\alpha) < x_1(\alpha)$, and let $y = \langle x_0(\alpha) : \alpha < l(\alpha_0) \rangle^{\wedge} \langle \max X_{\alpha} : l(\alpha_0) \leq \alpha < \alpha_0 \rangle$. Moreover for every $\beta < l(\alpha_0)$, let $y_{\beta} = \langle x_0(\alpha) : \alpha < \beta \rangle \rangle^{\wedge} \langle x_1(\alpha) : \beta \leq \alpha < l(\alpha_0) \rangle \rangle^{\wedge} \langle \max X_{\alpha} : l(\alpha_0) \leq \alpha < \alpha_0 \rangle$. Then $\{y_{\beta} : \beta < l(\alpha_0)\}$ is 1-order preserving and unbounded in (y, \rightarrow) , in particular, the interval (y, \rightarrow) in $\prod_{\alpha < \alpha_0} X_{\alpha}$ has no minimal element. Now Lemma 2.2 (2c) shows 0- $cf_{X_{\alpha_0}} X_{\alpha_0} \neq \omega$.

Case (ii), i.e., $J^+ \cap [l(\alpha_0), \alpha_0) \neq \emptyset$ and $(\alpha_1, \alpha_0] \cap J^- \neq \emptyset$, where $\alpha_1 = \max(J^+ \cap [l(\alpha_0), \alpha_0))$.

Note that α_1 is well-defined because $[l(\alpha_0), \alpha_0)$ is finite. Also let $\alpha_2 = \max((\alpha_1, \alpha_0] \cap J^-)$, then note $0 \leq l(\alpha_0) \leq \alpha_1 < \alpha_2 \leq \alpha_0$, in particular $[0, \alpha_2) \neq \emptyset$.

Case (ii)-1. $\alpha_2 = \alpha_0$.

Since $\prod_{\alpha < \alpha_0} X_{\alpha} \times X_{\alpha_0} (= \prod_{\alpha \le \alpha_0} X_{\alpha})$ is countably 0-compact, Lemma 2.2 (2c) shows 0- cf_{X_{\alpha_0}} $X_{\alpha_0} \neq \omega$.

Case (ii)-2. $\alpha_2 < \alpha_0$.

Note that by the definition of α_2 , X_{α} has a minimal element for every $\alpha \in (\alpha_2, \alpha_0]$. Fixing $z \in \prod_{\alpha < \alpha_2} X_{\alpha}$, let $y = z^{\wedge} \langle \max X_{\alpha} : \alpha_2 \leq \alpha < \alpha_0 \rangle$, then $y \in \prod_{\alpha < \alpha_0} X_{\alpha}$.

Claim 1. $(y, \rightarrow)_{\prod_{\alpha < \alpha_0} X_{\alpha}}$ is non-empty and has no minimal element.

Proof. Because X_{α_1} has no maximal element, fix $u \in X_{\alpha_1}$ with $y(\alpha_1) < u$. Then $(y \upharpoonright \alpha_1)^{\wedge} \langle u \rangle^{\wedge} (y \upharpoonright (\alpha_1, \alpha_0)) \in (y, \rightarrow)$, which shows $(y, \rightarrow) \neq \emptyset$. Next assume $y < y' \in \prod_{\alpha < \alpha_0} X_{\alpha}$. Since $y(\alpha) = \max X_{\alpha}$ for every $\alpha \in [\alpha_2, \alpha_0)$, we have $y \upharpoonright \alpha_2 < y' \upharpoonright \alpha_2$. Since X_{α_2} has no minimal element, fix $u \in X_{\alpha_2}$ with $u < y'(\alpha_2)$. Then we have $y < (y' \upharpoonright \alpha_2)^{\wedge} \langle u \rangle^{\wedge} ((y' \upharpoonright (\alpha_2, \alpha_0)) < y'$, which shows that (y, \rightarrow) has no minimal element.

Now because $\prod_{\alpha < \alpha_0} X_{\alpha} \times X_{\alpha_0}$ is countably 0-compact, Lemma 2.2 (2c) and the claim above show 0- $\operatorname{cf}_{X_{\alpha_0}} X_{\alpha_0} \neq \omega$.

Case (iii), i.e., $J^+ \cap [l(\alpha_0), \alpha_0) \neq \emptyset$ and $[\alpha_1, \alpha_0) \cap K^+ \neq \emptyset$, where $\alpha_1 = \max(J^+ \cap [l(\alpha_0), \alpha_0))$.

Let $\alpha_2 = \max([\alpha_1, \alpha_0) \cap K^+)$, then note $l(\alpha_0) \leq \alpha_1 \leq \alpha_2 < \alpha_0$. Fixing $z \in \prod_{\alpha < \alpha_2} X_{\alpha}$ and $u \in X_{\alpha_2}$ satisfying that (u, \to) is non-empty and has no minimal element, let $y = z^{\wedge} \langle u \rangle^{\wedge} \langle \max X_{\alpha} : \alpha_2 < \alpha < \alpha_0 \rangle$. Then obviously $y \in \prod_{\alpha < \alpha_0} X_{\alpha}$ and (y, \to) has no minimal element. Since $\prod_{\alpha < \alpha_0} X_{\alpha} \times X_{\alpha_0}$ is countable 0-compact, Lemma 2.2 (2c) shows 0- $cf_{X_{\alpha_0}} X_{\alpha_0} \neq \omega$.

 $(2) \Rightarrow (1)$ Assuming (2) and the negation of (1), take a closed 0-segment A of X with 0- $\operatorname{cf}_X A = \omega$. Modifying the proof of Theorem 4.8 in [7], we consider 3 cases and their subcases. In each case, we will derive a contradiction.

Case 1. A = X.

In this case, since X has no maximal element, we have $J^+ \neq \emptyset$, so let $\alpha_0 = \min J^+$. Then $J^+ \cap [l(\alpha_0), \alpha_0) \subset J^+ \cap [0, \alpha_0) = \emptyset$ and the condition (2ci) shows $0 \operatorname{-cf}_{X_{\alpha_0}} X_{\alpha_0} \ge \omega_1$. Since $\{\langle \max X_\alpha : \alpha < \alpha_0 \rangle\} \times X_{\alpha_0}$ is unbounded in $\prod_{\alpha \le \alpha_0} X_\alpha$, we have $0 \operatorname{-cf}_{\prod_{\alpha \le \alpha_0} X_\alpha} \prod_{\alpha \le \alpha_0} X_\alpha = 0 \operatorname{-cf}_{X_{\alpha_0}} X_{\alpha_0} \ge \omega_1$. Now by $X = \prod_{\alpha \le \alpha_0} X_\alpha \times \prod_{\alpha_0 < \alpha} X_\alpha$, Lemma 2.1 shows $0 \operatorname{-cf}_X A = 0 \operatorname{-cf}_X X = 0 \operatorname{-cf}_{\prod_{\alpha \le \alpha_0} X_\alpha} \prod_{\alpha \le \alpha_0} X_\alpha = 0 \operatorname{-cf}_{X_{\alpha_0}} X_{\alpha_0} \ge \omega_1$, a contradiction.

Case 2. $A \neq X$ and $X \setminus A$ has a minimal element.

Let $B = X \setminus A$ and $b = \min B$. Since A is non-empty closed and $B = [b, \rightarrow)$, there is $b^* \in \hat{X}$ with $b^* < b$ and $((b^*, \rightarrow)_{\hat{X}} \cap X) \cap A = \emptyset$, equivalently $(b^*, b)_{\hat{X}} = \emptyset$. Note $b^* \notin X$ because A has no maximal element. Let $\alpha_0 = \min\{\alpha < \gamma : b^*(\alpha) \neq b(\alpha\}$.

Claim 2. For every $\alpha > \alpha_0$, X_{α} has a minimal element and $b(\alpha) = \min X_{\alpha}$.

Proof. Assuming $b(\alpha) > u$ for some $\alpha > \alpha_0$ and $u \in X_\alpha$, let $\alpha_1 = \min\{\alpha > \alpha_0 : \exists u \in X_\alpha(b(\alpha) > u)\}$ and fix $u \in X_{\alpha_1}$ with $b(\alpha_1) > u$. Then we have $b^* < (b \upharpoonright \alpha_1)^{\wedge} \langle u \rangle^{\wedge} (b \upharpoonright (\alpha_1, \gamma)) < b$, a contradiction. \Box

Claim 3. $(b^*(\alpha_0), b(\alpha_0))_{X^*_{\alpha_0}} \cap X_{\alpha_0} = \emptyset.$

Proof. Assume $u \in (b^*(\alpha_0), b(\alpha_0))_{X^*_{\alpha_0}} \cap X_{\alpha_0}$ for some u. Then we have $b^* < (b \upharpoonright \alpha_0)^{\wedge} \langle u \rangle^{\wedge} (b \upharpoonright (\alpha_0, \gamma)) < b$, a contradiction. \Box

Claim 4. $[b(\alpha_0), \rightarrow)_{X_{\alpha_0}} \notin \lambda_{X_{\alpha_0}}$, therefore $b^*(\alpha_0) \notin X_{\alpha_0}$.

Proof. It follows from $b^*(\alpha_0) \in (\leftarrow, b(\alpha_0))_{X_{\alpha_0}^*}$ that $(\leftarrow, b(\alpha_0))_{X_{\alpha_0}} \neq \emptyset$. Assume $[b(\alpha_0), \rightarrow)_{X_{\alpha_0}} \in \lambda_{X_{\alpha_0}}$, then for some $u \in X_{\alpha_0}$ with $u < b(\alpha_0)$, $(u, b(\alpha_0)) = \emptyset$ holds. Claim 3 shows $b^*(\alpha_0) = u \in X_{\alpha_0}$. If there were $\alpha > \alpha_0$ and $v \in X_\alpha$ with $v > b^*(\alpha)$, then by letting $\alpha_1 = \min\{\alpha > \alpha_0 : \exists v \in X_\alpha(v > b^*(\alpha))\}$ and taking $v \in X_{\alpha_1}$ with $v > b^*(\alpha_1)$, we have $b^* < (b^* \upharpoonright \alpha_1)^{\wedge} \langle v \rangle^{\wedge} (b^* \upharpoonright (\alpha_1, \gamma)) < b$, a contradiction. Therefore for every $\alpha > \alpha_0$, max X_α exists and $b^*(\alpha) = \max X_\alpha$. Thus we have $b^* = (b \upharpoonright \alpha_0)^{\wedge} \langle u \rangle^{\wedge} (\max X_\alpha : \alpha_0 < \alpha) \in X$ a contradiction. \Box

Claims 3 and 4 show that $A_0 := (\leftarrow, b(\alpha_0))$ is a bounded closed 0segment of X_{α_0} without a maximal element. Now the condition (2a) shows 0- $\operatorname{cf}_{X_{\alpha_0}} A_0 \ge \omega_1$. Since $\{b \upharpoonright \alpha_0\} \times A_0 \times \{b \upharpoonright (\alpha_0, \gamma)\}$ is unbounded in the 0-segment in A ((= (\leftarrow, b)_X), we have $\omega = 0$ - $\operatorname{cf}_X A =$ 0- $\operatorname{cf}_{X_{\alpha_0}} A_0 \ge \omega_1$, a contradiction. This completes Case 2.

Case 3. $A \neq X$ and $X \setminus A$ has no minimal element.

Let $B = X \setminus A$ and

 $I = \{ \alpha < \gamma : \exists a \in A \exists b \in B(a \upharpoonright (\alpha + 1) = b \upharpoonright (\alpha + 1)) \}.$

Obviously I is a 0-segment of γ , so $I = \alpha_0$ for some $\alpha_0 \leq \gamma$. For each $\alpha < \alpha_0$, fix $a_\alpha \in A$ and $b_\alpha \in B$ with $a_\alpha \upharpoonright (\alpha + 1) = b_\alpha \upharpoonright (\alpha + 1)$. By letting $Y_0 = \prod_{\alpha < \alpha_0} X_\alpha$ and $Y_1 = \prod_{\alpha_0 \leq \alpha} X_\alpha$, define $y_0 \in Y_0$ by $y_0(\alpha) = a_\alpha(\alpha)$ for every $\alpha < \alpha_0$. The ordinal α_0 can be 0, then in this case, $Y_0 = \{\emptyset\}$ and $y_0 = \emptyset$. **Claim 5.** For every $\alpha < \alpha_0$, $y_0 \upharpoonright (\alpha + 1) = a_{\alpha} \upharpoonright (\alpha + 1) = b_{\alpha} \upharpoonright (\alpha + 1)$ holds.

Proof. The second equality is obvious. To see the first equality, assuming $y_0 \upharpoonright (\alpha + 1) \neq a_{\alpha} \upharpoonright (\alpha + 1)$ for some $\alpha < \alpha_0$, let $\alpha_1 = \min\{\alpha < \alpha_0 : y_0 \upharpoonright (\alpha + 1) \neq a_{\alpha} \upharpoonright (\alpha + 1)\}$. Moreover let $\alpha_2 = \min\{\alpha \leq \alpha_1 : y_0(\alpha) \neq a_{\alpha_1}(\alpha)\}$. It follows from $y_0(\alpha_1) = a_{\alpha_1}(\alpha_1)$ that $\alpha_2 < \alpha_1$. Since $y_0 \upharpoonright \alpha_2 = a_{\alpha_1} \upharpoonright \alpha_2$ and $y_0(\alpha_2) \neq a_{\alpha_1}(\alpha_2)$ holds, by the minimality of α_1 , we have $y_0 \upharpoonright (\alpha_2 + 1) = a_{\alpha_2} \upharpoonright (\alpha_2 + 1) = b_{\alpha_2} \upharpoonright (\alpha_2 + 1)$. When $y_0(\alpha_2) < a_{\alpha_1}(\alpha_2)$, we have $B \ni b_{\alpha_2} < a_{\alpha_1} \in A$, a contradiction. When $y_0(\alpha_2) > a_{\alpha_1}(\alpha_2)$, we have $B \ni b_{\alpha_1} < a_{\alpha_2} \in A$, a contradiction. \Box

Claim 5 remains true when $\alpha_0 = 0$, because there is no ordinal α with $\alpha < \alpha_0$.

Claim 6. $\alpha_0 < \gamma$.

Proof. Assume $\alpha_0 = \gamma$, then note $y_0 \in Y_0 = X = A \cup B$. Assume $y_0 \in A$. Since A has no maximal element, one can take $a \in A$ with $y_0 < a$. Letting $\beta_0 = \min\{\beta < \gamma : y_0(\beta) \neq a(\beta)\}$, we see $A \ni a > b_{\beta_0} \in B$, a contradiction. The remaining case is similar.

Let $A_0 = \{a(\alpha_0) : a \in A, a \upharpoonright \alpha_0 = y_0\}$ and $B_0 = \{b(\alpha_0) : b \in B, b \upharpoonright \alpha_0 = y_0\}.$

Claim 7. The following hold:

- (1) for every $a \in A$, $a \upharpoonright \alpha_0 \leq y_0$ holds,
- (2) for every $x \in X$, if $x \upharpoonright \alpha_0 < y_0$, then $x \in A$.

Proof. (1) Assume $a \upharpoonright \alpha_0 > y_0$ for some $a \in A$. Letting $\beta_0 = \min\{\beta < \alpha_0 : a(\beta) \neq y_0(\beta)\}$, we see $B \ni b_{\beta_0} < a \in A$, a contradiction.

(2) Assume $x \upharpoonright \alpha_0 < y_0$. Letting $\beta_0 = \min\{\beta < \alpha_0 : x(\beta) \neq y_0(\beta)\},$ we see $x < a_{\beta_0} \in A$. Since A is a 0-segment, we have $x \in A$. \Box

Similarly we have:

Claim 8. The following hold:

- (1) for every $b \in B$, $b \upharpoonright \alpha_0 \ge y_0$ holds,
- (2) for every $x \in X$, if $x \upharpoonright \alpha_0 > y_0$, then $x \in B$.

Claim 9. A_0 is a 0-segment of X_{α_0} and $B_0 = X_{\alpha_0} \setminus A_0$.

Proof. To see that A_0 is a 0-segment, let $u' < u \in A_0$. Pick $a \in A$ with $a \upharpoonright \alpha_0 = y_0$ and $u = a(\alpha_0)$. Let $a' = (a \upharpoonright \alpha_0)^{\wedge} \langle u' \rangle^{\wedge} (a \upharpoonright (\alpha_0, \gamma))$. Since A is a 0-segment and $a' < a \in A$, we have $a' \in A$. Now we see $u' = a'(\alpha_0) \in A_0$ because of $a' \upharpoonright \alpha_0 = y_0$.

To see $B_0 = X_{\alpha_0} \setminus A_0$, first let $u \in B_0$. Take $b \in B$ with $b \upharpoonright \alpha_0 = y_0$ and $b(\alpha_0) = u$. If $u \in A_0$ were true, then by taking $a \in A$ with $a \upharpoonright \alpha_0 = y_0$ and $a(\alpha_0) = u$, we see $a \upharpoonright (\alpha_0 + 1) = b \upharpoonright (\alpha_0 + 1)$, therefore $\alpha_0 \in I = \alpha_0$, a contradiction. So we have $u \in X_{\alpha_0} \setminus A_0$. To see the remaining inclusion, let $u \in X_{\alpha_0} \setminus A_0$. Take $x \in X$ with $x \upharpoonright (\alpha_0 + 1) = y_0 \land \langle u \rangle$. If $x \in A$ were true, then by $x \upharpoonright \alpha_0 = y_0$, we have $u = x(\alpha_0) \in A_0$, a contradiction. So we have $x \in B$, therefore $u \in B_0$.

Claim 10. $A_0 \neq \emptyset$.

Proof. Assume $A_0 = \emptyset$. We prove the following facts.

Fact 1. $(\leftarrow, y_0)_{Y_0} \times Y_1 = A$.

Proof. One inclusion follows from Claim 7 (2). To see the other inclusion, let $a \in A$. Claim 7 (1) shows $a \upharpoonright \alpha_0 \leq y_0$. If $a \upharpoonright \alpha_0 = y_0$ were true, then we have $a(\alpha_0) \in A_0$, a contradiction. So we have $a \upharpoonright \alpha_0 < y_0$ therefore $a \in (\leftarrow, y_0) \times Y_1$.

Fact 2. $\alpha_0 > 0$ and α_0 is limit.

Proof. If $\alpha_0 = 0$ were true, then by taking $a \in A$, we have $a(\alpha_0) \in A_0$, a contradiction. Therefore we have $\alpha_0 > 0$. Next if $\alpha_0 = \beta_0 + 1$ were true for some ordinal β_0 , then by $\beta_0 \in \alpha_0$ and Claim 5, we have $y_0 \upharpoonright \alpha_0 = y_0 \upharpoonright (\beta_0 + 1) = a_{\beta_0} \upharpoonright (\beta_0 + 1) = a_{\beta_0} \upharpoonright \alpha_0$, thus we have $a_{\beta_0}(\alpha_0) \in A_0$, a contradiction. Thus α_0 is limit. \Box

Now Claim 6 and Fact 2 show $\omega \leq \alpha_0 < \gamma$, so Lemma 3.2 shows $\omega \in L^+$. Moreover the condition (2b) shows $J^- \subset \min L^+ \leq \omega \leq \alpha_0$, in particular, X_{α} has a minimal element for every $\alpha \geq \alpha_0$. This means $Y_1 \ (= \prod_{\alpha_0 \leq \alpha} X_{\alpha})$ has a minimal element. Now by Fact 1, we see $y_0 \ \min Y_1 = \min(X \setminus A)$, which contradicts our case. \Box

Next let $Z_0 = \prod_{\alpha < \alpha_0} X_{\alpha}$, $Z_1 = \prod_{\alpha_0 < \alpha} X_{\alpha}$ and

$$A^* = \{ z \in Z_0 : z \upharpoonright \alpha_0 < y_0 \text{ or } (z \upharpoonright \alpha_0 = y_0, z(\alpha_0) \in A_0) \}.$$

Note $A^* = ((\leftarrow, y_0) \times X_{\alpha_0}) \cup (\{y_0\} \times A_0).$

Claim 11. A^* is a 0-segment of Z_0 and $A = A^* \times Z_1$.

Proof. Since A_0 is a 0-segment of X_{α_0} , A^* is obviously a 0-segment of Z_0 . To see $A \subset A^* \times Z_1$, let $a \in A$. Claim 7 (1) shows $a \upharpoonright \alpha_0 \leq y_0$. When $a \upharpoonright \alpha_0 < y_0$, obviously we have $a \upharpoonright (\alpha_0 + 1) \in A^*$. When $a \upharpoonright \alpha_0 = y_0$, $a \in A$ shows $a(\alpha_0) \in A_0$ thus $a \upharpoonright (\alpha_0 + 1) \in A^*$. To see $A \supset A^* \times Z_1$, let $a \in A^* \times Z_1$. Then note $a \upharpoonright (\alpha_0 + 1) \in A^*$. When $a \upharpoonright \alpha_0 < y_0$, letting $\beta_0 = \min\{\beta < \alpha_0 : a(\beta) \neq y_0(\beta)\}$, we see $a < a_{\beta_0} \in A$ thus $a \in A$. When $a \upharpoonright \alpha_0 = y_0$ and $a(\alpha_0) \in A_0$, Claim 9 shows $a \in A$.

Since $\{y_0\} \times A_0$ is unbounded in the 0-segment A^* , we see $1 \leq 0$ - $\operatorname{cf}_{Z_0} A^* = 0$ - $\operatorname{cf}_{X_{\alpha_0}} A_0$. We divide Case 3 into two subcases.

Case 3-1. $0 - cf_{Z_0} A^* \ge \omega$.

In this case, Claim 11 and Lemma 2.1 show $\omega = 0 - \operatorname{cf}_X A = 0 - \operatorname{cf}_{Z_0} A^* = 0 - \operatorname{cf}_{X_{\alpha_0}} A_0$.

Claim 12. $A_0 \neq X_{\alpha_0}$.

Proof. Assume $A_0 = X_{\alpha_0}$. $0 \operatorname{cf}_{X_{\alpha_0}} X_{\alpha_0} = 0 \operatorname{cf}_{X_{\alpha_0}} A_0 = \omega$ shows $\alpha_0 \in J^+$. Assume $\alpha_0 = \beta_0 + 1$ for some ordinal β_0 . Then $\beta_0 < \alpha_0 = I$ shows $b_{\beta_0} \in B$. Now from $b_{\beta_0} \upharpoonright \alpha_0 = b_{\beta_0} \upharpoonright (\beta_0 + 1) = y_0 \upharpoonright (\beta_0 + 1) = y_0 \upharpoonright \alpha_0$, we have $b_{\beta_0}(\alpha_0) \in B_0 = X_{\alpha_0} \setminus A_0$, a contradiction. Thus we see that $\alpha_0 = 0$ or α_0 is limit, that is, $[l(\alpha_0), \alpha_0) = \emptyset$. Now the condition (2ci) shows $0 \operatorname{cf}_{X_{\alpha_0}} X_{\alpha_0} \neq \omega$, a contradiction. \Box

Claim 13. A_0 is closed in X_{α_0} .

Proof. When B_0 has no minimal element, obviously A_0 is closed. So assume that B_0 has a minimal element, say $u = \min B_0$. It suffices to find a neighborhood of u disjoint from A_0 . $A^* = (\leftarrow, y_0 \land \langle u \rangle)_{Z_0}$ and $0 \cdot \operatorname{cf}_{Z_0} A^* = \omega$ show $\alpha_0 + 1 \in L^+$, therefore $\min L^+ \leq \alpha_0 + 1$. The condition (2b) ensures $J^- \subset \min L^+ \leq \alpha_0 + 1$, so $J^- \subset [0, \alpha_0]$. Therefore X_α has a minimal element for every $\alpha > \alpha_0$. Let $b = y_0 \land \langle u \rangle \land \langle \min X_\alpha :$ $\alpha_0 < \alpha \rangle$. Since $b \in B$ (= $X \setminus A$) and A is closed in X, there is $b^* \in \hat{X}$ such that $b^* < b$ and $(b^*, b)_{\hat{X}} \cap A = \emptyset$. Set $\beta_0 = \min\{\beta < \gamma : b^*(\beta) \neq b(\beta)\}$, then obviously $\beta_0 \leq \alpha_0$. If $\beta_0 < \alpha_0$ were true, we have $a_{\beta_0} \in (b^*, b)_{\hat{X}} \cap A$, a contradiction. Thus we have $\beta_0 = \alpha_0$, so $b^* \upharpoonright \alpha_0 = y_0$ and $b^*(\alpha_0) < u$. If there were $v \in (b^*(\alpha_0), \rightarrow)_{X^*_{\alpha_0}} \cap A_0$, then v < u shows $y_0 \land \langle v \rangle \land \langle \min X_\alpha : \alpha_0 < \alpha \rangle \in (b^*, b) \cap A$, a contradiction. Therefore $(b^*(\alpha_0), \rightarrow)_{X^*_{\alpha_0}} \cap X_{\alpha_0}$ is a neighborhood of u disjoint from A_0 .

These claims above show that A_0 is a bounded closed 0-segment of X_{α_0} . Now the condition (2a) shows 0- $\operatorname{cf}_{X_{\alpha_0}} A_0 \neq \omega$, a contradiction.

Case 3-2. $0 - cf_{Z_0} A^* = 1.$

Since $A = A^* \times Z_1$, A^* has a maximal element but A has no maximal element, we see that Z_1 has no maximal element. Therefore X_{α} has no maximal element for some $\alpha > \alpha_0$, in particular $(\alpha_0, \gamma) \neq \emptyset$. Let $\alpha_1 = \min\{\alpha > \alpha_0 : X_{\alpha}$ has no maximal element. $\}$. Then we have $\alpha_0 < \alpha_1 \in J^+$ and $(\alpha_0, \alpha_1) \cap J^+ = \emptyset$. Since $A = A^* \times Z_1 = A^* \times (\prod_{\alpha_0 < \alpha \leq \alpha_1} X_{\alpha} \times \prod_{\alpha_1 < \alpha} X_{\alpha}) = (A^* \times \prod_{\alpha_0 < \alpha \leq \alpha_1} X_{\alpha}) \times \prod_{\alpha_1 < \alpha} X_{\alpha}$ and $A^* \times \prod_{\alpha_0 < \alpha < \alpha_1} X_{\alpha}$ is a 0-segment in $\prod_{\alpha < \alpha_1} X_{\alpha}$ with no maximal

element, Lemma 2.1 shows $\omega = 0 - \operatorname{cf}_X A = 0 - \operatorname{cf}(A^* \times \prod_{\alpha_0 < \alpha \leq \alpha_1} X_\alpha) = 0 - \operatorname{cf}_{X_{\alpha_1}} X_{\alpha_1}$ (that $\{y_0 \land \langle \max A_0 \rangle \land \langle \max X_\alpha : \alpha_0 < \alpha < \alpha_1 \rangle\} \times X_{\alpha_1}$ is unbounded in the 0-segment $A^* \times \prod_{\alpha_0 < \alpha \leq \alpha_1} X_\alpha$ witnesses the last equality).

Claim 14. $l(\alpha_1) \leq \alpha_0$ and $J^+ \cap [l(\alpha_1), \alpha_0] \neq \emptyset$ hold, in particular $J^+ \cap [l(\alpha_1), \alpha_1) \neq \emptyset$.

Proof. First assume $\alpha_0 < l(\alpha_1)$. Then $J^+ \cap [l(\alpha_1), \alpha_1) \subset J^+ \cap (\alpha_0, \alpha_1) = \emptyset$ and the condition (2ci) show 0- $\operatorname{cf}_{X_{\alpha_1}} X_{\alpha_1} \neq \omega$, a contradiction. Thus we have $l(\alpha_1) \leq \alpha_0$.

Next assume $J^+ \cap [l(\alpha_1), \alpha_0] = \emptyset$, then we have $J^+ \cap [l(\alpha_1), \alpha_1) = \emptyset$ because of $J^+ \cap (\alpha_0, \alpha_1) = \emptyset$. Therefore the condition (2ci) shows $0 - \operatorname{cf}_{X_{\alpha_1}} X_{\alpha_1} \neq \omega$, a contradiction. Thus $J^+ \cap [l(\alpha_1), \alpha_0] \neq \emptyset$. \Box

Using the above claim, set $\alpha_2 = \max(J^+ \cap [l(\alpha_1), \alpha_1))$. Note $0 \le l(\alpha_1) \le \alpha_2 \le \alpha_0 < \alpha_1$ and $J^+ \cap (\alpha_2, \alpha_1) = \emptyset$.

Claim 15. B_0 has a minimal element.

Proof. First we check $B_0 \neq \emptyset$, so assume $B_0 = \emptyset$, i.e., $A_0 = X_{\alpha_0}$. $1 = 0 \operatorname{cf}_{Z_0} A^* = 0 \operatorname{cf}_{X_{\alpha_0}} A_0 = 0 \operatorname{cf}_{X_{\alpha_0}} X_{\alpha_0}$ shows $\alpha_0 \notin J^+$. Also $\alpha_2 \leq \alpha_0$ and $\alpha_2 \in J^+$ show $0 \leq \alpha_2 < \alpha_0$. Assume that $\alpha_0 = \beta_0 + 1$ for some ordinal β_0 , then by $\beta_0 < \alpha_0 = I$, we have $b_{\beta_0} \in B$ and $b_{\beta_0} \upharpoonright \alpha_0 = b_{\beta_0} \upharpoonright (\beta_0 + 1) = y_0 \upharpoonright (\beta_0 + 1) = y_0 \upharpoonright \alpha_0$. Therefore we have $b_{\beta_0}(\alpha_0) \in B_0$, a contradiction. So we have $0 < \alpha_0$ and α_0 is limit, therefore $\alpha_0 \leq l(\alpha_1) \leq \alpha_2$, which contradicts $\alpha_2 < \alpha_0$. We have seen $B_0 \neq \emptyset$.

Next we check that B_0 has a minimal element. Assume that B_0 has no minimal element, then max A_0 witnesses $\alpha_0 \in [\alpha_2, \alpha_1) \cap K^+$. The definition of α_2 and the condition (2ciii) show 0- $\operatorname{cf}_{X_{\alpha_1}} X_{\alpha_1} \neq \omega$, a contradiction.

Now since *B* has no minimal element, by the claim above, there is $\alpha > \alpha_0$ such that X_{α} has no minimal element. So let $\alpha_3 = \min\{\alpha > \alpha_0 : X_{\alpha}$ has no minimal element. }. Then we have $\alpha_0 < \alpha_3 \in J^-$. When $\omega \leq \gamma$, Lemma 3.2 and the condition (2b) show $J^- \subset \min L^+ \leq \omega$. When $\gamma < \omega$, obviously $J^- \subset \omega$. So in any case we have $J^- \subset \omega$. Therefore $l(\alpha_1) \leq \alpha_0 < \alpha_3 \in \omega$ so we have $\alpha_1 \in \omega$.

Claim 16. $\alpha_3 \leq \alpha_1$.

Proof. Assume $\alpha_1 < \alpha_3$, then X_{α} has a minimal element for every $\alpha \in (\alpha_0, \alpha_1]$. So let $y = y_0 \wedge (\min B_0) \wedge (\min X_{\alpha} : \alpha_0 < \alpha \le \alpha_1)$. Note $y \in \prod_{\alpha \le \alpha_1} X_{\alpha}$ and consider the interval (\leftarrow, y) in $\prod_{\alpha \le \alpha_1} X_{\alpha}$. The definition of α_2 and $\alpha_2 \le \alpha_0$ show that X_{α} has a maximal element for

every $\alpha \in (\alpha_0, \alpha_1)$. Since $\{y_0 \land \langle \max A_0 \rangle \land \langle \max X_\alpha : \alpha_0 < \alpha < \alpha_1 \rangle\} \times X_{\alpha_1}$ is unbounded in (\leftarrow, y) , we have $0 \text{-} \operatorname{cf}(\leftarrow, y) = 0 \text{-} \operatorname{cf}_{X_{\alpha_1}} X_{\alpha_1} = \omega$. Thus y witnesses $\alpha_1 + 1 \in L^+$. The condition (2b) ensures $J^- \subset \min L^+ \leq \alpha_1 + 1$, thus $\alpha_3 \in J^- \subset [0, \alpha_1]$, a contradiction. Now we have $\alpha_3 \leq \alpha_1$.

Now $\alpha_3 \in (\alpha_0, \alpha_1] \cap J^- \subset (\alpha_2, \alpha_1] \cap J^-, \alpha_2 = \max(J^+ \cap [l(\alpha_1), \alpha_1))$ and the condition (2cii) show 0- $\operatorname{cf}_{X_{\alpha_1}} X_{\alpha_1} \neq \omega$, a contradiction. This completes the proof of the theorem.

Analogously we can see:

Theorem 3.4. Let $X = \prod_{\alpha < \gamma} X_{\alpha}$ be a lexicographic product of GO-spaces. Then the following are equivalent:

- (1) X is countably 1-compact,
- (2) the following clauses hold:
 - (a) X_{α} is boundedly countably 1-compact for every $\alpha < \gamma$,
 - (b) if $L^- \neq \emptyset$, then $J^+ \subset \min L^-$,
 - (c) for every $\alpha < \gamma$, if any one of the following cases holds, then 1- $\operatorname{cf}_{X_{\alpha}} X_{\alpha} \neq \omega$ holds,
 - (i) $J^{-} \cap [l(\alpha), \alpha) = \emptyset$,
 - (ii) $J^{-} \cap [l(\alpha), \alpha) \neq \emptyset$ and $(\alpha_{0}, \alpha] \cap J^{+} \neq \emptyset$, where $\alpha_{0} = \max(J^{-} \cap [l(\alpha), \alpha))$,
 - (iii) $J^- \cap [l(\alpha), \alpha) \neq \emptyset$ and $[\alpha_0, \alpha) \cap K^- \neq \emptyset$, where $\alpha_0 = \max(J^- \cap [l(\alpha), \alpha))$.

4. Applications

In this section, we apply the theorems in the previous section

Corollary 4.1. Let $X = \prod_{\alpha < \gamma} X_{\alpha}$ be a lexicographic product of GO-spaces. Then the following hold:

- (1) if X is countably 0-compact, then $J^- \subset \omega$,
- (2) if X is countably 1-compact, then $J^+ \subset \omega$,
- (3) if X is countably 0-compact, then for every $\delta < \gamma$, the lexicographic product $\prod_{\alpha < \delta} X_{\alpha}$ is countably 0-compact, in particular X_0 is countably 0-compact,
- (4) if X is countably 1-compact, then for every $\delta < \gamma$, the lexicographic product $\prod_{\alpha < \delta} X_{\alpha}$ is countably 1-compact, in particular X_0 is countably 1-compact,

Proof. Lemma 3.2 and the condition (2b) in Theorem 3.3 show (1). (3) obviously follows from Theorem 3.3 or Lemma 2.2 directly. The remaining is similar. \Box

17

Corollary 4.2. Let X be a GO-space. Then the lexicographic product $X^{\omega+1}$ is countably compact if and only if X is countably compact and has both a minimal and a maximal element.

Proof. That $X^{\omega+1}$ is countably compact implies that X is countably compact and has both a minimal and a maximal element follows from the corollary above. The other implication follows from the theorems in the previous section because of $J^+ = J^- = \emptyset$.

Corollary 4.3. Let $X = \prod_{\alpha < \gamma} X_{\alpha}$ be a lexicographic product of countably compact GO-spaces. Then the following are equivalent:

- (1) X is countably compact,
- (2) the following clauses hold:
 - (a) if $L^+ \neq \emptyset$, then $J^- \subset \min L^+$,
 - (b) if $L^- \neq \emptyset$, then $J^+ \subset \min L^-$.

Proof. Since all X_{α} 's are countably compact, (2a)+(2c) in Theorems 3.3 and 3.4 of the previous section are true.

Example 4.4. Let $[0,1)_{\mathbb{R}}$ denote the unit half open interval in the real line \mathbb{R} with the usual order. Let X be the lexicographic product $[0,1)_{\mathbb{R}} \times \omega_1$. Since $[0,1)_{\mathbb{R}}$ is not countably 0-compact, Corollary 4.1 shows that X is not countably 0-compact. Both $[0,1)_{\mathbb{R}}$ and ω_1 are countably 1-compact. Considering $X_0 = [0,1)_{\mathbb{R}}$ and $X_1 = \omega_1$, we see $1 \in L^-$ (0 in $[0,1)_{\mathbb{R}}$ witnesses this) therefore $1 = \min L^-$. Moreover by $1 \in J^+$, (2b) in Theorem 3.4 does not hold. Therefore X is neither countably 0-compact nor countably 1-compact. Note that X is not paracompact, see [7, Example 4.6].

Example 4.5. Let X be the lexicographic product $\omega_1 \times [0, 1)_{\mathbb{R}}$. Checking all clauses in the theorems in the previous section, we see that X is countably compact. Since it is not compact, it is not paracompact. The lexicographic product $\omega_1 \times [0, 1)_{\mathbb{R}}$ is called the long line of length ω_1 and denoted by $\mathbb{L}(\omega_1)$.

Example 4.6. Let \mathbb{S} be the Sorgenfrey line, where half open intervals $[a, b)_{\mathbb{R}}$'s are declared to be open. Then it is known that $\omega_1 \times \mathbb{S}$ is paracompact but $\mathbb{S} \times \omega_1$ is not paracompact, see [7]. On the other hand, both lexicographic products $\omega_1 \times \mathbb{S}$ and $\mathbb{S} \times \omega_1$ are not countably compact, because \mathbb{S} is not boundedly 0-compact.

Example 4.7. Let X be the lexicographic product $\omega_1 \times [0,1)_{\mathbb{R}} \times \omega_1$, and consider as $X_0 = \omega_1$, $X_1 = [0,1)_{\mathbb{R}}$ and $X_2 = \omega_1$. Then $1 - \operatorname{cf}_{\omega_1 \times [0,1)_{\mathbb{R}}}(\langle 0,0 \rangle, \rightarrow) = \omega$ shows $2 \in L^-$. Since $0, 1 \notin L^-$, we have $\min L^- = 2$. Now $2 \in J^+$ implies $J^+ \not\subset \min L^-$. Thus Theorem 3.4

shows that X is not countably (1-) compact. On the other hand, we will later see that the lexicographic product $\omega_1 \times \omega \times \omega_1$ is countably compact.

Corollary 4.8. There is a countably compact LOTS X whose lexicographic square X^2 is not countably compact.

Proof. $X = \mathbb{L}(\omega_1)$ is such an example, because $\mathbb{L}(\omega_1)^2 = (\omega_1 \times [0, 1)_{\mathbb{R}} \times \omega_1) \times [0, 1)_{\mathbb{R}}$ (use Example 4.7). We will later see that the lexicographic product $X = \omega_1^{\omega}$ is also such an example.

In the rest of the paper, we consider countable compactness of lexicographic products whose all factors have minimal elements. In the following, apply theorems with $J^- = \emptyset$.

Corollary 4.9. Let $X = \prod_{\alpha < \gamma} X_{\alpha}$ be a lexicographic product of GOspaces. If all X_{α} 's have minimal elements, then the following are equivalent:

- (1) X is countably 0-compact,
- (2) the following clauses hold:
 - (a) X_{α} is boundedly countably 0-compact for every $\alpha < \gamma$,
 - (b) for every $\alpha < \gamma$, if either one of the following cases holds, then 0- $\operatorname{cf}_{X_{\alpha}} X_{\alpha} \neq \omega$ holds,
 - (i) $J^+ \cap [l(\alpha), \alpha) = \emptyset$,
 - (ii) $J^+ \cap [l(\alpha), \alpha) \neq \emptyset$ and $[\alpha_0, \alpha) \cap K^+ \neq \emptyset$, where $\alpha_0 = \max(J^+ \cap [l(\alpha), \alpha))$.

Corollary 4.10. Let $X = \prod_{\alpha < \gamma} X_{\alpha}$ be a lexicographic product of GOspaces. If all X_{α} 's have minimal elements, then the following are equivalent:

- (1) X is countably 1-compact,
- (2) the following clauses hold:
 - (a) X_{α} is (boundedly) countably 1-compact for every $\alpha < \gamma$,
 - (b) if $L^- \neq \emptyset$, then $J^+ \subset \min L^-$,

Now we consider the case that all factors are subspaces of ordinals. First let X be a subspace of an ordinal. Since X is well-ordered, the following hold:

- X is countably 1-compact,
- X has a minimal element,
- for every $u \in X$ with $(u, \to) \neq \emptyset$, (u, \to) has a minimal element,
- there is $u \in X$ such that (\leftarrow, u) is non-empty and has no maximal element if and only if the order type of X is greater than ω .

19

Note that a subspace X of ω_1 is countably compact if and only if it is closed in ω_1 , and also note that the subspace $X = \{\alpha < \omega_2 : \text{cf } \alpha \leq \omega\}$ is countably compact but not closed in ω_2 .

Next let X_{α} be a subspace of an ordinal for every $\alpha < \gamma$ and $X = \prod_{\alpha < \gamma} X_{\alpha}$ be a lexicographic product. Then using the notation in section 3, we see:

- $J^- = \emptyset$,
- $K^+ = \emptyset$,
- $\alpha \in K^-$ iff the order type of X_{α} is greater than ω .

Remarking these facts with Corollaries above, we see:

Corollary 4.11. Let $X = \prod_{\alpha < \gamma} X_{\alpha}$ be a lexicographic product. If all X_{α} 's are subspaces of ordinals, then the following are equivalent:

- (1) X is countably 0-compact,
- (2) the following clauses hold:
 - (a) X_{α} is boundedly countably 0-compact for every $\alpha < \gamma$,
 - (b) for every $\alpha < \gamma$ with $J^+ \cap [l(\alpha), \alpha) = \emptyset$, $0 \operatorname{cf}_{X_{\alpha}} X_{\alpha} \neq \omega$ holds,

Corollary 4.12. Let $X = \prod_{\alpha < \gamma} X_{\alpha}$ be a lexicographic product. If all X_{α} 's are subspaces of ordinals, then the following are equivalent:

- (1) X is countably 1-compact,
- (2) $J^+ \subset \omega$.

Proof. (1) ⇒ (2) Assume that X is countably 1-compact. By Corollary 4.10, if $L^- \neq \emptyset$, then $J^+ \subset \min L^-$. When $\gamma \ge \omega$, because of $\omega \in L^-$, we see $J^+ \subset \min L^- \le \omega$. When $\gamma < \omega$, obviously we see $J^+ \subset \gamma < \omega$. (2) ⇒ (1) Assume $J^+ \subset \omega$. It suffices to check (2a) and (2b) in Corollary 4.10. (2a) is obvious. To see (2b), let $L^- \neq \emptyset$. Now assume $\omega \cap L^- \neq \emptyset$, and take $n \in \omega \cap L^-$. Then we can take $u \in \prod_{m < n} X_m$ with 1-cf(u, \rightarrow) = ω . But this is a contradiction, because a lexicographic product of finite length of subspaces of ordinals are also a subspace of ordinal, see [7, Lemma 4.3]. Therefore we have $\omega \cap L^- = \emptyset$. $L^- \neq \emptyset$ and Lemma 3.2 show $J^+ \subset \omega = \min L^-$.

If X is an ordinal, then it is boundedly countably 0-compact and $0 - \operatorname{cf}_X X = \operatorname{cf} X$. Therefore we have:

Corollary 4.13. Let $X = \prod_{\alpha < \gamma} X_{\alpha}$ be a lexicographic product of ordinals. Then the following are equivalent:

- (1) X is countably compact,
- (2) the following clauses hold:
 - (a) if $J^+ \neq \emptyset$, then cf $X_{\min J^+} \ge \omega_1$,

(b)
$$J^+ \subset \omega$$
.

Corollary 4.14. [4] The following clauses hold:

- (1) the lexicographic product ω_1^{γ} is countably 0-compact for every ordinal γ ,
- (2) the lexicographic product ω_1^{γ} is countably (1-)compact iff $\gamma \leq \omega$.

Example 4.15. Using Corollary 4.13, we see:

- (1) lexicographic products ω_1^2 , $\omega_1 \times \omega$, $(\omega + 1) \times (\omega_1 + 1) \times \omega_1 \times \omega$, $\omega_1 \times \omega \times \omega_1$, $\omega_1 \times \omega \times \omega_1 \times \omega \times \cdots$, $\omega_1 \times \omega^{\omega}$, $\omega_1 \times \omega^{\omega} \times (\omega + 1)$, ω_1^{ω} , $\omega_1^{\omega} \times (\omega_1 + 1)$ and $\prod_{n \in \omega} \omega_{n+1}$ are countably compact,
- (2) lexicographic products $\omega \times \omega_1$, $(\omega + 1) \times (\omega_1 + 1) \times \omega \times \omega_1$, $\omega \times \omega_1 \times \omega \times \omega_1 \times \cdots$, $\omega \times \omega_1^{\omega}$, $\omega_1 \times \omega^{\omega} \times \omega_1$, $\omega_1^{\omega} \times \omega$, $\prod_{n \in \omega} \omega_n$ and $\prod_{n \leq \omega} \omega_{n+1}$ are not countably compact,
- (3) let $X = \omega_1^{\omega}$, then the lexicographic product X^2 is not countably compact because of $X^2 = \omega_1^{\omega} \times \omega_1^{\omega} = \omega_1^{\omega+\omega}$, so this shows also Corollary 4.8.

For a GO-space $X = \langle X, \langle X, \tau_X \rangle$, -X denotes the reverse of X, that is, the GO-space $\langle X, \rangle_X, \tau_X \rangle$, see [7]. Note that X and -X are topologically homeomorphic.

Example 4.16. As above, the lexicographic product ω_1^2 was countably compact. But the lexicographic product $\omega_1 \times (-\omega_1)$ is not countably compact. Indeed, let $X = \omega_1 \times (-\omega_1)$, $X_0 = \omega_1$ and $X_1 = -\omega_1$. $\omega \in X_0$ with 0- $\operatorname{cf}_{X_0}(\leftarrow, \omega) = \operatorname{cf} \omega = \omega$ witnesses $1 \in L^+$, therefore $\min L^+ = 1$. On the other hand $-\omega_1$ has no minimal element, so we have $1 \in J^-$. Therefore (2b) of Theorem 3.3 does not hold, thus X is not countably (0-)compact.

Also note that $(-\omega_1) \times (-\omega_1)$ is countably compact but $(-\omega_1) \times \omega_1$ is not countably compact, because $(-\omega_1) \times (-\omega_1)$ and $(-\omega_1) \times \omega_1$ are topologically homeomorphic to ω_1^2 and $\omega_1 \times (-\omega_1)$ respectively, see [7].

Moreover $\omega_1 \times (-\omega)$ is directly shown not to be countably (1-)compact, because the 1-order preserving sequence $\{\langle 0, n \rangle : n \in \omega\}$ has no cluster point in $\omega_1 \times (-\omega)$.

Acknowledgment. The author thanks the reviewer for careful reading the manuscript and for giving useful comments.

References

- R. Engelking, General Topology-Revised and completed ed.. Herdermann Verlag, Berlin (1989).
- [2] M. J. Faber, *Metrizability in generalized ordered spaces*, Mathematical Centre Tracts, No. 53. Mathematisch Centrum, Amsterdam, 1974.

- [3] N. Kemoto, Normality of products of GO-spaces and cardinals, Topology Proc., 18 (1993), 133–142.
- [4] N. Kemoto, The lexicographic ordered products and the usual Tychonoff products, Top. Appl., 162 (2014), 20-33.
- [5] N. Kemoto, Normality, orthocompactness and countable paracompactness of products of GO-spaces, Top. Appl., 231 (2017), 276-291.
- [6] N. Kemoto, Lexicographic products of GO-spaces, Top. Appl., 232 (2017), 267-280.
- [7] N. Kemoto, Paracompactness of Lexicographic products of GO-spaces, Top. Appl., 240 (2018) 35-58.
- [8] N. Kemoto, The structure of the linearly ordered compactifications, Top. Proc., 52 (2018) 189-204.
- [9] K. Kunen, Set Theory. An Introduction to Independence Proofs, Studies in Logic and the Foundations of Mathematics, vol. 102, North-Holland, Amsterdam, 1980.
- [10] D.J. Lutzer, On generalized ordered spaces, Dissertationes Math. Rozprawy Mat. 89 (1971).
- [11] T. Miwa and N. Kemoto, *Linearly ordered extensions of GO-spaces*, Top. Appl., 54 (1993), 133-140.

DEPARTMENT OF MATHEMATICS, OITA UNIVERSITY, OITA, 870-1192 JAPAN *E-mail address*: nkemoto@cc.oita-u.ac.jp