COUNTABLE COMPACTNESS OF LEXICOGRAPHIC PRODUCTS OF GO-SPACES

NOBUYUKI KEMOTO

Abstract. It is well-known:

- the usual Tychonoff product X^{2} of a paracompact space X need not be paracompact, for instance, the Sorgenfrey line \mathbb{S} is such an example.
On the other hand, the following is known:
- the lexicographic product $X=\prod_{\alpha<\gamma} X_{\alpha}$ of paracompact LOTS's is also paracompact [2].
In [6], the notion of the lexicographic product of GO-spaces is defined and the result above in $[2]$ is extended for GO-spaces $[6,7]$, so the lexicographic product \mathbb{S}^{2} is paracompact. It is also known that:
- the usual Tychonoff product of countably compact GO-spaces is also countably compact, therefore the usual Tychonoff product ω_{1}^{γ} is countably compact for every ordinal γ,
- the lexicographic product ω_{1}^{ω} is countably compact, but the lexicographic product $\omega_{1}^{\omega+1}$ is not countably compact [4].
In this paper, we will characterize the countable compactness of lexicographic products of GO-spaces. Applying this characterization, about lexicographic products, we see:
- the lexicographic product X^{2} of a countably compact GOspace X need not be countably compact,
- $\omega_{1}^{2}, \omega_{1} \times \omega,(\omega+1) \times\left(\omega_{1}+1\right) \times \omega_{1} \times \omega, \omega_{1} \times \omega \times \omega_{1}, \omega_{1} \times \omega \times$ $\omega_{1} \times \omega \times \cdots, \omega_{1} \times \omega^{\omega}, \omega_{1} \times \omega^{\omega} \times(\omega+1), \omega_{1}^{\omega}, \omega_{1}^{\omega} \times\left(\omega_{1}+1\right)$ and $\prod_{n \in \omega} \omega_{n+1}$ are countably compact,
- $\omega \times \omega_{1},(\omega+1) \times\left(\omega_{1}+1\right) \times \omega \times \omega_{1}, \omega \times \omega_{1} \times \omega \times \omega_{1} \times \cdots$, $\omega \times \omega_{1}^{\omega}, \omega_{1} \times \omega^{\omega} \times \omega_{1}, \omega_{1}^{\omega} \times \omega, \prod_{n \in \omega} \omega_{n}$ and $\prod_{n \leq \omega} \omega_{n+1}$ are not countably compact,
- $[0,1)_{\mathbb{R}} \times \omega_{1}$, where $[0,1)_{\mathbb{R}}$ denotes the half open interval in the real line \mathbb{R}, is not countably compact,
- $\omega_{1} \times[0,1)_{\mathbb{R}}$ is countably compact,
- both $\mathbb{S} \times \omega_{1}$ and $\omega_{1} \times \mathbb{S}$ are not countably compact,
- $\omega_{1} \times\left(-\omega_{1}\right)$ is not countably compact, where for a GO-space $X=\left\langle X,<_{X}, \tau_{X}\right\rangle,-X$ denotes the GO-space $\left\langle X,>_{X}, \tau_{X}\right\rangle$.

[^0]
1. Introduction

Lexicographic products of LOTS's were studied in [2] and it was proved:

- a lexicographic product of LOTS's is compact iff all factors are compact,
- a lexicographic products of paracompact LOTS's is also paracompact,
Recently, the author defined the notion of the lexicographic product of GO-spaces and extended the results above for GO-spaces, see $[6,7]$. It is also known:
- the usual Tychonoff product of GO-spaces is countably compact iff all factors are countably compact, therefore the usual Tychonoff product ω_{1}^{γ} is countably compact for every ordinal γ,
- the lexicographic product ω_{1}^{ω} is countably compact, but the lexicographic product $\omega_{1}^{\omega+1}$ is not countably compact [4].
In this paper, we will characterize the countable compactness of lexicographic products of GO-spaces, further give some applications.

When we consider a product $\prod_{\alpha<\gamma} X_{\alpha}$, all X_{α} are assumed to have cardinality at least 2 with $\gamma \geq 2$. Set theoretical and topological terminology follow [9] and [1].

A linearly ordered set $\left\langle L,<_{L}\right\rangle$ has a natural topology λ_{L}, which is called an interval topology, generated by $\left\{(\leftarrow, x)_{L}: x \in L\right\} \cup\{(x, \rightarrow$ $\left.)_{L}: x \in L\right\}$ as a subbase, where $(x, \rightarrow)_{L}=\left\{z \in L: x<_{L} z\right\},(x, y)_{L}=$ $\left\{z \in L: x<_{L} z<_{L} y\right\},(x, y]_{L}=\left\{z \in L: x<_{L} z \leq_{L} y\right\}$ and so on. The triple $\left\langle L,<_{L}, \lambda_{L}\right\rangle$, which is simply denoted by L, is called a LOTS.

A triple $\left\langle X,<_{X}, \tau_{X}\right\rangle$ is said to be a $G O$-space, which is also simply denoted by X, if $\left\langle X,<_{X}\right\rangle$ is a linearly ordered set and τ_{X} is a $T_{2}{ }^{-}$ topology on X having a base consisting of convex sets, where a subset C of X is convex if for every $x, y \in C$ with $x<_{X} y,[x, y]_{X} \subset C$ holds. For more information on LOTS's or GO-spaces, see [10]. Usually $<_{L}$, $(x, y)_{L}, \lambda_{L}$ or τ_{X} are written simply $<,(x, y), \lambda$ or τ if contexts are clear.

The symbols ω and ω_{1} denote the first infinite ordinal and the first uncountable ordinal, respectively. Ordinals, which are usually denoted by Greek letters $\alpha, \beta, \gamma, \cdots$, are considered to be LOTS's with the usual intereval topologies. The cofinality of α is denoted by cf α.

For GO-spaces $X=\left\langle X,<_{X}, \tau_{X}\right\rangle$ and $Y=\left\langle Y,<_{Y}, \tau_{Y}\right\rangle, X$ is said to be a subspace of Y if $X \subset Y$, the linear order $<_{X}$ is the restriction $<_{Y} \upharpoonright X$ of the order $<_{Y}$ and the topology τ_{X} is the subspace topology $\tau_{Y} \upharpoonright X\left(=\left\{U \cap X: U \in \tau_{Y}\right\}\right)$ on X of the topology τ_{Y}. So a subset of a

GO-space is naturally considered as a GO-space. For every GO-space X, there is a LOTS X^{*} such that X is a dense subspace of X^{*} and X^{*} has the property that if L is a LOTS containing X as a dense subspace, then L also contains the LOTS X^{*} as a subspace, see [11]. Such a X^{*} is called the minimal d-extension of a GO-space X. The construction of X^{*} is also shown in [6]. Obviously, we can see:

- if X is a LOTS, then $X^{*}=X$,
- X has a maximal element max X if and only if X^{*} has a maximal element $\max X^{*}$, in this case, $\max X=\max X^{*}$ (similarly for minimal elements).
For every $\alpha<\gamma$, let X_{α} be a LOTS and $X=\prod_{\alpha<\gamma} X_{\alpha}$. Every element $x \in X$ is identified with the sequence $\langle x(\alpha): \alpha<\gamma\rangle$. For notational convenience, $\prod_{\alpha<\gamma} X_{\alpha}$ is considered as the trivial one point LOTS $\{\emptyset\}$ whenever $\gamma=0$, where \emptyset is considered to be a function whose domain is $0(=\emptyset)$. When $0 \leq \beta<\gamma, y_{0} \in \prod_{\alpha<\beta} X_{\alpha}$ and $y_{1} \in \prod_{\beta \leq \alpha} X_{\alpha}, y_{0}{ }^{\wedge} y_{1}$ denotes the sequence $y \in \prod_{\alpha<\gamma} X_{\alpha}$ defined by

$$
y(\alpha)= \begin{cases}y_{0}(\alpha) & \text { if } \alpha<\beta, \\ y_{1}(\alpha) & \text { if } \beta \leq \alpha .\end{cases}
$$

In this case, whenever $\beta=0, \emptyset^{\wedge} y_{1}$ is considered as y_{1}. In case $0 \leq$ $\beta<\gamma, y_{0} \in \prod_{\alpha<\beta} X_{\alpha}, u \in X_{\beta}$ and $y_{1} \in \prod_{\beta<\alpha} X_{\alpha}, y_{0}{ }^{\wedge}\langle u\rangle^{\wedge} y_{1}$ denotes the sequence $y \in \prod_{\alpha<\gamma} X_{\alpha}$ defined by

$$
y(\alpha)= \begin{cases}y_{0}(\alpha) & \text { if } \alpha<\beta \\ u & \text { if } \alpha=\beta \\ y_{1}(\alpha) & \text { if } \beta<\alpha\end{cases}
$$

More general cases are similarly defined. The lexicographic order $<_{X}$ on X is defined as follows: for every $x, x^{\prime} \in X$,

$$
x<_{X} x^{\prime} \text { iff for some } \alpha<\gamma, x \upharpoonright \alpha=x^{\prime} \upharpoonright \alpha \text { and } x(\alpha)<_{X_{\alpha}} x^{\prime}(\alpha),
$$

where $x \upharpoonright \alpha=\langle x(\beta): \beta<\alpha\rangle$ (in particular $x \upharpoonright 0=\emptyset$) and $<_{X_{\alpha}}$ is the order on X_{α}. Now for every $\alpha<\gamma$, let X_{α} be a GO-space and $X=\prod_{\alpha<\gamma} X_{\alpha}$. The subspace X of the lexicographic product $\hat{X}=\prod_{\alpha<\gamma} X_{\alpha}^{*}$ is said to be the lexicographic product of GO-spaces X_{α} 's, for more details see [6]. $\prod_{i \in \omega} X_{i}\left(\prod_{i \leq n} X_{i}\right.$ where $\left.n \in \omega\right)$ is denoted by $X_{0} \times X_{1} \times X_{2} \times \cdots\left(X_{0} \times X_{1} \times X_{2} \times \cdots \times X_{n}\right.$, respectively $)$. $\prod_{\alpha<\gamma} X_{\alpha}$ is also denoted by X^{γ} whenever $X_{\alpha}=X$ for all $\alpha<\gamma$.

Let X and Y be LOTS's. A map $f: X \rightarrow Y$ is said to be order preserving or 0-order preserving if $f(x)<_{Y} f\left(x^{\prime}\right)$ whenever $x<_{X} x^{\prime}$. Similarly a map $f: X \rightarrow Y$ is said to be order reversing or 1-order
preserving if $f(x)>_{Y} f\left(x^{\prime}\right)$ whenever $x<_{X} x^{\prime}$. Obviously a 0 -order preserving map (also 1-order preserving map) $f: X \rightarrow Y$ between LOTS's X and Y, which is onto, is a homeomorphism, i.e., both f and f^{-1} are continuous. Now let X and Y be GO-spaces. A 0 -order preserving map $f: X \rightarrow Y$ is said to be a 0 -order preserving embedding if f is a homeomorphism between X and $f[X]$, where $f[X]$ is the subspace of the GO-space Y. In this case, we identify X with $f[X]$ as a GO-space and write $X=f[X]$ and $X \subset Y$.

Let X be a GO-space. A subset A of X is called a 0 -segment of X if for every $x, x^{\prime} \in X$ with $x \leq x^{\prime}$, if $x^{\prime} \in A$, then $x \in A$. A 0 -segment A is said to be bounded if $X \backslash A$ is non-empty. Similarly the notion of (bounded) 1-segment can be defined. Both \emptyset and X are 0 -segments and 1 -segments. Obviously if A is a 0 -segment of X, then $X \backslash A$ is a 1 -segment of X.

Let A be a 0 -segment of a GO-space X. A subset U of A is unbounded in A if for every $x \in A$, there is $x^{\prime} \in U$ such that $x \leq x^{\prime}$. Let

$$
0-\operatorname{cf}_{X} A=\min \{|U|: U \text { is unbounded in } A .\} .
$$

$0-\mathrm{cf}_{X} A$ can be 0,1 or regular infinite cardinals. $0-\mathrm{cf}_{X} A=0$ means $A=\emptyset$ and $0-\operatorname{cf}_{X} A=1$ means that A has a maximal element. If contexts are clear, $0-\mathrm{cf}_{X} A$ is denoted by $0-\mathrm{cf} A$. For cofinality in compact LOTS and linearly ordered compactifications, see also $[3,8]$.

Remember that a topological space is said to be countably compact if every infinite subset has a cluster point.

Definition 1.1. A GO-space X is (boundedly) countably 0 -compact if for every (bounded) closed 0 -segment A of $X, 0-\operatorname{cf}_{X} A \neq \omega$ holds. The term "(Boundedly) countably 1-compact" is analogously defined.

Obviously a GO-space X is countably 0 -compact iff it is boundedly countably 0 -compact and 0 - cf $X \neq \omega$. Note that subspaces of ordinals are always countably 1 -compact because they are well-ordered. Also note that ordinals are boundedly countably 0 -compact but in general not countably 0 -compact, e.g., ω, \aleph_{ω} etc.

We first check:
Lemma 1.2. A GO-space X is countably 0 -compact if and only if every 0 -order preserving sequence $\left\{x_{n}: n \in \omega\right\}$ (i.e., $m<n \rightarrow x_{m}<x_{n}$) has a cluster point.

Proof. Assuming the existence of a 0 -order preserving sequence $\left\{x_{n}\right.$: $n \in \omega\}$ with no cluster points, set $A=\left\{x \in X: \exists n \in \omega\left(x \leq x_{n}\right)\right\}$. Then A is closed 0 -segment with $0-$ cf $A=\omega$.

To see the other direction, assuming the existence a closed 0-segment A with 0 - cf $A=\omega$, by induction, we can construct a 0 -order preserving sequence with no cluster points.

Using the lemma, we can see that a GO-space is countably compact if and only if it is both countably 0-compact and countably 1-compact, see also [5].

2. A sImple case

In this section, we characterize countable 0-compactness of lexicographic products of two GO-spaces. The following is easy to prove, see also [7, Lemma 3.6 (3a)].

Lemma 2.1. Let $X=X_{0} \times X_{1}$ be a lexicographic product of two $G O$ spaces and A_{0} a 0 -segment of X_{0} with $0-\mathrm{cf}_{X_{0}} A_{0} \geq \omega$. Then $A=$ $A_{0} \times X_{1}$ is also a 0 -segment of X with $0-\mathrm{cf}_{X} A=0-\mathrm{cf}_{X_{0}} A_{0}$.

The following lemma will be a useful tool for handling general cases.
Lemma 2.2. Let $X=X_{0} \times X_{1}$ be a lexicographic product of two GOspaces. Then the following are equivalent.
(1) X is countably 0-compact,
(2) the following clauses hold:
(a) X_{0} is countably 0-compact,
(b) X_{1} is boundedly countably 0-compact,
(c) if X_{1} has no minimal element or $(u, \rightarrow)_{X_{0}}$ has no minimal element (that is, $1-\mathrm{cf}_{X_{0}}(u, \rightarrow) \neq 1$) for some $u \in X_{0}$, then $0-\mathrm{cf}_{X_{1}} X_{1} \neq \omega$,
(d) if X_{1} has no minimal element, then $0-\mathrm{cf}_{X_{0}}(\leftarrow, u) \neq \omega$ for every $u \in X_{0}$.

Proof. Set $\hat{X}=X_{0}^{*} \times X_{1}^{*}$.
$(1) \Rightarrow(2)$ Let X be countably 0-compact.
(a) Assuming that X_{0} is not countably 0-compact, take a closed 0segment A_{0} of X_{0} with $0-\mathrm{cf}_{X_{0}} A_{0}=\omega$. By the lemma above, $A=$ $A_{0} \times X_{1}$ is a 0 -segment of X with $0-\mathrm{cf}_{X} A=\omega$. It suffices to see that A is closed, which contradicts countable 0 -compactness of X. So let $x \notin A$, then $x(0) \notin A_{0}$. Since A_{0} is closed in X_{0}, there is $u^{*} \in X_{0}^{*}$ such that $u^{*}<_{X_{0}^{*}} x(0)$ and $\left(\left(u^{*}, \rightarrow\right)_{X_{0}^{*}} \cap X_{0}\right) \cap A_{0}=\emptyset$ (this means $\left.\left(u^{*}, x(0)\right)_{X_{0}^{*}}=\emptyset\right)$. Fix $w \in X_{1}$ and let $x^{*}=\left\langle u^{*}, w\right\rangle \in \hat{X}$. Let $U=$ $\left(x^{*}, \rightarrow\right)_{\hat{X}} \cap X$, then U is a neighborhood of x. To see $U \cap A=\emptyset$, assume $a \in U \cap A$ for some a. By $a(0) \in A_{0}$, we can take $u \in A_{0}$ with $a(0)<u$. Now $u^{*} \leq a(0)<u$ shows $u \in\left(\left(u^{*}, \rightarrow\right) \cap X_{0}\right) \cap A_{0}$, a contradiction.
(b) Assuming that X_{1} is not boundedly countably 0-compact, take a bounded closed 0 -segment A_{1} of X_{1} with $0-\mathrm{cf}_{X_{1}} A_{1}=\omega$. Fix $u \in X_{0}$ and let $A=\left\{x \in X: \exists v \in A_{1}\left(x \leq_{X}\langle u, v\rangle\right)\right\}$. Obviously A is a 0 segment of X and $\{u\} \times A_{1}$ is unbounded in the 0 -segment A, so we see $0-\mathrm{cf}_{X} A=0-\mathrm{cf}_{X_{1}} A_{1}=\omega$. It suffices to see that A is closed, so let $x \in X \backslash A$. Note $u \leq x(0)$. Since A_{1} is bounded, fix $v \in X_{1} \backslash A_{1}$ and let $y=\langle u, v\rangle$. When $y<x, U=(y, \rightarrow)_{X}$ is a neighborhood of x disjoint from A. So let $x \leq y$, then we have $x(0)=u$ and $x(1) \notin A_{1}$. Since A_{1} is closed in X_{1}, take $v^{*} \in X_{1}^{*}$ such that $v^{*}<x(1)$ and $\left(\left(v^{*}, \rightarrow\right.\right.$ $\left.) \cap X_{1}\right) \cap A_{1}=\emptyset$. Then $U=\left(\left\langle u, v^{*}\right\rangle, \rightarrow\right)_{\hat{X}} \cap X$ is a neighborhood of x disjoint from A.
(c) First assume that X_{1} has no minimal element. Fix $u \in X_{0}$. Then $A=(\leftarrow, u] \times X_{1}$ is a closed 0 -segment of X and $\{u\} \times X_{1}$ is unbounded in the 0 -segment A, therefore 0 - $\mathrm{cf}_{X_{1}} X_{1}=0-\mathrm{cf}_{X} A \neq \omega$.

Next assume that $(u, \rightarrow)_{X_{0}}$ has no minimal element. Then putting $A=(\leftarrow, u] \times X_{1}$, similarly we see $0-\mathrm{cf}_{X_{1}} X_{1} \neq \omega$.
(d) Assuming that X_{1} has no minimal element and $0-\operatorname{cf}_{X_{0}}(\leftarrow, u)=\omega$ for some $u \in X_{0}$, let $A=(\leftarrow, u) \times X_{1}$. Then A is a closed 0 -segment of X with $0-\operatorname{cf}_{X} A=0-\operatorname{cf}_{X_{0}}(\leftarrow, u)$ by Lemma 2.1. This contradicts countable 0-compactness of X.
$(2) \Rightarrow(1)$ Assuming (2) and that X is not countably 0 -compact, take a closed 0 -segment A of X with $0-\mathrm{cf}_{X} A=\omega$. Let $A_{0}=\left\{u \in X_{0}\right.$: $\left.\exists v \in X_{1}(\langle u, v\rangle \in A)\right\}$. Since A is a non-empty 0 -segment of X, A_{0} is also a non-empty 0 -segment of X_{0}. We consider two cases, and in each cases, we will derive a contradiction.
Case 1. A_{0} has no maximal element, i.e., $0-\operatorname{cf} A_{0} \geq \omega$.
In this case, we have:
Claim 1. $A=A_{0} \times X_{1}$.
Proof. The inclusion \subset is obvious. Let $\langle u, v\rangle \in A_{0} \times X_{1}$. Since $u \in A_{0}$ and A_{0} has no maximal element, we can take $u^{\prime} \in A_{0}$ with $u<u^{\prime}$. By $u^{\prime} \in A_{0}$, there is $v^{\prime} \in X_{1}$ with $\left\langle u^{\prime}, v^{\prime}\right\rangle \in A$. Then from $\langle u, v\rangle<$ $\left\langle u^{\prime}, v^{\prime}\right\rangle \in A$, we see $\langle u, v\rangle \in A$, because A is a 0 -segment.

Lemma 2.1 shows $0-\mathrm{cf} A_{0}=0-\operatorname{cf} A=\omega$. The following claim contradicts the condition (2a).
Claim 2. A_{0} is closed in X_{0}.
Proof. Let $u \in X_{0} \backslash A_{0}$. Whenever $u^{\prime}<u$ for some $u^{\prime} \in X_{0} \backslash A_{0},\left(u^{\prime}, \rightarrow\right)$ is a neighborhood of u disjoint from A_{0}. So assume the other case, that is, $u=\min \left(X_{0} \backslash A_{0}\right)$. Note $A_{0}=(\leftarrow, u)$. If X_{1} has no minimal element,
then by (2d), we have $0-\operatorname{cf}(\leftarrow, u) \neq \omega$, a contradiction. Thus X_{1} has a minimal element, therefore $\left\langle u, \min X_{1}\right\rangle=\min (X \backslash A) \notin A$. Since A is closed, there are $u^{*} \in X_{0}^{*}$ and $v^{*} \in X_{1}^{*}$ such that $\left\langle u^{*}, v^{*}\right\rangle<\left\langle u, \min X_{1}\right\rangle$ and $\left(\left(\left\langle u^{*}, v^{*}\right\rangle, \rightarrow\right)_{\hat{X}} \cap X\right) \cap A=\emptyset .\left\langle u^{*}, v^{*}\right\rangle<\left\langle u, \min X_{1}\right\rangle$ shows $u^{*}<u$, so $\left(u^{*}, \rightarrow\right) \cap X_{0}$ is a neighborhood of u disjoint from A_{0}.

Case 2. A_{0} has a maximal element.
In this case, let $A_{1}=\left\{v \in X_{1}:\left\langle\max A_{0}, v\right\rangle \in A\right\}$. Then A_{1} is a non-empty 0 -segment of X_{1}. Since $\left\{\max A_{0}\right\} \times A_{1}$ is unbounded in the 0 -segment A, we see $0-\mathrm{cf}_{X_{1}} A_{1}=0-\mathrm{cf}_{X} A=\omega$.
Claim 3. A_{1} is closed in X_{1}.
Proof. Let $v \in X_{1} \backslash A_{1}$. Since $\left\langle\max A_{0}, v\right\rangle \notin A$ and A is closed, there are $u^{*} \in X_{0}^{*}$ amd $v^{*} \in X_{1}^{*}$ such that $\left\langle u^{*}, v^{*}\right\rangle<\left\langle\max A_{0}, v\right\rangle$ and $\left(\left(\left\langle u^{*}, v^{*}\right\rangle, \rightarrow\right)_{\hat{X}} \cap X\right) \cap A=\emptyset$. It follows from $A_{1} \neq \emptyset$ that $u^{*}=\max A_{0}$ and so $v^{*}<v$. Then we see that $\left(v^{*}, \rightarrow\right)_{X_{1}^{*}} \cap X_{1}$ is a neighborhood of v disjoint from A_{1}.

This claim with the condition (2b) shows $A_{1}=X_{1}$, which says $A=\left(\leftarrow, \max A_{0}\right] \times X_{1}$, in particular, we see that X_{1} has no maximal element.

Claim 4. (max $\left.A_{0}, \rightarrow\right)$ has no minimal element or X_{1} has no minimal element.

Proof. Assume that $\left(\max A_{0}, \rightarrow\right)$ has a minimal element u_{0} and X_{1} has a minimal element, then note $\left\langle u_{0}, \min X_{1}\right\rangle=\min (X \backslash A)$. Since A is closed in X, there are $u^{*} \in X_{0}^{*}$ and $v^{*} \in X_{1}^{*}$ such that $\left\langle u^{*}, v^{*}\right\rangle<$ $\left\langle u_{0}, \min X_{1}\right\rangle$ and $\left(\left(\left\langle u^{*}, v^{*}\right\rangle, \rightarrow\right)_{\hat{X}} \cap X\right) \cap A=\emptyset$. Then we have $u^{*}=$ $\max A_{0}$. Since X_{1} has no maximal element, pick $v \in X_{1}$ with $v^{*}<v$. Then we see $\left\langle\max A_{0}, v\right\rangle \in\left(\left(\left\langle u^{*}, v^{*}\right\rangle, \rightarrow\right)_{\hat{X}} \cap X\right) \cap A$, a contradiction.

Now the condition (2c) shows $0-\mathrm{cf}_{X_{1}} X_{1} \neq \omega$, a contradiction. This completes the proof of the lemma.

3. A general case

In this section, using the results in the previous section, we characterize the countable compactness of lexicographic products of any length of GO-spaces. We use the following notations.

Definition 3.1. Let $X=\prod_{\alpha<\gamma} X_{\alpha}$ be a lexicographic product of GOspaces. Define:

$$
J^{+}=\left\{\alpha<\gamma: X_{\alpha} \text { has no maximal element. }\right\}
$$

$$
\begin{aligned}
& J^{-}=\left\{\alpha<\gamma: X_{\alpha} \text { has no minimal element. }\right\}, \\
& K^{+}=\left\{\alpha<\gamma: \text { there is } x \in X_{\alpha} \text { such that }(x, \rightarrow)_{X_{\alpha}}\right. \text { is non-empty } \\
& \quad \text { and has no minimal element. }\}, \\
& K^{-}=\left\{\alpha<\gamma: \text { there is } x \in X_{\alpha} \text { such that }(\leftarrow, x)_{X_{\alpha}}\right. \text { is non-empty } \\
& \text { and has no maximal element. }\}, \\
& L^{+}=\left\{\alpha \leq \gamma: \text { there is } u \in \prod_{\beta<\alpha} X_{\beta} \text { with } 0-\operatorname{cf}_{\Pi_{\beta<\alpha} X_{\beta}}(\leftarrow, u)=\omega\right\}, \\
& L^{-}=\left\{\alpha \leq \gamma: \text { there is } u \in \prod_{\beta<\alpha} X_{\beta} \text { with } 1-\operatorname{cf}_{\Pi_{\beta<\alpha} X_{\beta}}(u, \rightarrow)=\omega\right\},
\end{aligned}
$$

For an ordinal α, let

$$
l(\alpha)= \begin{cases}0 & \text { if } \alpha<\omega \\ \sup \{\beta \leq \alpha: \beta \text { is limit. }\} & \text { if } \alpha \geq \omega .\end{cases}
$$

Some of the definitions above are introduced in [7]. Note that $0 \notin$ $L^{+} \cup L^{-}$and for an ordinal $\alpha \geq \omega, l(\alpha)$ is the largest limit ordinal less than or equal to α, therefore the half open interval $[l(\alpha), \alpha)$ of ordinals is finite.

We also remark:
Lemma 3.2. Let $X=\prod_{\alpha<\gamma} X_{\alpha}$ be a lexicographic product of GOspaces. If $\omega \leq \gamma$, then $\omega \in L^{+} \cap L^{-}$holds.

Proof. Assume $\omega \leq \gamma$. For each $n \in \omega$, fix $u_{0}(n)$, $u_{1}(n) \in X_{n}$ with $u_{0}(n)<u_{1}(n)$. Set $y=\left\langle u_{1}(n): n \in \omega\right\rangle$. Moreover for each $n \in \omega$, set $y_{n}=\left\langle u_{1}(i): i<n\right\rangle^{\wedge}\left\langle u_{0}(i): n \leq i\right\rangle$. Then $\left\{y_{n}: n \in \omega\right\}$ is a 0 order preserving unbounded sequence in (\leftarrow, y) in $\prod_{n \in \omega} X_{n}$, therefore $\omega \in L^{+}$. The statement $\omega \in L^{-}$is similar.

Theorem 3.3. Let $X=\prod_{\alpha<\gamma} X_{\alpha}$ be a lexicographic product of GOspaces. Then the following are equivalent:
(1) X is countably 0 -compact,
(2) the following clauses hold:
(a) X_{α} is boundedly countably 0 -compact for every $\alpha<\gamma$,
(b) if $L^{+} \neq \emptyset$, then $J^{-} \subset \min L^{+}$,
(c) for every $\alpha<\gamma$, if any one of the following cases holds, then $0-\mathrm{cf}_{X_{\alpha}} X_{\alpha} \neq \omega$ holds,
(i) $J^{+} \cap[l(\alpha), \alpha)=\emptyset$,
(ii) $J^{+} \cap[l(\alpha), \alpha) \neq \emptyset$ and $\left(\alpha_{0}, \alpha\right] \cap J^{-} \neq \emptyset$, where $\alpha_{0}=$ $\max \left(J^{+} \cap[l(\alpha), \alpha)\right)$,
(iii) $J^{+} \cap[l(\alpha), \alpha) \neq \emptyset$ and $\left[\alpha_{0}, \alpha\right) \cap K^{+} \neq \emptyset$, where $\alpha_{0}=$ $\max \left(J^{+} \cap[l(\alpha), \alpha)\right)$.

Proof. Note that (2a) $+(2 \mathrm{ci})$ implies that X_{0} is countably 0-compact. Let $\hat{X}=\prod_{\alpha<\gamma} X_{\alpha}^{*}$.
(1) \Rightarrow (2) Assume that X is countably 0 -compact.
(a) Let $\alpha_{0}<\gamma$. Since $X=\prod_{\alpha \leq \alpha_{0}} X_{\alpha} \times \prod_{\alpha_{0}<\alpha} X_{\alpha}$, see [6, Lemma 1.5], and X is countably 0 -compact, Lemma 2.2 shows that $\prod_{\alpha \leq \alpha_{0}} X_{\alpha}$ is countably 0 -compact. Now by $\prod_{\alpha \leq \alpha_{0}} X_{\alpha}=\prod_{\alpha<\alpha_{0}} X_{\alpha} \times X_{\alpha_{0}}$ and Lemma 2.2 again, we see that $X_{\alpha_{0}}$ is boundedly countably 0-compact.
(b) Assume $L^{+} \neq \emptyset$ and $\alpha_{0}=\min L^{+}$. Then Lemma 3.2 shows $\alpha_{0} \leq \omega$. From $\alpha_{0} \in L^{+}$, one can take $u \in \prod_{\alpha<\alpha_{0}} X_{\alpha}$ such that $0-\mathrm{cf}_{\prod_{\alpha<\alpha_{0}} X_{\alpha}}(\leftarrow, u)=\omega$. Now since $X=\prod_{\alpha<\alpha_{0}} X_{\alpha} \times \prod_{\alpha_{0} \leq \alpha} X_{\alpha}$ is countably 0-compact, Lemma 2.2 (d) shows that $\prod_{\alpha_{0} \leq \alpha} X_{\alpha}$ has a minimal element. Therefore X_{α} has a minimal element for every $\alpha \geq \alpha_{0}$, which shows $J^{-} \subset \alpha_{0}$.
(c) Let $\alpha_{0}<\gamma$. We will see $0-\operatorname{cf}_{X_{\alpha_{0}}} X_{\alpha_{0}} \neq \omega$ in each case of (i), (ii) and (iii).
Case (i), i.e., $J^{+} \cap\left[l\left(\alpha_{0}\right), \alpha_{0}\right)=\emptyset$.
Since X is countably 0 -compact and $X=\prod_{\alpha \leq \alpha_{0}} X_{\alpha} \times \prod_{\alpha_{0}<\alpha} X_{\alpha}$, Lemma 2.2 shows that $\prod_{\alpha \leq \alpha_{0}} X_{\alpha}$ is also countably 0-compact. When $\alpha_{0}=0$, by countable 0 -compactness of $\prod_{\alpha \leq \alpha_{0}} X_{\alpha}=X_{\alpha_{0}}$, we see $0-\operatorname{cf}_{X_{\alpha_{0}}} X_{\alpha_{0}} \neq \omega$. So let $\alpha_{0}>0$. We divide into two cases.
Case (i)-1. $l\left(\alpha_{0}\right)=0$, i.e., $\alpha_{0}<\omega$.
In this case, since $\prod_{\alpha<\alpha_{0}} X_{\alpha}$ has a maximal element, which implies $\left(\max \prod_{\alpha<\alpha_{0}} X_{\alpha}, \rightarrow\right)$ has no minimal element, and $\prod_{\alpha<\alpha_{0}} X_{\alpha} \times X_{\alpha_{0}}$ is countably 0-compact, Lemma 2.2 (2c) shows 0- cf ${ }_{X_{\alpha_{0}}} X_{\alpha_{0}} \neq \omega$.
Case (i)-2. $l\left(\alpha_{0}\right) \geq \omega$ i.e., $\alpha_{0} \geq \omega$.
In this case, note that for every $\alpha \in\left[l\left(\alpha_{0}\right), \alpha_{0}\right), X_{\alpha}$ has a maximal element. For every $\alpha<l\left(\alpha_{0}\right)$, fix $x_{0}(\alpha), x_{1}(\alpha) \in X_{\alpha}$ with $x_{0}(\alpha)<$ $x_{1}(\alpha)$, and let $y=\left\langle x_{0}(\alpha): \alpha<l\left(\alpha_{0}\right)\right\rangle^{\wedge}\left\langle\max X_{\alpha}: l\left(\alpha_{0}\right) \leq \alpha<\alpha_{0}\right\rangle$. Moreover for every $\beta<l\left(\alpha_{0}\right)$, let $\left.y_{\beta}=\left\langle x_{0}(\alpha): \alpha<\beta\right)\right\rangle^{\wedge}\left\langle x_{1}(\alpha): \beta \leq\right.$ $\left.\left.\alpha<l\left(\alpha_{0}\right)\right)\right\rangle^{\wedge}\left\langle\max X_{\alpha}: l\left(\alpha_{0}\right) \leq \alpha<\alpha_{0}\right\rangle$. Then $\left\{y_{\beta}: \beta<l\left(\alpha_{0}\right)\right\}$ is 1 -order preserving and unbounded in (y, \rightarrow), in particular, the interval (y, \rightarrow) in $\prod_{\alpha<\alpha_{0}} X_{\alpha}$ has no minimal element. Now Lemma 2.2 (2c) shows 0-cf ${ }_{X_{\alpha_{0}}} X_{\alpha_{0}} \neq \omega$.
Case (ii), i.e., $J^{+} \cap\left[l\left(\alpha_{0}\right), \alpha_{0}\right) \neq \emptyset$ and $\left(\alpha_{1}, \alpha_{0}\right] \cap J^{-} \neq \emptyset$, where $\alpha_{1}=\max \left(J^{+} \cap\left[l\left(\alpha_{0}\right), \alpha_{0}\right)\right)$.
Note that α_{1} is well-defined because $\left[l\left(\alpha_{0}\right), \alpha_{0}\right)$ is finite. Also let $\alpha_{2}=$ $\max \left(\left(\alpha_{1}, \alpha_{0}\right] \cap J^{-}\right)$, then note $0 \leq l\left(\alpha_{0}\right) \leq \alpha_{1}<\alpha_{2} \leq \alpha_{0}$, in particular $\left[0, \alpha_{2}\right) \neq \emptyset$.

Case (ii)-1. $\alpha_{2}=\alpha_{0}$.
Since $\prod_{\alpha<\alpha_{0}} X_{\alpha} \times X_{\alpha_{0}}\left(=\prod_{\alpha \leq \alpha_{0}} X_{\alpha}\right)$ is countably 0-compact, Lemma 2.2 (2c) shows $0-\mathrm{cf}_{X_{\alpha_{0}}} X_{\alpha_{0}} \neq \omega$.

Case (ii)-2. $\alpha_{2}<\alpha_{0}$.
Note that by the definition of α_{2}, X_{α} has a minimal element for every $\alpha \in\left(\alpha_{2}, \alpha_{0}\right]$. Fixing $z \in \prod_{\alpha<\alpha_{2}} X_{\alpha}$, let $y=z^{\wedge}\left\langle\max X_{\alpha}: \alpha_{2} \leq \alpha<\alpha_{0}\right\rangle$, then $y \in \prod_{\alpha<\alpha_{0}} X_{\alpha}$.
Claim 1. $(y, \rightarrow)_{\prod_{\alpha<\alpha_{0}}} X_{\alpha}$ is non-empty and has no minimal element.
Proof. Because $X_{\alpha_{1}}$ has no maximal element, fix $u \in X_{\alpha_{1}}$ with $y\left(\alpha_{1}\right)<$ u. Then $\left(y \upharpoonright \alpha_{1}\right)^{\wedge}\langle u\rangle^{\wedge}\left(y \upharpoonright\left(\alpha_{1}, \alpha_{0}\right)\right) \in(y, \rightarrow)$, which shows $(y, \rightarrow$ $) \neq \emptyset$. Next assume $y<y^{\prime} \in \prod_{\alpha<\alpha_{0}} X_{\alpha}$. Since $y(\alpha)=\max X_{\alpha}$ for every $\alpha \in\left[\alpha_{2}, \alpha_{0}\right)$, we have $y \upharpoonright \alpha_{2}<y^{\prime} \upharpoonright \alpha_{2}$. Since $X_{\alpha_{2}}$ has no minimal element, fix $u \in X_{\alpha_{2}}$ with $u<y^{\prime}\left(\alpha_{2}\right)$. Then we have $y<\left(y^{\prime} \upharpoonright \alpha_{2}\right)^{\wedge}\langle u\rangle^{\wedge}\left(\left(y^{\prime} \upharpoonright\left(\alpha_{2}, \alpha_{0}\right)\right)<y^{\prime}\right.$, which shows that (y, \rightarrow) has no minimal element.

Now because $\prod_{\alpha<\alpha_{0}} X_{\alpha} \times X_{\alpha_{0}}$ is countably 0-compact, Lemma 2.2 (2c) and the claim above show $0-\mathrm{cf}_{X_{\alpha_{0}}} X_{\alpha_{0}} \neq \omega$.
Case (iii), i.e., $J^{+} \cap\left[l\left(\alpha_{0}\right), \alpha_{0}\right) \neq \emptyset$ and $\left[\alpha_{1}, \alpha_{0}\right) \cap K^{+} \neq \emptyset$, where $\alpha_{1}=\max \left(J^{+} \cap\left[l\left(\alpha_{0}\right), \alpha_{0}\right)\right)$.
Let $\alpha_{2}=\max \left(\left[\alpha_{1}, \alpha_{0}\right) \cap K^{+}\right)$, then note $l\left(\alpha_{0}\right) \leq \alpha_{1} \leq \alpha_{2}<\alpha_{0}$. Fixing $z \in \prod_{\alpha<\alpha_{2}} X_{\alpha}$ amd $u \in X_{\alpha_{2}}$ satisfying that (u, \rightarrow) is non-empty and has no minimal element, let $y=z^{\wedge}\langle u\rangle^{\wedge}\left\langle\max X_{\alpha}: \alpha_{2}<\alpha<\alpha_{0}\right\rangle$. Then obviously $y \in \prod_{\alpha<\alpha_{0}} X_{\alpha}$ and (y, \rightarrow) has no minimal element. Since $\prod_{\alpha<\alpha_{0}} X_{\alpha} \times X_{\alpha_{0}}$ is countable 0-compact, Lemma 2.2 (2c) shows $0-\mathrm{cf}_{X_{\alpha_{0}}} X_{\alpha_{0}} \neq \omega$.
$(2) \Rightarrow(1)$ Assuming (2) and the negation of (1), take a closed 0 segment A of X with $0-\mathrm{cf}_{X} A=\omega$. Modifying the proof of Theorem 4.8 in [7], we consider 3 cases and their subcases. In each case, we will derive a contradiction.
Case 1. $A=X$.
In this case, since X has no maximal element, we have $J^{+} \neq \emptyset$, so let $\alpha_{0}=\min J^{+}$. Then $J^{+} \cap\left[l\left(\alpha_{0}\right), \alpha_{0}\right) \subset J^{+} \cap\left[0, \alpha_{0}\right)=\emptyset$ and the condition (2ci) shows $0-\operatorname{cf}_{X_{\alpha_{0}}} X_{\alpha_{0}} \geq \omega_{1}$. Since $\left\{\left\langle\max X_{\alpha}: \alpha<\alpha_{0}\right\rangle\right\} \times$ $X_{\alpha_{0}}$ is unbounded in $\prod_{\alpha \leq \alpha_{0}} X_{\alpha}$, we have $0-\mathrm{cf}_{\prod_{\alpha \leq \alpha_{0}} X_{\alpha}} \prod_{\alpha \leq \alpha_{0}} X_{\alpha}=$ $0-\mathrm{cf}_{X_{\alpha_{0}}} X_{\alpha_{0}} \geq \omega_{1}$. Now by $X=\prod_{\alpha \leq \alpha_{0}} X_{\alpha} \times \prod_{\alpha_{0}<\alpha} X_{\alpha}$, Lemma 2.1 shows $0-\mathrm{cf}_{X} A=0-\mathrm{cf}_{X} X=0-\mathrm{cf}_{\prod_{\alpha \leq \alpha_{0}} X_{\alpha}} \prod_{\alpha \leq \alpha_{0}} X_{\alpha}=0-\mathrm{cf}_{X_{\alpha_{0}}} X_{\alpha_{0}} \geq$ ω_{1}, a contradiction.

Case 2. $A \neq X$ and $X \backslash A$ has a minimal element.
Let $B=X \backslash A$ and $b=\min B$. Since A is non-empty closed and $B=[b, \rightarrow)$, there is $b^{*} \in \hat{X}$ with $b^{*}<b$ and $\left(\left(b^{*}, \rightarrow\right)_{\hat{X}} \cap X\right) \cap A=\emptyset$, equivalently $\left(b^{*}, b\right)_{\hat{X}}=\emptyset$. Note $b^{*} \notin X$ because A has no maximal element. Let $\alpha_{0}=\min \left\{\alpha<\gamma: b^{*}(\alpha) \neq b(\alpha\}\right.$.
Claim 2. For every $\alpha>\alpha_{0}, X_{\alpha}$ has a minimal element and $b(\alpha)=$ $\min X_{\alpha}$.

Proof. Assuming $b(\alpha)>u$ for some $\alpha>\alpha_{0}$ and $u \in X_{\alpha}$, let $\alpha_{1}=$ $\min \left\{\alpha>\alpha_{0}: \exists u \in X_{\alpha}(b(\alpha)>u)\right\}$ and fix $u \in X_{\alpha_{1}}$ with $b\left(\alpha_{1}\right)>u$. Then we have $b^{*}<\left(b \upharpoonright \alpha_{1}\right)^{\wedge}\langle u\rangle^{\wedge}\left(b \upharpoonright\left(\alpha_{1}, \gamma\right)\right)<b$, a contradiction.

Claim 3. $\left(b^{*}\left(\alpha_{0}\right), b\left(\alpha_{0}\right)\right)_{X_{\alpha_{0}}^{*}} \cap X_{\alpha_{0}}=\emptyset$.
Proof. Assume $u \in\left(b^{*}\left(\alpha_{0}\right), b\left(\alpha_{0}\right)\right)_{X_{\alpha_{0}}^{*}} \cap X_{\alpha_{0}}$ for some u. Then we have $b^{*}<\left(b \upharpoonright \alpha_{0}\right)^{\wedge}\langle u\rangle^{\wedge}\left(b \upharpoonright\left(\alpha_{0}, \gamma\right)\right)<b$, a contradiction.

Claim 4. $\left[b\left(\alpha_{0}\right), \rightarrow\right)_{X_{\alpha_{0}}} \notin \lambda_{X_{\alpha_{0}}}$, therefore $b^{*}\left(\alpha_{0}\right) \notin X_{\alpha_{0}}$.
Proof. It follows from $b^{*}\left(\alpha_{0}\right) \in\left(\leftarrow, b\left(\alpha_{0}\right)\right)_{X_{\alpha_{0}}^{*}}$ that $\left(\leftarrow, b\left(\alpha_{0}\right)\right)_{X_{\alpha_{0}}} \neq \emptyset$. Assume $\left[b\left(\alpha_{0}\right), \rightarrow\right)_{X_{\alpha_{0}}} \in \lambda_{X_{\alpha_{0}}}$, then for some $u \in X_{\alpha_{0}}$ with $u<b\left(\alpha_{0}\right)$, $\left(u, b\left(\alpha_{0}\right)\right)=\emptyset$ holds. Claim 3 shows $b^{*}\left(\alpha_{0}\right)=u \in X_{\alpha_{0}}$. If there were $\alpha>\alpha_{0}$ and $v \in X_{\alpha}$ with $v>b^{*}(\alpha)$, then by letting $\alpha_{1}=\min \{\alpha>$ $\left.\alpha_{0}: \exists v \in X_{\alpha}\left(v>b^{*}(\alpha)\right)\right\}$ and taking $v \in X_{\alpha_{1}}$ with $v>b^{*}\left(\alpha_{1}\right)$, we have $b^{*}<\left(b^{*} \upharpoonright \alpha_{1}\right)^{\wedge}\langle v\rangle^{\wedge}\left(b^{*} \upharpoonright\left(\alpha_{1}, \gamma\right)\right)<b$, a contradiction. Therefore for every $\alpha>\alpha_{0}$, max X_{α} exists and $b^{*}(\alpha)=\max X_{\alpha}$. Thus we have $b^{*}=\left(b \upharpoonright \alpha_{0}\right)^{\wedge}\langle u\rangle^{\wedge}\left\langle\max X_{\alpha}: \alpha_{0}\langle\alpha\rangle \in X\right.$ a contradiction.

Claims 3 and 4 show that $A_{0}:=\left(\leftarrow, b\left(\alpha_{0}\right)\right)$ is a bounded closed 0 segment of $X_{\alpha_{0}}$ without a maximal element. Now the condition (2a) shows $0-\operatorname{cf}_{X_{\alpha_{0}}} A_{0} \geq \omega_{1}$. Since $\left\{b \upharpoonright \alpha_{0}\right\} \times A_{0} \times\left\{b \upharpoonright\left(\alpha_{0}, \gamma\right)\right\}$ is unbounded in the 0 -segment in $A\left(\left(=(\leftarrow, b)_{X}\right)\right.$, we have $\omega=0-$ cf $_{X} A=$ $0-\mathrm{cf}_{X_{\alpha_{0}}} A_{0} \geq \omega_{1}$, a contradiction. This completes Case 2.

Case 3. $A \neq X$ and $X \backslash A$ has no minimal element.
Let $B=X \backslash A$ and

$$
I=\{\alpha<\gamma: \exists a \in A \exists b \in B(a \upharpoonright(\alpha+1)=b \upharpoonright(\alpha+1))\} .
$$

Obviously I is a 0 -segment of γ, so $I=\alpha_{0}$ for some $\alpha_{0} \leq \gamma$. For each $\alpha<\alpha_{0}$, fix $a_{\alpha} \in A$ and $b_{\alpha} \in B$ with $a_{\alpha} \upharpoonright(\alpha+1)=b_{\alpha} \upharpoonright(\alpha+1)$. By letting $Y_{0}=\prod_{\alpha<\alpha_{0}} X_{\alpha}$ and $Y_{1}=\prod_{\alpha_{0} \leq \alpha} X_{\alpha}$, define $y_{0} \in Y_{0}$ by $y_{0}(\alpha)=a_{\alpha}(\alpha)$ for every $\alpha<\alpha_{0}$. The ordinal α_{0} can be 0 , then in this case, $Y_{0}=\{\emptyset\}$ and $y_{0}=\emptyset$.

Claim 5. For every $\alpha<\alpha_{0}, y_{0} \upharpoonright(\alpha+1)=a_{\alpha} \upharpoonright(\alpha+1)=b_{\alpha} \upharpoonright(\alpha+1)$ holds.

Proof. The second equality is obvious. To see the first equality, assuming $y_{0} \upharpoonright(\alpha+1) \neq a_{\alpha} \upharpoonright(\alpha+1)$ for some $\alpha<\alpha_{0}$, let $\alpha_{1}=\min \{\alpha<$ $\left.\alpha_{0}: y_{0} \upharpoonright(\alpha+1) \neq a_{\alpha} \upharpoonright(\alpha+1)\right\}$. Moreover let $\alpha_{2}=\min \left\{\alpha \leq \alpha_{1}\right.$: $\left.y_{0}(\alpha) \neq a_{\alpha_{1}}(\alpha)\right\}$. It follows from $y_{0}\left(\alpha_{1}\right)=a_{\alpha_{1}}\left(\alpha_{1}\right)$ that $\alpha_{2}<\alpha_{1}$. Since $y_{0} \upharpoonright \alpha_{2}=a_{\alpha_{1}} \upharpoonright \alpha_{2}$ and $y_{0}\left(\alpha_{2}\right) \neq a_{\alpha_{1}}\left(\alpha_{2}\right)$ holds, by the minimality of α_{1}, we have $y_{0} \upharpoonright\left(\alpha_{2}+1\right)=a_{\alpha_{2}} \upharpoonright\left(\alpha_{2}+1\right)=b_{\alpha_{2}} \upharpoonright\left(\alpha_{2}+1\right)$. When $y_{0}\left(\alpha_{2}\right)<a_{\alpha_{1}}\left(\alpha_{2}\right)$, we have $B \ni b_{\alpha_{2}}<a_{\alpha_{1}} \in A$, a contradiction. When $y_{0}\left(\alpha_{2}\right)>a_{\alpha_{1}}\left(\alpha_{2}\right)$, we have $B \ni b_{\alpha_{1}}<a_{\alpha_{2}} \in A$, a contradiction.

Claim 5 remains true when $\alpha_{0}=0$, because there is no ordinal α with $\alpha<\alpha_{0}$.
Claim 6. $\alpha_{0}<\gamma$.
Proof. Assume $\alpha_{0}=\gamma$, then note $y_{0} \in Y_{0}=X=A \cup B$. Assume $y_{0} \in$ A. Since A has no maximal element, one can take $a \in A$ with $y_{0}<a$. Letting $\beta_{0}=\min \left\{\beta<\gamma: y_{0}(\beta) \neq a(\beta)\right\}$, we see $A \ni a>b_{\beta_{0}} \in B$, a contradiction. The remaining case is similar.
Let $A_{0}=\left\{a\left(\alpha_{0}\right): a \in A, a \upharpoonright \alpha_{0}=y_{0}\right\}$ and $B_{0}=\left\{b\left(\alpha_{0}\right): b \in B, b \upharpoonright\right.$ $\left.\alpha_{0}=y_{0}\right\}$.
Claim 7. The following hold:
(1) for every $a \in A, a \upharpoonright \alpha_{0} \leq y_{0}$ holds,
(2) for every $x \in X$, if $x \upharpoonright \alpha_{0}<y_{0}$, then $x \in A$.

Proof. (1) Assume $a \upharpoonright \alpha_{0}>y_{0}$ for some $a \in A$. Letting $\beta_{0}=\min \{\beta<$ $\left.\alpha_{0}: a(\beta) \neq y_{0}(\beta)\right\}$, we see $B \ni b_{\beta_{0}}<a \in A$, a contradiction.
(2) Assume $x \upharpoonright \alpha_{0}<y_{0}$. Letting $\beta_{0}=\min \left\{\beta<\alpha_{0}: x(\beta) \neq y_{0}(\beta)\right\}$, we see $x<a_{\beta_{0}} \in A$. Since A is a 0 -segment, we have $x \in A$.

Similarly we have:
Claim 8. The following hold:
(1) for every $b \in B, b \upharpoonright \alpha_{0} \geq y_{0}$ holds,
(2) for every $x \in X$, if $x \upharpoonright \alpha_{0}>y_{0}$, then $x \in B$.

Claim 9. A_{0} is a 0-segment of $X_{\alpha_{0}}$ and $B_{0}=X_{\alpha_{0}} \backslash A_{0}$.
Proof. To see that A_{0} is a 0 -segment, let $u^{\prime}<u \in A_{0}$. Pick $a \in A$ with $a \upharpoonright \alpha_{0}=y_{0}$ and $u=a\left(\alpha_{0}\right)$. Let $a^{\prime}=\left(a \upharpoonright \alpha_{0}\right)^{\wedge}\left\langle u^{\prime}\right\rangle^{\wedge}\left(a \upharpoonright\left(\alpha_{0}, \gamma\right)\right)$. Since A is a 0 -segment and $a^{\prime}<a \in A$, we have $a^{\prime} \in A$. Now we see $u^{\prime}=a^{\prime}\left(\alpha_{0}\right) \in A_{0}$ because of $a^{\prime} \upharpoonright \alpha_{0}=y_{0}$.

To see $B_{0}=X_{\alpha_{0}} \backslash A_{0}$, first let $u \in B_{0}$. Take $b \in B$ with $b \upharpoonright \alpha_{0}=y_{0}$ and $b\left(\alpha_{0}\right)=u$. If $u \in A_{0}$ were true, then by taking $a \in A$ with
$a \upharpoonright \alpha_{0}=y_{0}$ and $a\left(\alpha_{0}\right)=u$, we see $a \upharpoonright\left(\alpha_{0}+1\right)=b \upharpoonright\left(\alpha_{0}+1\right)$, therefore $\alpha_{0} \in I=\alpha_{0}$, a contradiction. So we have $u \in X_{\alpha_{0}} \backslash A_{0}$. To see the remaining inclusion, let $u \in X_{\alpha_{0}} \backslash A_{0}$. Take $x \in X$ with $x \upharpoonright\left(\alpha_{0}+1\right)=y_{0} \wedge\langle u\rangle$. If $x \in A$ were true, then by $x \upharpoonright \alpha_{0}=y_{0}$, we have $u=x\left(\alpha_{0}\right) \in A_{0}$, a contradiction. So we have $x \in B$, therefore $u \in B_{0}$.

Claim 10. $A_{0} \neq \emptyset$.
Proof. Assume $A_{0}=\emptyset$. We prove the following facts.
Fact 1. $\left(\leftarrow, y_{0}\right)_{Y_{0}} \times Y_{1}=A$.
Proof. One inclusion follows from Claim 7 (2). To see the other inclusion, let $a \in A$. Claim 7 (1) shows $a \upharpoonright \alpha_{0} \leq y_{0}$. If $a \upharpoonright \alpha_{0}=y_{0}$ were true, then we have $a\left(\alpha_{0}\right) \in A_{0}$, a contradiction. So we have $a \upharpoonright \alpha_{0}<y_{0}$ therefore $a \in\left(\leftarrow, y_{0}\right) \times Y_{1}$.

Fact 2. $\alpha_{0}>0$ and α_{0} is limit. .
Proof. If $\alpha_{0}=0$ were true, then by taking $a \in A$, we have $a\left(\alpha_{0}\right) \in A_{0}$, a contradiction. Therefore we have $\alpha_{0}>0$. Next if $\alpha_{0}=\beta_{0}+1$ were true for some ordinal β_{0}, then by $\beta_{0} \in \alpha_{0}$ and Claim 5, we have $y_{0} \upharpoonright \alpha_{0}=y_{0} \upharpoonright\left(\beta_{0}+1\right)=a_{\beta_{0}} \upharpoonright\left(\beta_{0}+1\right)=a_{\beta_{0}} \upharpoonright \alpha_{0}$, thus we have $a_{\beta_{0}}\left(\alpha_{0}\right) \in A_{0}$, a contradiction. Thus α_{0} is limit.

Now Claim 6 and Fact 2 show $\omega \leq \alpha_{0}<\gamma$, so Lemma 3.2 shows $\omega \in L^{+}$. Moreover the condition (2b) shows $J^{-} \subset \min L^{+} \leq \omega \leq \alpha_{0}$, in particular, X_{α} has a minimal element for every $\alpha \geq \alpha_{0}$. This means $Y_{1}\left(=\prod_{\alpha_{0} \leq \alpha} X_{\alpha}\right)$ has a minimal element. Now by Fact 1 , we see $y_{0}{ }^{\wedge} \min Y_{1}=\min (X \backslash A)$, which contradicts our case.

Next let $Z_{0}=\prod_{\alpha \leq \alpha_{0}} X_{\alpha}, Z_{1}=\prod_{\alpha_{0}<\alpha} X_{\alpha}$ and

$$
A^{*}=\left\{z \in Z_{0}: z \upharpoonright \alpha_{0}<y_{0} \text { or }\left(z \upharpoonright \alpha_{0}=y_{0}, z\left(\alpha_{0}\right) \in A_{0}\right)\right\} .
$$

Note $A^{*}=\left(\left(\leftarrow, y_{0}\right) \times X_{\alpha_{0}}\right) \cup\left(\left\{y_{0}\right\} \times A_{0}\right)$.
Claim 11. A^{*} is a 0 -segment of Z_{0} and $A=A^{*} \times Z_{1}$.
Proof. Since A_{0} is a 0 -segment of $X_{\alpha_{0}}, A^{*}$ is obviously a 0 -segment of Z_{0}. To see $A \subset A^{*} \times Z_{1}$, let $a \in A$. Claim 7 (1) shows $a \upharpoonright \alpha_{0} \leq y_{0}$. When $a \upharpoonright \alpha_{0}<y_{0}$, obviously we have $a \upharpoonright\left(\alpha_{0}+1\right) \in A^{*}$. When $a \upharpoonright \alpha_{0}=y_{0}, a \in A$ shows $a\left(\alpha_{0}\right) \in A_{0}$ thus $a \upharpoonright\left(\alpha_{0}+1\right) \in A^{*}$. To see $A \supset A^{*} \times Z_{1}$, let $a \in A^{*} \times Z_{1}$. Then note $a \upharpoonright\left(\alpha_{0}+1\right) \in A^{*}$. When $a \upharpoonright \alpha_{0}<y_{0}$, letting $\beta_{0}=\min \left\{\beta<\alpha_{0}: a(\beta) \neq y_{0}(\beta)\right\}$, we see $a<a_{\beta_{0}} \in A$ thus $a \in A$. When $a \upharpoonright \alpha_{0}=y_{0}$ and $a\left(\alpha_{0}\right) \in A_{0}$, Claim 9 shows $a \in A$.

Since $\left\{y_{0}\right\} \times A_{0}$ is unbounded in the 0 -segment A^{*}, we see $1 \leq$ $0-\mathrm{cf}_{Z_{0}} A^{*}=0-\mathrm{cf}_{X_{\alpha_{0}}} A_{0}$. We divide Case 3 into two subcases.
Case 3-1. $0-\operatorname{cf}_{Z_{0}} A^{*} \geq \omega$.
In this case, Claim 11 and Lemma 2.1 show $\omega=0-\mathrm{cf}_{X} A=0-\mathrm{cf}_{Z_{0}} A^{*}=$ 0 - $\mathrm{cf}_{X_{\alpha_{0}}} A_{0}$.
Claim 12. $A_{0} \neq X_{\alpha_{0}}$.
Proof. Assume $A_{0}=X_{\alpha_{0}}$. $0-\operatorname{cf}_{X_{\alpha_{0}}} X_{\alpha_{0}}=0-\operatorname{cf}_{X_{\alpha_{0}}} A_{0}=\omega$ shows $\alpha_{0} \in$ J^{+}. Assume $\alpha_{0}=\beta_{0}+1$ for some ordinal β_{0}. Then $\beta_{0}<\alpha_{0}=I$ shows $b_{\beta_{0}} \in B$. Now from $b_{\beta_{0}} \upharpoonright \alpha_{0}=b_{\beta_{0}} \upharpoonright\left(\beta_{0}+1\right)=y_{0} \upharpoonright\left(\beta_{0}+1\right)=y_{0} \upharpoonright \alpha_{0}$, we have $b_{\beta_{0}}\left(\alpha_{0}\right) \in B_{0}=X_{\alpha_{0}} \backslash A_{0}$, a contradiction. Thus we see that $\alpha_{0}=0$ or α_{0} is limit, that is, $\left[l\left(\alpha_{0}\right), \alpha_{0}\right)=\emptyset$. Now the condition (2ci) shows 0- cf $X_{\alpha_{0}} X_{\alpha_{0}} \neq \omega$, a contradiction.

Claim 13. A_{0} is closed in $X_{\alpha_{0}}$.
Proof. When B_{0} has no minimal element, obviously A_{0} is closed. So assume that B_{0} has a minimal element, say $u=\min B_{0}$. It suffices to find a neighborhood of u disjoint from $A_{0} . A^{*}=\left(\leftarrow, y_{0} \wedge\langle u\rangle\right)_{Z_{0}}$ and $0-\mathrm{cf}_{Z_{0}} A^{*}=\omega$ show $\alpha_{0}+1 \in L^{+}$, therefore $\min L^{+} \leq \alpha_{0}+1$. The condition (2b) ensures $J^{-} \subset \min L^{+} \leq \alpha_{0}+1$, so $J^{-} \subset\left[0, \alpha_{0}\right]$. Therefore X_{α} has a minimal element for every $\alpha>\alpha_{0}$. Let $b=y_{0}{ }^{\wedge}\langle u\rangle^{\wedge}\left\langle\min X_{\alpha}\right.$: $\left.\alpha_{0}<\alpha\right\rangle$. Since $b \in B(=X \backslash A)$ and A is closed in X, there is $b^{*} \in \hat{X}$ such that $b^{*}<b$ and $\left(b^{*}, b\right)_{\hat{X}} \cap A=\emptyset$. Set $\beta_{0}=\min \{\beta<$ $\left.\gamma: b^{*}(\beta) \neq b(\beta)\right\}$, then obviously $\beta_{0} \leq \alpha_{0}$. If $\beta_{0}<\alpha_{0}$ were true, we have $a_{\beta_{0}} \in\left(b^{*}, b\right)_{\hat{X}} \cap A$, a contradiction. Thus we have $\beta_{0}=\alpha_{0}$, so $b^{*} \upharpoonright \alpha_{0}=y_{0}$ and $b^{*}\left(\alpha_{0}\right)<u$. If there were $v \in\left(b^{*}\left(\alpha_{0}\right), \rightarrow\right)_{X_{\alpha_{0}}^{*}} \cap A_{0}$, then $v<u$ shows $y_{0}{ }^{\wedge}\langle v\rangle^{\wedge}\left\langle\min X_{\alpha}: \alpha_{0}<\alpha\right\rangle \in\left(b^{*}, b\right) \cap A$, a contradiction. Therefore $\left(b^{*}\left(\alpha_{0}\right), \rightarrow\right)_{X_{\alpha_{0}}^{*}} \cap X_{\alpha_{0}}$ is a neighborhood of u disjoint from A_{0}.

These claims above show that A_{0} is a bounded closed 0 -segment of $X_{\alpha_{0}}$. Now the condition (2a) shows $0-\mathrm{cf}_{X_{\alpha_{0}}} A_{0} \neq \omega$, a contradiction.
Case 3-2. $0-\mathrm{cf}_{Z_{0}} A^{*}=1$.
Since $A=A^{*} \times Z_{1}, A^{*}$ has a maximal element but A has no maximal element, we see that Z_{1} has no maximal element. Therefore X_{α} has no maximal element for some $\alpha>\alpha_{0}$, in particular $\left(\alpha_{0}, \gamma\right) \neq \emptyset$. Let $\alpha_{1}=\min \left\{\alpha>\alpha_{0}: X_{\alpha}\right.$ has no maximal element. $\}$. Then we have $\alpha_{0}<\alpha_{1} \in J^{+}$and $\left(\alpha_{0}, \alpha_{1}\right) \cap J^{+}=\emptyset$. Since $A=A^{*} \times Z_{1}=$ $A^{*} \times\left(\prod_{\alpha_{0}<\alpha \leq \alpha_{1}} X_{\alpha} \times \prod_{\alpha_{1}<\alpha} X_{\alpha}\right)=\left(A^{*} \times \prod_{\alpha_{0}<\alpha \leq \alpha_{1}} X_{\alpha}\right) \times \prod_{\alpha_{1}<\alpha} X_{\alpha}$ and $A^{*} \times \prod_{\alpha_{0}<\alpha \leq \alpha_{1}} X_{\alpha}$ is a 0 -segment in $\prod_{\alpha \leq \alpha_{1}} \bar{X}_{\alpha}$ with no maximal
element, Lemma 2.1 shows $\omega=0-\operatorname{cf}_{X} A=0-\operatorname{cf}\left(A^{*} \times \prod_{\alpha_{0}<\alpha \leq \alpha_{1}} X_{\alpha}\right)=$ 0 - cf ${ }_{X_{\alpha_{1}}} X_{\alpha_{1}}$ (that $\left\{y_{0}{ }^{\wedge}\left\langle\max A_{0}\right\rangle^{\wedge}\left\langle\max X_{\alpha}: \alpha_{0}<\alpha<\alpha_{1}\right\rangle\right\} \times X_{\alpha_{1}}$ is unbounded in the 0 -segment $A^{*} \times \prod_{\alpha_{0}<\alpha \leq \alpha_{1}} X_{\alpha}$ witnesses the last equality).
Claim 14. $l\left(\alpha_{1}\right) \leq \alpha_{0}$ and $J^{+} \cap\left[l\left(\alpha_{1}\right), \alpha_{0}\right] \neq \emptyset$ hold, in particular $J^{+} \cap\left[l\left(\alpha_{1}\right), \alpha_{1}\right) \neq \emptyset$.
Proof. First assume $\alpha_{0}<l\left(\alpha_{1}\right)$. Then $J^{+} \cap\left[l\left(\alpha_{1}\right), \alpha_{1}\right) \subset J^{+} \cap\left(\alpha_{0}, \alpha_{1}\right)=$ \emptyset and the condition (2ci) show $0-\operatorname{cf}_{X_{\alpha_{1}}} X_{\alpha_{1}} \neq \omega$, a contradiction. Thus we have $l\left(\alpha_{1}\right) \leq \alpha_{0}$.

Next assume $J^{+} \cap\left[l\left(\alpha_{1}\right), \alpha_{0}\right]=\emptyset$, then we have $J^{+} \cap\left[l\left(\alpha_{1}\right), \alpha_{1}\right)=\emptyset$ because of $J^{+} \cap\left(\alpha_{0}, \alpha_{1}\right)=\emptyset$. Therefore the condition (2ci) shows 0 - $\mathrm{cf}_{X_{\alpha_{1}}} X_{\alpha_{1}} \neq \omega$, a contradiction. Thus $J^{+} \cap\left[l\left(\alpha_{1}\right), \alpha_{0}\right] \neq \emptyset$.

Using the above claim, set $\alpha_{2}=\max \left(J^{+} \cap\left[l\left(\alpha_{1}\right), \alpha_{1}\right)\right)$. Note $0 \leq$ $l\left(\alpha_{1}\right) \leq \alpha_{2} \leq \alpha_{0}<\alpha_{1}$ and $J^{+} \cap\left(\alpha_{2}, \alpha_{1}\right)=\emptyset$.

Claim 15. B_{0} has a minimal element.
Proof. First we check $B_{0} \neq \emptyset$, so assume $B_{0}=\emptyset$, i.e., $A_{0}=X_{\alpha_{0}}$. $1=0-\operatorname{cf}_{Z_{0}} A^{*}=0-\operatorname{cf}_{X_{\alpha_{0}}} A_{0}=0-\mathrm{cf}_{X_{\alpha_{0}}} X_{\alpha_{0}}$ shows $\alpha_{0} \notin J^{+}$. Also $\alpha_{2} \leq \alpha_{0}$ and $\alpha_{2} \in J^{+}$show $0 \leq \alpha_{2}<\alpha_{0}$. Assume that $\alpha_{0}=\beta_{0}+1$ for some ordinal β_{0}, then by $\beta_{0}<\alpha_{0}=I$, we have $b_{\beta_{0}} \in B$ and $b_{\beta_{0}} \upharpoonright \alpha_{0}=b_{\beta_{0}} \upharpoonright\left(\beta_{0}+1\right)=y_{0} \upharpoonright\left(\beta_{0}+1\right)=y_{0} \upharpoonright \alpha_{0}$. Therefore we have $b_{\beta_{0}}\left(\alpha_{0}\right) \in B_{0}$, a contradiction. So we have $0<\alpha_{0}$ and α_{0} is limit, therefore $\alpha_{0} \leq l\left(\alpha_{1}\right) \leq \alpha_{2}$, which contradicts $\alpha_{2}<\alpha_{0}$. We have seen $B_{0} \neq \emptyset$.

Next we check that B_{0} has a minimal element. Assume that B_{0} has no minimal element, then max A_{0} witnesses $\alpha_{0} \in\left[\alpha_{2}, \alpha_{1}\right) \cap K^{+}$. The definition of α_{2} and the condition (2ciii) show $0-\operatorname{cf}_{X_{\alpha_{1}}} X_{\alpha_{1}} \neq \omega$, a contradiction.

Now since B has no minimal element, by the claim above, there is $\alpha>\alpha_{0}$ such that X_{α} has no minimal element. So let $\alpha_{3}=\min \left\{\alpha>\alpha_{0}\right.$: X_{α} has no minimal element. $\}$. Then we have $\alpha_{0}<\alpha_{3} \in J^{-}$. When $\omega \leq \gamma$, Lemma 3.2 and the condition (2b) show $J^{-} \subset \min L^{+} \leq \omega$. When $\gamma<\omega$, obviously $J^{-} \subset \omega$. So in any case we have $J^{-} \subset \omega$. Therefore $l\left(\alpha_{1}\right) \leq \alpha_{0}<\alpha_{3} \in \omega$ so we have $\alpha_{1} \in \omega$.

Claim 16. $\alpha_{3} \leq \alpha_{1}$.
Proof. Assume $\alpha_{1}<\alpha_{3}$, then X_{α} has a minimal element for every $\alpha \in\left(\alpha_{0}, \alpha_{1}\right]$. So let $y=y_{0}{ }^{\wedge}\left\langle\min B_{0}\right\rangle^{\wedge}\left\langle\min X_{\alpha}: \alpha_{0}<\alpha \leq \alpha_{1}\right\rangle$. Note $y \in \prod_{\alpha \leq \alpha_{1}} X_{\alpha}$ and consider the interval (\leftarrow, y) in $\prod_{\alpha \leq \alpha_{1}} X_{\alpha}$. The definition of α_{2} and $\alpha_{2} \leq \alpha_{0}$ show that X_{α} has a maximal element for
every $\alpha \in\left(\alpha_{0}, \alpha_{1}\right)$. Since $\left\{y_{0}{ }^{\wedge}\left\langle\max A_{0}\right\rangle^{\wedge}\left\langle\max X_{\alpha}: \alpha_{0}<\alpha<\alpha_{1}\right\rangle\right\} \times$ $X_{\alpha_{1}}$ is unbounded in (\leftarrow, y), we have $0-\operatorname{cf}(\leftarrow, y)=0-\operatorname{cf}_{X_{\alpha_{1}}} X_{\alpha_{1}}=\omega$. Thus y witnesses $\alpha_{1}+1 \in L^{+}$. The condition (2b) ensures $J^{-} \subset$ $\min L^{+} \leq \alpha_{1}+1$, thus $\alpha_{3} \in J^{-} \subset\left[0, \alpha_{1}\right]$, a contradiction. Now we have $\alpha_{3} \leq \alpha_{1}$.

Now $\alpha_{3} \in\left(\alpha_{0}, \alpha_{1}\right] \cap J^{-} \subset\left(\alpha_{2}, \alpha_{1}\right] \cap J^{-}, \alpha_{2}=\max \left(J^{+} \cap\left[l\left(\alpha_{1}\right), \alpha_{1}\right)\right)$ and the condition (2cii) show $0-\operatorname{cf}_{X_{\alpha_{1}}} X_{\alpha_{1}} \neq \omega$, a contradiction. This completes the proof of the theorem.

Analogously we can see:
Theorem 3.4. Let $X=\prod_{\alpha<\gamma} X_{\alpha}$ be a lexicographic product of GOspaces. Then the following are equivalent:
(1) X is countably 1-compact,
(2) the following clauses hold:
(a) X_{α} is boundedly countably 1-compact for every $\alpha<\gamma$,
(b) if $L^{-} \neq \emptyset$, then $J^{+} \subset \min L^{-}$,
(c) for every $\alpha<\gamma$, if any one of the following cases holds, then $1-\operatorname{cf}_{X_{\alpha}} X_{\alpha} \neq \omega$ holds,
(i) $J^{-} \cap[l(\alpha), \alpha)=\emptyset$,
(ii) $J^{-} \cap[l(\alpha), \alpha) \neq \emptyset$ and $\left(\alpha_{0}, \alpha\right] \cap J^{+} \neq \emptyset$, where $\alpha_{0}=$ $\max \left(J^{-} \cap[l(\alpha), \alpha)\right)$,
(iii) $J^{-} \cap[l(\alpha), \alpha) \neq \emptyset$ and $\left[\alpha_{0}, \alpha\right) \cap K^{-} \neq \emptyset$, where $\alpha_{0}=$ $\max \left(J^{-} \cap[l(\alpha), \alpha)\right)$.

4. Applications

In this section, we apply the theorems in the previous section
Corollary 4.1. Let $X=\prod_{\alpha<\gamma} X_{\alpha}$ be a lexicographic product of GOspaces. Then the following hold:
(1) if X is countably 0 -compact, then $J^{-} \subset \omega$,
(2) if X is countably 1-compact, then $J^{+} \subset \omega$,
(3) if X is countably 0 -compact, then for every $\delta<\gamma$, the lexicographic product $\prod_{\alpha<\delta} X_{\alpha}$ is countably 0-compact, in particular X_{0} is countably 0 -compact,
(4) if X is countably 1-compact, then for every $\delta<\gamma$, the lexicographic product $\prod_{\alpha<\delta} X_{\alpha}$ is countably 1-compact, in particular X_{0} is countably 1-compact,

Proof. Lemma 3.2 and the condition (2b) in Theorem 3.3 show (1). (3) obviously follows from Theorem 3.3 or Lemma 2.2 directly. The remaining is similar.

Corollary 4.2. Let X be a GO-space. Then the lexicographic product $X^{\omega+1}$ is countably compact if and only if X is countably compact and has both a minimal and a maximal element.

Proof. That $X^{\omega+1}$ is countably compact implies that X is countably compact and has both a minimal and a maximal element follows from the corollary above. The other implication follows from the theorems in the previous section because of $J^{+}=J^{-}=\emptyset$.

Corollary 4.3. Let $X=\prod_{\alpha<\gamma} X_{\alpha}$ be a lexicographic product of countably compact GO-spaces. Then the following are equivalent:
(1) X is countably compact,
(2) the following clauses hold:
(a) if $L^{+} \neq \emptyset$, then $J^{-} \subset \min L^{+}$,
(b) if $L^{-} \neq \emptyset$, then $J^{+} \subset \min L^{-}$.

Proof. Since all X_{α} 's are countably compact, (2a)+(2c) in Theorems 3.3 and 3.4 of the previous section are true.

Example 4.4. Let $[0,1)_{\mathbb{R}}$ denote the unit half open interval in the real line \mathbb{R} with the usual order. Let X be the lexicographic product $[0,1)_{\mathbb{R}} \times \omega_{1}$. Since $[0,1)_{\mathbb{R}}$ is not countably 0 -compact, Corollary 4.1 shows that X is not countably 0 -compact. Both $[0,1)_{\mathbb{R}}$ and ω_{1} are countably 1-compact. Considering $X_{0}=[0,1)_{\mathbb{R}}$ and $X_{1}=\omega_{1}$, we see $1 \in L^{-}\left(0\right.$ in $[0,1)_{\mathbb{R}}$ witnesses this) therefore $1=\min L^{-}$. Moreover by $1 \in J^{+},(2 \mathrm{~b})$ in Theorem 3.4 does not hold. Therefore X is neither countably 0 -compact nor countably 1 -compact. Note that X is not paracompact, see [7, Example 4.6].

Example 4.5. Let X be the lexicographic product $\omega_{1} \times[0,1)_{\mathbb{R}}$. Checking all clauses in the theorems in the previous section, we see that X is countably compact. Since it is not compact, it is not paracompact. The lexicographic product $\omega_{1} \times[0,1)_{\mathbb{R}}$ is called the long line of length ω_{1} and denoted by $\mathbb{L}\left(\omega_{1}\right)$.

Example 4.6. Let \mathbb{S} be the Sorgenfrey line, where half open intervals $[a, b)_{\mathbb{R}}$'s are declared to be open. Then it is known that $\omega_{1} \times \mathbb{S}$ is paracompact but $\mathbb{S} \times \omega_{1}$ is not paracompact, see [7]. On the other hand, both lexicographic products $\omega_{1} \times \mathbb{S}$ and $\mathbb{S} \times \omega_{1}$ are not countably compact, because \mathbb{S} is not boundedly 0 -compact.
Example 4.7. Let X be the lexicographic product $\omega_{1} \times[0,1)_{\mathbb{R}} \times$ ω_{1}, and consider as $X_{0}=\omega_{1}, X_{1}=[0,1)_{\mathbb{R}}$ and $X_{2}=\omega_{1}$. Then $1-\mathrm{cf}_{\omega_{1} \times[0,1)_{\mathbb{R}}}(\langle 0,0\rangle, \rightarrow)=\omega$ shows $2 \in L^{-}$. Since $0,1 \notin L^{-}$, we have $\min L^{-}=2$. Now $2 \in J^{+}$implies $J^{+} \not \subset \min L^{-}$. Thus Theorem 3.4
shows that X is not countably (1-) compact. On the other hand, we will later see that the lexicographic product $\omega_{1} \times \omega \times \omega_{1}$ is countably compact.

Corollary 4.8. There is a countably compact LOTS X whose lexicographic square X^{2} is not countably compact.

Proof. $X=\mathbb{L}\left(\omega_{1}\right)$ is such an example, because $\mathbb{L}\left(\omega_{1}\right)^{2}=\left(\omega_{1} \times[0,1)_{\mathbb{R}} \times\right.$ $\left.\omega_{1}\right) \times[0,1)_{\mathbb{R}}($ use Example 4.7). We will later see that the lexicographic product $X=\omega_{1}^{\omega}$ is also such an example.

In the rest of the paper, we consider countable compactness of lexicographic products whose all factors have minimal elements. In the following, apply theorems with $J^{-}=\emptyset$.

Corollary 4.9. Let $X=\prod_{\alpha<\gamma} X_{\alpha}$ be a lexicographic product of $G O$ spaces. If all X_{α} 's have minimal elements, then the following are equivalent:
(1) X is countably 0-compact,
(2) the following clauses hold:
(a) X_{α} is boundedly countably 0-compact for every $\alpha<\gamma$,
(b) for every $\alpha<\gamma$, if either one of the following cases holds, then $0-\mathrm{cf}_{X_{\alpha}} X_{\alpha} \neq \omega$ holds,
(i) $J^{+} \cap[l(\alpha), \alpha)=\emptyset$,
(ii) $J^{+} \cap[l(\alpha), \alpha) \neq \emptyset$ and $\left[\alpha_{0}, \alpha\right) \cap K^{+} \neq \emptyset$, where $\alpha_{0}=$ $\max \left(J^{+} \cap[l(\alpha), \alpha)\right)$.

Corollary 4.10. Let $X=\prod_{\alpha<\gamma} X_{\alpha}$ be a lexicographic product of GOspaces. If all X_{α} 's have minimal elements, then the following are equivalent:
(1) X is countably 1-compact,
(2) the following clauses hold:
(a) X_{α} is (boundedly) countably 1-compact for every $\alpha<\gamma$,
(b) if $L^{-} \neq \emptyset$, then $J^{+} \subset \min L^{-}$,

Now we consider the case that all factors are subspaces of ordinals. First let X be a subspace of an ordinal. Since X is well-ordered, the following hold:

- X is countably 1-compact,
- X has a minimal element,
- for every $u \in X$ with $(u, \rightarrow) \neq \emptyset,(u, \rightarrow)$ has a minimal element,
- there is $u \in X$ such that (\leftarrow, u) is non-empty and has no maximal element if and only if the order type of X is greater than ω.

Note that a subspace X of ω_{1} is countably compact if and only if it is closed in ω_{1}, and also note that the subspace $X=\left\{\alpha<\omega_{2}: \operatorname{cf} \alpha \leq \omega\right\}$ is countably compact but not closed in ω_{2}.

Next let X_{α} be a subspace of an ordinal for every $\alpha<\gamma$ and $X=\prod_{\alpha<\gamma} X_{\alpha}$ be a lexicographic product. Then using the notation in section 3, we see:

- $J^{-}=\emptyset$,
- $K^{+}=\emptyset$,
- $\alpha \in K^{-}$iff the order type of X_{α} is greater than ω.

Remarking these facts with Corollaries above, we see:
Corollary 4.11. Let $X=\prod_{\alpha<\gamma} X_{\alpha}$ be a lexicographic product. If all X_{α} 's are subspaces of ordinals, then the following are equivalent:
(1) X is countably 0 -compact,
(2) the following clauses hold:
(a) X_{α} is boundedly countably 0-compact for every $\alpha<\gamma$,
(b) for every $\alpha<\gamma$ with $J^{+} \cap[l(\alpha), \alpha)=\emptyset, 0-\mathrm{cf}_{X_{\alpha}} X_{\alpha} \neq \omega$ holds,

Corollary 4.12. Let $X=\prod_{\alpha<\gamma} X_{\alpha}$ be a lexicographic product. If all X_{α} 's are subspaces of ordinals, then the following are equivalent:
(1) X is countably 1-compact,
(2) $J^{+} \subset \omega$.

Proof. (1) \Rightarrow (2) Assume that X is countably 1-compact. By Corollary 4.10, if $L^{-} \neq \emptyset$, then $J^{+} \subset \min L^{-}$. When $\gamma \geq \omega$, because of $\omega \in L^{-}$, we see $J^{+} \subset \min L^{-} \leq \omega$. When $\gamma<\omega$, obviously we see $J^{+} \subset \gamma<\omega$.
(2) \Rightarrow (1) Assume $J^{+} \subset \omega$. It suffices to check (2a) and (2b) in Corollary 4.10. (2a) is obvious. To see (2b), let $L^{-} \neq \emptyset$. Now assume $\omega \cap L^{-} \neq \emptyset$, and take $n \in \omega \cap L^{-}$. Then we can take $u \in \prod_{m<n} X_{m}$ with $1-\operatorname{cf}(u, \rightarrow)=\omega$. But this is a contradiction, because a lexicographic product of finite length of subspaces of ordinals are also a subspace of ordinal, see [7, Lemma 4.3]. Therefore we have $\omega \cap L^{-}=\emptyset . L^{-} \neq \emptyset$ and Lemma 3.2 show $J^{+} \subset \omega=\min L^{-}$.

If X is an ordinal, then it is boundedly countably 0-compact and $0-\mathrm{cf}_{X} X=\mathrm{cf} X$. Therefore we have:
Corollary 4.13. Let $X=\prod_{\alpha<\gamma} X_{\alpha}$ be a lexicographic product of ordinals. Then the following are equivalent:
(1) X is countably compact,
(2) the following clauses hold:
(a) if $J^{+} \neq \emptyset$, then $\operatorname{cf} X_{\min J^{+}} \geq \omega_{1}$,
(b) $J^{+} \subset \omega$.

Corollary 4.14. [4] The following clauses hold:
(1) the lexicographic product ω_{1}^{γ} is countably 0-compact for every ordinal γ,
(2) the lexicographic product ω_{1}^{γ} is countably (1-)compact iff $\gamma \leq \omega$.

Example 4.15. Using Corollary 4.13, we see:
(1) lexicographic products $\omega_{1}^{2}, \omega_{1} \times \omega,(\omega+1) \times\left(\omega_{1}+1\right) \times \omega_{1} \times \omega$, $\omega_{1} \times \omega \times \omega_{1}, \omega_{1} \times \omega \times \omega_{1} \times \omega \times \cdots, \omega_{1} \times \omega^{\omega}, \omega_{1} \times \omega^{\omega} \times(\omega+1)$, $\omega_{1}^{\omega}, \omega_{1}^{\omega} \times\left(\omega_{1}+1\right)$ and $\prod_{n \in \omega} \omega_{n+1}$ are countably compact,
(2) lexicographic products $\omega \times \omega_{1},(\omega+1) \times\left(\omega_{1}+1\right) \times \omega \times \omega_{1}$, $\omega \times \omega_{1} \times \omega \times \omega_{1} \times \cdots, \omega \times \omega_{1}^{\omega}, \omega_{1} \times \omega^{\omega} \times \omega_{1}, \omega_{1}^{\omega} \times \omega, \prod_{n \in \omega} \omega_{n}$ and $\prod_{n \leq \omega} \omega_{n+1}$ are not countably compact,
(3) let $X=\omega_{1}^{\omega}$, then the lexicographic product X^{2} is not countably compact because of $X^{2}=\omega_{1}^{\omega} \times \omega_{1}^{\omega}=\omega_{1}^{\omega+\omega}$, so this shows also Corollary 4.8.

For a GO-space $X=\left\langle X,<_{X}, \tau_{X}\right\rangle,-X$ denotes the reverse of X, that is, the GO-space $\left\langle X,>_{X}, \tau_{X}\right\rangle$, see [7]. Note that X and $-X$ are topologically homeomorphic.

Example 4.16. As above, the lexicographic product ω_{1}^{2} was countably compact. But the lexicographic product $\omega_{1} \times\left(-\omega_{1}\right)$ is not countably compact. Indeed, let $X=\omega_{1} \times\left(-\omega_{1}\right), X_{0}=\omega_{1}$ and $X_{1}=-\omega_{1} . \omega \in X_{0}$ with $0-\mathrm{cf}_{X_{0}}(\leftarrow, \omega)=\operatorname{cf} \omega=\omega$ witnesses $1 \in L^{+}$, therefore $\min L^{+}=1$. On the other hand $-\omega_{1}$ has no minimal element, so we have $1 \in J^{-}$. Therefore (2b) of Theorem 3.3 does not hold, thus X is not countably (0-)compact.

Also note that $\left(-\omega_{1}\right) \times\left(-\omega_{1}\right)$ is countably compact but $\left(-\omega_{1}\right) \times \omega_{1}$ is not countably compact, because $\left(-\omega_{1}\right) \times\left(-\omega_{1}\right)$ and $\left(-\omega_{1}\right) \times \omega_{1}$ are topologically homeomorphic to ω_{1}^{2} and $\omega_{1} \times\left(-\omega_{1}\right)$ respectively, see [7].

Moreover $\omega_{1} \times(-\omega)$ is directly shown not to be countably (1-)compact, because the 1 -order preserving sequence $\{\langle 0, n\rangle: n \in \omega\}$ has no cluster point in $\omega_{1} \times(-\omega)$.

Acknowledgment. The author thanks the reviewer for careful reading the manuscript and for giving useful comments.

References

[1] R. Engelking, General Topology-Revised and completed ed.. Herdermann Verlag, Berlin (1989).
[2] M. J. Faber, Metrizability in generalized ordered spaces, Mathematical Centre Tracts, No. 53. Mathematisch Centrum, Amsterdam, 1974.
[3] N. Kemoto, Normality of products of GO-spaces and cardinals, Topology Proc., 18 (1993), 133-142.
[4] N. Kemoto, The lexicographic ordered products and the usual Tychonoff products, Top. Appl., 162 (2014), 20-33.
[5] N. Kemoto, Normality, orthocompactness and countable paracompactness of products of GO-spaces, Top. Appl., 231 (2017), 276-291.
[6] N. Kemoto, Lexicographic products of GO-spaces, Top. Appl., 232 (2017), 267280.
[7] N. Kemoto, Paracompactness of Lexicographic products of GO-spaces, Top. Appl., 240 (2018) 35-58.
[8] N. Kemoto, The structure of the linearly ordered compactifications, Top. Proc., 52 (2018) 189-204.
[9] K. Kunen, Set Theory. An Introduction to Independence Proofs, Studies in Logic and the Foundations of Mathematics, vol. 102, North-Holland, Amsterdam, 1980.
[10] D.J. Lutzer, On generalized ordered spaces, Dissertationes Math. Rozprawy Mat. 89 (1971).
[11] T. Miwa and N. Kemoto, Linearly ordered extensions of GO-spaces, Top. Appl., 54 (1993), 133-140.

Department of Mathematics, Oita University, Oita, 870-1192 Japan E-mail address: nkemoto@cc.oita-u.ac.jp

[^0]: Date: December 1, 2018.
 2010 Mathematics Subject Classification. Primary 54F05, 54B10, 54B05 . Secondary 54 C 05 .

 Key words and phrases. lexicographic product, GO-space, LOTS, countably compact.

