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Abstract. It is well-known:
• the usual Tychonoff product X2 of a paracompact space X
need not be paracompact, for instance, the Sorgenfrey line S
is such an example.

On the other hand, the following is known:
• the lexicographic product X =

∏
α<γ Xα of paracompact

LOTS’s is also paracompact [2].
In [6], the notion of the lexicographic product of GO-spaces is

defined and the result above in [2] is extended for GO-spaces [6, 7],
so the lexicographic product S2 is paracompact. It is also known
that:
• the usual Tychonoff product of countably compact GO-spaces
is also countably compact, therefore the usual Tychonoff prod-
uct ωγ

1 is countably compact for every ordinal γ,
• the lexicographic product ωω

1 is countably compact, but the
lexicographic product ωω+1

1 is not countably compact [4].
In this paper, we will characterize the countable compactness of

lexicographic products of GO-spaces. Applying this characteriza-
tion, about lexicographic products, we see:
• the lexicographic product X2 of a countably compact GO-
space X need not be countably compact,
• ω2

1 , ω1×ω, (ω+1)× (ω1+1)×ω1×ω, ω1×ω×ω1, ω1×ω×
ω1 × ω × · · · , ω1 × ωω, ω1 × ωω × (ω + 1), ωω

1 , ω
ω
1 × (ω1 + 1)

and
∏

n∈ω ωn+1 are countably compact,
• ω × ω1, (ω + 1)× (ω1 + 1)× ω × ω1, ω × ω1 × ω × ω1 × · · · ,
ω× ωω

1 , ω1 × ωω × ω1, ω
ω
1 × ω,

∏
n∈ω ωn and

∏
n≤ω ωn+1 are

not countably compact,
• [0, 1)R × ω1, where [0, 1)R denotes the half open interval in
the real line R, is not countably compact,
• ω1 × [0, 1)R is countably compact,
• both S× ω1 and ω1 × S are not countably compact,
• ω1 × (−ω1) is not countably compact, where for a GO-space
X = ⟨X,<X , τX⟩, −X denotes the GO-space ⟨X,>X , τX⟩.
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1. Introduction

Lexicographic products of LOTS’s were studied in [2] and it was
proved:

• a lexicographic product of LOTS’s is compact iff all factors are
compact,
• a lexicographic products of paracompact LOTS’s is also para-
compact,

Recently, the author defined the notion of the lexicographic product
of GO-spaces and extended the results above for GO-spaces, see [6, 7].
It is also known:

• the usual Tychonoff product of GO-spaces is countably com-
pact iff all factors are countably compact, therefore the usual
Tychonoff product ωγ

1 is countably compact for every ordinal γ,
• the lexicographic product ωω

1 is countably compact, but the
lexicographic product ωω+1

1 is not countably compact [4].

In this paper, we will characterize the countable compactness of lex-
icographic products of GO-spaces, further give some applications.

When we consider a product
∏

α<γ Xα, all Xα are assumed to have
cardinality at least 2 with γ ≥ 2. Set theoretical and topological ter-
minology follow [9] and [1].

A linearly ordered set ⟨L,<L⟩ has a natural topology λL, which is
called an interval topology, generated by {(←, x)L : x ∈ L} ∪ {(x,→
)L : x ∈ L} as a subbase, where (x,→)L = {z ∈ L : x <L z}, (x, y)L =
{z ∈ L : x <L z <L y}, (x, y]L = {z ∈ L : x <L z ≤L y} and so on.
The triple ⟨L,<L, λL⟩, which is simply denoted by L, is called a LOTS.

A triple ⟨X,<X , τX⟩ is said to be a GO-space, which is also simply
denoted by X, if ⟨X,<X⟩ is a linearly ordered set and τX is a T2-
topology on X having a base consisting of convex sets, where a subset
C of X is convex if for every x, y ∈ C with x <X y, [x, y]X ⊂ C holds.
For more information on LOTS’s or GO-spaces, see [10]. Usually <L,
(x, y)L, λL or τX are written simply <, (x, y), λ or τ if contexts are
clear.

The symbols ω and ω1 denote the first infinite ordinal and the first
uncountable ordinal, respectively. Ordinals, which are usually denoted
by Greek letters α, β, γ, · · · , are considered to be LOTS’s with the usual
intereval topologies. The cofinality of α is denoted by cf α.

For GO-spaces X = ⟨X,<X , τX⟩ and Y = ⟨Y,<Y , τY ⟩, X is said to
be a subspace of Y if X ⊂ Y , the linear order <X is the restriction
<Y ↾ X of the order <Y and the topology τX is the subspace topology
τY ↾ X (= {U ∩X : U ∈ τY }) on X of the topology τY . So a subset of a



COUNTABLE COMPACTNESS OF LEXICOGRAPHIC PRODUCTS 3

GO-space is naturally considered as a GO-space. For every GO-space
X, there is a LOTS X∗ such that X is a dense subspace of X∗ and X∗

has the property that if L is a LOTS containing X as a dense subspace,
then L also contains the LOTS X∗ as a subspace, see [11]. Such a X∗

is called the minimal d-extension of a GO-space X. The construction
of X∗ is also shown in [6]. Obviously, we can see:

• if X is a LOTS, then X∗ = X,
• X has a maximal element maxX if and only if X∗ has a maxi-
mal element maxX∗, in this case, maxX = maxX∗ (similarly
for minimal elements).

For every α < γ, let Xα be a LOTS and X =
∏

α<γ Xα. Every

element x ∈ X is identified with the sequence ⟨x(α) : α < γ⟩. For
notational convenience,

∏
α<γ Xα is considered as the trivial one point

LOTS {∅} whenever γ = 0, where ∅ is considered to be a function
whose domain is 0 (= ∅). When 0 ≤ β < γ, y0 ∈

∏
α<β Xα and

y1 ∈
∏

β≤α Xα, y0
∧y1 denotes the sequence y ∈

∏
α<γ Xα defined by

y(α) =

{
y0(α) if α < β,

y1(α) if β ≤ α.

In this case, whenever β = 0, ∅ ∧y1 is considered as y1. In case 0 ≤
β < γ, y0 ∈

∏
α<β Xα, u ∈ Xβ and y1 ∈

∏
β<α Xα, y0

∧⟨u⟩∧y1 denotes

the sequence y ∈
∏

α<γ Xα defined by

y(α) =


y0(α) if α < β,

u if α = β,

y1(α) if β < α.

More general cases are similarly defined. The lexicographic order <X

on X is defined as follows: for every x, x′ ∈ X,

x <X x′ iff for some α < γ, x ↾ α = x′ ↾ α and x(α) <Xα x′(α),

where x ↾ α = ⟨x(β) : β < α⟩ (in particular x ↾ 0 = ∅) and <Xα

is the order on Xα. Now for every α < γ, let Xα be a GO-space
and X =

∏
α<γ Xα. The subspace X of the lexicographic product

X̂ =
∏

α<γ X
∗
α is said to be the lexicographic product of GO-spaces

Xα’s, for more details see [6].
∏

i∈ω Xi (
∏

i≤n Xi where n ∈ ω) is
denoted by X0×X1×X2×· · · (X0×X1×X2×· · ·×Xn, respectively).∏

α<γ Xα is also denoted by Xγ whenever Xα = X for all α < γ.
Let X and Y be LOTS’s. A map f : X → Y is said to be order

preserving or 0-order preserving if f(x) <Y f(x′) whenever x <X x′.
Similarly a map f : X → Y is said to be order reversing or 1-order
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preserving if f(x) >Y f(x′) whenever x <X x′. Obviously a 0-order
preserving map (also 1-order preserving map) f : X → Y between
LOTS’s X and Y , which is onto, is a homeomorphism, i.e., both f
and f−1 are continuous. Now let X and Y be GO-spaces. A 0-order
preserving map f : X → Y is said to be a 0-order preserving embedding
if f is a homeomorphism between X and f [X], where f [X] is the
subspace of the GO-space Y . In this case, we identify X with f [X] as
a GO-space and write X = f [X] and X ⊂ Y .

Let X be a GO-space. A subset A of X is called a 0-segment of X
if for every x, x′ ∈ X with x ≤ x′, if x′ ∈ A, then x ∈ A. A 0-segment
A is said to be bounded if X \ A is non-empty. Similarly the notion
of (bounded) 1-segment can be defined. Both ∅ and X are 0-segments
and 1-segments. Obviously if A is a 0-segment of X, then X \ A is a
1-segment of X.

Let A be a 0-segment of a GO-spaceX. A subset U of A is unbounded
in A if for every x ∈ A, there is x′ ∈ U such that x ≤ x′. Let

0- cfX A = min{|U | : U is unbounded in A.}.

0- cfX A can be 0, 1 or regular infinite cardinals. 0- cfX A = 0 means
A = ∅ and 0- cfX A = 1 means that A has a maximal element. If
contexts are clear, 0- cfX A is denoted by 0- cf A. For cofinality in
compact LOTS and linearly ordered compactifications, see also [3, 8].

Remember that a topological space is said to be countably compact
if every infinite subset has a cluster point.

Definition 1.1. A GO-space X is (boundedly) countably 0-compact if
for every (bounded) closed 0-segment A of X, 0- cfX A ̸= ω holds. The
term “(Boundedly) countably 1-compact” is analogously defined.

Obviously a GO-space X is countably 0-compact iff it is boundedly
countably 0-compact and 0- cfX ̸= ω. Note that subspaces of ordinals
are always countably 1-compact because they are well-ordered. Also
note that ordinals are boundedly countably 0-compact but in general
not countably 0-compact, e.g., ω, ℵω etc.

We first check:

Lemma 1.2. A GO-space X is countably 0-compact if and only if every
0-order preserving sequence {xn : n ∈ ω} (i.e., m < n→ xm < xn) has
a cluster point.

Proof. Assuming the existence of a 0-order preserving sequence {xn :
n ∈ ω} with no cluster points, set A = {x ∈ X : ∃n ∈ ω(x ≤ xn)}.
Then A is closed 0-segment with 0- cf A = ω.
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To see the other direction, assuming the existence a closed 0-segment
A with 0- cf A = ω, by induction, we can construct a 0-order preserving
sequence with no cluster points. □

Using the lemma, we can see that a GO-space is countably compact
if and only if it is both countably 0-compact and countably 1-compact,
see also [5].

2. A simple case

In this section, we characterize countable 0-compactness of lexico-
graphic products of two GO-spaces. The following is easy to prove, see
also [7, Lemma 3.6 (3a)].

Lemma 2.1. Let X = X0 ×X1 be a lexicographic product of two GO-
spaces and A0 a 0-segment of X0 with 0- cfX0 A0 ≥ ω. Then A =
A0 ×X1 is also a 0-segment of X with 0- cfX A = 0- cfX0 A0.

The following lemma will be a useful tool for handling general cases.

Lemma 2.2. Let X = X0 ×X1 be a lexicographic product of two GO-
spaces. Then the following are equivalent.

(1) X is countably 0-compact,
(2) the following clauses hold:

(a) X0 is countably 0-compact,
(b) X1 is boundedly countably 0-compact,
(c) if X1 has no minimal element or (u,→)X0 has no minimal

element (that is, 1- cfX0(u,→) ̸= 1) for some u ∈ X0, then
0- cfX1 X1 ̸= ω,

(d) if X1 has no minimal element, then 0- cfX0(←, u) ̸= ω for
every u ∈ X0.

Proof. Set X̂ = X∗
0 ×X∗

1 .
(1)⇒ (2) Let X be countably 0-compact.
(a) Assuming that X0 is not countably 0-compact, take a closed 0-

segment A0 of X0 with 0- cfX0 A0 = ω. By the lemma above, A =
A0 ×X1 is a 0-segment of X with 0- cfX A = ω. It suffices to see that
A is closed, which contradicts countable 0-compactness of X. So let
x /∈ A, then x(0) /∈ A0. Since A0 is closed in X0, there is u∗ ∈ X∗

0

such that u∗ <X∗
0
x(0) and ((u∗,→)X∗

0
∩ X0) ∩ A0 = ∅ (this means

(u∗, x(0))X∗
0
= ∅). Fix w ∈ X1 and let x∗ = ⟨u∗, w⟩ ∈ X̂. Let U =

(x∗,→)X̂∩X, then U is a neighborhood of x. To see U∩A = ∅, assume
a ∈ U ∩A for some a. By a(0) ∈ A0, we can take u ∈ A0 with a(0) < u.
Now u∗ ≤ a(0) < u shows u ∈ ((u∗,→) ∩X0) ∩ A0, a contradiction.
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(b) Assuming that X1 is not boundedly countably 0-compact, take
a bounded closed 0-segment A1 of X1 with 0- cfX1 A1 = ω. Fix u ∈ X0

and let A = {x ∈ X : ∃v ∈ A1(x ≤X ⟨u, v⟩)}. Obviously A is a 0-
segment of X and {u} × A1 is unbounded in the 0-segment A, so we
see 0- cfX A = 0- cfX1 A1 = ω. It suffices to see that A is closed, so
let x ∈ X \ A. Note u ≤ x(0). Since A1 is bounded, fix v ∈ X1 \ A1

and let y = ⟨u, v⟩. When y < x, U = (y,→)X is a neighborhood of x
disjoint from A. So let x ≤ y, then we have x(0) = u and x(1) /∈ A1.
Since A1 is closed in X1, take v

∗ ∈ X∗
1 such that v∗ < x(1) and ((v∗,→

) ∩X1) ∩ A1 = ∅. Then U = (⟨u, v∗⟩,→)X̂ ∩X is a neighborhood of x
disjoint from A.

(c) First assume that X1 has no minimal element. Fix u ∈ X0. Then
A = (←, u]×X1 is a closed 0-segment of X and {u}×X1 is unbounded
in the 0-segment A, therefore 0- cfX1 X1 = 0- cfX A ̸= ω.

Next assume that (u,→)X0 has no minimal element. Then putting
A = (←, u]×X1, similarly we see 0- cfX1 X1 ̸= ω.

(d) Assuming that X1 has no minimal element and 0- cfX0(←, u) = ω
for some u ∈ X0, let A = (←, u) ×X1. Then A is a closed 0-segment
of X with 0- cfX A = 0- cfX0(←, u) by Lemma 2.1. This contradicts
countable 0-compactness of X.

(2) ⇒ (1) Assuming (2) and that X is not countably 0-compact,
take a closed 0-segment A of X with 0- cfX A = ω. Let A0 = {u ∈ X0 :
∃v ∈ X1(⟨u, v⟩ ∈ A)}. Since A is a non-empty 0-segment of X, A0 is
also a non-empty 0-segment of X0. We consider two cases, and in each
cases, we will derive a contradiction.

Case 1. A0 has no maximal element, i.e., 0- cf A0 ≥ ω.

In this case, we have:

Claim 1. A = A0 ×X1.

Proof. The inclusion ⊂ is obvious. Let ⟨u, v⟩ ∈ A0 ×X1. Since u ∈ A0

and A0 has no maximal element, we can take u′ ∈ A0 with u < u′.
By u′ ∈ A0, there is v′ ∈ X1 with ⟨u′, v′⟩ ∈ A. Then from ⟨u, v⟩ <
⟨u′, v′⟩ ∈ A, we see ⟨u, v⟩ ∈ A, because A is a 0-segment. □

Lemma 2.1 shows 0- cf A0 = 0- cf A = ω. The following claim con-
tradicts the condition (2a).

Claim 2. A0 is closed in X0.

Proof. Let u ∈ X0\A0. Whenever u′ < u for some u′ ∈ X0\A0, (u
′,→)

is a neighborhood of u disjoint from A0. So assume the other case, that
is, u = min(X0\A0). Note A0 = (←, u). If X1 has no minimal element,
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then by (2d), we have 0- cf(←, u) ̸= ω, a contradiction. Thus X1 has a
minimal element, therefore ⟨u,minX1⟩ = min(X \ A) /∈ A. Since A is
closed, there are u∗ ∈ X∗

0 and v∗ ∈ X∗
1 such that ⟨u∗, v∗⟩ < ⟨u,minX1⟩

and ((⟨u∗, v∗⟩,→)X̂ ∩X)∩A = ∅. ⟨u∗, v∗⟩ < ⟨u,minX1⟩ shows u∗ < u,
so (u∗,→) ∩X0 is a neighborhood of u disjoint from A0. □

Case 2. A0 has a maximal element.

In this case, let A1 = {v ∈ X1 : ⟨maxA0, v⟩ ∈ A}. Then A1 is a
non-empty 0-segment of X1. Since {maxA0}×A1 is unbounded in the
0-segment A, we see 0- cfX1 A1 = 0- cfX A = ω.

Claim 3. A1 is closed in X1.

Proof. Let v ∈ X1 \ A1. Since ⟨maxA0, v⟩ /∈ A and A is closed,
there are u∗ ∈ X∗

0 amd v∗ ∈ X∗
1 such that ⟨u∗, v∗⟩ < ⟨maxA0, v⟩ and

((⟨u∗, v∗⟩,→)X̂ ∩X)∩A = ∅. It follows from A1 ̸= ∅ that u∗ = maxA0

and so v∗ < v. Then we see that (v∗,→)X∗
1
∩X1 is a neighborhood of

v disjoint from A1. □
This claim with the condition (2b) shows A1 = X1, which says

A = (←,maxA0] × X1, in particular, we see that X1 has no maxi-
mal element.

Claim 4. (maxA0,→) has no minimal element or X1 has no minimal
element.

Proof. Assume that (maxA0,→) has a minimal element u0 and X1 has
a minimal element, then note ⟨u0,minX1⟩ = min(X \ A). Since A
is closed in X, there are u∗ ∈ X∗

0 and v∗ ∈ X∗
1 such that ⟨u∗, v∗⟩ <

⟨u0,minX1⟩ and ((⟨u∗, v∗⟩,→)X̂ ∩ X) ∩ A = ∅. Then we have u∗ =
maxA0. Since X1 has no maximal element, pick v ∈ X1 with v∗ < v.
Then we see ⟨maxA0, v⟩ ∈ ((⟨u∗, v∗⟩,→)X̂∩X)∩A, a contradiction. □

Now the condition (2c) shows 0- cfX1 X1 ̸= ω, a contradiction. This
completes the proof of the lemma. □

3. A general case

In this section, using the results in the previous section, we char-
acterize the countable compactness of lexicographic products of any
length of GO-spaces. We use the following notations.

Definition 3.1. Let X =
∏

α<γ Xα be a lexicographic product of GO-
spaces. Define:

J+ = {α < γ : Xα has no maximal element.},
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J− = {α < γ : Xα has no minimal element.},
K+ = {α < γ : there is x ∈ Xα such that (x,→)Xα is non-empty

and has no minimal element.},
K− = {α < γ : there is x ∈ Xα such that (←, x)Xα is non-empty

and has no maximal element.},
L+ = {α ≤ γ : there is u ∈

∏
β<α

Xβ with 0- cf∏
β<α Xβ

(←, u) = ω},

L− = {α ≤ γ : there is u ∈
∏
β<α

Xβ with 1- cf∏
β<α Xβ

(u,→) = ω},

For an ordinal α, let

l(α) =

{
0 if α < ω,

sup{β ≤ α : β is limit.} if α ≥ ω.

Some of the definitions above are introduced in [7]. Note that 0 /∈
L+ ∪L− and for an ordinal α ≥ ω, l(α) is the largest limit ordinal less
than or equal to α, therefore the half open interval [l(α), α) of ordinals
is finite.

We also remark:

Lemma 3.2. Let X =
∏

α<γ Xα be a lexicographic product of GO-

spaces. If ω ≤ γ, then ω ∈ L+ ∩ L− holds.

Proof. Assume ω ≤ γ. For each n ∈ ω, fix u0(n), u1(n) ∈ Xn with
u0(n) < u1(n). Set y = ⟨u1(n) : n ∈ ω⟩. Moreover for each n ∈ ω,
set yn = ⟨u1(i) : i < n⟩∧⟨u0(i) : n ≤ i⟩. Then {yn : n ∈ ω} is a 0-
order preserving unbounded sequence in (←, y) in

∏
n∈ω Xn, therefore

ω ∈ L+. The statement ω ∈ L− is similar. □
Theorem 3.3. Let X =

∏
α<γ Xα be a lexicographic product of GO-

spaces. Then the following are equivalent:

(1) X is countably 0-compact,
(2) the following clauses hold:

(a) Xα is boundedly countably 0-compact for every α < γ,
(b) if L+ ̸= ∅, then J− ⊂ minL+,
(c) for every α < γ, if any one of the following cases holds,

then 0- cfXα Xα ̸= ω holds,
(i) J+ ∩ [l(α), α) = ∅,
(ii) J+ ∩ [l(α), α) ̸= ∅ and (α0, α] ∩ J− ̸= ∅, where α0 =

max(J+ ∩ [l(α), α)),
(iii) J+ ∩ [l(α), α) ̸= ∅ and [α0, α)∩K+ ̸= ∅, where α0 =

max(J+ ∩ [l(α), α)).
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Proof. Note that (2a)+(2ci) implies that X0 is countably 0-compact.

Let X̂ =
∏

α<γ X
∗
α.

(1)⇒ (2) Assume that X is countably 0-compact.
(a) Let α0 < γ. Since X =

∏
α≤α0

Xα ×
∏

α0<αXα, see [6, Lemma
1.5], and X is countably 0-compact, Lemma 2.2 shows that

∏
α≤α0

Xα

is countably 0-compact. Now by
∏

α≤α0
Xα =

∏
α<α0

Xα × Xα0 and
Lemma 2.2 again, we see that Xα0 is boundedly countably 0-compact.

(b) Assume L+ ̸= ∅ and α0 = minL+. Then Lemma 3.2 shows
α0 ≤ ω. From α0 ∈ L+, one can take u ∈

∏
α<α0

Xα such that
0- cf∏

α<α0
Xα(←, u) = ω. Now since X =

∏
α<α0

Xα ×
∏

α0≤α Xα is

countably 0-compact, Lemma 2.2 (d) shows that
∏

α0≤α Xα has a min-
imal element. Therefore Xα has a minimal element for every α ≥ α0,
which shows J− ⊂ α0.

(c) Let α0 < γ. We will see 0- cfXα0
Xα0 ̸= ω in each case of (i), (ii)

and (iii).

Case (i), i.e., J+ ∩ [l(α0), α0) = ∅.
Since X is countably 0-compact and X =

∏
α≤α0

Xα ×
∏

α0<αXα,
Lemma 2.2 shows that

∏
α≤α0

Xα is also countably 0-compact. When
α0 = 0, by countable 0-compactness of

∏
α≤α0

Xα = Xα0 , we see
0- cfXα0

Xα0 ̸= ω. So let α0 > 0. We divide into two cases.

Case (i)-1. l(α0) = 0, i.e., α0 < ω.

In this case, since
∏

α<α0
Xα has a maximal element, which implies

(max
∏

α<α0
Xα,→) has no minimal element, and

∏
α<α0

Xα × Xα0 is
countably 0-compact, Lemma 2.2 (2c) shows 0- cfXα0

Xα0 ̸= ω.

Case (i)-2. l(α0) ≥ ω i.e., α0 ≥ ω.

In this case, note that for every α ∈ [l(α0), α0), Xα has a maximal
element. For every α < l(α0), fix x0(α), x1(α) ∈ Xα with x0(α) <
x1(α), and let y = ⟨x0(α) : α < l(α0)⟩∧⟨maxXα : l(α0) ≤ α < α0⟩.
Moreover for every β < l(α0), let yβ = ⟨x0(α) : α < β)⟩∧⟨x1(α) : β ≤
α < l(α0))⟩∧⟨maxXα : l(α0) ≤ α < α0⟩. Then {yβ : β < l(α0)} is
1-order preserving and unbounded in (y,→), in particular, the interval
(y,→) in

∏
α<α0

Xα has no minimal element. Now Lemma 2.2 (2c)
shows 0- cfXα0

Xα0 ̸= ω.

Case (ii), i.e., J+ ∩ [l(α0), α0) ̸= ∅ and (α1, α0] ∩ J− ̸= ∅, where
α1 = max(J+ ∩ [l(α0), α0)).

Note that α1 is well-defined because [l(α0), α0) is finite. Also let α2 =
max((α1, α0] ∩ J−), then note 0 ≤ l(α0) ≤ α1 < α2 ≤ α0, in particular
[0, α2) ̸= ∅.
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Case (ii)-1. α2 = α0.

Since
∏

α<α0
Xα ×Xα0 (=

∏
α≤α0

Xα) is countably 0-compact, Lemma
2.2 (2c) shows 0- cfXα0

Xα0 ̸= ω.

Case (ii)-2. α2 < α0.

Note that by the definition of α2, Xα has a minimal element for every
α ∈ (α2, α0]. Fixing z ∈

∏
α<α2

Xα, let y = z∧⟨maxXα : α2 ≤ α < α0⟩,
then y ∈

∏
α<α0

Xα.

Claim 1. (y,→)∏
α<α0

Xα is non-empty and has no minimal element.

Proof. Because Xα1 has no maximal element, fix u ∈ Xα1 with y(α1) <
u. Then (y ↾ α1)

∧⟨u⟩∧(y ↾ (α1, α0)) ∈ (y,→), which shows (y,→
) ̸= ∅. Next assume y < y′ ∈

∏
α<α0

Xα. Since y(α) = maxXα

for every α ∈ [α2, α0), we have y ↾ α2 < y′ ↾ α2. Since Xα2 has
no minimal element, fix u ∈ Xα2 with u < y′(α2). Then we have
y < (y′ ↾ α2)

∧⟨u⟩∧((y′ ↾ (α2, α0)) < y′, which shows that (y,→) has no
minimal element. □

Now because
∏

α<α0
Xα × Xα0 is countably 0-compact, Lemma 2.2

(2c) and the claim above show 0- cfXα0
Xα0 ̸= ω.

Case (iii), i.e., J+ ∩ [l(α0), α0) ̸= ∅ and [α1, α0) ∩ K+ ̸= ∅, where
α1 = max(J+ ∩ [l(α0), α0)).

Let α2 = max([α1, α0) ∩K+), then note l(α0) ≤ α1 ≤ α2 < α0. Fixing
z ∈

∏
α<α2

Xα amd u ∈ Xα2 satisfying that (u,→) is non-empty and
has no minimal element, let y = z∧⟨u⟩∧⟨maxXα : α2 < α < α0⟩.
Then obviously y ∈

∏
α<α0

Xα and (y,→) has no minimal element.
Since

∏
α<α0

Xα ×Xα0 is countable 0-compact, Lemma 2.2 (2c) shows
0- cfXα0

Xα0 ̸= ω.

(2) ⇒ (1) Assuming (2) and the negation of (1), take a closed 0-
segment A of X with 0- cfX A = ω. Modifying the proof of Theorem
4.8 in [7], we consider 3 cases and their subcases. In each case, we will
derive a contradiction.

Case 1. A = X.

In this case, since X has no maximal element, we have J+ ̸= ∅, so let
α0 = min J+. Then J+ ∩ [l(α0), α0) ⊂ J+ ∩ [0, α0) = ∅ and the con-
dition (2ci) shows 0- cfXα0

Xα0 ≥ ω1. Since {⟨maxXα : α < α0⟩} ×
Xα0 is unbounded in

∏
α≤α0

Xα, we have 0- cf∏
α≤α0

Xα

∏
α≤α0

Xα =

0- cfXα0
Xα0 ≥ ω1. Now by X =

∏
α≤α0

Xα ×
∏

α0<α Xα, Lemma 2.1
shows 0- cfX A = 0- cfX X = 0- cf∏

α≤α0
Xα

∏
α≤α0

Xα = 0- cfXα0
Xα0 ≥

ω1, a contradiction.
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Case 2. A ̸= X and X \ A has a minimal element.

Let B = X \ A and b = minB. Since A is non-empty closed and

B = [b,→), there is b∗ ∈ X̂ with b∗ < b and ((b∗,→)X̂ ∩X) ∩ A = ∅,
equivalently (b∗, b)X̂ = ∅. Note b∗ /∈ X because A has no maximal
element. Let α0 = min{α < γ : b∗(α) ̸= b(α}.
Claim 2. For every α > α0, Xα has a minimal element and b(α) =
minXα.

Proof. Assuming b(α) > u for some α > α0 and u ∈ Xα, let α1 =
min{α > α0 : ∃u ∈ Xα(b(α) > u)} and fix u ∈ Xα1 with b(α1) > u.
Then we have b∗ < (b ↾ α1)

∧⟨u⟩∧(b ↾ (α1, γ)) < b, a contradiction. □

Claim 3. (b∗(α0), b(α0))X∗
α0
∩Xα0 = ∅.

Proof. Assume u ∈ (b∗(α0), b(α0))X∗
α0
∩Xα0 for some u. Then we have

b∗ < (b ↾ α0)
∧⟨u⟩∧(b ↾ (α0, γ)) < b, a contradiction. □

Claim 4. [b(α0),→)Xα0
/∈ λXα0

, therefore b∗(α0) /∈ Xα0 .

Proof. It follows from b∗(α0) ∈ (←, b(α0))X∗
α0

that (←, b(α0))Xα0
̸= ∅.

Assume [b(α0),→)Xα0
∈ λXα0

, then for some u ∈ Xα0 with u < b(α0),
(u, b(α0)) = ∅ holds. Claim 3 shows b∗(α0) = u ∈ Xα0 . If there were
α > α0 and v ∈ Xα with v > b∗(α), then by letting α1 = min{α >
α0 : ∃v ∈ Xα(v > b∗(α))} and taking v ∈ Xα1 with v > b∗(α1), we
have b∗ < (b∗ ↾ α1)

∧⟨v⟩∧(b∗ ↾ (α1, γ)) < b, a contradiction. Therefore
for every α > α0, maxXα exists and b∗(α) = maxXα. Thus we have
b∗ = (b ↾ α0)

∧⟨u⟩∧⟨maxXα : α0 < α⟩ ∈ X a contradiction. □
Claims 3 and 4 show that A0 := (←, b(α0)) is a bounded closed 0-

segment of Xα0 without a maximal element. Now the condition (2a)
shows 0- cfXα0

A0 ≥ ω1. Since {b ↾ α0} × A0 × {b ↾ (α0, γ)} is un-
bounded in the 0-segment in A ((= (←, b)X), we have ω = 0- cfX A =
0- cfXα0

A0 ≥ ω1, a contradiction. This completes Case 2.

Case 3. A ̸= X and X \ A has no minimal element.

Let B = X \ A and

I = {α < γ : ∃a ∈ A∃b ∈ B(a ↾ (α + 1) = b ↾ (α + 1))}.
Obviously I is a 0-segment of γ, so I = α0 for some α0 ≤ γ. For each
α < α0, fix aα ∈ A and bα ∈ B with aα ↾ (α + 1) = bα ↾ (α + 1).
By letting Y0 =

∏
α<α0

Xα and Y1 =
∏

α0≤α Xα, define y0 ∈ Y0 by
y0(α) = aα(α) for every α < α0. The ordinal α0 can be 0, then in this
case, Y0 = {∅} and y0 = ∅.
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Claim 5. For every α < α0, y0 ↾ (α+ 1) = aα ↾ (α+ 1) = bα ↾ (α+ 1)
holds.

Proof. The second equality is obvious. To see the first equality, assum-
ing y0 ↾ (α + 1) ̸= aα ↾ (α + 1) for some α < α0, let α1 = min{α <
α0 : y0 ↾ (α + 1) ̸= aα ↾ (α + 1)}. Moreover let α2 = min{α ≤ α1 :
y0(α) ̸= aα1(α)}. It follows from y0(α1) = aα1(α1) that α2 < α1. Since
y0 ↾ α2 = aα1 ↾ α2 and y0(α2) ̸= aα1(α2) holds, by the minimality of
α1, we have y0 ↾ (α2 + 1) = aα2 ↾ (α2 + 1) = bα2 ↾ (α2 + 1). When
y0(α2) < aα1(α2), we have B ∋ bα2 < aα1 ∈ A, a contradiction. When
y0(α2) > aα1(α2), we have B ∋ bα1 < aα2 ∈ A, a contradiction. □

Claim 5 remains true when α0 = 0, because there is no ordinal α
with α < α0.

Claim 6. α0 < γ.

Proof. Assume α0 = γ, then note y0 ∈ Y0 = X = A ∪ B. Assume y0 ∈
A. Since A has no maximal element, one can take a ∈ A with y0 < a.
Letting β0 = min{β < γ : y0(β) ̸= a(β)}, we see A ∋ a > bβ0 ∈ B, a
contradiction. The remaining case is similar. □

Let A0 = {a(α0) : a ∈ A, a ↾ α0 = y0} and B0 = {b(α0) : b ∈ B, b ↾
α0 = y0}.
Claim 7. The following hold:

(1) for every a ∈ A, a ↾ α0 ≤ y0 holds,
(2) for every x ∈ X, if x ↾ α0 < y0, then x ∈ A.

Proof. (1) Assume a ↾ α0 > y0 for some a ∈ A. Letting β0 = min{β <
α0 : a(β) ̸= y0(β)}, we see B ∋ bβ0 < a ∈ A, a contradiction.

(2) Assume x ↾ α0 < y0. Letting β0 = min{β < α0 : x(β) ̸= y0(β)},
we see x < aβ0 ∈ A. Since A is a 0-segment, we have x ∈ A. □

Similarly we have:

Claim 8. The following hold:

(1) for every b ∈ B, b ↾ α0 ≥ y0 holds,
(2) for every x ∈ X, if x ↾ α0 > y0, then x ∈ B.

Claim 9. A0 is a 0-segment of Xα0 and B0 = Xα0 \ A0.

Proof. To see that A0 is a 0-segment, let u′ < u ∈ A0. Pick a ∈ A
with a ↾ α0 = y0 and u = a(α0). Let a′ = (a ↾ α0)

∧⟨u′⟩∧(a ↾ (α0, γ)).
Since A is a 0-segment and a′ < a ∈ A, we have a′ ∈ A. Now we see
u′ = a′(α0) ∈ A0 because of a′ ↾ α0 = y0.

To see B0 = Xα0 \ A0, first let u ∈ B0. Take b ∈ B with b ↾ α0 = y0
and b(α0) = u. If u ∈ A0 were true, then by taking a ∈ A with
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a ↾ α0 = y0 and a(α0) = u, we see a ↾ (α0 + 1) = b ↾ (α0 + 1),
therefore α0 ∈ I = α0, a contradiction. So we have u ∈ Xα0 \ A0.
To see the remaining inclusion, let u ∈ Xα0 \ A0. Take x ∈ X with
x ↾ (α0 + 1) = y0

∧⟨u⟩. If x ∈ A were true, then by x ↾ α0 = y0, we
have u = x(α0) ∈ A0, a contradiction. So we have x ∈ B, therefore
u ∈ B0. □

Claim 10. A0 ̸= ∅.
Proof. Assume A0 = ∅. We prove the following facts.

Fact 1. (←, y0)Y0 × Y1 = A.

Proof. One inclusion follows from Claim 7 (2). To see the other inclu-
sion, let a ∈ A. Claim 7 (1) shows a ↾ α0 ≤ y0. If a ↾ α0 = y0 were
true, then we have a(α0) ∈ A0, a contradiction. So we have a ↾ α0 < y0
therefore a ∈ (←, y0)× Y1. □

Fact 2. α0 > 0 and α0 is limit. .

Proof. If α0 = 0 were true, then by taking a ∈ A, we have a(α0) ∈ A0,
a contradiction. Therefore we have α0 > 0. Next if α0 = β0 + 1
were true for some ordinal β0, then by β0 ∈ α0 and Claim 5, we have
y0 ↾ α0 = y0 ↾ (β0 + 1) = aβ0 ↾ (β0 + 1) = aβ0 ↾ α0, thus we have
aβ0(α0) ∈ A0, a contradiction. Thus α0 is limit. □

Now Claim 6 and Fact 2 show ω ≤ α0 < γ, so Lemma 3.2 shows
ω ∈ L+. Moreover the condition (2b) shows J− ⊂ minL+ ≤ ω ≤ α0,
in particular, Xα has a minimal element for every α ≥ α0. This means
Y1 (=

∏
α0≤α Xα) has a minimal element. Now by Fact 1, we see

y0
∧ minY1 = min(X \ A), which contradicts our case. □
Next let Z0 =

∏
α≤α0

Xα, Z1 =
∏

α0<α Xα and

A∗ = {z ∈ Z0 : z ↾ α0 < y0 or (z ↾ α0 = y0, z(α0) ∈ A0)}.
Note A∗ = ((←, y0)×Xα0) ∪ ({y0} × A0).

Claim 11. A∗ is a 0-segment of Z0 and A = A∗ × Z1.

Proof. Since A0 is a 0-segment of Xα0 , A
∗ is obviously a 0-segment of

Z0. To see A ⊂ A∗ × Z1, let a ∈ A. Claim 7 (1) shows a ↾ α0 ≤ y0.
When a ↾ α0 < y0, obviously we have a ↾ (α0 + 1) ∈ A∗. When
a ↾ α0 = y0, a ∈ A shows a(α0) ∈ A0 thus a ↾ (α0 + 1) ∈ A∗. To
see A ⊃ A∗ × Z1, let a ∈ A∗ × Z1. Then note a ↾ (α0 + 1) ∈ A∗.
When a ↾ α0 < y0, letting β0 = min{β < α0 : a(β) ̸= y0(β)}, we see
a < aβ0 ∈ A thus a ∈ A. When a ↾ α0 = y0 and a(α0) ∈ A0, Claim 9
shows a ∈ A. □



14 NOBUYUKI KEMOTO

Since {y0} × A0 is unbounded in the 0-segment A∗, we see 1 ≤
0- cfZ0 A

∗ = 0- cfXα0
A0. We divide Case 3 into two subcases.

Case 3-1. 0- cfZ0 A
∗ ≥ ω.

In this case, Claim 11 and Lemma 2.1 show ω = 0- cfX A = 0- cfZ0 A
∗ =

0- cfXα0
A0.

Claim 12. A0 ̸= Xα0 .

Proof. Assume A0 = Xα0 . 0- cfXα0
Xα0 = 0- cfXα0

A0 = ω shows α0 ∈
J+. Assume α0 = β0 +1 for some ordinal β0. Then β0 < α0 = I shows
bβ0 ∈ B. Now from bβ0 ↾ α0 = bβ0 ↾ (β0 + 1) = y0 ↾ (β0 + 1) = y0 ↾ α0,
we have bβ0(α0) ∈ B0 = Xα0 \ A0, a contradiction. Thus we see that
α0 = 0 or α0 is limit, that is, [l(α0), α0) = ∅. Now the condition (2ci)
shows 0- cfXα0

Xα0 ̸= ω, a contradiction. □

Claim 13. A0 is closed in Xα0 .

Proof. When B0 has no minimal element, obviously A0 is closed. So
assume that B0 has a minimal element, say u = minB0. It suffices to
find a neighborhood of u disjoint from A0. A∗ = (←, y0

∧⟨u⟩)Z0 and
0- cfZ0 A

∗ = ω show α0 + 1 ∈ L+, therefore minL+ ≤ α0 + 1. The con-
dition (2b) ensures J− ⊂ minL+ ≤ α0 + 1, so J− ⊂ [0, α0]. Therefore
Xα has a minimal element for every α > α0. Let b = y0

∧⟨u⟩∧⟨minXα :
α0 < α⟩. Since b ∈ B (= X \ A) and A is closed in X, there is

b∗ ∈ X̂ such that b∗ < b and (b∗, b)X̂ ∩ A = ∅. Set β0 = min{β <
γ : b∗(β) ̸= b(β)}, then obviously β0 ≤ α0. If β0 < α0 were true, we
have aβ0 ∈ (b∗, b)X̂ ∩ A, a contradiction. Thus we have β0 = α0, so
b∗ ↾ α0 = y0 and b∗(α0) < u. If there were v ∈ (b∗(α0),→)X∗

α0
∩ A0,

then v < u shows y0
∧⟨v⟩∧⟨minXα : α0 < α⟩ ∈ (b∗, b)∩A, a contradic-

tion. Therefore (b∗(α0),→)X∗
α0
∩ Xα0 is a neighborhood of u disjoint

from A0. □
These claims above show that A0 is a bounded closed 0-segment of

Xα0 . Now the condition (2a) shows 0- cfXα0
A0 ̸= ω, a contradiction.

Case 3-2. 0- cfZ0 A
∗ = 1.

Since A = A∗ × Z1, A
∗ has a maximal element but A has no maxi-

mal element, we see that Z1 has no maximal element. Therefore Xα

has no maximal element for some α > α0, in particular (α0, γ) ̸= ∅.
Let α1 = min{α > α0 : Xα has no maximal element. }. Then we
have α0 < α1 ∈ J+ and (α0, α1) ∩ J+ = ∅. Since A = A∗ × Z1 =
A∗ × (

∏
α0<α≤α1

Xα ×
∏

α1<α Xα) = (A∗ ×
∏

α0<α≤α1
Xα) ×

∏
α1<α Xα

and A∗ ×
∏

α0<α≤α1
Xα is a 0-segment in

∏
α≤α1

Xα with no maximal
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element, Lemma 2.1 shows ω = 0- cfX A = 0- cf(A∗ ×
∏

α0<α≤α1
Xα) =

0- cfXα1
Xα1 (that {y0 ∧⟨maxA0⟩∧⟨maxXα : α0 < α < α1⟩} × Xα1

is unbounded in the 0-segment A∗ ×
∏

α0<α≤α1
Xα witnesses the last

equality).

Claim 14. l(α1) ≤ α0 and J+ ∩ [l(α1), α0] ̸= ∅ hold, in particular
J+ ∩ [l(α1), α1) ̸= ∅.

Proof. First assume α0 < l(α1). Then J+∩[l(α1), α1) ⊂ J+∩(α0, α1) =
∅ and the condition (2ci) show 0- cfXα1

Xα1 ̸= ω, a contradiction. Thus
we have l(α1) ≤ α0.

Next assume J+ ∩ [l(α1), α0] = ∅, then we have J+ ∩ [l(α1), α1) = ∅
because of J+ ∩ (α0, α1) = ∅. Therefore the condition (2ci) shows
0- cfXα1

Xα1 ̸= ω, a contradiction. Thus J+ ∩ [l(α1), α0] ̸= ∅. □
Using the above claim, set α2 = max(J+ ∩ [l(α1), α1)). Note 0 ≤

l(α1) ≤ α2 ≤ α0 < α1 and J+ ∩ (α2, α1) = ∅.
Claim 15. B0 has a minimal element.

Proof. First we check B0 ̸= ∅, so assume B0 = ∅, i.e., A0 = Xα0 .
1 = 0- cfZ0 A

∗ = 0- cfXα0
A0 = 0- cfXα0

Xα0 shows α0 /∈ J+. Also
α2 ≤ α0 and α2 ∈ J+ show 0 ≤ α2 < α0. Assume that α0 = β0 + 1
for some ordinal β0, then by β0 < α0 = I, we have bβ0 ∈ B and
bβ0 ↾ α0 = bβ0 ↾ (β0 + 1) = y0 ↾ (β0 + 1) = y0 ↾ α0. Therefore we
have bβ0(α0) ∈ B0, a contradiction. So we have 0 < α0 and α0 is limit,
therefore α0 ≤ l(α1) ≤ α2, which contradicts α2 < α0. We have seen
B0 ̸= ∅.

Next we check that B0 has a minimal element. Assume that B0

has no minimal element, then maxA0 witnesses α0 ∈ [α2, α1) ∩ K+.
The definition of α2 and the condition (2ciii) show 0- cfXα1

Xα1 ̸= ω, a
contradiction. □

Now since B has no minimal element, by the claim above, there is
α > α0 such thatXα has no minimal element. So let α3 = min{α > α0 :
Xα has no minimal element. }. Then we have α0 < α3 ∈ J−. When
ω ≤ γ, Lemma 3.2 and the condition (2b) show J− ⊂ minL+ ≤ ω.
When γ < ω, obviously J− ⊂ ω. So in any case we have J− ⊂ ω.
Therefore l(α1) ≤ α0 < α3 ∈ ω so we have α1 ∈ ω.

Claim 16. α3 ≤ α1.

Proof. Assume α1 < α3, then Xα has a minimal element for every
α ∈ (α0, α1]. So let y = y0

∧⟨minB0⟩∧⟨minXα : α0 < α ≤ α1⟩. Note
y ∈

∏
α≤α1

Xα and consider the interval (←, y) in
∏

α≤α1
Xα. The

definition of α2 and α2 ≤ α0 show that Xα has a maximal element for
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every α ∈ (α0, α1). Since {y0 ∧⟨maxA0⟩∧⟨maxXα : α0 < α < α1⟩} ×
Xα1 is unbounded in (←, y), we have 0- cf(←, y) = 0- cfXα1

Xα1 = ω.
Thus y witnesses α1 + 1 ∈ L+. The condition (2b) ensures J− ⊂
minL+ ≤ α1+1, thus α3 ∈ J− ⊂ [0, α1], a contradiction. Now we have
α3 ≤ α1. □

Now α3 ∈ (α0, α1] ∩ J− ⊂ (α2, α1] ∩ J−, α2 = max(J+ ∩ [l(α1), α1))
and the condition (2cii) show 0- cfXα1

Xα1 ̸= ω, a contradiction. This
completes the proof of the theorem. □

Analogously we can see:

Theorem 3.4. Let X =
∏

α<γ Xα be a lexicographic product of GO-
spaces. Then the following are equivalent:

(1) X is countably 1-compact,
(2) the following clauses hold:

(a) Xα is boundedly countably 1-compact for every α < γ,
(b) if L− ̸= ∅, then J+ ⊂ minL−,
(c) for every α < γ, if any one of the following cases holds,

then 1- cfXα Xα ̸= ω holds,
(i) J− ∩ [l(α), α) = ∅,
(ii) J− ∩ [l(α), α) ̸= ∅ and (α0, α] ∩ J+ ̸= ∅, where α0 =

max(J− ∩ [l(α), α)),
(iii) J− ∩ [l(α), α) ̸= ∅ and [α0, α)∩K− ̸= ∅, where α0 =

max(J− ∩ [l(α), α)).

4. Applications

In this section, we apply the theorems in the previous section

Corollary 4.1. Let X =
∏

α<γ Xα be a lexicographic product of GO-
spaces. Then the following hold:

(1) if X is countably 0-compact, then J− ⊂ ω,
(2) if X is countably 1-compact, then J+ ⊂ ω,
(3) if X is countably 0-compact, then for every δ < γ, the lexico-

graphic product
∏

α<δ Xα is countably 0-compact, in particular
X0 is countably 0-compact,

(4) if X is countably 1-compact, then for every δ < γ, the lexico-
graphic product

∏
α<δ Xα is countably 1-compact, in particular

X0 is countably 1-compact,

Proof. Lemma 3.2 and the condition (2b) in Theorem 3.3 show (1).
(3) obviously follows from Theorem 3.3 or Lemma 2.2 directly. The
remaining is similar. □
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Corollary 4.2. Let X be a GO-space. Then the lexicographic product
Xω+1 is countably compact if and only if X is countably compact and
has both a minimal and a maximal element.

Proof. That Xω+1 is countably compact implies that X is countably
compact and has both a minimal and a maximal element follows from
the corollary above. The other implication follows from the theorems
in the previous section because of J+ = J− = ∅. □
Corollary 4.3. Let X =

∏
α<γ Xα be a lexicographic product of count-

ably compact GO-spaces. Then the following are equivalent:

(1) X is countably compact,
(2) the following clauses hold:

(a) if L+ ̸= ∅, then J− ⊂ minL+,
(b) if L− ̸= ∅, then J+ ⊂ minL−.

Proof. Since all Xα’s are countably compact, (2a)+(2c) in Theorems
3.3 and 3.4 of the previous section are true. □
Example 4.4. Let [0, 1)R denote the unit half open interval in the
real line R with the usual order. Let X be the lexicographic product
[0, 1)R × ω1. Since [0, 1)R is not countably 0-compact, Corollary 4.1
shows that X is not countably 0-compact. Both [0, 1)R and ω1 are
countably 1-compact. Considering X0 = [0, 1)R and X1 = ω1, we see
1 ∈ L− (0 in [0, 1)R witnesses this) therefore 1 = minL−. Moreover
by 1 ∈ J+, (2b) in Theorem 3.4 does not hold. Therefore X is neither
countably 0-compact nor countably 1-compact. Note that X is not
paracompact, see [7, Example 4.6].

Example 4.5. Let X be the lexicographic product ω1× [0, 1)R. Check-
ing all clauses in the theorems in the previous section, we see that X
is countably compact. Since it is not compact, it is not paracompact.
The lexicographic product ω1 × [0, 1)R is called the long line of length
ω1 and denoted by L(ω1).

Example 4.6. Let S be the Sorgenfrey line, where half open intervals
[a, b)R’s are declared to be open. Then it is known that ω1 × S is
paracompact but S × ω1 is not paracompact, see [7]. On the other
hand, both lexicographic products ω1×S and S×ω1 are not countably
compact, because S is not boundedly 0-compact.

Example 4.7. Let X be the lexicographic product ω1 × [0, 1)R ×
ω1, and consider as X0 = ω1, X1 = [0, 1)R and X2 = ω1. Then
1- cfω1×[0,1)R(⟨0, 0⟩,→) = ω shows 2 ∈ L−. Since 0, 1 /∈ L−, we have
minL− = 2. Now 2 ∈ J+ implies J+ ̸⊂ minL−. Thus Theorem 3.4
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shows that X is not countably (1-) compact. On the other hand, we
will later see that the lexicographic product ω1 × ω × ω1 is countably
compact.

Corollary 4.8. There is a countably compact LOTS X whose lexico-
graphic square X2 is not countably compact.

Proof. X = L(ω1) is such an example, because L(ω1)
2 = (ω1× [0, 1)R×

ω1)× [0, 1)R (use Example 4.7). We will later see that the lexicographic
product X = ωω

1 is also such an example. □
In the rest of the paper, we consider countable compactness of lex-

icographic products whose all factors have minimal elements. In the
following, apply theorems with J− = ∅.

Corollary 4.9. Let X =
∏

α<γ Xα be a lexicographic product of GO-
spaces. If all Xα’s have minimal elements, then the following are equiv-
alent:

(1) X is countably 0-compact,
(2) the following clauses hold:

(a) Xα is boundedly countably 0-compact for every α < γ,
(b) for every α < γ, if either one of the following cases holds,

then 0- cfXα Xα ̸= ω holds,
(i) J+ ∩ [l(α), α) = ∅,
(ii) J+ ∩ [l(α), α) ̸= ∅ and [α0, α)∩K+ ̸= ∅, where α0 =

max(J+ ∩ [l(α), α)).

Corollary 4.10. Let X =
∏

α<γ Xα be a lexicographic product of GO-
spaces. If all Xα’s have minimal elements, then the following are equiv-
alent:

(1) X is countably 1-compact,
(2) the following clauses hold:

(a) Xα is (boundedly) countably 1-compact for every α < γ,
(b) if L− ̸= ∅, then J+ ⊂ minL−,

Now we consider the case that all factors are subspaces of ordinals.
First let X be a subspace of an ordinal. Since X is well-ordered, the
following hold:

• X is countably 1-compact,
• X has a minimal element,
• for every u ∈ X with (u,→) ̸= ∅, (u,→) has a minimal element,
• there is u ∈ X such that (←, u) is non-empty and has no max-
imal element if and only if the order type of X is greater than
ω.
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Note that a subspace X of ω1 is countably compact if and only if it is
closed in ω1, and also note that the subspace X = {α < ω2 : cf α ≤ ω}
is countably compact but not closed in ω2.

Next let Xα be a subspace of an ordinal for every α < γ and
X =

∏
α<γ Xα be a lexicographic product. Then using the notation in

section 3, we see:

• J− = ∅,
• K+ = ∅,
• α ∈ K− iff the order type of Xα is greater than ω.

Remarking these facts with Corollaries above, we see:

Corollary 4.11. Let X =
∏

α<γ Xα be a lexicographic product. If all
Xα’s are subspaces of ordinals, then the following are equivalent:

(1) X is countably 0-compact,
(2) the following clauses hold:

(a) Xα is boundedly countably 0-compact for every α < γ,
(b) for every α < γ with J+ ∩ [l(α), α) = ∅, 0- cfXα Xα ̸= ω

holds,

Corollary 4.12. Let X =
∏

α<γ Xα be a lexicographic product. If all
Xα’s are subspaces of ordinals, then the following are equivalent:

(1) X is countably 1-compact,
(2) J+ ⊂ ω.

Proof. (1)⇒ (2) Assume that X is countably 1-compact. By Corollary
4.10, if L− ̸= ∅, then J+ ⊂ minL−. When γ ≥ ω, because of ω ∈ L−,
we see J+ ⊂ minL− ≤ ω. When γ < ω, obviously we see J+ ⊂ γ < ω.

(2) ⇒ (1) Assume J+ ⊂ ω. It suffices to check (2a) and (2b) in
Corollary 4.10. (2a) is obvious. To see (2b), let L− ̸= ∅. Now assume
ω∩L− ̸= ∅, and take n ∈ ω∩L−. Then we can take u ∈

∏
m<nXm with

1- cf(u,→) = ω. But this is a contradiction, because a lexicographic
product of finite length of subspaces of ordinals are also a subspace of
ordinal, see [7, Lemma 4.3]. Therefore we have ω ∩ L− = ∅. L− ̸= ∅
and Lemma 3.2 show J+ ⊂ ω = minL−. □

If X is an ordinal, then it is boundedly countably 0-compact and
0- cfX X = cfX. Therefore we have:

Corollary 4.13. Let X =
∏

α<γ Xα be a lexicographic product of ordi-
nals. Then the following are equivalent:

(1) X is countably compact,
(2) the following clauses hold:

(a) if J+ ̸= ∅, then cfXmin J+ ≥ ω1,
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(b) J+ ⊂ ω.

Corollary 4.14. [4] The following clauses hold:

(1) the lexicographic product ωγ
1 is countably 0-compact for every

ordinal γ,
(2) the lexicographic product ωγ

1 is countably (1-)compact iff γ ≤ ω.

Example 4.15. Using Corollary 4.13, we see:

(1) lexicographic products ω2
1, ω1 × ω, (ω + 1)× (ω1 + 1)× ω1 × ω,

ω1×ω×ω1, ω1×ω×ω1×ω× · · · , ω1×ωω, ω1×ωω × (ω+1),
ωω
1 , ω

ω
1 × (ω1 + 1) and

∏
n∈ω ωn+1 are countably compact,

(2) lexicographic products ω × ω1, (ω + 1) × (ω1 + 1) × ω × ω1,
ω × ω1 × ω × ω1 × · · · , ω × ωω

1 , ω1 × ωω × ω1, ω
ω
1 × ω,

∏
n∈ω ωn

and
∏

n≤ω ωn+1 are not countably compact,

(3) let X = ωω
1 , then the lexicographic product X2 is not countably

compact because of X2 = ωω
1 × ωω

1 = ωω+ω
1 , so this shows also

Corollary 4.8.

For a GO-space X = ⟨X,<X , τX⟩, −X denotes the reverse of X,
that is, the GO-space ⟨X,>X , τX⟩, see [7]. Note that X and −X are
topologically homeomorphic.

Example 4.16. As above, the lexicographic product ω2
1 was countably

compact. But the lexicographic product ω1 × (−ω1) is not countably
compact. Indeed, let X = ω1×(−ω1), X0 = ω1 and X1 = −ω1. ω ∈ X0

with 0- cfX0(←, ω) = cf ω = ω witnesses 1 ∈ L+, therefore minL+ = 1.
On the other hand −ω1 has no minimal element, so we have 1 ∈ J−.
Therefore (2b) of Theorem 3.3 does not hold, thus X is not countably
(0-)compact.

Also note that (−ω1)× (−ω1) is countably compact but (−ω1)× ω1

is not countably compact, because (−ω1)× (−ω1) and (−ω1)× ω1 are
topologically homeomorphic to ω2

1 and ω1× (−ω1) respectively, see [7].
Moreover ω1×(−ω) is directly shown not to be countably (1-)compact,

because the 1-order preserving sequence {⟨0, n⟩ : n ∈ ω} has no cluster
point in ω1 × (−ω).
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