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ABSTRACT. It is well-known:

e the usual Tychonoff product X? of a paracompact space X
need not be paracompact, for instance, the Sorgenfrey line S
is such an example.

On the other hand, the following is known:

e the lexicographic product X = [, < X, of paracompact
LOTS’s is also paracompact [2].

In [6], the notion of the lexicographic product of GO-spaces is
defined and the result above in [2] is extended for GO-spaces [6, 7],
so the lexicographic product S? is paracompact. It is also known
that:

e the usual Tychonoff product of countably compact GO-spaces
is also countably compact, therefore the usual Tychonoff prod-
uct w] is countably compact for every ordinal -,

e the lexicographic product w{’ is countably compact, but the
lexicographic product w% ™ is not countably compact [4].

In this paper, we will characterize the countable compactness of
lexicographic products of GO-spaces. Applying this characteriza-
tion, about lexicographic products, we see:

e the lexicographic product X2 of a countably compact GO-

space X need not be countably compact,

o Wwxw, (WH+1) X (w1 +1) Xxwy Xw, Wy XwXwy, W Xw X
W1 XWX w XwY, wp Xw? X (w4 1), wf, wy X (w1 +1)
and [],c,, wny1 are countably compact,

e wXwy, (WH1) X (wr+1)XwXwy, wXwy XwXwy X -,
WX WY, wp Xw Xwy, wf Xw, [] wp, and [] W1 are
not countably compact,

e [0,1)r X wy, where [0,1)r denotes the half open interval in
the real line R, is not countably compact,

e wy X [0,1)g is countably compact,

e both S X w; and w; X S are not countably compact,

e w; X (—wy) is not countably compact, where for a GO-space
X =(X,<x,7x), =X denotes the GO-space (X, >x,Tx).
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Date: December 1, 2018.
2010 Mathematics Subject Classification. Primary 54F05, 54B10, 54B05 . Sec-
ondary 54C05.
Key words and phrases. lexicographic product, GO-space, LOTS, countably
compact.
1



1. INTRODUCTION

Lexicographic products of LOTS’s were studied in [2] and it was
proved:

e a lexicographic product of LOTS’s is compact iff all factors are
compact,

e a lexicographic products of paracompact LOTS’s is also para-
compact,

Recently, the author defined the notion of the lexicographic product
of GO-spaces and extended the results above for GO-spaces, see [6, 7].
It is also known:

e the usual Tychonoff product of GO-spaces is countably com-
pact iff all factors are countably compact, therefore the usual
Tychonoff product w] is countably compact for every ordinal -,

e the lexicographic product wf is countably compact, but the
lexicographic product w¢ ™! is not countably compact [4].

In this paper, we will characterize the countable compactness of lex-
icographic products of GO-spaces, further give some applications.

When we consider a product ], < Xa; all X, are assumed to have
cardinality at least 2 with v > 2. Set theoretical and topological ter-
minology follow [9] and [1].

A linearly ordered set (L, <) has a natural topology Az, which is
called an interval topology, generated by {(+—,z); : * € L} U {(z,—
)L :x € L} as a subbase, where (z, =), ={z € L:x <y z}, (z,y)r =
{zeL:z<pz<py}, (m,ylp ={2€L:x <y 2z<py} and so on.
The triple (L, <p, Ar), which is simply denoted by L, is called a LOTS.

A triple (X, <x,7x) is said to be a GO-space, which is also simply
denoted by X, if (X, <x) is a linearly ordered set and 7x is a Ts-
topology on X having a base consisting of convex sets, where a subset
C of X is conver if for every z,y € C with x <x y, [z,y]x C C holds.
For more information on LOTS’s or GO-spaces, see [10]. Usually <,
(x,y)r, AL or Tx are written simply <, (z,y), A or 7 if contexts are
clear.

The symbols w and w; denote the first infinite ordinal and the first
uncountable ordinal, respectively. Ordinals, which are usually denoted
by Greek letters «, 3,7, - - -, are considered to be LOTS’s with the usual
intereval topologies. The cofinality of « is denoted by cf a.

For GO-spaces X = (X, <y,7x) and Y = (Y, <y,7y), X is said to
be a subspace of Y if X C Y, the linear order <y is the restriction
<y | X of the order <y and the topology Ty is the subspace topology
v [ X (={UNX :U € 7v}) on X of the topology 7y. So a subset of a
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GO-space is naturally considered as a GO-space. For every GO-space
X, there is a LOTS X* such that X is a dense subspace of X* and X*
has the property that if L is a LOTS containing X as a dense subspace,
then L also contains the LOTS X* as a subspace, see [11]. Such a X*
is called the minimal d-extension of a GO-space X. The construction
of X* is also shown in [6]. Obviously, we can see:
e if X isa LOTS, then X* = X,
e X has a maximal element max X if and only if X* has a maxi-
mal element max X*, in this case, max X = max X* (similarly
for minimal elements).

For every a < 7, let X, be a LOTS and X = [],..X,. Every

aly o
element z € X is identified with the sequence (x(a) : a < 7). For

notational convenience, ], _ L, Xa 18 considered as the trivial one point
LOTS {0} whenever v = 0, where () is considered to be a function
whose domain is 0 (= §)). When 0 < 8 < v, yo € [[,.5Xo and
Y1 € [1p<a Xas Yo "y denotes the sequence y € [[,., Xo defined by

yo(a) if a < B,
y(o) = .
yi(a) if g <a.
In this case, whenever 3 = 0, () "y, is considered as y;. In case 0 <

B <7,y € Ha<ﬁ Xo, u € Xgand y; € H6<a Xa, Yo M{u)y1 denotes
the sequence y € [] .. X, defined by

a<y

a<y

yo(a) ifa<f,
yla) = qu if a = p,
yi(a) if B <a.
More general cases are similarly defined. The lexicographic order <x
on X is defined as follows: for every x,2’ € X,

x <x ' iff for some o < v,z [ a =2 [ @ and z(a) <x, 2'(«),

where x | a = (x(f) : 8 < «) (in particular = [ 0 = () and <y,
is the order on X,. Now for every a < 7, let X, be a GO-space
and X = [], < Xa. The subspace X of the lexicographic product

X = Haq X is said to be the lezicographic product of GO-spaces
Xo's, for more details see [6]. [[,c,Xi (I[;<,, Xi where n € w) is
denoted by X x X x Xp x -+ (Xox X1 X Xy X ---x X,,, respectively).
Ha@ X, is also denoted by X7 whenever X, = X for all o < 7.

Let X and Y be LOTS’s. A map f : X — Y is said to be order
preserving or 0-order preserving if f(x) <y f(z') whenever z <x a'.
Similarly a map f : X — Y is said to be order reversing or 1-order
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preserving if f(x) >y f(z') whenever x <x 2’. Obviously a 0-order
preserving map (also l-order preserving map) f : X — Y between
LOTS’s X and Y, which is onto, is a homeomorphism, i.e., both f
and f~! are continuous. Now let X and Y be GO-spaces. A 0O-order
preserving map f : X — Y is said to be a 0-order preserving embedding
if f is a homeomorphism between X and f[X], where f[X] is the
subspace of the GO-space Y. In this case, we identify X with f[X] as
a GO-space and write X = f[X] and X C Y.

Let X be a GO-space. A subset A of X is called a 0-segment of X
if for every z, 2’ € X with x < 2/, if 2/ € A, then z € A. A 0-segment
A is said to be bounded if X \ A is non-empty. Similarly the notion
of (bounded) 1-segment can be defined. Both () and X are 0-segments
and 1-segments. Obviously if A is a 0-segment of X, then X \ A is a
1-segment of X.

Let A be a 0-segment of a GO-space X. A subset U of A is unbounded
in A if for every x € A, there is 2’ € U such that x < /. Let

0-cfx A =min{|U|: U is unbounded in A.}.

0-cfx A can be 0,1 or regular infinite cardinals. 0-cfy A = 0 means
A = 0 and 0-cfx A = 1 means that A has a maximal element. If
contexts are clear, 0-cfy A is denoted by 0-cf A. For cofinality in
compact LOTS and linearly ordered compactifications, see also [3, 8].

Remember that a topological space is said to be countably compact
if every infinite subset has a cluster point.

Definition 1.1. A GO-space X is (boundedly) countably 0-compact if
for every (bounded) closed 0-segment A of X, 0-cfx A # w holds. The
term “(Boundedly) countably 1-compact” is analogously defined.

Obviously a GO-space X is countably 0-compact iff it is boundedly
countably 0-compact and 0-cf X # w. Note that subspaces of ordinals
are always countably 1-compact because they are well-ordered. Also
note that ordinals are boundedly countably 0-compact but in general
not countably O-compact, e.g., w, N, etc.

We first check:

Lemma 1.2. A GO-space X is countably 0-compact if and only if every
0-order preserving sequence {z, : n € w} (i.e., m <n — T, < x,) has
a cluster point.

Proof. Assuming the existence of a 0-order preserving sequence {z, :
n € w} with no cluster points, set A = {z € X : In € w(zx < z,,)}.
Then A is closed 0-segment with 0-cf A = w.
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To see the other direction, assuming the existence a closed 0-segment
A with 0-cf A = w, by induction, we can construct a 0-order preserving
sequence with no cluster points. 0

Using the lemma, we can see that a GO-space is countably compact
if and only if it is both countably 0-compact and countably 1-compact,
see also [5].

2. A SIMPLE CASE

In this section, we characterize countable O-compactness of lexico-
graphic products of two GO-spaces. The following is easy to prove, see
also [7, Lemma 3.6 (3a)].

Lemma 2.1. Let X = Xy x X be a lexicographic product of two GO-
spaces and Ag a 0-segment of Xy with 0-cfx, Ag > w. Then A =
Ap x X7 s also a 0-segment of X with 0-cfx A = 0-cfx, Ao.

The following lemma will be a useful tool for handling general cases.

Lemma 2.2. Let X = Xy x X be a lexicographic product of two GO-
spaces. Then the following are equivalent.

(1) X is countably 0-compact,
(2) the following clauses hold:
(a) Xo is countably 0-compact,
(b) X is boundedly countably 0-compact,
(¢) if X1 has no minimal element or (u,—)x, has no minimal
element (that is, 1-cfx,(u, —) # 1) for some u € Xy, then
0- CfX1 X1 7é w,
(d) if Xy has no minimal element, then 0-cfx, (<, u) # w for
every u € X.

Proof. Set X = X x X}.

(1) = (2) Let X be countably 0-compact.

(a) Assuming that Xy is not countably 0-compact, take a closed 0-
segment Ay of Xy with 0-cfy, Ag = w. By the lemma above, A =
Ap x Xy is a 0-segment of X with 0-cfx A = w. It suffices to see that
A is closed, which contradicts countable 0-compactness of X. So let
r ¢ A, then z(0) ¢ Ap. Since Ay is closed in Xy, there is u* € X¢
such that u* <xs 2(0) and ((u*, —=)x; N Xo) N Ay = @ (this means
(u*,2(0))x; = 0). Fix w € X; and let 2* = (u*,w) € X. Let U =
(z*, =) ¢ NX, then U is a neighborhood of z. To see UN A = (), assume
a € UNA for some a. By a(0) € Ay, we can take u € Ay with a(0) < w.
Now u* < a(0) < u shows u € ((u*,—) N Xy) N Ag, a contradiction.
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(b) Assuming that X is not boundedly countably 0-compact, take
a bounded closed 0-segment A; of X; with 0-cfx, A1 =w. Fix u € X
and let A = {z € X : v € Aj(z <x (u,v))}. Obviously A is a 0-
segment of X and {u} x A; is unbounded in the 0-segment A, so we
see O-cfx A = 0-cfx, Ay = w. It suffices to see that A is closed, so
let € X\ A. Note u < z(0). Since A; is bounded, fix v € X; \ 4;
and let y = (u,v). When y < x, U = (y, —)x is a neighborhood of
disjoint from A. So let x < y, then we have 2(0) = u and z(1) ¢ A;.
Since A is closed in X, take v* € X7 such that v* < z(1) and ((v*, —
)N X1)N A =0. Then U = ((u,v*), =) N X is a neighborhood of =
disjoint from A.

(c) First assume that X; has no minimal element. Fix u € Xy. Then
A = (+—,u] x X} is a closed 0-segment of X and {u} x X} is unbounded
in the 0-segment A, therefore 0-cfx, X7 = 0-cfx A # w.

Next assume that (u,—)x, has no minimal element. Then putting
A = (+—,u] x Xy, similarly we see 0-cfy, X; # w.

(d) Assuming that X; has no minimal element and 0- cfx, (+—, u) = w
for some u € Xy, let A = (+—,u) x X;. Then A is a closed 0-segment
of X with 0-cfx A = 0-cfx,(+,u) by Lemma 2.1. This contradicts
countable 0-compactness of X.

(2) = (1) Assuming (2) and that X is not countably 0-compact,
take a closed 0-segment A of X with 0-cfx A = w. Let Ag = {u € Xy :
Jv € Xi({u,v) € A)}. Since A is a non-empty 0-segment of X, Ay is
also a non-empty 0-segment of X,. We consider two cases, and in each
cases, we will derive a contradiction.

Case 1. Ay has no maximal element, i.e., 0-cf Ag > w.

In this case, we have:

Claim 1. A = AO X Xl-

Proof. The inclusion C is obvious. Let (u,v) € Ay x X;. Since u € Ay
and Ay has no maximal element, we can take v’ € Ay with u < u'.

By u' € Ay, there is v' € X; with (v/,v") € A. Then from (u,v) <
(u',v") € A, we see (u,v) € A, because A is a 0-segment. O

Lemma 2.1 shows 0-cf Ag = 0-cf A = w. The following claim con-
tradicts the condition (2a).

Claim 2. A is closed in X.

Proof. Let u € Xo\ Ag. Whenever v/ < u for some v’ € X\ Ao, (v, —)
is a neighborhood of u disjoint from Aj. So assume the other case, that
is, u = min(Xy\ Ag). Note Ay = (+—, u). If X; has no minimal element,
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then by (2d), we have 0- cf(<+—, u) # w, a contradiction. Thus X; has a
minimal element, therefore (u, min X;) = min(X \ A) ¢ A. Since A is
closed, there are u* € X and v* € X} such that (u*,v*) < (u, min X3)
and (((u*,v*), =) NX)NA=0. (u*,v*) < (u,min X;) shows u* < u,
so (u*,—) N X, is a neighborhood of u disjoint from Ay. O

Case 2. Ay has a maximal element.

In this case, let A; = {v € X; : (maxAg,v) € A}. Then A; is a
non-empty 0-segment of X;. Since {max Ay} x A; is unbounded in the
0-segment A, we see 0-cfx, A1 =0-cfy A=w.

Claim 3. A; is closed in Xj.

Proof. Let v € X; \ A;. Since (maxAg,v) ¢ A and A is closed,
there are u* € X§ amd v* € X7 such that (u*,v*) < (max Ap,v) and
(((u*,v*), =)y NX)NA=0. It follows from A; # 0 that u* = max Ay
and so v* < v. Then we see that (v*, —)x: N X is a neighborhood of
v disjoint from A;. O

This claim with the condition (2b) shows A; = X, which says
A = (+,max Ag] x X, in particular, we see that X; has no maxi-
mal element.

Claim 4. (max Ay, —) has no minimal element or X; has no minimal
element.

Proof. Assume that (max A, —) has a minimal element uy and X; has
a minimal element, then note (up, min X;) = min(X \ A). Since A
is closed in X, there are u* € X and v* € X such that (u*,v*) <
(up, min X7) and (((u*,v*),=)x N X)N A = 0. Then we have u* =
max Ag. Since X7 has no maximal element, pick v € X; with v* < v.
Then we see (max Ag,v) € (((u*,v*), =) +NX)NA, a contradiction. [

Now the condition (2c¢) shows 0-cfx, X; # w, a contradiction. This
completes the proof of the lemma. l
3. A GENERAL CASE

In this section, using the results in the previous section, we char-
acterize the countable compactness of lexicographic products of any
length of GO-spaces. We use the following notations.

Definition 3.1. Let X =[]
spaces. Define:

a<y Xa be a lexicographic product of GO-

J" ={a <~v: X, has no maximal element.},
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J~ ={a <~v: X, has no minimal element.},
* ={a <~v: thereis x € X, such that (x,—)x, is non-empty
and has no minimal element.},
K™ ={a < : thereis z € X, such that (<, x)x,_ is non-empty

@

and has no maximal element.},

t={a<~v: thereisu € H Xp with O—CfHB<aXﬁ(<—,u) = w},

B<a

L™ ={a<~v: thereisu € H Xp with 1-cfpp _ x,(u, =) = w},
B<a
For an ordinal «, let

if
l(@):{o o ?a<w,

sup{f < «: B is limit.} if @ > w.

Some of the definitions above are introduced in [7]. Note that 0 ¢
LT UL and for an ordinal > w, I(«) is the largest limit ordinal less
than or equal to «, therefore the half open interval [I(«), @) of ordinals
is finite.

We also remark:

Lemma 3.2. Let X = Ha<7 Xo be a lexicographic product of GO-
spaces. If w <, then w € L™ N L~ holds.

Proof. Assume w < 7. For each n € w, fix ug(n),u1(n) € X, with
up(n) < ui(n). Set y = (uy(n) : n € w). Moreover for each n € w,
set y, = (u1(2) = i < n)™up(d) : n < i). Then {y, : n € w} is a 0-
order preserving unbounded sequence in (<, y) in ], . X, therefore
w € L*. The statement w € L~ is similar. O

Theorem 3.3. Let X = Haq X, be a lexicographic product of GO-
spaces. Then the following are equivalent:

(1) X is countably 0-compact,
(2) the following clauses hold:
(a) X, is boundedly countably 0-compact for every a < -,
(b) of LT # 0, then J- C min L™,
(c) for every o < 7, if any one of the following cases holds,
then 0-cfx_ X, # w holds,
(i) 77N l(a), ) =0,
(i) JTN[l(a),a) #0 and (g, a] N T~ # O, where ag =

[I(
max(JT N [l(a),a)),
(iii) J*TN[l(a),a) #0 and [ag, ) N KT # 0, where ag =
max(J " N [[(a), a)).
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Proof. Note that (2a)+(2ci) implies that Xy is countably 0-compact.
Let X =[], X

(1) = (2) Assume that X is countably 0-compact.

(a) Let ap < . Since X = [[ <o, Xa X [[4y<a Xa» see [6, Lemma
1.5], and X is countably 0-compact, Lemma 2.2 shows that [[ ., Xa
is countably 0-compact. Now by [[,<,. Xa = [laca, Xa X Xa, and
Lemma 2.2 again, we see that X,, is boundedly countably 0-compact.

(b) Assume LT # () and a9 = minL*. Then Lemma 3.2 shows
ap < w. From ap € LT, one can take u € Ha<ao X, such that
0-cfpp, .., Xo (¢ u) = w. Now since X = [[ ., Xa X [[4y<a Xa 18
countably O-compact, Lemma 2.2 (d) shows that [], -, Xo has a min-
imal element. Therefore X, has a minimal element for every a > ay,
which shows J~ C «ag.

(c) Let ag < . We will see 0-cfx, Xa, # w in each case of (i), (ii)
and (iii).

Case (i), i.e., J©" N [l(ap), ag) = 0.

Since X is countably O-compact and X = [],c., Xo X [l4,<a Xas
Lemma 2.2 shows that Ha<a X, is also countably 0-compact. When
ap = 0, by countable 0O-compactness of [], <on Xo = Xy, We see
0- cf Xag KXoy # w. So let ag > 0. We divide into two cases.

Case (i)-1. l(ag) =0, i.e., oy < w.

In this case, since [], <ap Xa has a maximal element, which implies
(max [[,q, Xa, —) has no minimal element, and [],_,, Xa X Xo, is
countably O-compact, Lemma 2.2 (2¢) shows 0-cfx, Xo, # w.

Case (i)-2. l(ag) > w ie., ap > w.

In this case, note that for every a € [l(a), ), X, has a maximal
element. For every o < l(ap), fix zo(a), z1(a) € X, with zg(a) <
z1(@), and let y = (xo(a) : a < (o)) (max X, : l(ag) < a < ap).
Moreover for every 8 < l(ay), let yg = (zo(a) : a < B)) (x1(ar) : f <
a < l(ag))) (max X, : l(ap) < a < ap). Then {yg : 5 < l(ap)} is
1l-order preserving and unbounded in (y, —), in particular, the interval
(y, =) in [[,cn, Xa has no minimal element. Now Lemma 2.2 (2c)
shows 0-cfy, Xo, # w.

Case (ii), i.e., J" N [l(ag),) # 0 and (a1, 0] N J~ # 0, where
a; = max(JT N [l(a), ap)).

Note that ay is well-defined because [I(ayg), ap) is finite. Also let ag =
max((aq, ap] N J7), then note 0 < l(ap) < a1 < ae < o, in particular

[O’ 052) 7é @
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Case (ii)-1. as = ap.

Since [0, Xo X Xag (= [1a<q, Xao) is countably O-compact, Lemma
2.2 (2¢) shows 0-cfx, X, # w.

Case (ii)-2. ay < ayp.

Note that by the definition of as, X, has a minimal element for every
a € (ag, o). Fixing z € [, .., Xa, let y = 2" (max X, : ap < a < ay),
then y € [ <0, Xa-

Claim 1. (y, %)HK% x,, 1s non-empty and has no minimal element.

[e3

Proof. Because X, has no maximal element, fix u € X, with y(a;) <
uw. Then (y [ a))™(w)(y | (a1,)) € (y,—), which shows (y, —
) # 0. Next assume y < ¢y € [][,.,, Xa- Since y(a) = max X,
for every a € [ag,ap), we have y [ as < ¢y | ag. Since X,, has
no minimal element, fix v € X,, with u < y'(as). Then we have
y < (¥ T a)™w)((v | (a2, a0)) < ¢/, which shows that (y,—) has no
minimal element. O

Now because [],.,, Xa X Xa, is countably 0-compact, Lemma 2.2
(2¢) and the claim above show 0-cfx, Xo, # w.

Case (iii), i.e., Jt N [l(ag),a0) # 0 and [a1, 9) N KT # (), where
a; = max(JT N [l(ag), ap)).

Let ap = max([ar, ap) N K1), then note I(ap) < ag < ag < ap. Fixing
2 € [[acq, Xo amd u € X, satisfying that (u, —) is non-empty and
has no minimal element, let y = z"(u)"(max X, : as < a < ap).
Then obviously y € [[,.o, Xo and (y,—) has no minimal element.

Since [],cq, Xa X Xa, i8 countable 0-compact, Lemma 2.2 (2c) shows
0- CfXaO Xao # Ww.

(2) = (1) Assuming (2) and the negation of (1), take a closed 0-
segment A of X with 0-cfx A = w. Modifying the proof of Theorem
4.8 in [7], we consider 3 cases and their subcases. In each case, we will
derive a contradiction.

Case1l. A= X.

In this case, since X has no maximal element, we have J # (), so let
ap = minJt. Then J* N [l(ag),0) C JT N[0,0) = @ and the con-
dition (2ci) shows 0-cfx, Xa, > wi. Since {(max X, : a < ag)} X
Xa, is unbounded in [],.,, Xa, We have O- 1,2y Xa [oco, Xa =
0-cfx,, Xag > w1 Now by X =[] ., Xa X Hao;a X,, Lemma 2.1
shows 0-cfx A = 0-cfx X = 0O- Cfl_[a<a0 X, Hagao Xo = 0-clx, Xog >

w1, a contradiction.
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Case 2. A# X and X \ A has a minimal element.

Let B = X \ A and b = minB. Since A is non-empty closed and
B = [b,—), there is b* € X with b* < b and ((b*,—=)¢ N X)NA = 0,
equivalently (b*,0)y = (. Note b* ¢ X because A has no maximal
element. Let oy = min{a < v : b* () # b(ar}.

Claim 2. For every a > ap, X, has a minimal element and b(«)
min X,.

for some @ > ap and u € X,, let
> u)} and fix u € X,, with b(ay) >

Proof. Assuming b(a) > =
) u.
(u)(b 1 (a1,7)) < b, a contradiction. O

u
min{a > ap : Ju € X, (b(a
Then we have b* < (b [ ay)"

Claim 3. (b*(ao), b(ao))xz, N Xay = 0.

Proof. Assume u € (b*(aw), b(cn))xz, N Xa, for some u. Then we have
b* < (b ] ag)™(w)"(b | (av,7)) < b, a contradiction. O

Claim 4. [b(ag), —)x,, & Ax.,, therefore b*(ag) ¢ X,

Proof. 1t follows from b*(ag) € (4=, b(ao))xz, that («—,b(c0))x., # 0.
Assume [b(ap), —)x,, € Ax,,, then for some u € X,, with u < b(ay),
(u,b(ap)) = 0 holds. Claim 3 shows b*(a) = u € X,,. If there were
a > ap and v € X, with v > b*(«), then by letting oy = min{a >

0 v € Xy(v > b*(a))} and taking v € X,, with v > b*(aq), we
have b* < (b* | ay)™(0)(b* | (a1,7)) < b, a contradiction. Therefore
for every a > «, max X,, exists and b*(ar) = max X,. Thus we have
b* = (b [ ap)(u)(max X, : ap < @) € X a contradiction. O

Claims 3 and 4 show that Ay := («—,b(ap)) is a bounded closed 0-
segment of X, without a maximal element. Now the condition (2a)
shows 0-cfx, Ao > wi. Since {b [ ap} X Ag X {b [ (ag,7)} is un-
bounded in the O-segment in A ((= (+—,b)x), we have w = 0-cfx A =
0-cf Xag Ag > wq, a contradiction. This completes Case 2.

Case 3. A # X and X \ A has no minimal element.
Let B= X\ A and
I={a<vy:JacAFBbeBa|(a+1)=>b](a+1))}.

Obviously [ is a 0-segment of v, so I = g for some oy < 7. For each
a < ap, fix a, € A and b, € B with a, [ (a+1) = by [ (a+1).
By letting Yo = [[ 0, Xa and Y1 = [], <, Xa, define yo € Yy by
yo(a) = an () for every o < ag. The ordinal o can be 0, then in this
case, Yy = {0} and yo = 0.
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Claim 5. For every a < ap, 4o [ (@ +1) =a, [ (a+1) =by [ (¢ +1)
holds.

Proof. The second equality is obvious. To see the first equality, assum-
ing yo | (a+1) # an [ (a+ 1) for some a < oy, let @y = min{a <
ap Y | (@+1) # an | (a+1)}. Moreover let ap = min{a < a :
yo(a) # aq, (a)}. Tt follows from yo(a1) = aqa, (1) that as < ;. Since
Yo | e = aq, | az and yo(ag) # aq, (a2) holds, by the minimality of
ap, we have yo [ (e +1) = aqo, | (g +1) = by, [ (2 +1). When
Yo(ag) < aq,(a2), we have B 3 b,, < an, € A, a contradiction. When
Yo(a2) > g, (a2), we have B 3 b,, < a,, € A, a contradiction. O

Claim 5 remains true when oy = 0, because there is no ordinal «
with a < ap.

Claim 6. o < 7.

Proof. Assume ag =y, then note yg € Yy = X = AU B. Assume 1y €
A. Since A has no maximal element, one can take a € A with yy < a.
Letting By = min{f < v : yo(B) # a(B)}, we see A > a > bg, € B, a
contradiction. The remaining case is similar. U
Let Ay = {a(ap) : a € A,a | ap = yo} and By = {b(p) : b € B,b |

o = Yo}
Claim 7. The following hold:

(1) for every a € A, a | o < 7o holds,

(2) for every z € X, if x [ ap < yo, then z € A.

Proof. (1) Assume a [ ag > yo for some a € A. Letting Sy = min{s <
ap s a(f) # yo(B)}, we see B 3 b, < a € A, a contradiction.

(2) Assume z | oy < yo. Letting Sy = min{5 < ap : x(5) # vo(B)},
we see © < ag, € A. Since A is a 0-segment, we have z € A. O

Similarly we have:

Claim 8. The following hold:

(1) for every b € B, b | ap > yo holds,
(2) for every z € X, if x [ a9 > yo, then z € B.

Claim 9. Aj is a 0-segment of X, and By = X,, \ Ao.

Proof. To see that Ag is a O-segment, let v’ < u € Ag. Pick a € A
with a | ap = yo and u = a(a). Let @’ = (a | ap)™ ()" (a | (ap,7)).
Since A is a 0-segment and ¢’ < a € A, we have a’ € A. Now we see
u = d' (o) € Ag because of @’ | ag = yo.

To see By = X,, \ Ao, first let u € By. Take b € B with b [ ag = yo
and b(ag) = u. If u € Ay were true, then by taking a € A with
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a | ag = yo and a(ag) = u, we see a [ (ag+1) = b | (o + 1),
therefore oy € I = g, a contradiction. So we have u € X, \ Ao.
To see the remaining inclusion, let u € X, \ Ap. Take z € X with
x| (ag+1) =y “u). If z € A were true, then by = | ag = yo, we
have u = z(g) € Ay, a contradiction. So we have x € B, therefore
u e Bo. ]

Claim 10. A, # 0.
Proof. Assume Ay = (). We prove the following facts.
Fact 1. (+,yo)y, X Y1 = A.

Proof. One inclusion follows from Claim 7 (2). To see the other inclu-
sion, let a € A. Claim 7 (1) shows a [ ag < yo. If a [ ag = yo were
true, then we have a(qg) € Ay, a contradiction. So we have a | ag < yo
therefore a € (+,yo) X Y. O

Fact 2. oy > 0 and qg is limit. .

Proof. If oy = 0 were true, then by taking a € A, we have a(ag) € Ay,
a contradiction. Therefore we have ag > 0. Next if ag = [y + 1
were true for some ordinal [y, then by Gy € oy and Claim 5, we have

vo lao=w [ (Bo+1) =ag, | (Bo+1) =as | o, thus we have
ag,(ap) € Ag, a contradiction. Thus o is limit. O

Now Claim 6 and Fact 2 show w < g < 7, so Lemma 3.2 shows
w € LT. Moreover the condition (2b) shows J~ C min LT < w < ay,
in particular, X, has a minimal element for every a > «. This means
Vi (= [lap<a Xa) has a minimal element. Now by Fact 1, we see
Yo " minY; = min(X \ A), which contradicts our case. O

Next let Zy =[] Xo, 21 = Ha0<a X, and

A ={z€Zy: 2z ag<yoor (z | ay=1o2(ag) € Ag)}.
Note A* = (((-,yo) X Xao) U ({yo} X Ao)
Claim 11. A* is a 0-segment of 7y, and A = A* X Z;.

a<ag

Proof. Since Ay is a 0-segment of X,,, A* is obviously a 0-segment of
Zy. Tosee A C A* x Zy, let a € A. Claim 7 (1) shows a | ag < yo.
When a | ap < yo, obviously we have a | (g + 1) € A*. When
a | ay = Yo, a € A shows a(ag) € Ag thus a | (o +1) € A*. To
see A D A* x Zy1, let a € A* x Z;. Then note a | (ag + 1) € A*.
When a [ ag < yo, letting Sy = min{5 < ap : a(B) # yo(B)}, we see
a < ag, € Athusa € A. When a | ap = yo and a(ap) € Ay, Claim 9
shows a € A. O



14 NOBUYUKI KEMOTO

Since {yo} x Ap is unbounded in the 0-segment A*, we see 1 <
0-cfy, A* = 0-cf X Ap. We divide Case 3 into two subcases.

Case 3-1. 0-cf, A* > w.

In this case, Claim 11 and Lemma 2.1 show w = 0-cfx A = 0-cf, A* =
0- CfXaO AQ.

Claim 12. Ay # X,,.

Proof. Assume Ay = X,,. 0-cf Xag Xoy = 0-cf X Ay = w shows ag €
JT. Assume o = By + 1 for some ordinal 5. Then [y < ag = I shows
bs, € B. Now from bg, [ ag=1bg, [ (Bo+1)=wo | (Bo+1) =10 | o,
we have bg, (o) € By = X, \ Ao, a contradiction. Thus we see that
ap = 0 or ap is limit, that is, [[(ap),ap) = 0. Now the condition (2ci)
shows 0-cfx, Xa, # w, a contradiction. O

Claim 13. A, is closed in X,,.

Proof. When By has no minimal element, obviously Ag is closed. So
assume that By has a minimal element, say v = min By. It suffices to
find a neighborhood of u disjoint from Ay. A* = (+—,y0 "(u))z, and
0-cfz, A* = w show ap+ 1 € LT, therefore min L < ag+ 1. The con-
dition (2b) ensures J~ C min Lt < ag + 1, so J~ C [0, o). Therefore
X, has a minimal element for every o > ap. Let b = yp " (u)"(min X, :
agp < a). Since b € B (= X \ A) and A is closed in X, there is
b* € X such that b* < b and (b*,0)¢ NA = 0. Set B, = min{f <
v 2 b*(B) # b(B)}, then obviously £y < ag. If By < ap were true, we
have ag, € (b*,b); N A, a contradiction. Thus we have 8y = ag, so
b* I ag = yo and b*(ap) < u. If there were v € (b*(aw), =) xz, N Ao,
then v < u shows yo " (v)(min X, : o < ) € (b*,b) N A, a contradic-
tion. Therefore (b*(aw), =)x;, N Xaq, is a neighborhood of u disjoint
from Ajp. 0

These claims above show that Ay is a bounded closed 0-segment of
Xap- Now the condition (2a) shows 0-cfx, Ag # w, a contradiction.

Case 3-2. 0-cfy A* = 1.

Since A = A* x Z;, A* has a maximal element but A has no maxi-
mal element, we see that Z; has no maximal element. Therefore X,
has no maximal element for some o > «, in particular (ag,y) # 0.
Let oy = min{a > ap : X, has no maximal element. }. Then we
have ap < ag € J© and (ag, ;) N JT = (. Since A = A* x Z; =
A* X (Hao<a§a1 Xa X Ha1<a XO‘) = (A* X Hao<a§o<1 Xa) X Ha1<a Xa

and A* x [] X, is a O-segment in J], ., X, with no maximal

ap<a<lal ala
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element, Lemma 2.1 shows w = 0-cfx A = 0-cf (A" X [[,, caca, Xa) =
0-cfx,, Xa, (that {yo "(max Ag)"(max X, : ap < a < a1)} x X,
is unbounded in the 0-segment A* x [] X, witnesses the last
equality).

Claim 14. (o) < ap and J* N [l(a1), a0] # O hold, in particular
J+ N [l(Oél),Oél) §£ @

Proof. First assume ag < (7). Then JTN[l(ay),q) C JTN(ap, 1) =
() and the condition (2ci) show 0-cfx, X,, # w, a contradiction. Thus
we have (1) < ap.

apg<a<lal

Next assume J+ N [I(an), ap] = 0, then we have J*™ N [l(ay), 1) =0
because of J© N (ag,a1) = 0. Therefore the condition (2ci) shows
0-cfx,, Xa, # w, a contradiction. Thus J* N [I(a1), ag] # 0. O

Using the above claim, set as = max(J™ N [[(aq),a1)). Note 0 <
l(ag) <as < ap < ag and J" N (g, 1) = 0.

Claim 15. B has a minimal element.

Proof. First we check By # (), so assume By = 0, i.e., Ay = Xg,-
1 = 0-cfy, A* = 0-cfx,, Ao = 0-cfx, Xo, shows ap ¢ J*. Also
as < ap and ay € JT show 0 < ay < . Assume that o = By + 1
for some ordinal fy, then by By < ap = I, we have bg, € B and
bgy [ a0 =bg, [ (Bo+1) =w [ (Bo+1) = yo [ ap. Therefore we
have bg, (ap) € By, a contradiction. So we have 0 < o and «y is limit,
therefore ag < I(a1) < g, which contradicts as < ag. We have seen
By # 0.

Next we check that By has a minimal element. Assume that B
has no minimal element, then max Ay witnesses ag € [, q) N K.
The definition of ay and the condition (2ciii) show 0-cfx, X, #w, a
contradiction. ]

Now since B has no minimal element, by the claim above, there is
a > o such that X, has no minimal element. So let a3 = min{a > ay :
X, has no minimal element. }. Then we have oy < a3 € J~. When
w < 7, Lemma 3.2 and the condition (2b) show J~ C min LT < w.
When v < w, obviously J~ C w. So in any case we have J~ C w.
Therefore I(a;) < oy < a3 € w so we have o € w.

Claim 16. a3 S 7.

Proof. Assume «; < ag, then X, has a minimal element for every
a € (ap, a1]. So let y = yo M(min Bp)(min X, : oy < o < «1). Note
Y € [laca, Xo and consider the interval («—,y) in [],<,, Xa- The
definition of ay and ay < o show that X, has a maximal element for
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every a € (g, aq). Since {yo "(max Ag)"(max X, : g < o < )} X
X, is unbounded in (+,y), we have 0-cf(+,y) = 0-cfx, X, = w.
Thus y witnesses a; + 1 € L*. The condition (2b) ensures J~ C
min LT < oy +1, thus ag € J~ C [0, o], a contradiction. Now we have
Q3 S Q7. U

Now a3 € (g, 1] N J™ C (az, ] N J 7, ag = max(Jt N [l(a1), 1))
and the condition (2cii) show 0-cfx, X, # w, a contradiction. This
completes the proof of the theorem. O

Analogously we can see:

Theorem 3.4. Let X = Ha<'y X be a lexicographic product of GO-
spaces. Then the following are equivalent:

(1) X is countably 1-compact,
(2) the following clauses hold:
(a) X, is boundedly countably 1-compact for every a < =,

(b) if L= # 0, then J* C min L™,
(c) for every a < =y, if any one of the following cases holds,
then 1-cfx_ X, # w holds,
(i) J-n[l(a),a) =10,
)

(i) J-N[l(«a),a) # 0 and (g, ) NI # O, where oy =
max(J™ N [l(a), a)),

(iii) J~N[l(a),a) # 0 and [ag, @) N K~ # 0, where ag =
max(J~ N[l(a),q)).

4. APPLICATIONS
In this section, we apply the theorems in the previous section

Corollary 4.1. Let X =[],
spaces. Then the following hold:

X, be a lexicographic product of GO-

(1) if X is countably 0-compact, then J~ C w,

(2) if X is countably 1-compact, then J© C w,

(3) if X is countably 0-compact, then for every § < =, the lexico-
graphic product [],,_s Xa is countably 0-compact, in particular
Xo s countably 0-compact,

(4) if X is countably 1-compact, then for every § < =, the lezico-
graphic product [],_s Xa is countably 1-compact, in particular
Xo 1s countably 1-compact,

Proof. Lemma 3.2 and the condition (2b) in Theorem 3.3 show (1).
(3) obviously follows from Theorem 3.3 or Lemma 2.2 directly. The
remaining is similar. 0
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Corollary 4.2. Let X be a GO-space. Then the lexicographic product
Xt is countably compact if and only if X is countably compact and
has both a minimal and a mazimal element.

Proof. That X“*1 is countably compact implies that X is countably
compact and has both a minimal and a maximal element follows from
the corollary above. The other implication follows from the theorems
in the previous section because of J© = J~ = (). O

Corollary 4.3. Let X = Ha<7 X, be a lexicographic product of count-
ably compact GO-spaces. Then the following are equivalent:

(1) X is countably compact,

(2) the following clauses hold:
(a) if LT # 0, then J- C min L™,
(b) if L= # 0, then J* C min L~.

Proof. Since all X,’s are countably compact, (2a)+(2c) in Theorems
3.3 and 3.4 of the previous section are true. O

Example 4.4. Let [0,1)g denote the unit half open interval in the
real line R with the usual order. Let X be the lexicographic product
[0,1)gr X wy. Since [0,1)r is not countably 0-compact, Corollary 4.1
shows that X is not countably 0-compact. Both [0,1)r and w; are
countably 1-compact. Considering X, = [0,1)g and X; = w;, we see
1 € L™ (01in [0,1)g witnesses this) therefore 1 = min L~. Moreover
by 1 € J, (2b) in Theorem 3.4 does not hold. Therefore X is neither
countably 0-compact nor countably 1-compact. Note that X is not
paracompact, see [7, Example 4.6].

Example 4.5. Let X be the lexicographic product wy x [0, 1)g. Check-
ing all clauses in the theorems in the previous section, we see that X
is countably compact. Since it is not compact, it is not paracompact.
The lexicographic product w; x [0, 1)g is called the long line of length
wy and denoted by L(wy).

Example 4.6. Let S be the Sorgenfrey line, where half open intervals
la,b)r’s are declared to be open. Then it is known that w; X S is
paracompact but S X w; is not paracompact, see [7]. On the other
hand, both lexicographic products wy X S and S x w; are not countably
compact, because S is not boundedly 0-compact.

Example 4.7. Let X be the lexicographic product w; x [0,1)g X
wy, and consider as Xy = wy, X3 = [0,1)gr and Xy = w;. Then
I-cfy x10,1)2((0,0), =) = w shows 2 € L™. Since 0,1 ¢ L™, we have
min L~ = 2. Now 2 € JT implies J© ¢ min L~. Thus Theorem 3.4
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shows that X is not countably (1-) compact. On the other hand, we
will later see that the lexicographic product wy X w X wy is countably
compact.

Corollary 4.8. There is a countably compact LOTS X whose lexico-
graphic square X? is not countably compact.

Proof. X = IL(w;) is such an example, because L(w;)? = (w; % [0, 1)g x
wy) % [0, 1)g (use Example 4.7). We will later see that the lexicographic
product X = wy is also such an example. t

In the rest of the paper, we consider countable compactness of lex-
icographic products whose all factors have minimal elements. In the
following, apply theorems with J~ = ().

Corollary 4.9. Let X = Ha<,y X, be a lexicographic product of GO-
spaces. If all X, ’s have minimal elements, then the following are equiv-
alent:

(1) X is countably 0-compact,
(2) the following clauses hold:
(a) X, is boundedly countably 0-compact for every a < =,
(b) for every a < y, if either one of the following cases holds,
then 0-cfx_ X, # w holds,
(i) J*N[l(a),a) =0,
(i) JTN[l(a),a) # 0 and [ag,a) N KT £ 0, where ag =
max(J " N [I(a), a)).

Corollary 4.10. Let X = Ha<7 X, be a lexicographic product of GO-
spaces. If all X, ’s have minimal elements, then the following are equiv-
alent:

(1) X is countably 1-compact,

(2) the following clauses hold:
(a) X, is (boundedly) countably 1-compact for every o < v,
(b) if L= # 0, then J* C min L™,

Now we consider the case that all factors are subspaces of ordinals.
First let X be a subspace of an ordinal. Since X is well-ordered, the
following hold:

e X is countably 1-compact,

e X has a minimal element,

e for every u € X with (u,—) # 0, (u, —) has a minimal element,

e there is u € X such that («—,u) is non-empty and has no max-
imal element if and only if the order type of X is greater than
w.
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Note that a subspace X of w; is countably compact if and only if it is
closed in wy, and also note that the subspace X = {a < wy : cf @ < w}
is countably compact but not closed in ws.

Next let X, be a subspace of an ordinal for every a < ~ and
X =1L, - Xa be a lexicographic product. Then using the notation in
section 3, we see:

o J =1,
o KT =1,
e o € K~ iff the order type of X, is greater than w.

Remarking these facts with Corollaries above, we see:

Corollary 4.11. Let X = Haq X, be a lexicographic product. If all
X ’s are subspaces of ordinals, then the following are equivalent:

(1) X is countably 0-compact,
(2) the following clauses hold:
(a) X, is boundedly countably 0-compact for every a < -,
(b) for every a < v with J* N [l(a),a) = 0, 0-cfx, X, # w
holds,

Corollary 4.12. Let X = Haq X, be a lexicographic product. If all
X ’s are subspaces of ordinals, then the following are equivalent:

(1) X s countably 1-compact,
(2) JF Cw.

Proof. (1) = (2) Assume that X is countably 1-compact. By Corollary
4.10, if L= # (), then J* C min L~. When v > w, because of w € L™,
we see JT C min L~ < w. When v < w, obviously we see J* C v < w.

(2) = (1) Assume J*© C w. It suffices to check (2a) and (2b) in
Corollary 4.10. (2a) is obvious. To see (2b), let L™ # (). Now assume
wNL~ #0, and take n € wNL~. Then we can take u € [], _, X, with
1-cf(u,—) = w. But this is a contradiction, because a lexicographic
product of finite length of subspaces of ordinals are also a subspace of
ordinal, see [7, Lemma 4.3]. Therefore we have w N L™ = (. L™ # ()
and Lemma 3.2 show J* Cw =minL™. O

If X is an ordinal, then it is boundedly countably 0-compact and
0-cfx X = cf X. Therefore we have:

Corollary 4.13. Let X = Ha<'y X, be a lexicographic product of ordi-
nals. Then the following are equivalent:
(1) X is countably compact,

(2) the following clauses hold:
(a) if J© £ 0, then cf Xy g+ > wi,
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(b) J© Cw.

Corollary 4.14. [4] The following clauses hold:

(1) the lexicographic product wi is countably 0-compact for every
ordinal 7,
(2) the lexicographic product wi is countably (1-)compact iff v < w.

Example 4.15. Using Corollary 4.13, we see:

(1) lexicographic products w}, wy X w, (w+1) X (w; +1) X wy X w,
W) XWX Wy, Wy XwXwy XwX - wy Xw wy Xw? X (w+1),
wy, wi x (w; + 1) and [], ., wnt1 are countably compact,

(2) lexicographic products w X wy, (w+ 1) X (w1 + 1) X w X wy,
WX W XWXwp X, wX W, w Xw? Xwy, wf X w, [, wn
and [], . wnt1 are not countably compact,

(3) let X = w¥, then the lexicographic product X? is not countably
compact because of X2 = w¥ x w¥ = w¥™, so this shows also
Corollary 4.8.

For a GO-space X = (X, <yx,Tx), —X denotes the reverse of X,
that is, the GO-space (X, >, Tx), see [7]. Note that X and —X are
topologically homeomorphic.

Example 4.16. As above, the lexicographic product w? was countably
compact. But the lexicographic product w; X (—wj) is not countably
compact. Indeed, let X = wy X (—w1), Xo =w; and X; = —w;. w € X
with 0-cfx, (+—, w) = cf w = w witnesses 1 € LT, therefore min L™ = 1.
On the other hand —w; has no minimal element, so we have 1 € J~.
Therefore (2b) of Theorem 3.3 does not hold, thus X is not countably
(0-)compact.

Also note that (—w;) X (—w;) is countably compact but (—w;) X w;
is not countably compact, because (—w;) X (—wy) and (—w;) X wy are
topologically homeomorphic to w? and w; X (—wy) respectively, see [7].

Moreover wy X (—w) is directly shown not to be countably (1-)compact,
because the 1-order preserving sequence {(0,n) : n € w} has no cluster
point in wy; X (—w).
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