
A CHARACTERIZATION OF PARACOMPACTNESS OF
LEXICOGRAPHIC PRODUCTS

YASUSHI HIRATA AND NOBUYUKI KEMOTO

Abstract. It was known that lexicographic products of paracom-
pact LOTS’s are also paracompact, see [2]. After then in [3], the
notion of the lexicographic products of GO-spaces is defined and
the result above is extended for lexicographic products of GO-
spaces and it is asked when lexicographic products of GO-spaces
are paracompact. For this question, paracompactness of lexico-
graphic products of some special cases below are characterized in
[4]:
• lexicographic products of two GO-spaces,
• lexicographic products of any length of ordinal subspaces.

In this paper, we will give a complete answer of the question above
in [3]. As corollaries, we will see :
• if γ is a limit ordinal andXα has neither minimal nor maximal
elements for every α < γ, then the lexicographic product∏

α<γ Xα is paracompact,
• the lexicographic product S×ω1 is not paracompact but the
lexicographic products ω1 × S and S× ω1 × S× ω1 × · · · are
paracompact, where S denotes the Sorgenfrey line,
• the lexicographic products ω × ω1 × I and I × ω × ω1 are
paracompact but the lexicographic product ω× I× ω1 is not
paracompact, where I denotes the unit interval [0, 1] in the
real line R.
• the lexicographic product ω1 × (−ω1) × ω1 × (−ω1) × · · · is
paracompact, where for a GO-space X = ⟨X,<X , τX⟩, −X
denotes the GO-space ⟨X,>X , τX⟩.

1. Introduction

All spaces are assumed to be regular T1 and when we consider a
product

∏
α<γ Xα, all Xα are assumed to have cardinality at least 2

with γ ≥ 2. Set theoretical and topological terminology follow [5] and
[1].
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A linearly ordered set ⟨L,<L⟩ has a natural topology λL, which is
called an interval topology, generated by {(←, x)L : x ∈ L} ∪ {(x,→
)L : x ∈ L} as a subbase, where (x,→)L = {z ∈ L : x <L z}, (x, y)L =
{z ∈ L : x <L z <L y}, (x, y]L = {z ∈ L : x <L z ≤L y} and so on.
The triple ⟨L,<L, λL⟩, which is simply denoted by L, is called a LOTS.

A triple ⟨X,<X , τX⟩ is said to be a GO-space, which is also simply
denoted by X, if ⟨X,<X⟩ is a linearly ordered set and τX is a T2-
topology on X having a base consisting of convex sets, where a subset
C of X is convex if for every x, y ∈ C with x <X y, [x, y]X ⊂ C holds.
For more information on LOTS’s or GO-spaces, see [6]. Usually <L,
(x, y)L, λL or τX are written simply <, (x, y), λ or τ if contexts are
clear.

ω and ω1 denote the first infinite ordinal and the first uncountable
ordinal, respectively. Ordinals, which are usually denoted by Greek
letters α, β, γ, · · · , are considered to be LOTS’s with the usual intereval
topology. For a subset A of an ordinal α, Lim(A) denotes the set
{β < α : β = sup(A ∩ β)}, that is, the set of all cluster points of A in
the topological space α.

For GO-spaces X = ⟨X,<X , τX⟩ and Y = ⟨Y,<Y , τY ⟩, X is said to
be a subspace of Y if X ⊂ Y , the linear order <X is the restriction
<Y ↾ X of the order <Y and the topology τX is the subspace topology
τY ↾ X (= {U ∩X : U ∈ τY }) on X of the topology τY . So a subset of a
GO-space is naturally considered as a GO-space. For every GO-space
X, there is a LOTS X∗ such that X is a dense subspace of X∗ and X∗

has the property that if L is a LOTS containing X as a dense subspace,
then L also contains the LOTS X∗ as a subspace, see [7]. Such a X∗

is called the minimal d-extension of a GO-space X. The construction
of X∗ is also shown in [3]. Obviously, we can see:

• if X is a LOTS, then X∗ = X,
• X has a maximal element maxX if and only if X∗ has a maxi-
mal element maxX∗, in this case, maxX = maxX∗ (similarly
for minimal elements).

For every α < γ, let Xα be a LOTS and X =
∏

α<γ Xα. Every

element x ∈ X is identified with the sequence ⟨x(α) : α < γ⟩. The
lexicographic order <X on X is defined as follows: for every x, x′ ∈ X,

x <X x′ iff for some α < γ, x ↾ α = x′ ↾ α and x(α) <Xα x′(α),

where x ↾ α = ⟨x(β) : β < α⟩ and <Xα is the order on Xα. Now
for every α < γ, let Xα be a GO-space and X =

∏
α<γ Xα. The

subspace X of the lexicographic product X̂ =
∏

α<γ X
∗
α is said to be

the lexicographic product of GO-spaces Xα’s, for more details see [3].
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i∈ω Xi (

∏
i≤n Xi where n ∈ ω) is denoted by X0 × X1 × X2 × · · ·

(X0 ×X1 ×X2 × · · · ×Xn, respectively).
∏

α<γ Xα is also denoted by
Xγ whenever Xα = X for all α < γ.

Let X and Y be LOTS’s. A map f : X → Y is said to be order
preserving or 0-order preserving if f(x) <Y f(x′) whenever x <X x′.
Similarly a map f : X → Y is said to be order reversing or 1-order
preserving if f(x) >Y f(x′) whenever x <X x′. Obviously a 0-order
preserving map (also 1-order preserving map) f : X → Y between
LOTS’s X and Y , which is onto, is a homeomorphism, i.e., both f
and f−1 are continuous. Now let X and Y be GO-spaces. A 0-order
preserving map f : X → Y is said to be 0-order preserving embedding
if f is a homeomorphism between X and f [X], where f [X] is the
subspace of the GO-space Y . In this case, we identify X with f [X] as
a GO-space and write X = f [X].

Recall that a subset of a regular uncountable cardinal κ is called
stationary if it intersects with all closed unbounded (= club) sets in κ.

Let X be a GO-space. A subset A of X is called a 0-segment of X
if for every x, x′ ∈ X with x ≤ x′, if x′ ∈ A, then x ∈ A. A 0-segment
A is said to be bounded if X \ A is non-empty. Similarly the notion
of (bounded) 1-segment can be defined. Both ∅ and X are 0-segments
and 1-segments.

Let A be a 0-segment of a GO-spaceX. A subset U of A is unbounded
in A if for every x ∈ A, there is x′ ∈ U such that x ≤ x′. Let

0- cfX A = min{|U | : U is unbounded in A.}.

0- cfX A can be 0, 1 or regular infinite cardinals. If contexts are clear,
0- cfX A is denoted by 0- cf A. A 0-segment A of a GO-space X is said
to be stationary if κ := 0- cf A ≥ ω1 and there are a stationary set S of
κ and a continuous map π : S → A such that π[S] is unbounded in A
(we say such a π “an unbounded continuous map”).

A GO-space X is said to be (boundedly) 0-paracompact if every
(bounded, respectively) closed 0-segment is not stationary. Similarly
the notions of 1- cf A, stationarity of a 1-segment and (bounded) 1-
paracompactness are defined. Note that a GO-spaceX is 0-paracompact
if and only if it is boundedly 0-paracompact and the 0-segment X is not
stationary. Remember that a GO-space is paracompact if and only if it
is both 0-paracompact and 1-paracompact, see [3]. We frequently use
the following basic 4 lemmas from [4], where a subset H of a GO-space
X is 0-closed if for every x ∈ X \H, there is an open neighborhood U
of x such that (U ∩ (←, x]) ∩H = ∅.
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Lemma 1.1. [4, Lemma 2.7] Let A be a 0-segment of a GO-space X
with κ := 0- cf A ≥ ω1. If there are a stationary set S of κ and an
unbounded continuous map π : S → A, then:

(1) there is a club set C in κ such that π ↾ (S ∩ C) : S ∩ C → A is
0-order preserving embedding,

(2) if H is 0-club (= 0-closed and unbounded) in A, then there is a
club set C in κ such that π[S ∩ C] ⊂ H.

Lemma 1.2. [4, Lemma 3.4] Let X = X0 × X1 be a lexicographic
product of GO-spaces and u ∈ X0. Then the map ku : X1 → {u} ×X1

by ku(v) = ⟨u, v⟩ is a 0-order preserving homeomorphism.

This lemma shows that the 0-segment X is stationary iff the 0-
segment X1 is stationary, whenever X0 has a maximal element.

Lemma 1.3. [4, Lemma 3.6] Let X = X0 × X1 be a lexicographic
product of GO-spaces and A0 a 0-segment of X0. Put A = A0 × X1.
Then the following hold:

(1) A is a 0-segment of X,
(2) if 0- cfX0 A0 = 1, then

(a) 0- cfX A = 0- cfX1 X1,
(b) A is stationary if and only if the 0-segment X1 is station-

ary,
(c) A is closed in X if and only if either X1 has a maximal

element, X0 \ A0 has no minimal element or X1 has no
minimal element,

(3) if 0- cfX0 A0 ≥ ω, then
(a) 0- cfX A = 0- cfX0 A0,
(b) A is stationary if and only if X1 has a minimal element

and A0 is stationary,
(c) A is closed in X if and only if either X1 has no minimal

element or A0 is closed in X0.

Lemma 1.4. [4, Theorem 3.8] Let X = X0 × X1 be a lexicographic
product of GO-spaces. The following are equivalent:

(1) X is 0-paracompact,
(2) (a) X1 is boundedly 0-paracompact,

(b) if either (u,→)X0 has no minimal element for some u ∈ X0

or X1 has no minimal element, then the 0-segment X1 is
not stationary,

(c) if X1 has a minimal element, then X0 is 0-paracompact.

In this lemma, if X0 has a maximal element, then (maxX0,→)X0 is
considered to have no minimal element because of (maxX0,→)X0 = ∅.
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Using the lemmas above, we will give a complete characterization of
paracompactness of lexicographic products.

2. A characterization

Let X =
∏

α<γ Xα be a lexicographic product of GO-spaces. We use
the following special notations.

J+ = {α < γ : Xα has no maximal element.},
J− = {α < γ : Xα has no minimal element.},

K+ = {α < γ : there is x ∈ Xα such that (x,→)Xα is non-empty

and has no minimal element.},
K− = {α < γ : there is x ∈ Xα such that (←, x)Xα is non-empty

and has no maximal element.}
Let α be an ordinal and let

l(α) =

{
0 if α < ω,

sup{β ≤ α : β is limit.} if α ≥ ω.

Note that l(α) is the largest limit ordinal less than or equal to α when-
ever α ≥ ω. So the interval [l(α), α) of ordinals is finite, thus every
ordinal α can be uniquely represented as l(α)+n(α) for some n(α) ∈ ω.

Theorem 2.1. Let X =
∏

α<γ Xα be a lexicographic product of GO-
spaces. Then the following are equivalent:

(1) X is 0-paracompact,
(2) for every ordinal α < γ with sup J− ≤ α, the following hold:

(a) Xα is boundedly 0-paracompact,
(b) in each of the following cases, the 0-segment Xα is not

stationary,
(i) J+ ∩ [l(α), α) = ∅,
(ii) J+ ∩ [l(α), α) ̸= ∅ and J− ∩ (α′, α] ̸= ∅,
(iii) J+ ∩ [l(α), α) ̸= ∅ and K+ ∩ [α′, α) ̸= ∅,
where α′ = max(J+∩ [l(α), α)) in case J+∩ [l(α), α) ̸= ∅.

Notice that in (ii) or (iii) above, α′ is well-defined since [l(α), α) is a
finite set.

Proof. (1) ⇒ (2): Let X be 0-paracompact and α0 an ordinal with
sup J− ≤ α0 < γ and Y =

∏
α≤α0

Xα. Note that if (α0, γ) ̸= ∅, then∏
α0<α Xα has a minimal element because of sup J− ≤ α0. Remark that

when (α0, γ) = ∅,
∏

α0<αXα is considered as the trivial one point LOTS
{∅}. Also for a GO-space Z, Z × {∅} and {∅} × Z are identified with
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Z. When (α0, γ) = ∅, then
∏

α≤α0
Xα (= X) is itself 0-paracompact.

When (α0, γ) ̸= ∅, then by X = (
∏

α≤α0
Xα) × (

∏
α0<αXα) (see [3,

Lemma 1.5]) and Lemma 1.4 (2c),
∏

α≤α0
Xα is 0-paracompact. Thus

in both cases Y is 0-paracompact.
(a): By Y = (

∏
α<α0

Xα)×Xα0 , it follows from Lemma 1.4 (2a) that
Xα0 is boundedly 0-paracompact, where

∏
α<α0

Xα = {∅} whenever
α0 = 0.

(b): In each cases of (i), (ii) and (iii) above, we will see that the
0-segment Xα0 is non-stationary. In case α0 /∈ J+, it is trivial that
Xα0 is non-stationary since 0- cfXα0 = 1. So we consider the case that
α0 ∈ J+. Let Y0 =

∏
α<α0

Xα.

(i): J+ ∩ [l(α0), α0) = ∅.

When α0 = 0, Xα0 (= Y ) is 0-paracompact thus the 0-segment Xα0 is
non-stationary. So let α0 > 0. Then |Y0| ≥ 2 and Y = Y0 ×Xα0 .

Case 1. l(α0) = 0, i.e., 0 < α0 < ω.

In our case (i), Xα has a maximal element for every α < α0. So
let y0 = ⟨maxXα : α < α0⟩, that is, y0 is the element of Y0 with
y0(α) = maxXα for every α < α0. Then y0 = maxY0 thus (y0,→)Y0

is empty and has no minimal element. Therefore by Lemma 1.4 (2b),
the 0-segment Xα0 is non-stationary.

Case 2. l(α0) ≥ ω.

In this case, Xα has a maximal element for every α ∈ [l(α0), α0). For
every α < l(α0), fix x0(α), x1(α) ∈ Xα with x0(α) <Xα x1(α). Let
y0 = ⟨x0(α) : α < l(α0)⟩∧⟨maxXα : l(α0) ≤ α < α0⟩, that is, y0
is the element of Y0 such that y0(α) = x0(α) for every α < l(α0),
and y0(α) = maxXα for every α < α0 with l(α0) ≤ α. Here, when
l(α0) = α0, i.e., α0 is limit, y0 is considered as ⟨x0(α) : α < l(α0)⟩.
More generally, z∧∅ and ∅∧z will be identified with z whenever z is
a sequence. Moreover for every β < l(α0), let zβ = ⟨x0(α) : α <
β⟩∧⟨x1(α) : β ≤ α < l(α0)⟩∧⟨maxXα : l(α0) ≤ α < α0⟩. Then the
sequence {zβ : β < l(α0)} is 1-order preserving (i.e., strictly decreasing)
and unbounded in the 1-segment (y0,→)Y0 . Therefore (y0,→)Y0 has no
minimal element, so again by Lemma 1.4 (2b), the 0-segment Xα0 is
non-stationary.

(ii): J+ ∩ [l(α0), α0) ̸= ∅ and J− ∩ (α1, α0] ̸= ∅, where α1 = max(J+ ∩
[l(α0), α0)).
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Note that J+ ∩ [l(α0), α0) is non-empty and finite, therefore α1 is well-
defined. Let α2 = max((α1, α0]∩ J−). Then 0 ≤ l(α0) ≤ α1 < α2 ≤ α0

holds, in particular we have [0, α2) ̸= ∅. We consider two cases.

Case 1. α2 = α0.

In this case, since Y = (
∏

α<α0
Xα) × Xα0 (= Y0 × Xα0), Y is 0-

paracompact and Xα0 has no minimal element, by Lemma 1.4 (2b),
the 0-segment Xα0 is non-stationary.

Case 2. α2 < α0.

In this case, note that Xα has a minimal element for every α ∈ (α2, α0].
Now let Z0 =

∏
α<α2

Xα and fix an element z0 ∈ Z0. Noting that Xα

has a maximal element for every α ∈ [α2, α0), let y0 = z0
∧⟨maxXα :

α2 ≤ α < α0⟩, which is an element of Y0. We prove:

Claim 1. (y0,→)Y0 is non-empty and has no minimal element.

Proof. From α1 ∈ J+, fixing u ∈ Xα1 with y0(α1) < u, let y1 = (y0 ↾
α1)

∧⟨u⟩∧(y0 ↾ (α1, α0)). Then y0 <Y0 y1 holds, so (y0,→)Y0 ̸= ∅. To see
that (y0,→)Y0 has no minimal element, let y ∈ (y0,→)Y0 . Then we have
y0 ↾ α2 <Z0 y ↾ α2. Since Xα2 has no minimal element, fixing v ∈ Xα2

with v < y(α2), we see y0 <Y0 (y ↾ α2)
∧⟨v⟩∧(y ↾ (α2, α0)) <Y0 y. □

Since Y0 × Xα0 (= Y ) is 0-paracompact, it follows from the claim
above and Lemma 1.4 (2b) that Xα0 is non-stationary.

(iii): J+∩ [l(α0), α0) ̸= ∅ and K+∩ [α1, α0) ̸= ∅, where α1 = max(J+∩
[l(α0), α0)).

Let α2 = max([α1, α0) ∩ K+) and Z0 =
∏

α<α2
Xα. Then l(α0) ≤

α1 ≤ α2 < α0 holds. By α2 ∈ K+, one can fix u ∈ Xα2 such that
(u,→)Xα2

is non-empty and has no minimal element. Fixing z0 ∈ Z0,
let y0 = z0

∧⟨u⟩∧⟨maxXα : α2 < α < α0⟩. Then y0 ∈ Y0, (y0,→)Y0

is non-empty and has no minimal element. Since (
∏

α<α0
Xα) × Xα0

(= Y ) is 0-paracompact, from Lemma 1.4 (2b), the 0-segment Xα0 is
non-stationary.

(2)⇒ (1): Assume that (2) holds but X is not 0-paracompact. Then
there is a closed satationary 0-segment A of X. Letting κ = 0- cfX A
(≥ ω1), fix a stationary set S ⊂ κ and an unbounded continuous map
π : S → A. By Lemma 1.1 (1), we may assume that π is 0-order
preserving. We consider several cases, and in all cases we will derive a
contradiction.

Case 1. A = X.
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Since A has no maximal element and A = X, J+ is non-empty, so let
α0 = min J+. It follows from α0 ∈ J+ and J+ ∩ [l(α0), α0) ⊂ J+ ∩
[0, α0) = ∅ that (bi) in this theorem is satisfied, therefore sup J− ≤ α0

implies that the 0-segment Xα0 is non-stationary. When (α0, γ) = ∅
(i.e., γ = α0 + 1), the 0-segment X (=

∏
α≤α0

Xα) in X is station-

ary and sup J− ≤ α0. When (α0, γ) ̸= ∅, noting that
∏

α≤α0
Xα has no

maximal element, by Lemma 1.3 (3b), we see that
∏

α0<α Xα has a min-
imal element (therefore sup J− ≤ α0) and the 0-segment

∏
α≤α0

Xα in∏
α≤α0

Xα is stationary. In either cases, sup J− ≤ α0 and the 0-segment∏
α≤α0

Xα in
∏

α≤α0
Xα is stationary. Since Xα0 is non-stationary, we

have α0 > 0. Now it follows from
∏

α≤α0
Xα = (

∏
α<α0

Xα)×Xα0 and
the minimality of α0 that

∏
α<α0

Xα has a maximal element. Therefore
from Lemma 1.2, the 0-segment Xα0 in Xα0 is stationary, a contradic-
tion.

Case 2. A ̸= X and X \ A has a minimal element.

Let B = X \ A and b = minB. Since A is non-empty closed and

B = [b,→)X , there is b∗ ∈ X̂ such that b∗ <X̂ b and (b∗, b)X̂ ∩X = ∅,
where X̂ =

∏
α<γ X

∗
α. Since A has no maximal element, we have b∗ /∈

X. Let α0 = min{α < γ : b∗(α) ̸= b(α)}, then b∗ ↾ α0 = b ↾ α0 and
b∗(α0) < b(α0) hold.

Claim 2. For every α > α0, Xα has a minimal element and b(α) =
minXα holds, in particular, sup J− ≤ α0.

Proof. Assume that there are α > α0 and u ∈ Xα with b(α) > u. Let
α1 = min{α > α0 : b(α) > u for some u ∈ Xα.} and take u ∈ Xα1 with
b(α) > u. Then we have b∗ <X̂ (b ↾ α1)

∧⟨u⟩∧(b ↾ (α1, γ)) <X b, which
means (b∗, b)X̂ ∩X ̸= ∅, a contradiction. □

Claim 3. (b∗(α0), b(α0))X∗
α0
∩Xα0 = ∅.

Proof. If there were u ∈ (b∗(α0), b(α0))X∗
α0
∩ Xα0 , then we have (b ↾

α0)
∧⟨u⟩∧(b ↾ (α0, γ)) ∈ (b∗, b)X̂ ∩X, a contradiction. □

Claim 4. [b(α0),→)Xα0
/∈ λXα0

.

Proof. Since b∗(α0) <X∗
α0

b(α0) and Xα0 is dense in X∗
α0
, we have (←

, b(α0))Xα0
̸= ∅. Assuming [b(α0),→)Xα0

∈ λXα0
, find u ∈ Xα0 with

u < b(α0) and (u, b(α0))Xα0
= ∅. It follows from Claim 3 that b∗(α0) =

u ∈ Xα0 . Now a similar argument of the proof of Claim 2 shows



PARACOMPACTNESS OF LEXICOGRAPHIC PRODUCTS 9

that for every α > α0, b∗(α) = maxXα which implies b∗ ∈ X, a
contradiction. □

Let A0 = (←, b(α0))Xα0
. Then Claim 4 with A0 = (←, b∗(α0)]X∗

α0
∩

Xα0 shows that A0 is a bounded closed 0-segment of Xα0 with no max-
imal element. By our assumption (2a) and sup J− ≤ α0, the 0-segment
A0 is non-stationary.

Claim 5. H = {x ∈ X : x ↾ α0 = b ↾ α0, x(α0) ∈ A0, x ↾ (α0, γ) = b ↾
(α0, γ)} is 0-club in A.

Proof. H ⊂ A is obvious.
To see that H is unbounded in the 0-segment A in X, let a ∈ A

(= (←, b)X). Put β0 = min{α < γ : a(α) ̸= b(α)}. Since b(α) =
minXα for every α > α0, we have β0 ≤ α0. When β0 < α0, fix u ∈ A0.
When β0 = α0, fix u ∈ A0 with a(α0) < u. In both cases, we have
a < (b ↾ α0)

∧⟨u⟩∧(b ↾ (α0, γ)) ∈ H, thus H is unbounded in the 0-
segment A.

To see that H is 0-closed, let a ∈ X \H. Since A is closed in X and
H ⊂ A, we may assume a ∈ A\H. Put β0 = min{α < γ : a(α) ̸= b(α)},
then we have β0 ≤ α0 as above. When β0 < α0, letting U = X, we see
H ∩ (U ∩ (←, a]) = ∅. So let β0 = α0. By a ↾ α0 = b ↾ α0, a(α0) ∈ A0

and a /∈ H, we can find α > α0 such that a(α) ̸= b(α) (= minXα). Let
α1 = min{α > α0 : a(α) ̸= b(α)}, a′ = (a ↾ α1)

∧⟨minXα : α1 ≤ α⟩ and
U = (a′,→)X . It follows from a′ < a that U is a neighborhood of a.
Obviously H ∩ (U ∩ (←, a]) = ∅, thus we see that H is 0-club. □

By Claim 5 and Lemma 1.1 (2), we can find a club set C in κ with
π[S ∩ C] ⊂ H. Define a map σ : S ∩ C → A0 by σ(β) = π(β)(α0) for
every β ∈ S ∩ C.

Claim 6. σ[S ∩ C] is unbounded in the 0-segment A0.

Proof. Let u ∈ A0 and a = (b ↾ α0)
∧⟨u⟩∧(b ↾ (α0, γ)), then a ∈ A.

Since π is 0-order preserving and π[S] is unbounded in the 0-segment
A, we can find β ∈ S ∩ C with a ≤ π(β). Noting π(β) ∈ H, we see
u ≤ σ(β). □

Claim 7. σ is continuous.

Proof. Let β ∈ S ∩ C and U be a neighborhood of σ(β) in Xα0 . We
may assume β ∈ Lim(S ∩ C), then note (←, σ(β))Xα0

̸= ∅. We can
find u∗ ∈ X∗

α0
such that u∗ < σ(β) and (u∗, σ(β)]X∗

α0
∩ Xα0 ⊂ U . Let

x∗ = (b ↾ α0)
∧⟨u∗⟩∧(b ↾ (α0, γ), then x∗ ∈ X̂ and x∗ < π(β). Since
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(x∗,→)X̂ ∩X is a neighborhood of π(β), by continuity at π(β), we can
find β1 < β such that π[S ∩ (β1, β]] ⊂ (x∗,→)X̂ ∩X. We may assume
β1 ∈ S ∩ C because of β ∈ Lim(S ∩ C). Then we can easily verify
σ[S ∩ C ∩ (β1, β]] ⊂ U , which shows that σ is continuous. □

Now Claims 6 and 7 contradict that the 0-segment A0 is not station-
ary.

Case 3. A ̸= X and X \ A has no minimal element.

This case is the most complicated case. Let B = X \ A and

I = {α < γ : ∃a ∈ A∃b ∈ B(a ↾ (α + 1) = b ↾ (α + 1))}.
Obviously I is an initial segment (i.e., 0-segment) in γ. Therefore for
some α0 ≤ γ, I = α0 holds. For every α < α0, fix aα ∈ A and bα ∈ B
with aα ↾ (α+1) = bα ↾ (α+1) and consider the lexicographic products
Y0 =

∏
α<α0

Xα and Y1 =
∏

α0≤α Xα. Note that X = Y0 × Y1 (see [3,
Lemma 1.5]), in particular Y0 = X (Y1 = X) whenever α0 = γ (α0 = 0,
respectively). Define y0 ∈ Y0 by y0(α) = aα(α) for every α < α0.

Claim 8. For every α < α0, y0 ↾ (α+ 1) = aα ↾ (α+ 1) = bα ↾ (α+ 1)
holds.

Proof. It suffices to see the first equality. Assuming y0 ↾ (α + 1) ̸=
aα ↾ (α + 1) for some α < α0, let α1 = min{α < α0 : y0 ↾ (α + 1) ̸=
aα ↾ (α + 1)}. Moreover let α2 = min{α ≤ α1 : y0(α) ̸= aα1(α)}, then
note α2 < α1 (because of y0(α1) = aα1(α1)), y0 ↾ α2 = aα1 ↾ α2 and
y0(α2) ̸= aα1(α2). By the minimality of α1, also note y0 ↾ (α2 + 1) =
aα2 ↾ (α2 + 1) (= bα2 ↾ (α2 + 1)). When y0(α2) < aα1(α2), we have
B ∋ bα2 < aα1 ∈ A, a contradiction. When y0(α2) > aα1(α2), we also
have B ∋ bα1 < aα2 ∈ A, a contradiction. □

Claim 9. α0 < γ.

Proof. Assume α0 = γ, then y0 ∈ Y0 = X = A ∪ B. First assume
y0 ∈ A. Since A has no maximal element, we can take a ∈ A with
y0 < a and set β0 = min{β < γ : y0(β) ̸= a(β)}. Applying Claim
8 with α = β0, by y0 ↾ β0 = a ↾ β0 and y0(β0) < a(β0), we see
B ∋ bβ0 < a ∈ A, a contradiction. Next assume y0 ∈ B. Since B has
no minimal element, take b ∈ B with b < y0. By a similar argument,
we also get a contradiction. □

Let A0 = {a(α0) : a ∈ A, a ↾ α0 = y0} and B0 = {b(α0) : b ∈
B, b ↾ α0 = y0}. Of course, whenever α0 = 0, y0 is considered as ∅,
A0 = {a(α0) : a ∈ A} and B0 = {b(α0) : b ∈ B}.
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Claim 10. The following properties hold:

(1) for every a ∈ A, a ↾ α0 ≤Y0 y0 holds,
(2) for every x ∈ X, if x ↾ α0 <Y0 y0, then x ∈ A.

Proof. (1): Assuming a ↾ α0 >Y0 y0 for some a ∈ A, let β0 = min{β <
α0 : a(β) ̸= y0(β)}. Then we have B ∋ bβ0 < a ∈ A, a contradiction.

(2): Assuming x ↾ α0 <Y0 y0, let β0 = min{β < α0 : x(β) ̸= y0(β)}.
Then we have x < aβ0 ∈ A. Now since A is a 0-segment, we see
x ∈ A. □

Similarly we see:

Claim 11. The following properties hold:

(1) for every b ∈ B, b ↾ α0 ≥Y0 y0 holds,
(2) for every x ∈ X, if x ↾ α0 >Y0 y0, then x ∈ B.

Claim 12. A0 is a 0-segment of Xα0 and B0 = Xα0 \ A0.

Proof. To see that A0 is a 0-segment, let u′ < u ∈ A0. Taking a ∈ A
with a ↾ α0 = y0 and u = a(α0), let a′ = (a ↾ α0)

∧⟨u′⟩∧(a ↾ (α0, γ)).
Since A is a 0-segment and a′ < a, we have a′ ∈ A, thus u′ = a′(α0) ∈
A0.

Now we prove B0 = Xα0 \ A0. First let u ∈ B0. Take b ∈ B with
b ↾ α0 = y0 and u = b(α0). If u ∈ A0 were true, then by taking a ∈ A
with a ↾ α0 and a(α0) = u, we have a ↾ (α0 + 1) = b ↾ (α0 + 1) thus
α0 ∈ I = α0, a contradiction. So we have u ∈ Xα0 \ A0. Conversely
let u ∈ Xα0 \ A0. Take x ∈ X with x ↾ (α0 + 1) = y0

∧⟨u⟩. If x ∈ A
were true, then by x ↾ α0 = y0 and x(α0) = u, we see u ∈ A0, a
contradiction. Thus we have x ∈ B. Now since x ↾ α0 = y0, we see
u = x(α0) ∈ B0. □

Claim 13. A0 ̸= ∅.

Proof. Assume A0 = ∅. We prove the following three facts.

Fact 1. (←, y0)Y0 × Y1 = A.

Proof. The inclusion “⊂” follows from Claim 10 (2). To see the other
inclusion, let a ∈ A, then by Claim 10(1), we have a ↾ α0 ≤ y0.
If a ↾ α0 = y0 were true, then a(α0) ∈ A0 holds, which contradicts
A0 = ∅. □

Fact 2. α0 > 0 and α0 is limit.
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Proof. If α0 = 0 were true, then taking a ∈ A, we see a(α0) ∈ A0, a
contradiction. If for some ordinal β0, α0 = β0 + 1 were true, then by
aβ0 ↾ α0 = aβ0 ↾ (β0+1) = y0 ↾ (β0+1) = y0 ↾ α0, we see aβ0(α0) ∈ A0,
a contradiction. □

Fact 3. 0- cfY0(←, y0)Y0 ≥ ω.

Proof. By A ̸= ∅ and Fact 1, we see (←, y0)Y0 ̸= ∅ thus 0- cfY0(←
, y0)Y0 ≥ 1. If 0- cfY0(←, y0)Y0 = 1 were true, then letting y1 = max(←
, y0)Y0 and β0 = min{β < α0 : y1(β) ̸= y0(β)}, we see y1 <Y0 aβ0 ↾
α0 <Y0 y0, a contradiction. □

Now Fact 1, 3 and Lemma 1.3 (3) show that Y1 (=
∏

α0≤α Xα) has a
minimal element and the 0-segment (←, y0) in Y0 is stationary. Then
by Claim 11 (1), y0

∧⟨minXα : α0 ≤ α⟩ is the minimal element of B in
X, which contradicts our case “Case 3”. □

Let Z0 =
∏

α≤α0
Xα, Z1 =

∏
α0<α Xα and

A∗ = {z ∈ Z0 : z ↾ α0 <Y0 y0 or (z ↾ α0 = y0 and z(α0) ∈ A0)},
that is, A∗ = (←, y0)Y0 ×Xα0 ∪{y0}×A0. Note that when (α0, γ) = ∅,
Z0 is identified with X and also A∗ is identified with A.

Claim 14. A∗ is a 0-segment of Z0 and A = A∗ × Z1.

Proof. It is straightforward to see that A∗ is a 0-segment of Z0. We
prove A = A∗ × Z1. First let a ∈ A, then by Claim 10(1), we have
a ↾ α0 ≤ y0. When a ↾ α0 < y0, obviously we have a ↾ (α0 + 1) ∈ A∗.
When a ↾ α0 = y0, by a ∈ A, we have a(α0) ∈ A0 therefore a ↾
(α0+1) ∈ A∗. In either cases, we see a ∈ A∗×Z1. Next let a ∈ A∗×Z1.
When a ↾ α0 < y0, letting β0 = min{β < α0 : a(β) ̸= y0(β)}, we see
a < aβ0 ∈ A thus a ∈ A. When a ↾ α0 = y0, by a ↾ (α0 + 1) ∈ A∗, we
have a(α0) ∈ A0. Now if a ∈ B were true, then by a ↾ α0 = y0, we have
a(α0) ∈ B0, which contradicts Claim 12. Thus we have a ∈ A. □

Claim 15. The following properties hold:

(1) 0- cfZ0 A
∗ = 0- cfXα0

A0 ≥ 1,
(2) the 0-segment A∗ in Z0 is stationary iff the 0-segment A0 in Xα0

is stationary.

Proof. Claim 13 shows 0- cfXα0
A0 ≥ 1. It follows from A∗ = (←

, y0)Y0 ×Xα0 ∪ {y0}×A0 that {y0}×A0 is a 1-segment (final segment)
of A∗. So other properties are almost obvious. □
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Note that 0- cfZ0 A
∗ = 0- cfX A is generally not true. The case

“0- cfZ0 A
∗ = 1 and 0- cfX A ≥ ω” can happen. But if 0- cfZ0 A

∗ ≥ ω,
then 0- cfZ0 A

∗ = 0- cfX A, see Lemma 1.3 (3a). So we divide Case 3
into two cases.

Case 3-1. 0- cfZ0 A
∗ ≥ ω.

When (α0, γ) = ∅, the 0-segment A (= A∗) is closed stationary. When
(α0, γ) ̸= ∅, by Lemma 1.3 (3b), the 0-segment A∗ in Z0 is closed
stationary and Z1 has a minimal element. Therefore we have:

Claim 16. The following properties hold:

(1) the 0-segment A∗ in Z0 is closed stationary,
(2) if (α0, γ) ̸= ∅, then Z1 has a minimal element.

Thus we see sup J− ≤ α0.

Claim 17. A0 ̸= Xα0 .

Proof. AssumeA0 = Xα0 . Note α0 ∈ J+ from 0- cfXα0
Xα0 = 0- cfXα0

A0

= 0- cfZ0 A
∗ ≥ ω. Now it follows from Claims 15 and 16 that the 0-

segment Xα0 is stationary. If α0 = β0 + 1 were true for some ordinal
β0, then it follows from bβ0 ∈ B and bβ0 ↾ α0 = bβ0 ↾ (β0 + 1) = y0 ↾
(β0 + 1) = y0 ↾ α0 that bβ0(α0) ∈ B0 = Xα0 \ A0 = ∅, a contradic-
tion. Therefore we see that α0 is 0 or a limit ordinal. This shows
l(α0) = α0 ∈ J+ and so [l(α0), α0) ∩ J+ = ∅. Now by our assumption
(2bi), the 0-segment Xα0 is non-stationary, a contradiction. □

Claim 18. A0 is closed in Xα0 .

Proof. Let u ∈ Xα0 \A0 (= B0) and set b = y0
∧⟨u⟩∧⟨minXα : α0 < α⟩.

Since b ∈ B and B is open in X, we can find b∗ ∈ X̂ such that
b∗ <X̂ b and (b∗, b)X̂ ∩ A = ∅. Let β0 = min{β < γ : b∗(β) ̸= b(β)}.
Then we have β0 ≤ α0 because of b ↾ (α0, γ) = ⟨minXα : α0 < α⟩.
If β0 < α0 were true, then aβ0 ∈ (b∗, b)X̂ ∩ A, a contradiction. So
we have β0 = α0, that is b∗ ↾ α0 = y0 and b∗(α0) < u. If there were
v ∈ (b∗(α0),→)X∗

α0
∩A0, then y0

∧⟨v⟩∧⟨minXα : α0 < α⟩ ∈ (b∗, b)X̂∩A,
a contradiction. Therefore (b∗(α0),→)X∗

α0
∩ Xα0 is a neighborhood of

u disjoint from A0. □

It follows from Claims 15, 16, 17 and 18 that A0 is a bounded closed
stationary 0-segment of Xα0 , which contradicts our assumption (2a)
because of sup J− ≤ α0.

Case 3-2. 0- cfZ0 A
∗ = 1, that is, maxA∗ exists.
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In this case, note (α0, γ) ̸= ∅, otherwise A = A∗ and A has no maximal
element, a contradiction. Also note maxA∗ = y0

∧⟨maxA0⟩ because of
A∗ = (←, y0)Y0×Xα0∪{y0}×A0. Since A = A∗×Z1, A has no maximal
element but A∗ has a maximal element, we see Z1 has no maximal
element. So let α1 = min{α0 < α : Xα has no maximal element.},
then note α1 ∈ J+ and J+ ∩ (α0, α1) = ∅. Also note that A = (A∗ ×∏

α0<α≤α1
Xα) ×

∏
α1<α Xα and A∗ ×

∏
α0<α≤α1

Xα is a 0-segment of∏
α≤α1

Xα having no maximal element. Since A is closed stationary in
X, it follows from Lemma 1.3 (3) that A∗×

∏
α0<α≤α1

Xα is stationary,
moreover

∏
α1<αXα has a minimal element whenever (α1, γ) ̸= ∅. So

we have sup J− ≤ α1. Since {y0 ∧⟨maxA0⟩∧⟨maxXα : α0 < α <
α1⟩} × Xα1 is a 1-segment (i.e., final segment) in A∗ ×

∏
α0<α≤α1

Xα,
the 0-segment Xα1 in Xα1 is also stationary.

Claim 19. l(α1) ≤ α0 and J+ ∩ [l(α1), α0] ̸= ∅, therefore J+ ∩
[l(α1), α1) ̸= ∅.

Proof. If α0 < l(α1) were true, then it follows from J+ ∩ [l(α1), α1) ⊂
J+ ∩ (α0, α1) = ∅ and our assumption (2bi) that Xα1 is not stationary,
a contradiction. So we see l(α1) ≤ α0.

Next assume J+ ∩ [l(α1), α0] = ∅. It follows from J+ ∩ (α0, α1) = ∅
that J+ ∩ [l(α1), α1) = ∅ . Now by our assumption (2bi), Xα1 has to
be non-stationary, a contradiction. □

Noting that [l(α1), α1) is finite, let α2 = max(J+ ∩ [l(α1), α1)). It
follows from Claim 19 and J+ ∩ (α0, α1) = ∅ that α2 ≤ α0.

Claim 20. B0 has a minimal element.

Proof. In case α0 = α2, we see that A0 ̸= Xα0 since α0 = α2 ∈ J+ and
Aα0 has a maximal element. In case α0 ̸= α2, it follows that α0 = β0+1
for some ordinal β0 since l(α1) ≤ α2 < α0 < α1, and we see that A0 ̸=
Xα0 in a similar way of Claim 17. In either case, we have A0 ̸= Xα0 , so
B0 is non-empty. Assume that B0 (= (maxA0,→)Xα0

) has no minimal
element. Then we have α0 ∈ K+, therefore α0 ∈ [α2, α1) ∩K+. So by
our assumption (2biii) and sup J− ≤ α1, Xα1 has to be non-stationary,
a contradiction. □

Now since B has no minimal element but B0 has a minimal element,
there is α < γ with α0 < α such that Xα has no minimal element
(otherwise, minB = y0

∧⟨minB0⟩∧⟨minXα : α0 < α⟩). So let α3 =
min{α > α0 : Xα has no minimal element.}. Then α3 ∈ J−, so α2 ≤
α0 < α3 ≤ sup J− ≤ α1 and α3 ∈ J−, i.e., α3 ∈ J−∩ (α2, α1]. It follows
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from sup J− ≤ α1 and the assumption (2bii) thatXα1 is non-stationary,
a contradiction. This completes the proof of the Theorem. □

The theorem above with its analogy below gives a characterization
of paracompactness of lexicographic products.

Theorem 2.2. Let X =
∏

α<γ Xα be a lexicographic product of GO-
spaces. Then the following are equivalent:

(1) X is 1-paracompact,
(2) for every ordinal α < γ with sup J+ ≤ α, the following hold:

(a) Xα is boundedly 1-paracompact,
(b) in each of the following cases, the 1-segment Xα is not

stationary,
(i) J− ∩ [l(α), α) = ∅,
(ii) J− ∩ [l(α), α) ̸= ∅ and J+ ∩ (α′, α] ̸= ∅,
(iii) J− ∩ [l(α), α) ̸= ∅ and K− ∩ [α′, α) ̸= ∅,
where α′ = max(J−∩ [l(α), α)) in case J−∩ [l(α), α) ̸= ∅.

3. Applications

In this section, we apply the theorems in the previous section. We
first show the case that all GO-spaces Xα’s have both a minimal and
a maximal elements.

Corollary 3.1. Let Xα be a GO-space having both a minimal and a
maximal elements for every α < γ. Then the lexicographic product∏

α<γ Xα is 0-paracompact if and only if for every α < γ, Xα is 0-
paracomapct.

Proof. Note that if all GO-spaces Xα’s have both a minimal and a
maximal elements, then J− = ∅ and “Xα is boundedly 0-paracompact
iff it is 0-paracompact”. Then the proof is almost obvious. □

This corollary with its analogous result shows:

Corollary 3.2. Let Xα be a GO-space having both a minimal and a
maximal elements for every α < γ. Then the lexicographic product∏

α<γ Xα is paracompact if and only if for every α < γ, Xα is para-
comapct.

Corollary 3.3. Let Xα be a GO-space for every α < γ. If γ is limit
and sup J− = sup J+ = γ, then the lexicographic product

∏
α<γ Xα is

paracompact.

Proof. Let γ be limit. An ordinal α < γ with sup J− ≤ α and sup J+ ≤
α cannot be exist when sup J− = sup J+ = γ. Then apply the theorems
in the previous section. □
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This Corollary yields the following strange result, see also the exam-
ple described page 73 in [2].

Corollary 3.4. Let Xα be a GO-space having neither a minimal nor a
maximal elements for every α < γ. If γ is limit, then the lexicographic
product

∏
α<γ Xα is paracompact.

Corollary 3.5. Let Xα be a GO-space for every α < γ. If γ = β+1 for
some ordinal β and Xβ has neither a minimal nor a maximal elements,
then the lexicographic product

∏
α<γ Xα (=

∏
α≤β Xα) is paracompact

iff Xβ is paracompact.

Proof. Let γ = β + 1 and Xβ have neither a minimal nor a maximal
elements. Note sup J− = sup J+ = β. Apply Theorems 2.1 and 2.2,
noting (2a), (2bi) and (2bii) of them. □
Corollary 3.6. Let Xα be a GO-space having a minimal element for
every α < γ. Then the lexicographic product

∏
α<γ Xα is paracompact

if and only if the following clauses hold:

(1) for every α < γ, Xα is boundedly 0-paracompact,
(2) for every α < γ in each of the following cases, the 0-segment

Xα is not stationary,
• J+ ∩ [l(α), α) = ∅,
• J+ ∩ [l(α), α) ̸= ∅ and K+ ∩ [α′, α) ̸= ∅, where α′ =
max(J+ ∩ [l(α), α)),

(3) for every α < γ with sup J+ ≤ α, Xα is 1-paracompact.

Proof. Apply Theorems 2.1 and 2.2, noting that J− = ∅ and therefore
the 1-segment Xα is non-stationary for every α < γ. Also remark that
(1)+(2) is equivalent to 0-paracompactness of

∏
α<γ Xα and that (3) is

equivalent to 1-paracompactness of
∏

α<γ Xα. □

If all Xα’s are subspaces of ordinals, then note J− = ∅, K+ = ∅ and
Xα’s are (boundedly) 1-paracompact (because Xα’s are well-order). So
we have the result in [4].

Corollary 3.7. [4, Theorem 4.8] Let Xα be a subspace of an ordinal for
every α < γ. Then the lexicographic product

∏
α<γ Xα is paracompact

if and only if the following clauses hold:

(1) for every α < γ, Xα is boundedly 0-paracompact,
(2) for every α < γ with J+ ∩ [l(α), α) = ∅, the 0-segment Xα is

not stationary.

In [4], it is shown that a GO-space X is paracompact iff the lex-
icographic product Xn is paracompact for every (some) 1 ≤ n ∈ ω.
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Also this result can be shown from the corollaries above. The situation
of the lexicographic product Xω is somewhat different from the finite
case. Applying the theorems in the previous section, we easily see the
following corollaries:

Corollary 3.8. Let X be a GO-space and γ a limit ordinal. Then the
following hold:

(1) if X has both a minimal and a maximal elements, then the
lexicographic product Xγ is paracompact iff X is paracompact,

(2) if X has neither a minimal nor a maximal elements, then the
lexicographic product Xγ is paracompact,

(3) if X has a minimal element but has no maximal element, then
the lexicographic product Xγ is paracompact iff X is 0-para-
compact.

Corollary 3.9. Let X be a GO-space and γ a successor ordinal. Then
the lexicographic product Xγ is paracompact iff X is paracompact,

For two LOTS’s X0 and X1, X0 + X1 denotes the LOTS ⟨X0 ∪
X1, <X0+X1 , λX0+X1⟩, where the linear order <X0+X1 extends both <X0

and <X1 , moreover satisfies x <X0+X1 x
′ for every x ∈ X0 and x′ ∈ X1.

That is, X0 + X1 is the resulting LOTS such that X1 is added after
X0. Also for a GO-space X = ⟨X,<X , τX⟩, −X denotes the GO-
space ⟨X,>X , τX⟩ which is called the reverse of X, see [4]. −X is
topologically homeomorphic to X, because the identity map on X to
−X (= X) is 1-order preserving and homeomorphism.

Example 3.10. Note that the lexicographic product 2×ω1 is identified
with ω1 + ω1, on the other hand the lexicographic product ω1 × 2 is
identified with ω1. Note that ω1+ω1 is not topologically homeomorphic
to ω1, because ω1 is first countable but ω1+ω1 is not so. Also note that
(−ω1)+ω1 is not topologically homeomorphic to ω1, because (−ω1)+ω1

has two disjoint uncountable closed subsets −ω1 and ω1 but there are
no two disjoint club sets in ω1. Obviously (−ω1) + ω1 is topologically
homeomorphic but not order-isomorphic to ω1 + (−ω1).

Since ω1, (−ω1)+ω1 and ω1 +(−ω1) are not paracompact, for every
n ∈ ω with 1 ≤ n, the lexicographic products ωn

1 , ((−ω1) + ω1)
n and

(ω1 + (−ω1))
n are not paracompact. Also note that the lexicographic

products ω1 × S is paracompact but S × ω1 is not paracompact. Now
from the corollaries and theorems above, about lexicographic products
we see (for products of ordinals, see [4] or Corollary 3.7) :

• ωω
1 is not paracompact but both ω1× (−ω1)×ω1× (−ω1)× · · ·

and (−ω1)× ω1 × (−ω1)× ω1 × · · · are paracompact,
• (ω1 + ω)ω is paracompact but (ω1 + ω1)

ω is not paracompact
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• ((−ω1) + ω1)
ω is paracompact but (ω1 + (−ω1))

ω is not para-
compact,
• both ω1 × S × ω1 × S × · · · and S × ω1 × S × ω1 × · · · are
paracompact,
• ω × ω1 × ω1 is paracompact but both ω × (−ω1)× ω1 and ω ×
ω1 × (−ω1) are not paracompact,
• both ω×ω1×I and I×ω×ω1 are paracompact but both ω×I×ω1

and (−ω)× I× ω1 are not paracompact.

Question 3.11. We consider the following property (∗)P , where P is
a closed hereditary property, that is, a topological property so that if
a topological space X has the property P , then all closed subspaces of
X have also the property P .

(∗)P : For every ordinal γ, if Xα is a GO-space having the property
P for every α < γ, then the lexicographic product

∏
α<γ Xα also has

the property P .

Note that if P is “compact” or “paracompact”, then P is closed
hereditarily and (∗)P is true. We ask:

Find other closed hereditary properties P ’s which make (∗)P true.
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