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Abstract. It is known that lexicographic products of paracom-
pact GO-spaces are also paracompact, see [4, 5]. On the other
hand, a paracompact lexicographic product of non-paracompact
LOTS’s is known, see [4]. In [5], it is asked when lexicographic
products of GO-spaces are paracompact.

In this paper, paracompactness of lexicographic products of two
GO-spaces is characterized. This characterization correct a mis-
stated result in [11]. Using this characterization, for instance we
see about lexicographic products:
• ω1 × S and (−ω1) × S are paracompact, but S × ω1 is not
paracompact,
• (−ω1) × [0, 1)R and ω1 × (0, 1]R are paracompact but ω1 ×
[0, 1)R is not paracompact,
• for a GO-space X, X is paracompact iff so is Xn for every
(some) n ∈ ω with 1 ≤ n iff so is (−X)×X,
• for ordinals α and β, α×β is paracompact iff so is (−β)×α,
• for subspaces X0 and X1 of ω1, X0 ×X1 is paracompact iff
so is (−X1)×X0,

where S and [0, 1)R denote the Sorgenfrey line and the interval
[0, 1) in the real line R, respectively, moreover −X denotes the
reverse GO-space ⟨X,>X , τX⟩ of X when X = ⟨X,<X , τX⟩ is a
GO-space.

Also we characterize paracompactness of lexicographic products
of any length of ordinal subspaces, as corollaries, we see about
lexicographic products of ordinal subspaces:
• ω2 × ωω

1 , ω
2 × ωω

1 × (ω1 +1)× ω× ω1, ω
ω1+1 × ωω

1 , ω× ω1 ×
ω × ω1 × · · · and

∏
α<ω1

ωα are paracompact,

• ωω
1 × ω2, ω2 × ωω

1 × (ω1 + 1) × ω1, ω1 × ω × ω1 × ω × · · · ,
ωω × ωω

1 , ω
ω
1 × ωω and

∏
α≤ω1

ωα are not paracompact.
• whenever each Xα is an uncountable subspace of ω1, the lex-
icographic product X =

∏
α<γ Xα is paracompact iff Xα is

not stationary for every α with α = 0 or limit α.
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1. Introduction

All spaces are assumed to be regular T1 and have cardinality at least
2. In particular, about a product

∏
α<γ Xα, all Xα are assumed to

have cardinality at least 2. ClX B denotes the closure of a subset B in
a topological space X. ω and ω1 denote the first infinite ordinal and
the first uncountable ordinal, respectively. For a subset S of a regular
uncountable cardinal κ, Lim(S) denotes the set {α < κ : sup(S ∩
α) = α}, that is, the set of all cluster points of S in κ, where sup ∅ is
defined to be −1, which is considered to be the immediate predecessor
of the ordinal 0. Note that Lim(κ) is the set of all limit ordinals less
than κ. Succ(κ) denotes the set of all non-limit ordinals in κ, that is,
Succ(κ) = κ \ Lim(κ).

It is known that lexicographic products of paracompact LOTS’s are
also paracompact, see [4]. In [5], the notion of lexicographic products
of GO-spaces is defined and the result above is extended for lexico-
graphic products of paracompact GO-spaces. Obviously, if the usual
Tychonoff product

∏
α<γ Xα of topological spaces is paracompact, then

each factor Xα is paracompact. However this is not true for the lexi-
cographic products, see Example in page 73 in [4]. In [5], it is asked
when lexicographic products of GO-spaces are paracompact. In this
paper, paracompactness of lexicographic products of two GO-spaces is
characterized, also paracompactness of lexicographic products of any
length of ordinal subspaces is characterized.

In the remaining of this section, we prepare various notions which
will be used. A linearly ordered set ⟨X,<X⟩ (see [2]) has a natural T2-
topology, so called the interval topology, denoted by λX or λ(<X) which
is the topology generated by {(←, x)X : x ∈ X} ∪ {(x,→)X : x ∈ X}
as a subbase, where (x,→)X = {w ∈ X : x <X w}, (x, y]X = {w ∈
X : x <X w ≤X y}, ..., etc and w ≤X x means w <X x or w = x. We
usually write < and (x, y] instead of <X and (x, y]X respectively. The
triple ⟨X,<X , λX⟩ is called a LOTS (= Linearly Ordered Topological
Space) and simply denoted by LOTS X.

Unless otherwise stated, the real line R is considered as a linearly
ordered set (hence LOTS) with the usual order, similarly so are the set
Q of rationals, the set P of irrationals and an ordinal α.

A generalized ordered space (= GO-space ) is a triple ⟨X,<X , τX⟩,
where <X is linear order on X and τX is a T2 topology on X which
has a base consisting of convex sets, also simply denoted by GO-space
X, where a subset B of X is convex if for every x, y ∈ B with x <X y,
[x, y]X ⊂ B holds. For LOTS’s and GO-spaces, see also [10]. It is easy
to verify that the topology τX as described above is stronger than the
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interval topology λX . Let

XR = {x ∈ X : (←, x] /∈ λX}, XL = {x ∈ X : [x,→) /∈ λX}.

Also let

X+
τX

= {x ∈ X : (←, x]X ∈ τX \ λX},

X−
τX

= {x ∈ X : [x,→)X ∈ τX \ λX}.

Obviously X+
τX
⊂ XR and X−

τX
⊂ XL. When contexts are clear, we

usually simply write X+ and X− instead of X+
τX

and X−
τX
. Note that

X is a LOTS iff X+ ∪X− = ∅. For A ⊂ XR and B ⊂ XL, let τ(A,B)
be the topology generated by {(←, x)X : x ∈ X} ∪ {(x,→)X : x ∈
X} ∪ {(←, x]X : x ∈ A} ∪ {[x,→)X : x ∈ B} as a subbase. Obviously
τX = τ(X+, X−) whenever X is a GO-space, and also τ(A,B) defines
a GO-space topology on X whenever X is a LOTS with A ⊂ XR and
B ⊂ XL. The Sorgenfrey line S is ⟨R, <R, τ(∅,R)⟩ (i.e., the half open
intervals of type [a, b)R are declared to be open) and the Michael line
M is ⟨R, <R, τ(P,P)⟩. These spaces are GO-spaces but not LOTS’s.

Let X be a GO-space ⟨X,<X , τX⟩ and Y ⊂ X, then “the subspace
Y of a GO-space X” means the GO-space ⟨Y,<X↾ Y, τX ↾ Y ⟩, where
<X↾ Y is the restricted order of <X on Y and τX ↾ Y = {U ∩ Y : U ∈
τX}.

Now for a given GO-space X, let

X∗ =
(
X− × {−1}

)
∪
(
X × {0}

)
∪
(
X+ × {1}

)
and consider the lexicographic order <X∗ on X∗ induced by the lex-
icographic order on X × {−1, 0, 1}, here of course −1 < 0 < 1. We
usually identify X as X = X×{0} in the obvious way (i.e., x = ⟨x, 0⟩),
thus we may consider X∗ =

(
X− × {−1}

)
∪ X ∪

(
X+ × {1}

)
. Note

(←, x]X = (←, ⟨x, 1⟩)X∗ ∩X ∈ λ(<X∗) ↾ X whenever x ∈ X+, and also
its analogy. Then the GO-space X is a dense subspace of the LOTS
X∗, and X has a maximal element (for short, we say “X has max”) iff
X∗ has max, in this case, maxX = maxX∗ (and similarly for min). It
is known that X∗ is the smallest LOTS which contains the GO-space
X as a dense subspace, see [9, 5, 6]. Note S∗ = R×{0}∪R×{−1} with
the identification S = R×{0} and M∗ = P×{−1}∪R×{0}∪P×{1}
with the identification M = R× {0}.

Definition 1.1. [5] Let Xα be a LOTS for every α < γ and X =∏
α<γ Xα, where γ is an ordinal. When γ = 0, we consider as

∏
α<γ Xα =

{∅}, which is a trivial LOTS, for notational conveniences. When γ > 0,
every element x ∈ X is identified with the sequence ⟨x(α) : α < γ⟩.
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Recall that the lexicographic order <X on X is defied as follows: for
x, x′ ∈ X,

x <X x′ iff for some α < γ, x ↾ α = x′ ↾ α and x(α) < x′(α),

where x ↾ α = ⟨x(β) : β < α⟩. Then X = ⟨X,<X , λX⟩ is a LOTS and
called the lexicographic product of LOTS’s Xα’s.

Now let Xα be a GO-space for every α < γ and X =
∏

α<γ Xα. Then

the lexicographic product X̂ =
∏

α<γ X
∗
α, which is a LOTS, can be

defined. The lexicographic product of GO-spaces Xα’s is the GO-space
⟨X,<X̂↾ X,λX̂ ↾ X⟩. The lexicographic product of two GO-spaces
is defined in [11] in a defferent manner, but it is not difficult to see
that these notions are equivalent when γ = 2. When n ∈ ω, then∏

i<n Xi is denoted by X0 ×X1 × · · · ×Xn−1.
∏

i∈ω Xi is also denoted
by X0 ×X1 × · · · . If all Xα’s are X, then

∏
α<γ Xα is denoted by Xγ.

Let X and Y be LOTS’s. A map f : X → Y is said to be order
preserving or 0-order preserving if f(x) <Y f(x′) whenever x <X x′.
Similarly a map f : X → Y is said to be order reversing or 1-order
preserving if f(x) >Y f(x′) whenever x <X x′. Obviously a 0-order
preserving map f : X → Y between LOTS’s X and Y , which is onto,
is a homeomorphism, i.e., both f and f−1 are continuous. But when
X = S and Y = M, the identity map is 0-order preserving onto but
not a homeomorphism.

So now let X and Y be GO-spaces. A 0-order preserving map
f : X → Y is said to be 0-order preserving embedding if f is a home-
omorphism between X and f [X], where f [X] is the subspace of the
GO-space Y . In this case, we can identify X with f [X] as a GO-space
and write X = f [X].

2. Paracompactness of GO-spaces

Remark the following result:

Lemma 2.1. Let X be a GO-space, then the following are equivalent:

(1) X is paracompact,
(2) for every gap and pseudo-gap ⟨A0, A1⟩, both A0 and A1 have an

unbounded (see the definition below) closed discrete subset, see
[4],

(3) there is no closed subspace X which is homeomorphic to a sta-
tionary set of a regular uncountable cardinal, see [3].

In this section, for later use, we investigate the relationship between
(2) and (3) in the lemma above. A subset of a regular uncountable
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cardinal κ is called stationary if it intersects with all closed unbounded
(=club) sets in κ.

Definition 2.2. Let X be a GO-space. A subset A of X is called an
initial segment or a 0-segment of X if for every x, x′ ∈ X with x ≤ x′, if
x′ ∈ A, then x ∈ A. Similarly a subset A of X is called a final segment
or a 1-segment of X if for every x, x′ ∈ X with x ≤ x′, if x ∈ A, then
x′ ∈ A. Both ∅ and X are 0-segments and 1-segments. A 0-segment
A is said to be bounded if X \ A is non-empty. Note that if A is a
0-segment, then X \ A is a 1-segment.

Let A be a 0-segment of a GO-spaceX. A subset U of A is unbounded
in A if for every x ∈ A, there is x′ ∈ U such that x ≤ x′. Let

0- cfX A = min{|U | : U is unbounded in A.}.

0- cfX A can be 0, 1 or regular infinite cardinals. Obviously if U is
an unbounded subset of a 0-segment A with κ = 0- cfX A, then by
induction, we can construct a 0-order preserving (i.e., α < β → aα <
aβ) unbounded sequence {aα : α < κ} ⊂ U such that for each α < κ,
supX{aβ : β < α} < aα if supX{aβ : β < α} exists, where supX B
denotes the least upper bound of a subset B of X in X. 1- cfX A can
be similarly defined whenever A is 1-segment. If contexts are clear,
0- cfX A is denoted by 0- cf A. For more details, see [5].

Definition 2.3. A 0-segment A of a GO-space X is said to be station-
ary if κ := 0- cf A ≥ ω1 and there are a stationary set S of κ and a
continuous map π : S → A such that π[S] is unbounded in A (we say
such a π “an unbounded continuous map”). Stationarity of 1-segment
is similarly defined.

Lemma 2.4. Let A be a 0-segment of a GO-space X with κ := 0- cf A ≥
ω1. If there are a stationary set S of κ and an unbounded continuous
map π : S → A, then:

(1) for every x ∈ A, Sx := {α ∈ S : π(α) ≤ x} is non-stationary,
(2) for every club set C in κ, π[S ∩ C] is unbounded in A,
(3) there is a club set C in κ such that π ↾ (S ∩ C) : S ∩ C → A is

a 0-order preserving embedding such that π[S ∩ C] ⊂ {x ∈ A :
x ∈ ClX(←, x)}.

Proof. Note that x /∈ ClX(←, x) iff [x,→) is open.
(1) Let x ∈ A and fix α0 ∈ S with x < π(α0). Then obviously the size

of S ′ := {α ∈ S : π(α0) < π(α)} is κ. Assume that Sx is stationary in
κ, then Sx∩Lim(S ′) is stationary. Take α ∈ Sx∩Lim(S ′) with α0 < α.
Since π(α) ≤ x < π(α0) and π is continuous, there is β∗ < α with
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α0 ≤ β∗ with π[S ∩ (β∗, α]] ⊂ (←, π(α0)). Take β ∈ S ′ ∩ (β∗, α), then
π(β) < π(α0) < π(β), a contradiction.

(2): Assume that there is a club set C in κ such that π[S ∩C] is not
unbounded in A. Take α ∈ S with π[S ∩ C] ⊂ (←, π(α))X . Then we
have S ∩ C ⊂ Sπ(α), this contradicts (1).

(3): From (1), take a club set Cα disjoint from Sπ(α), for every α ∈ S.
The following claim is easy to prove.

Claim 1. π ↾ (S ∩ △α∈SCα) is 0-order preserving, where △α∈SCα

denotes the club set {β < κ : β ∈
∩

α∈S∩β Cα}.
Let C∗ = (△α∈SCα) ∩ Lim(S ∩△α∈SCα). Then C∗ is a club set.

Claim 2. π′ := π ↾ (S ∩ C∗) : S ∩ C∗ → A is an embedding.

Proof. It suffices to see that π′−1 is continuous. Let α ∈ S ∩ C∗ and
α∗ < α. We will see π[S ∩ C∗ ∩ (α∗, α]] is a neighborhood of π(α) in
π[S ∩C∗]. It follows from α∗ < α ∈ C∗ ⊂ Lim(S ∩△α∈SCα) that there
is α0 ∈ S ∩ △α∈SCα ∩ (α∗, α). By α ∈ S ∩ C∗ ⊂ S ∩ △α∈SCα and
Claim 1, we have π(α0) < π(α). Let α1 = min{β ∈ S ∩ C∗ : α < β},
then by Claim 1 π(α) < π(α1) holds. Then it is straightforward to see
(π(α0), π(α1)) ∩ π[S ∩ C∗] ⊂ π[S ∩ C∗ ∩ (α∗, α]]. □

Now let B = {α ∈ S ∩ C∗ : π(α) /∈ ClX(←, π(α))}. For every
α ∈ B, since π(α) is an isolated point in π[S ∩C∗] and π ↾ (S ∩C∗) is
embedding, α is also an isolated point of S ∩ C∗. Therefore there is a
club set D disjoint from B, then C := C∗ ∩D satisfies (3). □
Lemma 2.5. Let A be a 0-segment of a GO-space X with κ := 0- cf A ≥
ω1. If there are a stationary set S of κ and a 0-order preserving and
unbounded embedding π : S → A, then there is a subset T of κ with
S ⊂ T and a 0-order preserving embedding σ : T → A extending π
such that σ[T ] is closed in A

Proof. Let T0 = {α ∈ Lim(S)\S : supX π[S∩α] exists and supX π[S∩
α] ∈ ClX π[S ∩ α]}. Moreover let T = S ∪ T0 and for each α ∈ T , let

σ(α) =

{
π(α) if α ∈ S,

supX π[S ∩ α] if α ∈ T0.

Note Lim(T ) = Lim(S). We will check that T and σ are as desired.

Claim 1. σ : T → A is 0-order preserving

Proof. First let α ∈ T0. Pick α0 ∈ S with α < α0. Then π(α0) is an
upper bound of π[S ∩ α], therefore we have σ(α) ≤ π(α0) ∈ A. Since
A is 0-segment, σ(α) ∈ A holds. This shows that σ maps into A.

Next, to see that σ is 0-order preserving, let α0, α1 ∈ T with α0 < α1.
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Case 1. For some β ∈ S, α0 ≤ β < α1.

In this case obviously, we have σ(α0) ≤ π(β) < σ(α1).

Case 2. Otherwise.

In this case, obviously we have α0 ∈ T0. If α1 ∈ T0 were true, then for
some β ∈ S ∩ α1, α0 < β < α1, a contradiction. Thus we have α1 ∈ S.
Since π(α1) is an upper bound of π[S ∩ α0], we have σ(α0) ≤ π(α1) =
σ(α1). If σ(α0) = σ(α1) were true, then π(α1) = σ(α0) ∈ ClX π[S ∩α0]
holds, thus π(α1) ∈ Clπ[S] π[S ∩ α0]. Since π is an embedding, we have
α1 ∈ ClS(S ∩ α0), a contradiction. Thus we have σ(α0) < σ(α1). □

Claim 2. For every α ∈ T , α ∈ S \ Lim(S) if and only if σ(α) is
isolated in σ[T ].

Proof. Note T \ Lim(T ) = S \ Lim(S).
The “if” part: Assume that α ∈ T and σ(α) is isolated in σ[T ], then

by the construction, we have α /∈ T0∪(S∩Lim(S)) thus α ∈ S\Lim(S).
The “only if” part: Let α ∈ S \ Lim(S) and set α0 = sup(S ∩ α).

Then α0 < α and T ∩ (α0, α) = ∅. Let α1 = min(T ∩ (α, κ)), then by
Claim 1, we have σ(α) < σ(α1).

Case 1. α0 ∈ S.

In this case {σ(α)} = (σ(α0), σ(α1)) ∩ σ[T ].

Case 2. α0 /∈ S.

In this case, S ∩ α = S ∩ α0 and α0 ∈ Lim(S) hold. There are two
subcases.

Case 2-1. α0 ∈ T0.

In this case, by Claim 1, σ(α) > σ(α0) = supX π[S∩α0] = supX π[S∩α].
Therefore we have {σ(α)} = (σ(α0), σ(α1)) ∩ σ[T ].

Case 2-2. α0 /∈ T0.

Moreover we consider two subcases.

Case 2-2-1. supX π[S ∩ α0] does not exist.

Since π(α) is an upper bound of π[S∩α0], there is x < π(α) such that x
is upper bound of π[S ∩α0]. Then we have {σ(α)} = (x, σ(α1))∩σ[T ].
Case 2-2-2. supX π[S ∩ α0] exists.

In this case, it follows from α0 /∈ T0 that supX π[S∩α0] /∈ ClX π[S∩α0].
Let x = supX π[S ∩ α0], then x ≤ π(α). When x < π(α), we have
{σ(α)} = (x, σ(α1)) ∩ σ[T ]. When x = π(α), by x /∈ ClX π[S ∩ α],
[x,→) is open in X. Therefore we have {σ(α)} = [x, σ(α1))∩σ[T ]. □
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Claim 3. σ[T ] is closed in A.

Proof. Let x ∈ A \ σ[T ] and α1 = min{α ∈ T : x ≤ σ(α)}. Note
x < σ(α1). When T ∩ α1 = ∅, (←, σ(α1)) is a neighborhood of x
disjoint from σ[T ]. So we may assume T ∩α1 ̸= ∅, then note S∩α1 ̸= ∅.
Since x is an upper bound of σ[T ∩ α1], x is also an upper bound
of π[S ∩ α1]. Since σ(α1) is isolated in σ[T ] because of {σ(α1)} =
(x,min(T ∩ (α1, κ))) ∩ σ[T ], by Claim 2 we have α1 ∈ S \ Lim(S). Let
α = sup(S ∩ α1), then note α < α1 and (α, α1) ∩ T = ∅.

Case 1. α ∈ T .

Since σ(α) < x, (σ(α), σ(α1))X is a neighborhood of x disjoint from
σ[T ] .

Case 2. α /∈ T .

By α /∈ T ⊃ S, we have S∩α = S∩α1 and α = sup(S∩α1) = sup(S∩α),
therefore we have α ∈ Lim(S) \ S and α /∈ T0.

Case 2-1. supX π[S ∩ α] does not exist.

In this case, we can take y < x such that y is an upper bound of
π[S ∩ α]. Then (y, σ(α1)) is a neighborhood of x disjoint from σ[T ].

Case 2-2. y := supX π[S ∩ α] exists.

If y < x, then (y, σ(α1)) is a neighborhood of x disjoint from σ[T ].
If y = x, then from α /∈ T0, [x,→) is open in X and [x, σ(α1)) is a
neighborhood of x disjoint from σ[T ]. □

The following claim completes the proof.

Claim 4. σ is embedding.

Proof. To see that σ is continuous, let α ∈ T and U be a convex open
neighborhood of σ(α) in X. We may assume α ∈ Lim(T ) (= Lim(S)).
By Claim 2, σ(α) is not isolated in σ[T ]. Then there is α0 ∈ T ∩α such
that σ(α0) ∈ U . Since U is convex, we have σ[T ∩ (α0, α]] ⊂ U .

To see that σ−1 is continuous, let α ∈ T and V be a neighborhood
of α in T . If α ∈ T \Lim(T ), then by Claim 2, σ(α) is isolated in σ[T ].
So we assume α ∈ Lim(T ). Take α0 ∈ T ∩ α with T ∩ [α0, α] ⊂ V
and set α1 = min(T ∩ (α, κ)). Then letting U = (σ(α0), σ(α1)) ∩ σ[T ],
which is a neighborhood of σ(α) in σ[T ], since σ is 0-order preserving,
we have σ−1[U ] ⊂ V . □

□
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A subset H of a GO-space X is said to be 0-closed in X if for every
x ∈ X \H, there is an open neighborhood U of x such that H∩(U∩(←
, x]) = ∅. 1-closedness is similarly defined. Obviously H is closed if and
only if it is both 0-closed and 1-closed.

Lemma 2.6. Let A be a 0-segment of a GO-space X with κ := 0- cf A ≥
ω1 and H a 0-closed and unbounded (we call it “ 0-club”) subset in A.
If there are a stationary set S of κ and an unbounded continuous map
π : S → A, then there is a club set C in κ such that π[S ∩ C] ⊂ H

Proof. By Lemma 2.4 (3), there is a club set C0 ⊂ κ such that π ↾
(S ∩ C0) is a 0-order preserving embedding. Let S0 = S ∩ C0. Let
M be an elementary submodel of H(θ), where θ is large enough, with
X,A, κ,H, S0, π, · · · ∈ M such that |M | < κ, see [1, 8] for elementary
submodels. Since |M | < κ and S0 is stationary in κ, by using the
usual closure argument, we may assume that κ ∩M is an ordinal, say
α0 = κ ∩M , and α0 ∈ S0.

Claim 1. α0 ∈ Lim(S0).

Proof. Since ∀α ∈ κ∃β ∈ S0(α < β) holds, by elementarity, we see
M |= ∀α ∈ κ∃β ∈ S0(α < β). Therefore we have ∀α ∈ κ ∩M∃β ∈
S0 ∩M(α < β), that is, ∀α < α0∃β ∈ S0 ∩ α0(α < β). This means
α0 ∈ Lim(S0). □

Claim 2. π(α0) ∈ H.

Proof. Assume π(α0) /∈ H, then there is an open neighborhood U of
π(α0) such that H ∩ (U ∩ (←, π(α0)]) = ∅. We may assume that U is a
convex. Since π is continuous, there is β∗ < α0 with π[S0 ∩ (β∗, α0]] ⊂
U . By Claim 1, we can take α ∈ (β∗, α0)∩S0. Then α ∈M and π(α) ∈
U hold. By the unboundedness of H, there are x ∈ H and β ∈ S0 with
π(α) ≤ x ≤ π(β). By α, π,H, S0 ∈ M and the elementarity, we see
x, β ∈ M thus β < α0. Convexity of U and π(α), π(α0) ∈ U ensure
x ∈ [π(α), π(α0)] ∩H ⊂ H ∩ (U ∩ (←, π(α0)]), a contradiction. □

Now since π[S0] is unbounded in A, we have ∀x ∈ A∃α ∈ S0(x ≤
π(α)). By elementarity, ∀x ∈ A∩M∃α ∈ S0∩M(x ≤ π(α)). By letting
y = π(α0), since π(α) < π(α0) whenever α ∈ S0 ∩M , we have ∀x ∈
A∩M∃y ∈ H∩π[S0](x < y). Thus M |= ∀x ∈ A∃y ∈ H∩π[S0](x < y)
and therefore ∀x ∈ A∃y ∈ H ∩ π[S0](x < y). Since H is 0-closed in A
and every subspace of π[S0] is 1-closed in π[S0], H ∩ π[S0] is closed in
π[S0]. Therefore there is a club set C1 in κ with H∩π[S0] = π[S0∩C1].
By letting C = C0 ∩ C1, ,we have H ⊃ π[S ∩ C]. □

Compare the following lemma with Lemma 2.1.
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Lemma 2.7. Let A be a 0-segment of a GO-space X with κ := 0- cf A ≥
ω1. The following are equivalent:

(1) there are a stationary set S of κ and an unbounded continuous
map π : S → A,

(2) there are a stationary set S of κ and a 0-order preserving un-
bounded embedding π : S → A such that π[S] ⊂ {x ∈ A : x ∈
ClX(←, x)},

(3) there are a stationary set S of κ and a 0-order preserving un-
bounded embedding π : S → A such that π[S] is closed in A,

(4) every (0-)closed unbounded subset in A is not discrete, where
a subspace is said to be discrete if every element in it is an
isolated point in it.

Proof. By the lemmas above, (1) , (2) and (3) are equivalent.
(3) ⇒ (4): Assume (3) and take S and π in (3). If there were a

0-closed discrete unbounded set H in A, then by Lemma 2.6, there is
a club set C ⊂ κ with π[S ∩ C] ⊂ H ∩ π[S]. Note H ∩ π[S] is 1-closed
in π[S], it is closed in π[S] (thus in A). Since π is embedding and
π[S ∩ C] is closed discrete in in π[S], the stationary set S ∩ C is also
closed discrete in S, a contradiction.

(4) ⇒ (1): Let {aα : α < κ} be a 0-order preserving unbounded
sequence in A such that for each α < κ,

(*) sup{aβ : β < α} < aα if sup{aβ : β < α} exists.

Let

S = {α < κ : sup{aβ : β < α} exists and

sup{aβ : β < α} ∈ ClX{aβ : β < α}. }.
Moreover Let π : S → A be the map defined by for every α in S,
π(α) = supX{aβ : β < α}. Obviously if α is a non-limit ordinal in
κ, say α = γ + 1, then supX{aβ : β < α} = aγ and aγ ∈ ClX{aβ :
β < α}, thus Succ(κ) ⊂ S. Obviously π is a 0-order preserving (use
(*)) unbounded map. It suffices to see that π is continuous and S is
stationary.

Claim 1. π is continuous.

Proof. Let α ∈ S and U be a convex open neighborhood of π(α). We
will find a neighborhood V of α with π[V ] ⊂ U . We may assume
α ∈ Lim(S), otherwise obvious. Since π(α) ∈ ClX{aβ : β < α}, Find
β < α with aβ ∈ U . Then because π(β + 1) = aβ, π(α) ∈ U and U is
convex, we have [π(β+1), π(α)] ⊂ U . Since π is 0-order preserving, by
letting V = (β, α] ∩ S, we have π[V ] ⊂ U . □
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Claim 2. S is stationary.

Proof. Assuming that S is non-stationary, take a club set C disjoint
from S. Set J = {α + 1 : α ∈ C}. Obviously J ⊂ Succ(κ) ⊂ S and
π[J ] is unbounded in A. It suffices to see the following fact.

Fact. π[J ] is closed discrete in A.

Proof. Let x ∈ A and set α1 = min{α ∈ C : x ≤ aα}, α2 = min(C ∩
(α1, κ). If C ∩ α1 = ∅, then (←, aα2) is a neighborhood of x meeting
with π[J ] at most one point, that is, π(α1 + 1) (= aα1). So we may
assume C ∩ α1 ̸= ∅ and set α0 = sup(C ∩ α1). Then α0 ∈ C therefore
α0 /∈ S, and α0 ≤ α1.

Case 1. α0 < α1.

In this case, it follows from π(α0+1) = aα0 < x ≤ aα1 < aα2 = π(α2+1)
that (aα0 , aα2) is a neighborhood of x meeting with π[J ] at most one
point.

Case 2. α0 = α1.

In this case, x is an upper bound of {aβ : β < α1}. We consider further
two subcases.

Case 2-1. sup{aβ : β < α1} does not exist.
In this case, since x is an upper bound of {aβ : β < α1}, there is y < x
such that y is an upper bound of {aβ : β < α1}. Then (y, aα2) is a
neighborhood of x meeting with π[J ] at most one point.

Case 2-2. z := sup{aβ : β < α1} exists.
In this case, when z < x, (z, aα2) is a neighborhood of x meeting with
π[J ] at most one point. So assume z = x. It follows from α0 = α1 /∈ S
that x = z /∈ ClX{aβ : β < α1}. Therefore [x,→) is open in X. Then
[x, aα2) is a neighborhood of x meeting with π[J ] at most one point. □

□
□

Recall that a GO-space X is said to be 0-paracompact if for every
closed 0-segment A with κ := 0- cf A ≥ ω1, A does not satisfy the clause
(4) in Lemma 2.7, see [5]. Also 1-paracomapctness is defined similarly.
Note that the equivalence (1) and (2) in Lemma 2.1 essentially proves
the following, see also [5].

Proposition 2.8. A GO-space X is paracompact iff it is 0-paracomapct
and 1-paracompact.
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By the lemma above, we can also define the 0-paracompactness as
follows:

Definition 2.9. AGO-spaceX is said to be (boundedly) 0-paracompact
if every (bounded) closed 0-segment is not stationary. (Bounded) 1-
paracomapctness is defined similarly.

Obviously a GO-space X is 0-paracompact iff it is boundedly 0-
paracompact and the 0-segment X is not stationary. Also obviously,
whenever a GO-space X has max, X is 0-paracompact iff it is bound-
edly 0-paracompact. Note that all subspaces of ordinals are 1-para-
compact, because they are well-ordered. Also note that every ordinal
α is boundedly 0-paracompact, because for every β < α, [0, β] is com-
pact. Further note that an ordinal α is paracompact iff cfα ≤ ω. If X
is a subspace of ω1, then X is boundedly 0-paracompact, because for
every β < ω1, X ∩ β is countable. Moreover such a X is paracompact
iff it is non-stationary in ω1.

3. Paracompactness of lexicographic products of two
GO-spaces

Remember the following result.

• If X =
∏

α<γ Xα is a lexicographic product of LOTS’s, then X is

compact iff all Xα’s are compact, see [4, Theorem 4.2.1].

First we remark that this result can be extended for lexicographic
products of GO-spaces.

Proposition 3.1. If X =
∏

α<γ Xα is a lexicographic product of GO-
spaces, then X is compact iff all Xα’s are compact

Proof. Since compact GO-spaces are LOTS’s, one direction is obvious.
To see the other direction, assume that X is compact. By the result
above, it suffices to see that all Xα’s are LOTS’s. So assume that some
Xα is not a LOTS. We may assume X−

α ̸= ∅, so take u ∈ X−
α . Then

(←, u)Xα is closed in Xα and has no max. Since X is compact, minX
and maxX exist. Therefore for each β < γ, minXβ and maxXβ exist.
Define x ∈ X by

x(β) =

{
minXβ if β ̸= α,

u otherwise.

Then (←, x)X is closed in X with no max, thus X is not compact, a
contradiction. □
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In this section, we characterize paracompactness of lexicographic
products of two GO-spaces, then we will see that even if γ = 2, the
proposition above cannot be extended for paracompactness.

Lemma 3.2. Let X = X0×X1 be a lexicographic product of GO-spaces.
Let π : S → X0 be a 0-order preserving map for some subset S of an
ordinal λ, here π need not be continuous. Then the following hold:

(1) Assume that X1 has min and let h : X0 → X0 × {minX1} be
the map defined by h(u) = ⟨u,minX1⟩. Then:
(a) h is 0-order preserving onto and h−1 is continuous.
(b) h ↾ π[S] : π[S] → X0 × {minX1} is a 0-order preserving

embedding.
(2) Assume that X1 has max and let h : X0 → X0 × {maxX1} be

the map defined by h(u) = ⟨u,maxX1⟩. Then h[π[S]] is closed
discrete in X0 × {maxX1}.

Proof. (1): First to see (a), let u ∈ X0 and V be an open neighborhood
u. We may assume that there are u∗

0, u
∗
1 ∈ X∗

0 such that u∗
0 < u < u∗

1

and (u∗
0, u

∗
1)X∗

0
∩ X0 ⊂ V (other cases are similar). Fix v ∈ X1 with

minX1 < v. Let U = (⟨u∗
0,minX1⟩, ⟨u, v⟩)X∗

0×X∗
1
∩ X0 × {minX1}.

Then U is a neighborhood of h(u) in X0 × {minX1} with U ⊂ h[V ].
That h is 0-order preserving onto is obvious.

Next we check (b). Obviously h ↾ π[S] is 0-order preserving. It
suffices to see the continuity of h ↾ π[S]. Let α ∈ S and U be an
open neighborhood of h(π(α)) in X0 × {minX1}. We may assume
that there are x∗

0, x
∗
1 ∈ X∗

0 × X∗
1 such that x∗

0 < h(π(α)) < x∗
1 and

(x∗
0, x

∗
1)X∗

0×X∗
1
∩X0 × {minX1} ⊂ U . Let

u1 =

{
π(min(S ∩ (α, λ)) if S ∩ (α, λ) ̸= ∅,
→ otherwise.

By x∗
0 < h(π(α)) = ⟨π(α),minX1⟩, we have x∗

0(0) < π(α). Then
V := (x∗

0(0), u1)X∗
0
∩X0 is a neighborhood of π(α) with h[V ∩π[S]] ⊂ U .

(2): Let x ∈ X0 × {maxX1}, say x = ⟨u,maxX1⟩. Fix v ∈ X1 with
v < maxX1. Let y ={
⟨π(min{α ∈ S : u < π(α)}),maxX1⟩ if {α ∈ S : u < π(α)} ̸= ∅,
→ otherwise.

Then (⟨u, v⟩, y)X0×X1 is a neighborhood of x meeting with h[π[S]] at
most one member. □
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Example 3.3. Let X0 = R and X1 = 2, where 2 = {0, 1}. Define
xn ∈ R by:

xn =

{
− 1

n
if n ∈ ω,

0 if n = ω,

Then {xn : n ≤ ω} is a 0-order preserving sequence in R which is a
convergent sequence in R. It follows from (1) in the lemma above that
it is homeomorphic to {xn : n ≤ ω} × {0} in R× 2. However from (2)
of the lemma above, {xn : n ≤ ω} × {1} is closed discrete in R× {1}.
Note ClR×2{xn : n ≤ ω} × {1} = {xn : n ≤ ω} × {1} ∪ {⟨0, 0⟩}. Also
note that R itself is not homeomorphic to R× {0}, because the latter
subspace is topologically homeomorphic to S.

It is easy to check the following lemma.

Lemma 3.4. Let X = X0×X1 be a lexicographic product of GO-spaces
and u ∈ X0. Then the map ku : X1 → {u} ×X1 by ku(v) = ⟨u, v⟩ is a
0-order preserving homeomorphism.

Remark 3.5. In general, {u} × X1 is not closed in X0 × X1 in the
situation above. For example, {0} × [0, 1)R is not closed in the lexi-
cographic product 2× [0, 1)R. Also note that if X0 has max, then the
0-segment X is stationary iff the 0-segment X1 is stationary.

The following two lemmas as well as Lemma 2.6 will be main tools
when we discuss paracompactness of lexicographic products.

Lemma 3.6. Let X = X0×X1 be a lexicographic product of GO-spaces
and A0 a 0-segment of X0. Put A = A0×X1. Then the following hold:

(1) A is a 0-segment of X,
(2) if 0- cfX0 A0 = 1, then

(a) 0- cfX A = 0- cfX1 X1,
(b) the 0-segment A is stationary if and only if the 0-segment

X1 is stationary,
(c) A is closed in X if and only if either X1 has max, X0 \A0

has no min or X1 has no min,
(3) if 0- cfX0 A0 ≥ ω, then

(a) 0- cfX A = 0- cfX0 A0,
(b) the 0-segment A is stationary if and only if X1 has min

and the 0-segment A0 is stationary,
(c) A is closed in X if and only if either X1 has no min or A0

is closed in X0.

Proof. (1) is obvious.
(2): Let 0- cfX0 A0 = 1 and u0 := maxA0.
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(a) and (b) follow from Lemma 3.4.
(c): To see the “only if” part, assume that A is closed in X, X1

has no max, X0 \ A0 has min u1 and X1 has min. Then we have
⟨u1,minX1⟩ = min(X \ A) /∈ A. Since A is closed, we can find x∗ ∈
X∗

0 ×X∗
1 such that x∗ < ⟨u1,minX1⟩ and U := (x∗,→)X∗

0×X∗
1
∩X is a

neighborhood of ⟨u1,minX1⟩ disjoint from A. Note x∗(0) < u1. Since
(u0, u1)X0 = ∅ and X0 is dense in X∗

0 , we have (u0, u1)X∗
0
= ∅, therefore

x∗(0) ≤ u0. Since X1 has no max, take v ∈ X1 with x∗(1) < v. Then
⟨u0, v⟩ ∈ U ∩ A holds, a contradiction.

To see the “if” part, let x ∈ X \ A. Then x(0) > u0 and x(0) ∈
X0 \A0. If X1 has max, then (⟨u0,maxX1⟩,→)X is a neighborhood of
x disjoint from A. IfX0\A0 has no min, then by taking u ∈ X0\A0 with
u < x(0) and any v ∈ X1, we see that (⟨u, v⟩,→)X is a neighborhood
of x disjoint from A. If X1 has no min, then by taking v ∈ X1 with
v < x(1), we see that (⟨x(0), v⟩,→)X is a neighborhood of x disjoint
from A.

(3): Let κ = 0- cfX0 A0 ≥ ω.
(a): If U is unbounded in the 0-segment A, then {x(0) : x ∈ U} is

also unbounded in A0, so we have 0- cfX0 A0 ≤ 0- cfX A. Conversely,
if V is unbounded in A0, then by fixing v ∈ X1, {⟨u, v⟩ : u ∈ V } is
unbounded in A, thus 0- cfX0 A0 ≥ 0- cfX A.

(b): Assume that A is stationary. Take a stationary set S in κ and
an unbounded continuous map π : S → A. From Lemma 2.7, we may
assume that π is 0-order preserving.

Claim 1. X1 has min.

Proof. Assume that X1 has no min. For each α ∈ S ∩ Lim(S), let
f(α) = min{β ∈ S : π(β)(0) = π(α)(0)}. By the continuity of π, we
have f(α) < α for each α ∈ S ∩ Lim(S). Let M be an elementary
submodel of H(θ), where θ is large enough, with X,A, κ, f, S, π, · · · ∈
M such that |M | < κ and α0 := κ∩M ∈ S. Since α0 ∈ S∩ lim(S) (see
Lemma 2.6 Claim 1), f(α0) < α0, therefore β0 := f(α0) ∈ M . Then
for every α ∈ S ∩M with β0 < α, we have f(α) = β0, therefore M |=
“for every α ∈ S with β0 < α, f(α) = β0 holds.” . By β0, S, f ∈ M ,
elementarity ensures that in the real world, for every α ∈ S with β0 <
α, f(α) = β0 holds. This means π[S ∩ (β0, κ)] ⊂ {π(β0)(0)} ×X1, this
contradicts the unboundedness of π. □

Claim 2. H := A0 × {minX1} is 0-closed in A.

Proof. Let x ∈ A\H, then x(1) > minX1. Now U := (⟨x(0),minX1⟩,→
)X is a neighborhood of x with H ∩ (U ∩ (←, x]X) = ∅. □
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It follows from Lemma 2.6 that for some club set C of κ, π[S ∩C] ⊂
H. Now Lemma 3.2 shows that the composition h−1 ◦ (π ↾ (S ∩ C)) is
an unbounded continuous map on S ∩C into A0, thus A0 is stationary.

To see the other direction, assume that X1 has min and A0 is sta-
tionary. Then there are a stationary set S ⊂ κ and a 0-order preserv-
ing unbounded continuous map π : S → A0. Then the composition
h ◦ π : S → A0 × {minX1} ⊂ A witnesses the stationarity of A by
Lemma 3.2.

(c): First, assume that A is closed in X and X1 has min. We will
prove that A0 is closed in X0. To see this, let u ∈ X0\A0. When u′ < u
for some u′ ∈ X0 \A0, (u

′,→) is a neighborhood of u disjoint from A0.
When u ≤ u′ for every u′ ∈ X0 \ A0, that is, u = min(X0 \ A0). Then
min(X \A) = ⟨u,minX1⟩. Since A is closed and ⟨u,minX1⟩ /∈ A, there
is x∗ ∈ X∗

0×X∗
1 with x∗ < ⟨u,minX1⟩ such that U := (x∗,→)X∗

0×X∗
1
∩X

is disjoint from A. Then V := (x∗(0),→)X∗
0
∩X0 is a neighborhood of

u disjoint from A0.
Next, to see the other direction, let x ∈ X \ A. When X1 has

no min, by taking v ∈ X1 with v < x(1), (⟨x(0), v⟩,→)X0×X1 is a
neighborhood of x disjoint from A. Now assume that A0 is closed
in X0. It follows from x(0) ∈ X0 \ A0 that for some u∗ ∈ X∗

0 with
u∗ < x(0), V := (u∗,→)X∗

0
∩X0 is a neighborhood of x(0) disjoint from

A0. Fix v ∈ X1, then ⟨u∗, v⟩ < x and U := (⟨u∗, v⟩,→)X∗
0×X∗

1
∩X0×X1

is a neighborhood of x which is disjoint from A. □

Lemma 3.7. Let X = X0 × X1 be a lexicographic product of GO-
spaces, A1 be a 0-segment of X1 with 0- cfX1 A1 ≥ 1 and u ∈ X0. Let
A = {x ∈ X : for some v ∈ A1, x ≤ ⟨u, v⟩ holds.}. Then the following
hold:

(1) A is a 0-segment of X,
(2) 0- cfX1 A1 = 0- cfX A,
(3) A is stationary if and only if A1 is stationary,
(4) if A1 is a bounded closed 0-segment in X1, then A is closed in

X.

Proof. (1) is obvious. For (2) and (3), use Lemma 3.4.
(4): Let A1 be a bounded closed 0-segment in X1. Take v0 ∈ X1\A1.

To see that A is closed, let x ∈ X \ A. When ⟨u, v0⟩ < x, (⟨u, v0⟩,→)
is a neighborhood of x disjoint from A. When x ≤ ⟨u, v0⟩, we have
x(0) = u, x(1) ∈ X1 \ A1 and x(1) ≤ v0. Since A1 is closed, take
v∗ ∈ X∗

1 with v∗ < x(1) such that (v∗,→)X∗
1
∩X1 is a neighborhood of

x(1) which is disjoint from A1. Now (⟨u, v∗⟩,→)X∗
0×X∗

1
∩X0 ×X1 is a

neighborhood of x which is disjoint from A. □
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Note that in (4) in the lemma above, the “bounded” in the assump-
tion is essential, see Remark 3.5. Now we have prepared to see the
following theorem.

Theorem 3.8. Let X = X0 × X1 be a lexicographic product of GO-
spaces. The following are equivalent:

(1) X is 0-paracompact,
(2) (a) X1 is boundedly 0-paracompact,

(b) if either (u,→)X0 has no min for some u ∈ X0 or X1 has
no min, then the 0-segment X1 is not stationary,

(c) if X1 has min, then X0 is 0-paracompact.

Proof. Note that if X0 has max, then (maxX0,→)X0 has no min be-
cause it is empty.

(1) ⇒ (2): Let X be 0-paracompact. (a) follows from Lemma 3.7.
To see (b), first assume that (u,→)X0 has no min for some u ∈

X0. Let A0 = (←, u]X0 and A = A0 × X1, then 0- cfX0 A0 = 1 and
X0 \ A0 has no min. By Lemma 3.6 (2-c), A is a closed 0-segment of
the 0-paracompact GO-space X, therefore A is not stationary. Now by
Lemma 3.6 (2-b), the 0-segmentX1 is not stationary. Next assume that
X1 has no min. Fix u ∈ X0 and let A0 = (←, u]X0 and A = A0 ×X1.
Then similarly using Lemma 3.6, we see that the 0-segment X1 is not
stationary.

To see (c), assume that X1 has min. If X0 were not 0-paracompact,
then there is a closed 0-segment A0 of X0 which is stationary. Then
by Lemma 3.6 (3), A := A0 × X1 is a closed 0-segment of X that is
stationary, this contradicts the 0-paracompactness of X.

(2) ⇒ (1): Assuming that X is not 0-paracompact, let A be a sta-
tionary closed 0-segment of X. Moreover letting A0 = {u ∈ X0 :
for some v ∈ X1, ⟨u, v⟩ ∈ A holds. }, we obviously see that A0 is a
non-empty 0-segment of X0 and A ⊂ A0 ×X1. We consider two cases.

Case 1. A ⊊ A0 ×X1.

Fix ⟨u, v1⟩ ∈ A0×X1\A. By u ∈ A0, we can find v0 ∈ X1 with ⟨u, v0⟩ ∈
A. Let A1 = {v ∈ X1 : ⟨u, v⟩ ∈ A}. Then A1 is a bounded non-empty
0-segment ofX1 andA = {x ∈ X : for some v ∈ A1, x ≤ ⟨u, v⟩ holds.}.
Claim 1. A1 is closed in X1.

Proof. Let v ∈ X1 \ A1. When v1 < v, (v1,→)X1 is a neighborhood
of v disjoint from A1. When v ≤ v1, by the closedness of A and
⟨u, v⟩ /∈ A, we can find x∗ ∈ X∗

0 × X∗
1 with x∗ < ⟨u, v⟩ such that

(x∗,→)X∗
0×X∗

1
∩ X0 × X1 is disjoint form A. Then x∗(0) = u and

(x∗(1),→)X∗
1
∩X1 is a neighborhood of v disjoint from A1. □
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Thus by Lemma 3.7, we see that A1 is a bounded stationary closed
0-segment of X1 which contradicts the clause (a).

Case 2. A = A0 ×X1.

Further, we consider the following two cases.

Case 2-1. 0- cf A0 = 1.

Let u = maxA0. It follows from Lemma 3.6 (2-a) and (2-b) that
0- cfX1 X1 = 0- cfX A and the 0-segment X1 is stationary, in particular
X1 has no max. Moreover, since A is closed, it follows from Lemma
3.6 (2-c) that X0 \ A0 (= (u,→)) has no min or X1 has no min. Then
by the condition (2-b), we see the 0-segment X1 is not stationary, a
contradiction.

Case 2-2. 0- cf A0 ≥ ω.

Using Lemma 3.6 (3), similarly as above, we have a contradiction. □
For later use, we also write down the analogous result:

Theorem 3.9. Let X = X0 × X1 be a lexicographic product of GO-
spaces. The following are equivalent:

(1) X is 1-paracompact,
(2) (a) X1 is boundedly 1-paracompact,

(b) if either (←, u)X0 has no max for some u ∈ X0 or X1 has
no max, then the 1-segment X1 is not stationary,

(c) if X1 has max, then X0 is 1-paracompact.

The GO-space (in fact, LOTS) {. . . ,−3,−2,−1, 0}, which will be
denoted by −ω, of all non-positive integers with the usual order is
topologically homeomorphic to the space ω. But as GO-spaces, they
are different, for instance, ω has min but −ω has no min. First, we
formulate −X of a GO-space X.

Definition 3.10. Let X = ⟨X,<X , τX⟩ be a GO-space. −X denotes
the GO-space ⟨X,>X , τX⟩, that is, the order <−X is the reverse order
of <X , but the underlying set X and the topology τX are unchanged.
Thus a GO-space X has a topological property P iff so does −X. −X
is said to be the reverse of X.

The following are easy to see for GO-spaces, where X = Y means
the existence of the identification between GO-spaces X and Y :

• −(−X) = X,
• (−X)∗ = −X∗,
• −((−X0)× (−X1)) = X0 ×X1,
• X is 0-paracompact, then −X is 1-paracompact.
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Thus X0 ×X1 and (−X0)×X1 are homeomorphic to (−X0)× (−X1)
and X0 × (−X1), respectively.

The two theorems above yield the following corollaries, where remark
that the equivalence (a) and (c) in (1) ((2)) in the corollary below is
Theorem 3.2 (Theorem 3.3, respectively) in [11].

Corollary 3.11. [11] Let X0 and X1 be GO-spaces.

(1) if X1 has neither min nor max, then the following are equivalent:
(a) the lexicographic product X0 ×X1 is paracompact,
(b) the lexicographic product (−X0)×X1 is paracompact,
(c) X1 is paracompact,

(2) if X1 has min and max, then the following are equivalent:
(a) the lexicographic product X0 ×X1 is paracompact,
(b) the lexicographic product (−X0)×X1 is paracompact,
(c) both X0 and X1 are paracompact.

Remark 3.12. Here we point out that Theorem 3.4 in [11] is misstated.
Theorem 3.4 in [11] says that whenever X0 and X1 are GO-spaces such
that X0 has no neighbor points (i.e., there are no pair u, v with u < v
and (u, v)X0 = ∅), the lexicographic product X0 ×X1 is paracompact
iff both X0 and X1 are paracompact. But let X0 be the long line
L(ω1) of length ω1 and X1 the usual real line R, where the long line
L(ω1) means the LOTS such that the unit open interval (0, 1)R in R is
inserted between α and α+1 for every α < ω1. Since R is paracompact
having neither min nor max, by (1) of the corollary above, L(ω1)× R
is paracompact. But L(ω1) is obviously not paracompat (because, it
has ω1 as a closed subspace), moreover it has no neighbor points.

The case “X1 has min but has no max” is somewhat complicated
but is the most interesting case.

Corollary 3.13. Let X0 and X1 be GO-spaces and X1 has min but has
no max.

(1) the lexicographic product X0 ×X1 is paracompact iff
(a) X0 is 0-paracompact,
(b) X1 is boundedly 0-paracompact,
(c) if (u,→)X0 has no min for some u ∈ X0, then the 0-

segment X1 is not stationary,
(d) X1 is 1-paracompact,

(2) the lexicographic product (−X0)×X1 is paracompact iff
(a) X0 is 1-paracompact,
(b) X1 is boundedly 0-paracompact,
(c) if (←, u)X0 has no max for some u ∈ X0, then the 0-

segment X1 is not stationary,
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(d) X1 is 1-paracompact,

In (1) of the corollary above, (a)+(b)+(c) is equivalent to 0-para-
compactness of X0 × X1, (d) is equivalent to 1-paracompactness of
X0 ×X1. (2) is an easy consequence of (1).

The case “X1 has no min but has max” is analogous as follows:

Corollary 3.14. Let X0 and X1 be GO-spaces and X1 has no min but
has max.

(1) the lexicographic product X0 ×X1 is paracompact iff
(a) X0 is 1-paracompact,
(b) X1 is boundedly 1-paracompact,
(c) if (←, u)X0 has no max for some u ∈ X0, then the 1-

segment X1 is not stationary,
(d) X1 is 0-paracompact,

(2) the lexicographic product (−X0)×X1 is paracompact iff
(a) X0 is 0-paracompact,
(b) X1 is boundedly 1-paracompact,
(c) if (u,→)X0 has no min for some u ∈ X0, then the 1-

segment X1 is not stationary,
(d) X1 is 0-paracompact,

Using the corollaries above, we see:

Corollary 3.15. Let X be a GO-space and n ∈ ω with 1 ≤ n. Then
the following are equivalent:

(1) the lexicographic product Xn is paracompact,
(2) X is paracompact.

Proof. The implication (2) ⇒ (1) follows from the result of [5].
(1) ⇒ (2): Assume that Xn is paracompact and n ≥ 2. When X

has neither min nor max, because of Xn = (Xn−1) × X (see, [5]), by
Corollary 3.11 (1), X is paracompact. When X has both min and
max, by Corollary 3.11 (2), X is paracompact. Let X have min but
have no max. By Xn = (Xn−1) × X and Corollary 3.13 (1-d), X is
1-paracompact. Similarly by Xn = X × (Xn−1) and Corollary 3.13
(1-a), X is 0-paracompact. Thus X is paracompact. The remaining
case is similar. □
Corollary 3.16. Let X be a GO-space. Then the following are equiv-
alent:

(1) the lexicographic product (−X)×X is paracompact,
(2) X is paracompact.

Example 3.17. Using the corollaries above, for lexicographic prod-
ucts, we see:
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(1) ω1 × S and ω1 ×M are paracompact,
(2) S× ω1 and M× ω1 are not paracompact,
(3) (−ω1)× S and (−ω1)×M are paracompact,
(4) (−S)× ω1 and (−M)× ω1 are not paracompact,
(5) ω1 × [0, 1)R is not paracompact,
(6) (−ω1)× [0, 1)R is paracompact,
(7) [0, 1)R × ω1 is not paracompact,
(8) (−[0, 1)R)× ω1 is not paracompact,
(9) ω1 × (0, 1]R is paracompact,
(10) (−ω1)× (0, 1]R is not paracompact,
(11) (0, 1]R × ω1 is not paracompact,
(12) (−(0, 1]R)× ω1 is not paracompact,

It is known that for subspaces X0 and X1 of ordinals, the usual
Tychonoff product X0×X1 is paracompact if and only if both X0 and
X1 are paracompact, see [7]. Now we consider paracompactness of
lexicographic products of two subspaces of ordinals. Paracompactness
of lexicographic products of infinite length of subspaces of ordinals will
be discussed in the next section. Let X be a subspace of an ordinal (of
course, |X| ≥ 2). Since ordinals are well-order, note again:

• (u,→)X has no min for some u ∈ X0 if and only if X has max.
• X has min, thus “ (←, u)X has no max for some u ∈ X” is true.
• X is 1-paracompact,

Using these facts and the theorems above, we see:

Corollary 3.18. Let X0 and X1 be subspaces of ordinals.

(1) the lexicographic product X0 ×X1 is paracompact iff
(a) X0 is (0-)paracompact,
(b) X1 is boundedly 0-paracompact,
(c) if X0 has max, then the 0-segment X1 is not stationary,

(2) the lexicographic product (−X0)×X1 is paracompact iff
(a) X1 is (0-)paracompact,
(b) if X1 has max, then X0 is (0-)paracompact,

In (2) of the corollary above, (a) is equivalent to 0-paracompactness
of (−X0)×X1, and (b) is equivalent to 1-paracompactness of (−X0)×
X1. Using this corollary, for lexicographic products of ordinals, we
have:

Corollary 3.19. Let α and β be ordinals.

(1) the lexicographic product α× β is paracompact iff
(a) cfα ≤ ω,
(b) if cfα = 1, then cfβ ≤ ω,
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(2) the lexicographic product (−α)× β is paracompact iff
(a) cfβ ≤ ω,
(b) if cfβ = 1, then cfα ≤ ω,
therefore:

(3) α× β is paracompact iff so is (−β)× α.

For lexicographic products of subspaces of ω1, we have:

Corollary 3.20. Let X0 and X1 be subspaces of ω1.

(1) the lexicographic product X0 ×X1 is paracompact iff
(a) X0 is not stationary in ω1,
(b) if X0 has max, then X1 is not stationary in ω1,

(2) the lexicographic product (−X0)×X1 is paracompact iff
(a) X1 is not stationary in ω1,
(b) if X1 has max, then X0 is not stationary in ω1,
therefore:

(3) X0 ×X1 is paracompact iff so is (−X1)×X0.

Example 3.21. Using the corollaries above, we see:

(1) ω × ω1 and ω × ω2 are paracompact,
(2) ω1 × ω and ω2 × ω are not paracompact,
(3) (−ω)× ω1 is not paracompact,
(4) (−ω1)× ω is paracompact,
(5) (ω + 1)× ω1 is not paracompact,
(6) ω1 × (ω + 1) is not paracompact,
(7) (−(ω + 1))× ω1 is not paracompact,
(8) (−ω1)× (ω + 1) is not paracompact,
(9) Succ(ω1)× ω1 is paracompact,
(10) (−Succ(ω1))× ω1 is not paracompact,
(11) ω1 × Succ(ω1) is not paracompact,
(12) (−ω1)× Succ(ω1) is paracompact.

4. Paracompactness of lexicographic products of ordinal
subspaces

Remember that a linearly order <X on a set X is said to be a well-
order if every non-empty subset A of X has min. Obviously if <Xi

is a
well-order on Xi for every i ∈ n, where n ∈ ω, then the lexicographic
order <X on the product X =

∏
i∈n Xi is also a well-order. Moreover

if <X is a well-order on X and Z ⊂ X, then the restriction <X↾ Z is
also a well-order on Z.

Now let X = ⟨X,<X , τX⟩ is a GO-space such that the order <X

is a well-order (equivalently, X is a subspace of an ordinal), then by
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X∗ ⊂ X × {−1, 0, 1}, we see that the order <X∗ on X∗ is also a well-
order. Thus whenever X is a subspace of an ordinal, we may identify
the LOTS X∗ with an ordinal.

Now we have:

Lemma 4.1. Let Xi be a subspace of an ordinal for every i ∈ n, where
n ∈ ω. Then the lexicographic product X =

∏
i∈n Xi is also a subspace

of an ordinal.

Proof. Since the order on
∏

i∈n X
∗
i is a well-order, we may consider∏

i∈n X
∗
i as an ordinal. Thus X is a subspace of an ordinal. □

Remark 4.2. In the lexicographic product X = 2ω, where 2 is the
ordinal {0, 1}, let for each n ∈ ω,

xn(i) =

{
0 if i < n,

1 if i ≥ n.

Then {xn : n ∈ ω} is 1-order preserving (= strictly decreasing) se-
quence in X. Therefore the lemma above cannot be relaxed for infinite
length of ordinal subspaces.

Let α be an ordinal and let

l(α) =

{
0 if α < ω,

sup{β ≤ α : β is limit.} if α ≥ ω.

Note that l(α) is the largest limit ordinal less than or equal to α when-
ever α ≥ ω. So the interval [l(α), α) of ordinals is finite, thus every
ordinal α can be uniquely represented as l(α)+n(α) for some n(α) ∈ ω.

Definition 4.3. Let γ be an ordinal and A ⊂ γ. Put

Ã = {α ∈ A : [l(α), α) ∩ A = ∅}.

Note:
• if A ̸= ∅, then minA ∈ Ã,
• if ω ≤ α ∈ A and α is limit, then α ∈ Ã.

Lemma 4.4. Let X =
∏

α<γ Xα be a lexicographic product of subspaces
of ordinals and

J+ = {α < γ : Xα has no max.}.
Then for every α ∈ J+ with α > 0, the following are equivalent, where
Y =

∏
β<α Xβ,

(1) there is y ∈ Y such that (y,→)Y has no min,

(2) α ∈ J̃+.
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Proof. Let 0 < α ∈ J+ and set Y0 =
∏

β<l(α)Xβ, Y1 =
∏

l(α)≤β<α Xβ.

Then Y can be identified with Y0 × Y1, see [5]. Note Y = Y1 whenever
l(α) = 0.

(1) → (2): Assume that there is y ∈ Y such that (y,→)Y has no
min.

Case 1. (y,→)Y = ∅.

Note in this case, y = maxY . Therefore maxXβ exists for every β < α
and y = ⟨maxXβ : β < α⟩. Now we have [l(α), α)∩J+ ⊂ [0, α)∩J+ =

∅, so α ∈ J̃+.

Case 2. (y,→)Y ̸= ∅.

Assuming the negation of (2), take β ∈ [l(α), α) ∩ J+. Then Y1 ̸= ∅
and Y1 has no max. Since [l(α), α) is finite, by Lemma 4.1, Y1 is a
subspace of an ordinal. One can pick y1 ∈ Y1 with y ↾ [l(α), α) <Y1 y1
and (y ↾ [l(α), α), y1)Y1 = ∅, that is, y1 is the immediate successor
of y ↾ [l(α), α) in Y1. Then (y ↾ l(α))∧y1 is the minimal element of
(y,→)Y , this contradicts (1), where (y ↾ l(α))∧y1 denotes the element
z in Y defined by

z(β) =

{
y(β) if β < l(α),

y1(β) if l(α) ≤ β < α.

(2) → (1): Let α ∈ J̃+. Then for every β ∈ [l(α), α), Xβ has
max. When α < ω, because of Y = Y1, Y has max therefore y =
maxY satisfies (1). Assume α ≥ ω, then l(α) is limit. Note minY0 =
⟨minXβ : β < l(α)⟩.

Claim. (minY0,→)Y0 has no min.

Proof. To see this, let z ∈ Y0 with minY0 < z and β0 = min{β <
l(α) : minXβ ̸= z(β)}. Fix u ∈ Xβ0+1 with minXβ0+1 < u. Let
z′ = ⟨minXβ : β ≤ β0⟩∧⟨u⟩∧⟨minXβ : β0 + 1 < β < l(α)⟩, then
minY0 < z′ < z. □

When l(α) = α, it follows from Y0 = Y that y = minY0 satisfies
(1). When l(α) < α, Y1 is non-empty and has max. Therefore y =
minY0

∧ maxY1 satisfies (1). □

In [5], it is proved that if for every α < γ, Xα is a 0-paracompact
GO-space, then the lexicographic product X =

∏
α<γ Xα is also 0-

paracompact. But there is a 0-paracompact lexicographic product X =∏
α<γ Xα such that some Xα is not 0-paracompact, for instance X =

ω × ω1. About bounded 0-paracompactness, we see the following:



PARACOMPACTNESS OF LEXICOGRAPHIC PRODUCTS OF GO-SPACES 25

Lemma 4.5. Let X =
∏

α<γ Xα be a lexicographic product of GO-
spaces such that all Xα’s have min. If X is boundedly 0-paracompact,
then all Xα’s are also boundedly 0-paracompact.

Proof. Let X̂ =
∏

α<γ X
∗
α. Assuming that some Xα0 is not boundedly

0-paracompact, take a bounded closed stationary 0-segment A0 of Xα0

with κ = 0- cfXα0
A0 ≥ ω1. Then there are a stationary set S of κ

and an unbounded continuous map π : S → A0. By Lemma 2.7, we
may assume that π is 0-order preserving. Set Y0 =

∏
α<α0

Xα and fix
y0 ∈ Y0.

Claim 1. A = {a ∈ X : a ↾ α0 <Y0 y0 or (a ↾ α0 = y0 and a(α0) ∈
A0)} is a bounded closed 0-segment of X.

Proof. By the boundedness of A0, take u ∈ Xα0 \ A0. Then y0
∧⟨u⟩∧

⟨minXα : α0 < α⟩ witnesses the boundedness of A. That A is a 0-
segment is easy to see. To prove that A is closed in X, let x ∈ X \ A.
Then note x ↾ α0 ≥Y0 y0. When x ↾ α0 >Y0 y0, (y0

∧⟨u⟩∧⟨minXα : α0 <
α⟩,→)X is a neighborhood of x disjoint from A. Now let us consider
the case x ↾ α0 = y0. By x /∈ A, we have x(α0) /∈ A0. Since A0 is closed
and non-empty in Xα0 , there is u∗ ∈ X∗

α0
such that u∗ <Xα∗

0
x(α0) and

((u∗,→)X∗
α0
∩ Xα0) ∩ A0 = ∅. Then (y0

∧⟨u∗⟩∧⟨minXα : α0 < α⟩,→
)X̂ ∩ X is a neighborhood of x disjoint from A. Thus A is closed in
X. □

For every β ∈ S, let σ(β) = y0
∧⟨π(β)⟩∧⟨minXα : α0 < α⟩. Then ob-

viously σ : S → A is 0-order preserving and unbounded. The following
claim completes the proof of the lemma.

Claim 2. σ is continuous.

Proof. Let β ∈ S and U be an open neighborhood of σ(β) in X.
We may assume β ∈ Lim(S). Then by minXα0 < π(β), we have
y0

∧⟨minXα : α0 ≤ α⟩ <X σ(β), thus (←, σ(β))X ̸= ∅. Since U is an

open neighborhood of σ(β), there is x∗ ∈ X̂ such that x∗ <X̂ σ(β) and
(x∗, σ(β)]X̂ ∩X ⊂ U . When x∗ ↾ α0 <Ŷ0

y0, obviously σ[S ∩ [0, β]] ⊂ U

holds (use the fact that σ is 0-order preserving), where Ŷ0 =
∏

α<α0
X∗

α.
So let assume x∗ ↾ α0 = y0. In this case, since σ(β)(α) = minXα for ev-
ery α > α0, we have x

∗(α0) < σ(β)(α0) = π(β). Using the continuity of
π at β, find β0 < β such that π[S∩(β0, β]] ⊂ (x∗(α0), π(β)]X∗

α0
∩Xα0 . By

β ∈ Lim(S), we may assume β0 ∈ S. It suffices to see σ[S∩(β0, β]] ⊂ U .
To see this, let β′ ∈ S ∩ (β0, β]. From β0, β

′, β ∈ S and β0 < β′ ≤ β,
we have σ(β0) < σ(β′) ≤ σ(β). Now by x∗ ↾ α0 = y0 = σ(β′) ↾ α0 and
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x∗(α0) < π(β′) = σ(β′)(α0), we have x∗ <X σ(β′) ≤X σ(β), therefore
σ[S ∩ (β0, β]] ⊂ (x∗, σ(β)]X̂ ∩X ⊂ U . □

□

Example 4.6. The reverse implication of Lemma 4.5 does not hold.
Because, consider the lexicographic product X = [0, 1)R × ω1 and
the 0-segment A = {0} × ω1. Both [0, 1)R and ω1 are boundedly 0-
paracompact. But A is a bounded closed stationary 0-segment of X,
thus [0, 1)R × ω1 is not boundedly 0-paracompact.

Example 4.7. In Lemma 4.5, the assumption “all Xα’s have min”
cannot be removed. To see this, let Y = {α < ω2 : cfα = ω} be the
subspace of ω2. Obviously, Y is not boundedly 0-paracompact (the
closed 0-segment A = Y ∩ ω1 witnesses this). But the lexicographic
product Y × R is paracompact.

Theorem 4.8. Let X =
∏

α<γ Xα be a lexicographic product of sub-
spaces of ordinals with γ ≥ 2. Then the following are equivalent,

(1) X is paracompact,
(2) (a) for each α < γ, Xα is boundedly 0-paracompact,

(b) for each α ∈ J̃+, the 0-segment Xα is not stationary.

Proof. Let X̂ =
∏

α<γ X
∗
α.

(1) → (2): Assume that X is (0-)paracompact. (a) follows from

the lemma above. To see (b), let α ∈ J̃+. Assuming on the contrary
that the 0-segment Xα is stationary, take a stationary set S in κ and
a 0-order preserving unbounded continuous map π : S → Xα, where
κ := 0- cfXα Xα ≥ ω1.

Case 1. α = 0.

By letting σ(β) = ⟨π(β)⟩∧⟨minXδ : 0 < δ⟩ for every β ∈ S, as in the
previous lemma, it is easy to check that σ : S → X is a 0-order preserv-
ing unbounded continuous map to the 0-segment X, this contradicts
(1).

Case 2. α > 0.

It follows from Lemma 4.4 that for some y ∈ Y , where Y =
∏

β<α Xβ,

(y,→)Y has no min. Let A = {x ∈ X : x ↾ α ≤Y y}. Obviously
A is a 0-segment of X and it is closed, because (y,→)Y has no min.
Then by letting σ(β) = y ∧⟨π(β)⟩∧⟨minXδ : α < δ⟩ for every β ∈ S,
σ : S → A is a 0-order preserving unbounded continuous map, this
contradicts (1):
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(2) → (1): Assume (2). Since all Xα’s are 1-paracompact, X =∏
α<γ Xα is also 1-paracompact, see [5]. Thus it suffices to see that

X is 0-paracompact. Assuming on the contrary that X is not 0-
paracompact, take a stationary closed 0-segmentA with κ := 0- cfX A ≥
ω1. Then there are a stationary set S in κ and a 0-order preserving
unbounded continuous map π : S → A.

Case 1. A = X.

Since A = X has no max, let α1 = min{α < γ : Xα has no max.}.
Then by α1 ∈ J̃+ and (b), Xα1 is not stationary.

Claim 1. H = {x ∈ X : x ↾ α1 = ⟨maxXα : α < α1⟩, x ↾ (α1, γ) =
⟨minXα : α1 < α < γ⟩} is 0-club in X (=A).

Proof. The unboundedness of H in X is easy. To see that H is 0-closed
in X, let x ∈ X \H.

Case 1. x ↾ α1 ̸= ⟨maxXα : α < α1⟩.

In this case, let α0 = min{α < α1 : x(α) ̸= maxXα} and y = ⟨maxXα :
α ≤ α0⟩∧⟨minXα : α0 < α⟩. Then U = (←, y)X is a neighborhood of
x disjoint from H.

Case 2. x ↾ α1 = ⟨maxXα : α < α1⟩.

It follows from x /∈ H that for some α > α1, x(α) ̸= minXα. Let α0 =
{α > α1 : x(α) ̸= minXα} and y = (x ↾ α0)

∧⟨minXα : α0 ≤ α⟩. Then
U = (y,→)X is a neighborhood of x with (U ∩ (←, x]X) ∩H = ∅. □

Now by Lemma 2.6, we can find a club set C in κ with π[S∩C] ⊂ H.
Define σ : S∩C → Xα1 by σ(β) = π(β)(α1) for every β ∈ S∩C. Since
π is 0-order preserving and π[S ∩ C] ⊂ H, σ is also 0-order preserving
unbounded in the 0-segment Xα1 . Since the 0-segment Xα1 is not
stationary, the following claim completes Case1.

Claim 2. σ is continuous.

Proof. Let β ∈ S ∩C and U be an open neighborhood of σ(β) in Xα1 .
We may assume β ∈ Lim(S ∩C), then (←, σ(β))Xα1

̸= ∅. Then we can
take u∗ ∈ X∗

α1
such that u∗ < σ(β) and (u∗, σ(β)]X∗

α1
∩Xα1 ⊂ U . Define

x∗ ∈ X̂ by x∗ = ⟨maxXα : α < α1⟩∧⟨u∗⟩∧⟨minXα : α1 < α⟩. Then
x∗ < π(β), so (x∗,→)X̂ ∩X is an open neighborhood of π(β) in X. It
follows from the continuity of π that for some β1 < β, π[S ∩ (β1, β]] ⊂
(x∗,→)X̂ ∩X holds. By β ∈ Lim(S ∩ C), we may assume β1 ∈ S ∩ C.
To see σ[S ∩ C ∩ (β1, β]] ⊂ U , let β′ ∈ S ∩ C ∩ (β1, β]. Then by
β1 < β′ ≤ β and β1, β

′, β ∈ S ∩ C, we have σ(β1) < σ(β′) ≤ σ(β).
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It follows from x∗ < π(β′) ≤ π(β) that u∗ < σ(β′) ≤ σ(β), thus
σ(β′) ∈ (u∗, σ(β)]X∗

α1
∩Xα1 ⊂ U . □

Case 2. A ̸= X and X \ A has no min.

Set B = X \ A and K = {α < γ : ∃a ∈ A∃b ∈ B(a ↾ (α + 1) = b ↾
(α + 1)}. Note that for every pair a ∈ A and b ∈ B, a <X b holds
and K is an initial segment (i.e., 0-segment) in γ, therefore K = α0 for
some α0 ≤ γ. For every α < α0, fix a pair aα ∈ A and bα ∈ B with
aα ↾ (α + 1) = bα ↾ (α + 1).

Claim 3. If α′ ≤ α < α0, then aα′ ↾ (α′ + 1) = aα ↾ (α′ + 1).

Proof. Assuming that for some β ≤ α′, aα′(β) ̸= aα(β), let β0 =
min{β ≤ α′ : aα′(β) ̸= aα(β)}. Note aα′ ↾ β0 = aα ↾ β0. When
aα′(β0) <Xβ0

aα(β0), we have bα′ <X aα, a contradiction. When
aα′(β0) >Xβ0

aα(β0), we have aα′ >X bα, a contradiction. □
Define y0 ∈

∏
α<α0

Xα by y0(α) = aα(α) for every α < α0. By the
claim above, we have y0 ↾ (α + 1) = aα ↾ (α + 1) = bα ↾ (α + 1) for
every α < α0. Let Y0 =

∏
α<α0

Xα and Y1 =
∏

α0≤α Xα.

Claim 4. 0 < α0 < γ.

Proof. If 0 /∈ K were true, then for every pair a ∈ A and b ∈ B,
a(0) ̸= b(0) holds. Let u0 = min{b(0) : b ∈ B} and b0 = ⟨u0⟩∧⟨minXα :
0 < α⟩. If b0 ∈ A were true, then by taking b ∈ B with b(0) = u0,
b0 ∈ A and b ∈ B witness 0 ∈ K, a contradiction. Therefore b0 ∈ B
and obviously b0 = minB, which contradicts this case. Therefore we
see 0 < α0.

Now assume α0 = γ, then y0 ∈ X = A ∪ B. First assume y0 ∈ A.
Since A has no max, take a ∈ A with y0 <X a and set β0 = min{β <
γ : y0(β) ̸= a(β)}. By β0 < γ = α0, we have y0 ↾ (β0 + 1) = aβ0 ↾
(β0 + 1) = bβ0 ↾ (β0 + 1). Now by y0 ↾ β0 = a ↾ β0 and y0(β0) < a(β0),
we have bβ0 <X a, a contradiction. Next assume y0 ∈ B. Since B ha no
min, take b ∈ B with b <X y0 and set β0 = min{β < γ : y0(β) ̸= b(β)}.
By a similar argument as above, we have b <X aβ0 , a contradiction. □

Let A0 = {a(α0) : a ∈ A, a ↾ α0 = y0}. Since A is a 0-segment of X,
it is easy to verify that A0 is also a 0-segment of Xα0 .

Claim 5. A0 = Xα0 and {b ∈ B : b ↾ α0 = y0} = ∅.

Proof. A0 ⊂ Xα0 is obvious. To see A0 ⊃ Xα0 , assume Xα0 \ A0 ̸= ∅.
Let u = min(Xα0 \ A0) and b = y0

∧⟨u⟩∧⟨minXα : α0 < α⟩. Then
by u /∈ A0, b ∈ B holds. Since B has no min, take b′ ∈ B with
b′ < b. Let β0 = min{β < γ : b′(β) ̸= b(β)}. Since b(α) = minXα for
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every α > α0, we have β0 ≤ α0, b
′ ↾ β0 = b ↾ β0 and b′(β0) < b(β0).

When β0 < α0, we have b′ < aβ0 , a contradiction. When β0 = α0, by
b′(α0) < u, there is a ∈ A with a ↾ α0 = y0 and b′(α0) = a(α0). Since
b′ ↾ (α0+1) = a ↾ (α0+1) holds, we have α0 ∈ K = α0, a contradiction.

If there is b ∈ B with b ↾ α0 = y0, then by b(α0) ∈ Xα0 = A0,
for some a ∈ A with a ↾ α0 = y0, a(α0) = b(α0) holds. This means
α0 ∈ K = α0, a contradiction. Thus {b ∈ B : b ↾ α0 = y0} = ∅. □

Claim 6. α0 is limit.

Proof. Assuming that α0 is not limit, let α0 = β + 1 for some β. Then
by β ∈ α0 = K, we have aβ ↾ (β + 1) = bβ ↾ (β + 1). It follows from
bβ(α0) ∈ A0 that for some a ∈ A with a ↾ α0 = y0, a(α0) = bβ(α0)
holds. Then we have a ↾ (α0+1) = bβ ↾ (α0+1), this means α0 ∈ K =
α0, a contradiction. □

Claim 7. A = {a ∈ X : a ↾ α0 ≤Y0 y0}.
Proof. “⊂”: Let a ∈ A. If a ↾ α0 > y0 were true, then by letting
β0 = min{β < α0 : a(β) ̸= y0(β)}, we see a > bβ0 , a contradiction.

“⊃”: Let a ∈ X with a ↾ α0 ≤ y0. When a ↾ α0 < y0, by letting
β0 = min{β < α0 : a(β) ̸= y0(β)}, we see a < aβ0 . Since A is a 0-
segment and aβ0 ∈ A, we have a ∈ A. When a ↾ α0 = y0, by Claim 5,
we see a ∈ A. □

Claim 8. Y1 has no max.

Proof. If Y1 has max y1, then by the claim above, y0
∧y1 is the maximal

element of A, a contradiction. □
Using Claim 8, let α1 = min{α ≥ α0 : Xα has no max.}. It follows

from α0 ≤ α1 and Claim 6, we see α1 ∈ J̃+. By the condition (b) in
(2), the 0-segment Xα1 is not stationary.

Claim 9. H = {x ∈ X : x ↾ α1 = y0
∧⟨maxXα : α0 ≤ α < α1⟩, x ↾

(α1, γ) = ⟨minXα : α1 < α < γ⟩} is 0-club in A.

Proof. This proof is similar to the proof of Claim 1 but somewhat
complicated, so we give its abstract proof. H ⊂ A is obvious.

First to see the unboundedness of H in A, let a ∈ A. Then a ↾
α1 ≤ y0

∧⟨maxXα : α0 ≤ α < α1⟩. When a ↾ α1 < y0
∧⟨maxXα :

α0 ≤ α < α1⟩, a < x holds for every x ∈ H. When a ↾ α1 =
y0

∧⟨maxXα : α0 ≤ α < α1⟩, pick u ∈ Xα1 with a(α1) < u. Then
we have a < y0

∧⟨maxXα : α0 ≤ α < α1⟩∧⟨u⟩∧⟨minXα : α1 < α⟩ ∈ H.
Next to see that H is 0-closed in A, let a ∈ A \ H, then a ↾ α1 ≤

y0
∧⟨maxXα : α0 ≤ α < α1⟩ as above. When a ↾ α1 < y0

∧⟨maxXα :
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α0 ≤ α < α1⟩, let β0 = min{α < α1 : a(α) ̸= (y0
∧⟨maxXα : α0 ≤ α <

α1⟩)(α)} and define y ∈ X by

y(α) =

{
(y0

∧⟨maxXα : α0 ≤ α < α1⟩)(α) if α ≤ β0,

minXα if α > β0,

for every α < γ. Then U = (←, y)X is a neighborhood of a disjoint
from H. When a ↾ α1 = y0

∧⟨maxXα : α0 ≤ α < α1⟩, by a /∈ H, there
is α < γ with α1 < α and minXα ̸= a(α). So let α2 = min{α > α1 :
minXα ̸= a(α)}. Note α1 < α2. Let for each α < γ,

y(α) =

{
a(α) if α < α2,

minXα if α ≥ α2,

Then U = (y,→)X is a neighborhood of a satisfying (U∩(←, a]X)∩H =
∅. □

Now take a club set C in κ with π[S∩C] ⊂ H and define σ : S∩C →
Xα1 by σ(β) = π(β)(α1) for every β ∈ S ∩ C. Also using a similar
argument with Claim 2, we see that σ is 0-order preserving unbounded
in Xα1 and continuous. This contradicts to the non-stationarity of the
0-segment of Xα1 . This completes Case 2.

Case 3. A ̸= X and X \ A has min.

Let B = X \ A and b = minB. Since A is non-empty closed and

B = [b,→)X , there is b∗ ∈ X̂ such that b∗ <X̂ b and (b∗, b)X̂ ∩X = ∅.
Because A has no max, we see b∗ /∈ X. Let α0 = min{α < γ : b∗(α) ̸=
b(α)}.

Claim 10. b(α) = minXα for every α > α0.

Proof. Otherwise, let α1 = min{α > α0 : b(α) > minXα}. Let b′ =
(b ↾ α1)

∧⟨minXα1⟩∧(b ↾ (α1, γ)). Then we have b′ ∈ (b∗, b)X̂ ∩ X, a
contradiction. □

Claim 11. (b∗(α0), b(α0))X∗
α0
∩Xα0 = ∅.

Proof. Otherwise, take u ∈ (b∗(α0), b(α0))X∗
α0
∩ Xα0 and let b′ = (b ↾

α0)
∧⟨u⟩∧(b ↾ (α0, γ)). Then we have b′ ∈ (b∗, b)X̂ ∩X, a contradiction.

□

Claim 11 says that [b(α0),→)Xα0
is open in Xα0 , that is, [b(α0),→

)Xα0
∈ τXα0

.

Claim 12. [b(α0),→)Xα0
/∈ λXα0

.
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Proof. Since Xα0 is dense in X∗
α0

and b∗(α0) ∈ (←, b(α0))X∗
α0
, we have

(←, b(α0))Xα0
̸= ∅. Assuming [b(α0),→)Xα0

∈ λXα0
, take u ∈ Xα0

such that u < b(α0) and (u, b(α0))Xα0
= ∅. Then u has to be b∗(α0),

therefore b∗(α0) = u ∈ Xα0 . Let α1 = min{α < γ : b∗(α) /∈ Xα}. Since
b∗ /∈ X, α1 is well-defined and α0 < α1. If (b

∗(α1),→)X∗
α1

= ∅ were true,
then we have b∗(α1) = maxX∗

α1
= maxXα1 ∈ Xα1 , a contradiction. So

taking v ∈ (b∗(α1),→)X∗
α1
∩Xα1 , let b

′ = (b∗ ↾ α1)
∧⟨v⟩∧⟨minXα : α1 <

α⟩. Then we have b′ ∈ (b∗, b)X̂ ∩X, a contradiction. □

It follows from Claims 11 and 12 that A0 = (←, b(α0))Xα0
is a

bounded closed 0-segment in Xα0 with no max. By the assumption
(a) in (2), A0 is not stationary. As in Claim 1 or 9, we see:

Claim 13. H = {x ∈ X : x ↾ α0 = b ↾ α0, x(α0) ∈ A0 and x ↾
(α0, γ) = ⟨minXα : α0 < α < γ⟩} is 0-club in A.

Now taking a club set C in κ with π[S ∩C] ⊂ H, let σ : S ∩C → A0

by σ(β) = π(β)(α0) for every β ∈ S ∩ C. By a similar argument
with Claim 2, we see that σ is 0-order preserving unbounded in A0

and continuous. This contradicts to the non-stationarity of A0. This
completes Case 3. □

Example 4.9. Using the theorem, about the following lexicographic
products, we see:

(1) ω2 × ωω
1 is paracompact, where ω2 × ωω

1 can be considered as
the lexicographic product

∏
n∈ω Xn with X0 = X1 = ω, X2 =

X3 = · · · = ω1, see [5],
(2) ωω

1 × ω2 not paracompact,
(3) ω × ωω

1 × ω2 is paracompact,
(4) ω × ωω+2

1 is not paracompact,
(5) (ω1 + 1)2 × ω × ωω

1 is paracompact,
(6) (ω1 + 1)2 × ωω

1 is not paracompact,
(7) ω2 × ωω

1 × (ω1 + 1)× ω1 is not paracompact,
(8) ω2 × ωω

1 × (ω1 + 1)× ω × ω1 is paracompact,
(9) Succ(ω1)

2 × ωω
1 × Succ(ω1)× ω1 is paracompact,

(10) when all Xα’s are uncountable subspaces of ω1, X =
∏

α<γ Xα

is paracompact iff Xα is non-stationary for every α < γ with
α = 0 or limit α,

(11) ω × ω1 × ω × ω1 × · · · is paracompact,
(12) ω1 × ω × ω1 × ω × · · · is not paracompact,
(13) (ω + 1)× ω1 × (ω + 1)× ω1 × · · · is not paracompact,
(14) ωω1+1 × ωω

1 is paracompact,
(15) ωω1 × ωω

1 is not paracompact,
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(16)
∏

α<ω ωα,
∏

α≤ω ωα and
∏

α<ω1
ωα are paracompact,

(17)
∏

α<ω ωα+1,
∏

α<ω1
ωα+1 and

∏
α≤ω1

ωα are not paracompact.
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