LEXICOGRAPHIC PRODUCTS OF GO-SPACES

NOBUYUKI KEMOTO

ABSTRACT. It is known that lexicographic products of paracompact LOTS’s are also paracompact, see [2]. In this paper, the notion of lexicographic products of GO-spaces is defined. We characterize when a lexicographic product of GO-spaces is a LOTS. Moreover, we show that lexicographic products of paracompact GO-spaces are also paracompact. For example, we see

\[\text{the lexicographic products } M \times \mathbb{P} \text{ and } S \times \{0,1\}_\mathbb{R} \text{ are LOTS}, \]

\[\text{but } \mathbb{P} \times M \text{ and } S \times \{0,1\}_\mathbb{R} \text{ are not LOTS's,} \]

\[\text{the lexicographic product } S^\gamma \text{ of the } \gamma \text{-many copies of } S \text{ is a LOTS iff } \gamma \text{ is a limit ordinal,} \]

\[\text{the lexicographic products } M \times \mathbb{P} \text{ and } \mathbb{P} \times M \text{ are paracompact,} \]

\[\text{the lexicographic product } S^\gamma \text{ is paracompact for every ordinal } \gamma, \]

where \(\mathbb{P}, M, S \) and \(\{0,1\}_\mathbb{R} \) denote the irrationals, the Michael line, the Sorgenfrey line and the interval \([0,1) \) in the reals \(\mathbb{R} \), respectively.

1. Introduction

We assume all topological spaces have cardinality at least 2.

A linearly ordered set \(\langle X, <_X \rangle \) (see [1]) has a natural \(T_2 \)-topology denoted by \(\lambda_X \) or \(\lambda(<_X) \) so called the interval topology which is the topology generated by \(\{(+_X, x) : x \in X\} \cup \{(+_X, \to_X) : x \in X\} \) as a subbase, where \((+_X, \to_X) = \{w \in X : x <_X w\}, (x, y)_X = \{w \in X : x <_X w \leq_X y\}, \ldots \) etc. Here \(w \leq_X x \) means \(w <_X x \) or \(w = x \). If the contexts are clear, we simply write \(< \) and \((x, y) \) instead of \(<_X \) and \((x, y)_X \) respectively. Note that this subbase induces a base by convex subsets (\(\text{e.g., the collection of all intersections of at most two members of this subbase} \)), where a subset \(B \) of \(X \) is convex if for every \(x, y \in B \) with \(x <_X y \), \([x,y]_X \subset B \) holds. The triple \(\langle X, <_X, \lambda_X \rangle \) is called a LOTS (\(\text{= Linearly Ordered Topological Space} \)) and simply denoted by LOTS \(X \). Observe that if \(x \in U \in \lambda_X \) and \((+_X, \neq) \neq \emptyset \), then there is

\[\text{Date: October 14, 2017.} \]

\[2010 \text{ Mathematics Subject Classification. Primary 54F05, 54B10, 54B05. Secondary 54C05.} \]

\[\text{Key words and phrases. lexicographic product, GO-space, LOTS, paracompact.} \]
Let \(y \in X \) such that \(y < x \) and \((y,x) \subseteq U \). Note that for every \(x \in X \), \((\leftarrow, x]\) \(\notin \lambda_X \) iff \((x, \rightarrow) \) is non-empty and has no minimum (briefly, min), also analogously \([x, \rightarrow) \) \(\notin \lambda_X \) iff \((\leftarrow, x] \) is non-empty and has no max.

Let

\[
X_R = \{ x \in X : (\leftarrow, x] \notin \lambda_X \} \quad \text{and} \quad X_L = \{ x \in X : [x, \rightarrow) \notin \lambda_X \}.
\]

Unless otherwise stated, the real line \(\mathbb{R} \) is considered as a linearly ordered set (hence LOTS) with the usual order, similarly so are the set \(\mathbb{Q} \) of rationals, the set \(\mathbb{P} \) of irrationals and an ordinal \(\alpha \).

A \textit{generalized ordered space} \((= \text{GO-space})\) is a triple \((X, <_X, \tau_X) \), where \(<_X \) is linear order on \(X \) and \(\tau_X \) is a \(T_2 \) topology on \(X \) which has a base consisting of convex sets, also simply denoted by GO-space \(X \). For LOTS’s and GO-spaces, see also the nice text book \([5]\). It is easy to verify that \(\tau_X \) is a GO-space.

Let \(X \) be a GO-space and \(\lambda_X \) the restricted order of \(X \). Then the GO-space \(X \) has max, in this case, \(\max X = \max X^* \).
Lexicographic Products of Go-Spaces

Note $\mathbb{S}^* = \mathbb{R} \times \{0\} \cup \mathbb{R} \times \{1\}$ with the identification $\mathbb{S} = \mathbb{R} \times \{0\}$ and $\mathbb{M}^* = \mathbb{P} \times \{-1\} \cup \mathbb{R} \times \{0\} \cup \mathbb{P} \times \{1\}$ with the identification $\mathbb{M} = \mathbb{R} \times \{0\}$.

Definition 1.1. Let X_α be a LOTS for every $\alpha < \gamma$ and $X = \prod_{\alpha < \gamma} X_\alpha$, where γ is an ordinal. When $\gamma = 0$, we consider as $\prod_{\alpha < \gamma} X_\alpha = \{\emptyset\}$, which is a trivial LOTS, for notational conveniences. When $\gamma > 0$, every element $x \in X$ is identified with the sequence $\langle x(\alpha) : \alpha < \gamma \rangle$. Recall that the lexicographic order $<_X$ on X is defined as follows: for $x, x' \in X$,

$$x <_X x' \text{ iff for some } \alpha < \gamma, x \upharpoonright \alpha = x' \upharpoonright \alpha \text{ and } x(\alpha) < x'(\alpha),$$

where $x \upharpoonright \alpha = \langle x(\beta) : \beta < \alpha \rangle$. Then $X = \langle X, <_X, \lambda_X \rangle$ is a LOTS and called the lexicographic product of LOTS’s X_α’s.

Now let X_α be a GO-space for every $\alpha < \gamma$ and $X = \prod_{\alpha < \gamma} X_\alpha$. Then the lexicographic product $\hat{X} = \prod_{\alpha < \gamma} X_\alpha^*$, which is a LOTS, can be defined. The lexicographic product of GO-spaces X_α’s is the GO-space $\langle X, <_X \upharpoonright X, \lambda_X \upharpoonright X \rangle$. Obviously this definition extends the lexicographic product of LOTS’s, and is reasonable because each X_α^* is the smallest LOTS which contains X_α as a dense subspace, see [4]. When $n \in \omega$, then $\prod_{\alpha < n} X_\alpha$ is denoted by $X_0 \times \cdots \times X_{n-1}$. If all X_α’s are X, then $\prod_{\alpha < \gamma} X_\alpha$ is denoted by X^γ.

Let X and Y be LOTS’s. A map $f : X \to Y$ is said to be 0-order preserving if $f(x) <_Y f(x')$ whenever $x <_X x'$. Similarly a map $f : X \to Y$ is said to be 1-order preserving if $f(x) >_Y f(x')$ whenever $x <_X x'$. Obviously a 0-order preserving map $f : X \to Y$ between LOTS’s X and Y, which is onto, is a homeomorphism, i.e., both f and f^{-1} are continuous. But when $X = \mathbb{S}$ and $Y = \mathbb{M}$, the identity map is 0-order preserving onto but not a homeomorphism.

So now let X and Y be GO-spaces. A 0-order preserving map $f : X \to Y$ is said to be embedding if f is a homeomorphism between X and $f[X]$, where $f[X]$ is the subspace of the GO-space Y. In this case, we can identify X with $f[X]$ as a GO-space. In the definition of X^*, the map $f : X \to X \times \{0\} \subset X^*$ defined by $f(x) = \langle x, 0 \rangle$ is a 0-order preserving embedding, so we have identified as $X \times \{0\} = X$.

In the rest of this section, we prepare basic tools to handle the lexicographic products of GO-spaces.

Lemma 1.2. Let $X = \prod_{\alpha < \gamma} X_\alpha$ be a lexicographic product of GO-spaces and $x \in X$. The following are equivalent:

1. $x \in X^+$,
2. there is $\alpha_0 < \gamma$ such that:
(i) \(x(\alpha_0) \in X^+_{\alpha_0} \),
(ii) for every \(\alpha < \gamma \) with \(\alpha_0 < \alpha \), \(X_\alpha \) has max and \(x(\alpha) = \max X_\alpha \).

Proof. Let \(\hat{X} = \prod_{\alpha < \gamma} X^*_\alpha \) be the lexicographic product.

(1) \(\Rightarrow \) (2): Assume \(x \in X^+ \). Because of \((\leftarrow, x)_X \notin \lambda_X, (x, \rightarrow)_X \) is non-empty and has no min. By \((\leftarrow, x)_X \in \tau_X = \lambda_x \upharpoonright X \), there is \(y \in \hat{X} \) with \(x <_X y \) such that \((\leftarrow, x)_X \supseteq [x, y)_X \cap X \), that is, \((x, y)_X = \emptyset \). Since \((x, \rightarrow)_X \) has no min, we have \(y \in \hat{X} \setminus X \). Let \(\alpha_0 = \min \{ \alpha < \gamma : x(\alpha) \neq y(\alpha) \} \). Then we have \(x \upharpoonright \alpha_0 = y \upharpoonright \alpha_0 \) and \(x(\alpha_0) <_{X^*_\alpha_0} y(\alpha_0) \). Since \(X_{\alpha_0} \) is dense in \(X^*_\alpha_0 \), \((x(\alpha_0), \rightarrow)_{X_{\alpha_0}} \) is non-empty.

Claim 1. For every \(\alpha < \gamma \) with \(\alpha_0 < \alpha \), \(X_\alpha \) has max and \(x(\alpha) = \max X_\alpha \).

Proof. First assume that for some \(\alpha < \gamma \) with \(\alpha_0 < \alpha \), \(X_\alpha \) has no max. Then we can take \(v \in X_\alpha \) with \(x(\alpha) <_{X_\alpha} v \). Set \(x' = (x \upharpoonright \alpha) \wedge (v \upharpoonright (\alpha, \gamma)) \), that is,

\[
x'(\beta) = \begin{cases}
 x(\beta) & \text{if } \beta < \alpha, \\
 v & \text{if } \beta = \alpha, \\
 x(\beta) & \text{if } \alpha < \beta < \gamma.
\end{cases}
\]

Then \(x' \in (x, y)_X \cap X \), a contradiction. Therefore for every \(\alpha < \gamma \) with \(\alpha_0 < \alpha \), \(\max X_\alpha \) exists.

Next assume that for some \(\alpha < \gamma \) with \(\alpha_0 < \alpha \), \(x(\alpha) <_{X_\alpha} \max X_\alpha \) holds. Then \((x \upharpoonright \alpha) \wedge (\max X_\alpha) \wedge (x \upharpoonright (\alpha, \gamma)) \in (x, y)_X \cap X \), a contradiction. \(\square \)

Claim 2. \((x(\alpha_0), y(\alpha_0))_{X_{\alpha_0}} = \emptyset \), therefore \((\leftarrow, x(\alpha_0))_{X_{\alpha_0}} \in \tau_{X_{\alpha_0}} \).

Proof. Assume \((x(\alpha_0), y(\alpha_0))_{X_{\alpha_0}} \neq \emptyset \). Since \(X_{\alpha_0} \) is dense in \(X^*_\alpha_0 \), take \(v \in (x(\alpha_0), y(\alpha_0))_{X_{\alpha_0}} \cap X_{\alpha_0} \). Then \((x \upharpoonright \alpha_0) \wedge (v \wedge (x \upharpoonright (\alpha_0, \gamma))) \in (x, y)_X \cap X \), a contradiction. \(\square \)

The following claim shows \(x(\alpha_0) \in X^+_{\alpha_0} \).

Claim 3. \((\leftarrow, x(\alpha_0))_{X_{\alpha_0}} \notin \lambda_{X_{\alpha_0}} \).

Proof. Since \(x(\alpha_0) <_{X_{\alpha_0}} y(\alpha_0) \) and \(X_{\alpha_0} \) is dense in \(X^*_\alpha_0 \), we have \((x(\alpha_0), \rightarrow)_{X_{\alpha_0}} \neq \emptyset \). Assume \((\leftarrow, x(\alpha_0))_{X_{\alpha_0}} \in \lambda_{X_{\alpha_0}} \), then there is \(v \in X_{\alpha_0} \) such that \(x(\alpha_0) <_{X_{\alpha_0}} v \) and \((x(\alpha_0), v)_{X_{\alpha_0}} = \emptyset \). Since \((x(\alpha_0), v)_{X_{\alpha_0}} = \emptyset \), we have \(v = y(\alpha_0) \), thus \(y(x_0) \in X_{\alpha_0} \). Let \(\alpha_1 = \min \{ \alpha < \gamma : y(\alpha) \notin X_\alpha \} \). Because of \(y \notin Y \) and the definition of \(y \), we have \(\alpha_0 < \alpha_1 \). If
Assume $\langle x, v \rangle$ were empty, then $y(\alpha_1) = \min X_{\alpha_1}^* = \min X_{\alpha_1} \in X_{\alpha_1}$, a contradiction. Therefore we can take $v' \in (\langle - , y(\alpha_1) \rangle)_{X_{\alpha_1}^*} \cap X_{\alpha_1}$. Then $(y \uparrow \alpha_1)^\wedge (v' \wedge (x \uparrow (\alpha_1, \gamma))) \in (x, y, x, y)_{\check{X}} \cap X$, a contradiction.

$(2) \Rightarrow (1)$: Assume (2). By (i), we can take $v \in X_{\alpha_0}^* \setminus X_{\alpha_0}$ such that $x(\alpha_0) \prec X_{\alpha_0}^* v$ and $(x(\alpha_0), v)'_{X_{\alpha_0}^*} = \emptyset$. Let $y = (x \uparrow \alpha_1)^\wedge (v' \wedge (x \uparrow (\alpha_1, \gamma)))$. Then we have $x < \check{X} y \in \check{X} \setminus X$ and $(x, \rightarrow)_X \neq \emptyset$. Obviously $(x, y)_{\check{X}} = \emptyset$ holds. Thus $(\langle - , x \rangle)_X = (\langle - , y \rangle)_{\check{X}} \cap X \subseteq \lambda_{\check{X}} \uparrow X = \tau_X$. The following Claim completes the proof.

Claim 4. $(\langle - , x \rangle)_X \notin \lambda_X$.

Proof. Assume $(\langle - , x \rangle)_X \in \lambda_X$. It follows from $(x, \rightarrow)_X \neq \emptyset$ that for some $x' \in X$ with $x < x', (x, x')_X = \emptyset$ holds. Let $\alpha_1 = \min \{ \alpha < \gamma : x'(\alpha) \neq x(\alpha) \}$. Then by $x(\alpha_1) \prec X_{\alpha_1}^* x'(\alpha_1)$, we have $\alpha_1 \leq \alpha_0$. Since $v \in (x(\alpha_0), \rightarrow)_{X_{\alpha_0}^*}$, we can take $u \in (x(\alpha_0), \rightarrow)_{X_{\alpha_0}^*}$. If $\alpha_1 < \alpha_0$ were true, then $(x \uparrow \alpha_0)^\wedge (u\wedge (x \uparrow (\alpha_0, \gamma))) \in (x, x')_X$, a contradiction. Thus we have $\alpha_1 = \alpha_0$.

Now by $(x(\alpha_0), v)'_{X_{\alpha_0}^*} = \emptyset$, we also have $v < X_{\alpha_0}^* x'(\alpha_0)$ moreover $(v, x'(\alpha_0))_{X_{\alpha_0}^*} \neq \emptyset$ (otherwise, v is an isolated point in $X_{\alpha_0}^*$ and $v \notin X_{\alpha_0}$, a contradiction). Taking $w \in (v, x'(\alpha_0))_{X_{\alpha_0}^*} \cap X_{\alpha_0}$, we have $(x \uparrow \alpha_0)^\wedge (w\wedge (x \uparrow (\alpha_0, \gamma))) \in (x, x')_X$, a contradiction. \square

Similarly, we have an analogous result:

Lemma 1.3. Let $X = \prod_{\alpha < \gamma} X_{\alpha}$ be a lexicographic product of GO-spaces and $x \in X$. The following are equivalent:

1. $x \in X^-$,
2. there is $\alpha_0 < \gamma$ such that:
 1. $x(\alpha_0) \in X_{\alpha_0}^-$,
 2. for every $\alpha < \gamma$ with $\alpha_0 < \alpha$, X_{α} has min and $x(\alpha) = \min X_{\alpha}$.

From now on, we do not write down such an analogous result, we refer, for instance, Lemma 1.3 as the analogous result of Lemma 1.2.

Corollary 1.4. Let $X = \prod_{\alpha < \gamma} X_{\alpha}$ be a lexicographic product of GO-spaces. If $X_{\alpha}^+ = \emptyset$ for every $\alpha < \gamma$, then $X^+ = \emptyset$.

This corollary with the analogous result also shows that lexicographic products of LOTS’s are LOTS’s. However, lexicographic products of GO-spaces, some of which are not LOTS’s, can be LOTS’s. This fact will be discussed in the next section.
Now, let \(X = \prod_{\alpha < \gamma} X_{\alpha} \) be a lexicographic product of LOTS’s and \(\delta < \gamma \). For \(x \in X \), the correspondence \(x \rightarrow (x \upharpoonright \delta, x \upharpoonright [\delta, \gamma)) \) defines a 0-order preserving onto map from \(X \) to \((\prod_{\alpha < \delta} X_{\alpha}) \times (\prod_{\delta \leq \alpha < \gamma} X_{\alpha}) \), which is a lexicographic product of two lexicographic products. So they are topologically homeomorphic, thus we can identify \(\prod_{\alpha < \gamma} X_{\alpha} \) with \((\prod_{\alpha < \delta} X_{\alpha}) \times (\prod_{\delta \leq \alpha < \gamma} X_{\alpha}) \) as a LOTS whenever \(X_{\alpha} \)'s are LOTS’s, see [2].

Next, let \(X = \prod_{\alpha < \gamma} X_{\alpha} \) be a lexicographic product of GO-spaces and \(\delta < \gamma \). The correspondence above also defines a 0-order preserving onto map from \(X \) to \((\prod_{\alpha < \delta} X_{\alpha}) \times (\prod_{\delta \leq \alpha < \gamma} X_{\alpha}) \). Is this map a homeomorphism between them? We show in the next lemma that the answer is positive, while the proof is not so trivial. It will be a key tool through the theory.

Lemma 1.5. Let \(X = \prod_{\alpha < \gamma} X_{\alpha} \) be a lexicographic product of GO-spaces and \(\delta < \gamma \). The correspondence \(x \rightarrow (x \upharpoonright \delta, x \upharpoonright [\delta, \gamma)) \) is a homeomorphism. So we can identify \(\prod_{\alpha < \gamma} X_{\alpha} \) with \((\prod_{\alpha < \delta} X_{\alpha}) \times (\prod_{\delta \leq \alpha < \gamma} X_{\alpha}) \) as a GO-space.

Proof. Let \(Y_{0} = \prod_{\alpha < \delta} X_{\alpha} \) and \(Y_{1} = \prod_{\delta \leq \alpha < \gamma} X_{\alpha} \). We may identify the correspondence as \(x = (x \upharpoonright \delta, x \upharpoonright [\delta, \gamma)) \) for every \(x \in X \). By this identification, the order \(<_{X} \) coincides with the order \(<_{Y_{0} \times Y_{1}} \), where \(Y_{0} \times Y_{1} \) is the lexicographic product of the GO-spaces \(Y_{0} \) and \(Y_{1} \). It suffices to see \(\tau_{X} = \tau_{Y_{0} \times Y_{1}} \). Note that \(\tau_{X} = \lambda_{X} \upharpoonright X, \tau_{Y_{0}} = \lambda_{Y_{0}} \upharpoonright Y_{0}, \tau_{Y_{1}} = \lambda_{Y_{1}} \upharpoonright Y_{1} \) and \(\tau_{Y_{0} \times Y_{1}} = \lambda_{Y_{0} \times Y_{1}}^{*} \upharpoonright Y_{0} \times Y_{1} \) hold, where \(\hat{X} = \prod_{\alpha < \gamma} X_{\alpha}^{*}, \hat{Y}_{0} = \prod_{\alpha < \delta} X_{\alpha}^{*} \) and \(\hat{Y}_{1} = \prod_{\delta \leq \alpha < \gamma} X_{\alpha}^{*} \).

Claim 1. \(\tau_{X} \subseteq \tau_{Y_{0} \times Y_{1}} \).

Proof. It suffices to show that the subbase \(\{(\leftarrow, x)_{X} : x \in X\} \cup \{(x, \rightarrow)_{X} : x \in X\} \cup \{(\leftarrow, x)_{X} : x \in X^{+}\} \cup \{(x, \rightarrow)_{X} : x \in X^{-}\} \) is contained in \(\tau_{Y_{0} \times Y_{1}} \). Note under the identification, \((\leftarrow, x)_{X} = (\leftarrow, x)_{Y_{0} \times Y_{1}}, (\leftarrow, x)_{X} = (\leftarrow, x)_{Y_{0} \times Y_{1}}, \ldots \), etc hold. Therefore, it only suffices to prove the following fact:

Fact. If \(x \in X^{+} (x \in X^{-}) \), then \((\leftarrow, x)_{X} \in \tau_{Y_{0} \times Y_{1}} ([x, \rightarrow)_{X} \in \tau_{Y_{0} \times Y_{1}} \) respectively.

Proof. Let \(x \in X^{+} \). By Lemma 1.3, take \(\alpha_{0} < \gamma \) such that \(x(\alpha_{0}) \in X_{\alpha_{0}}^{+} \), and for every \(\alpha < \gamma \) with \(\alpha_{0} < \alpha \), \(x(\alpha) = \max X_{\alpha} = \max X_{\alpha}^{*} \) holds. We consider two cases.

Case 1. \(\alpha_{0} < \delta \).

In this case, again applying Lemma 1.2 to \(x \upharpoonright \delta \in Y_{0} \), we see \(x \upharpoonright \delta \in Y_{0}^{+} \). Therefore there is \(y_{0} \in Y_{0}^{*} \setminus Y_{0} \) such that \(x \upharpoonright \delta <_{Y_{0}^{*}} y_{0} \) and
As in Claim 1, it suffices to see that if \((x \upharpoonright \delta, y_0)_{Y_0^*} = \emptyset\), that is, \(y_0 = \langle x \upharpoonright \delta, 1 \rangle\). Let \(z = y_0 \wedge (x \upharpoonright [\delta, \gamma])\), then \(z \in Y_0^* \times Y_1 \subset Y_0^* \times Y_1^*\). Assume that there is an element \(u \in (x, z)Y_0^* \times Y_1^* \cap Y_0 \times Y_1\). Then we have \(x \upharpoonright \delta \leq Y_0 u \upharpoonright \delta\). If \(x \upharpoonright \delta = u \upharpoonright \delta\) were true, then \(x \upharpoonright [\delta, \gamma) < Y_1 u \upharpoonright [\delta, \gamma)\) has to be true. But this is a contradiction, because of \(x(\beta) = \max X_\beta\) for all \(\beta \geq \delta\). Therefore we have \(x \upharpoonright \delta < Y_0 u \upharpoonright \delta\). Since \(y_0 \notin Y_0\) and \((x \upharpoonright \delta, y_0)_{Y_0^*} = \emptyset\), we see \(z \upharpoonright \delta = y_0 < Y_1^* u \upharpoonright \delta\). Thus we have \(z < Y_0^* \times Y_1^*, z\) which contradicts \(u < Y_0^* \times Y_1^* z\), so we have seen \((x, z)_{Y_0^* \times Y_1^*} \cap (Y_0 \times Y_1) = \emptyset\). This shows \((\leftarrow, x)_{Y_0 \times Y_1} = (\leftarrow, z)_{Y_0^* \times Y_1^*} \cap Y_0 \times Y_1 \in \lambda_{Y_0^* \times Y_1^*} [\tau_{Y_0^* \times Y_1^*}] Y_0 \times Y_1 = \tau_{Y_0 \times Y_1}^\times\).

Case 2. \(\delta \leq \alpha_0\).

Applying Lemma 1.2 to \(Y_1\), we see \(x \upharpoonright [\delta, \gamma) \in Y_1^+\). Therefore, there is \(y_1 \in Y_1^* \setminus Y_1\) such that \(x \upharpoonright [\delta, \gamma) < Y_1^* y_1\) and \((x \upharpoonright [\delta, \gamma), y_1)_{Y_1^*} = \emptyset\). Then by \((x, x \upharpoonright \delta)^\wedge y_1)_{Y_0^* \times Y_1^*} = \emptyset\), we have \((\leftarrow, x)_{Y_0 \times Y_1} = (\leftarrow, z)_{Y_0^* \times Y_1^*} \cap Y_0 \times Y_1 \in \tau_{Y_0 \times Y_1}^\times\).

This completes the proof of Claim 1.

Claim 2. \(\tau_X \supset \tau_{Y_0 \times Y_1}^\times\).

Proof. As in Claim 1, it suffices to see that if \(x \in (Y_0 \times Y_1)^+ (x \in (Y_0 \times Y_1)^-\), then \((\leftarrow, x)_{Y_0 \times Y_1} \in \tau_X ((x, \rightarrow)_{Y_0 \times Y_1} \in \tau_X\), respectively. Let \(x \in (Y_0 \times Y_1)^\pm\), say \(x_0 = x \upharpoonright \delta\) and \(x_1 = x \upharpoonright [\delta, \gamma)\). Apply Lemma 1.2 to \(x \in (Y_0 \times Y_1)^\pm\), we can find \(i_0 < 2\), where \(2 := \{0, 1\}\), such that \(x_{i_0} \in Y_{i_0}^+\) and for every \(i < 2\) with \(i_0 < i\), \(x_i = \max Y_i (= \max Y_i^*)\) holds.

Case 1. \(i_0 = 0\).

It follows from \(x_0 \in Y_0^+\) that for some \(z_0 \in Y_0^* \setminus Y_0\) with \(x_0 \leq_{Y_0^*} z_0\), \((x_0, z_0)_{Y_0^*} \) is empty. By \(x \upharpoonright [\delta, \gamma) = x_1 = \max Y_1\), we have \(x(\alpha) = \max X_\alpha\) for every \(\alpha < \gamma\) with \(\delta \leq \alpha\). It follows from \(\lambda_{Y_1^*} \upharpoonright \delta = Y_0 = \lambda_{Y_0^*} \upharpoonright \delta = x_0 \in Y_0^+\), applying Lemma 1.2, that for some \(\alpha_0 < \delta\), \(x(\alpha_0) \in X_{\alpha_0}^+\) and for every \(\alpha < \delta\) with \(\alpha_0 < \alpha\), \(x(\alpha) = \max X_\alpha\) hold. Since \(x(\alpha_0) \in X_{\alpha_0}^+\) and for every \(\alpha < \gamma\) with \(\alpha_0 < \alpha\), \(x(\alpha) = \max X_\alpha\) hold, applying Lemma 1.2 again, we have \(x \in X^+\). Thus we have \((\leftarrow, x)_{Y_0 \times Y_1} = (\leftarrow, x)_{X^+} \in \tau_X^\times\).

Case 2. \(i_0 = 1\).

In this case, \(x \upharpoonright [\delta, \gamma) = x_1 \in Y_1^+\). So applying Lemma 1.2, there is \(\alpha_0 < \gamma\) with \(\delta \leq \alpha_0\) such that \(x(\alpha_0) \in X_{\alpha_0}^+\) and for every \(\alpha < \gamma\) with \(\alpha_0 < \alpha\), \(x(\alpha) = \max X_\alpha\) holds. Again by Lemma 1.2, we have \((\leftarrow, x)_{Y_0 \times Y_1} = (\leftarrow, x)_{X} \in \tau_X^\times\).

The remaining case is similar. \(\square\)
This completes the proof of the lemma. □

2. When are lexicographic products of GO-spaces LOTS’s?

It is easy to verify that the lexicographic product \(S \times \mathbb{R} \) is a LOTS, while \(S \) is not a LOTS. In this section, we characterize when lexicographic products of GO-spaces are LOTS’s. Using Lemma 1.2, the following is easy to prove.

Lemma 2.1. Let \(X = X_0 \times X_1 \) be a lexicographic product of GO-spaces. Then the following are equivalent:

1. \(X^+ = \emptyset \) (\(X^- = \emptyset \)),
2. (i) if \(X_1 \) has max (min), then \(X_0^+ = \emptyset \) (\(X_0^- = \emptyset \)),
 (ii) \(X_1^+ = \emptyset \) (\(X_1^- = \emptyset \)).

The previous lemma shows:

Lemma 2.2. Let \(X = X_0 \times X_1 \) be a lexicographic product of GO-spaces. Then the following are equivalent:

1. \(X \) is a LOTS,
2. (i) if \(X_1 \) has max, then \(X_0^+ = \emptyset \),
 (ii) if \(X_1 \) has min, then \(X_0^- = \emptyset \),
 (iii) \(X_1 \) is a LOTS.

Corollary 2.3. Let \(X = X_0 \times X_1 \) be a lexicographic product of GO-spaces. Then:

1. if \(X_1 \) has neither min nor max, then \(X \) is a LOTS iff \(X_1 \) is a LOTS,
2. if \(X_1 \) has min (max) but has no max (min), then \(X \) is a LOTS iff \(X_0 = \emptyset \) (\(X_0^- = \emptyset \)) and \(X_1 \) is a LOTS,
3. if \(X_1 \) has both min and max, then \(X \) is a LOTS iff both \(X_0 \) and \(X_1 \) are LOTS’s.

Example 2.4. \(S \times \mathbb{R} \), \(S \times [0, 1] \), \(M \times P \) are LOTS’s. But \(\mathbb{R} \times S \), \(S \times (0, 1] \), \(S \times \{0, 1\} \), \(S \times [0, 1] \), \(S^2 \), \(P \times M \) are not LOTS’s.

More generally we have:

Theorem 2.5. Let \(X = \prod_{\alpha < \gamma} X_\alpha \) be a lexicographic product of GO-spaces. Let \(J^+ = \{ \alpha < \gamma : X_\alpha \) has no max.\} \ and \(J^- = \{ \alpha < \gamma : X_\alpha \) has no min.\}. Then the following are equivalent:

1. \(X^+ = \emptyset \) (\(X^- = \emptyset \)),
2. for every \(\alpha < \gamma \) with sup \(J^+ \leq \alpha \) (sup \(J^- \leq \alpha \), \(X_\alpha^+ = \emptyset \) (\(X_\alpha^- = \emptyset \)) holds.
Proof. Let $\alpha_0 = \sup J^+$. Note $\alpha_0 \leq \gamma$.

(1) \Rightarrow (2): Let $X^+ = \emptyset$ and $\alpha_0 \leq \beta < \gamma$. Since $X = \prod_{\alpha \leq \beta} X_\alpha \times \prod_{\beta < \alpha < \gamma} X_\alpha$ and $\prod_{\beta < \alpha < \gamma} X_\alpha$ has max, by Lemma 2.1, $(\prod_{\alpha \leq \beta} X_\alpha)^+ = \emptyset$ holds. Moreover by $\prod_{\alpha \leq \beta} X_\alpha = \prod_{\alpha < \beta} X_\alpha \times X_\beta$, again by Lemma 2.1, we have $X^+_\beta = \emptyset$.

(2) \Rightarrow (1): Assume that $X^+_\alpha = \emptyset$ for every $\alpha < \gamma$ with $\alpha_0 < \alpha$. If $\alpha_0 = 0$, then by Cororally 1.4, we have $X^+ = \emptyset$. So we assume $\alpha_0 > 0$.

Case 1. $\alpha_0 \in J^+$.

In this case, $\alpha_0 = \max J^+ < \gamma$. Since $\prod_{\alpha < \alpha_0} X_\alpha = \prod_{\alpha < \alpha_0} X_\alpha \times X_{\alpha_0}$, X_{α_0} has no max and $X^+_{\alpha_0} = \emptyset$, by Lemma 2.1, $(\prod_{\alpha_0 < \alpha < \gamma} X_\alpha)^+$ is empty. It follows from Corollary 1.4 that $(\prod_{\alpha_0 < \alpha < \gamma} X_\alpha)^+$ is also empty. Because of $X = \prod_{\alpha < \alpha_0} X_\alpha \times \prod_{\alpha_0 < \alpha < \gamma} X_\alpha$, by the same corollary, we have $X^+ = \emptyset$.

Case 2. $\alpha_0 \notin J^+$.

In this case, α_0 is a limit ordinal with $\alpha_0 \leq \gamma$.

Claim. $(\prod_{\alpha < \alpha_0} X_\alpha)^+ = \emptyset$.

Proof. If there were $x \in (\prod_{\alpha < \alpha_0} X_\alpha)^+$, then by Lemma 1.2, there is some $\alpha_1 < \alpha_0$ such that for every $\alpha < \alpha_0$ with $\alpha_1 < \alpha$, max X_α exists. This means sup $J^+ \leq \alpha_1 < \alpha_0$, a contradiction. \square

By $X = \prod_{\alpha < \alpha_0} X_\alpha \times \prod_{\alpha_0 \leq \alpha < \gamma} X_\alpha$ and the assumption $(\prod_{\alpha_0 \leq \alpha < \gamma} X_\alpha)^+ = \emptyset$, we have $X^+ = \emptyset$.

The remaining is similar. \square

Corollary 2.6. Under the same assumption of Theorem 2.5, X is a LOTS if and only if the following hold:

1. for every $\alpha < \gamma$ with sup $J^+ \leq \alpha$, $X^+_\alpha = \emptyset$ holds,
2. for every $\alpha < \gamma$ with sup $J^- \leq \alpha$, $X^-_\alpha = \emptyset$ holds,

Corollary 2.7. Let $X = \prod_{\alpha \leq \gamma} X_\alpha$ be a lexicographic product of GO-spaces. Assume that X_γ has neither min nor max. Then X is a LOTS if and only if X_γ is a LOTS. In particular, $\prod_{\alpha < \gamma} X_\alpha \times \mathbb{R}$ is a LOTS.

Above two corollaries show:

Corollary 2.8. For every non-zero ordinal γ, S^γ is a LOTS if and only if γ is limit.
3. WHEN IS $\prod_{\alpha<\gamma} X_{\alpha}$ DENSE IN $\prod_{\alpha<\gamma} X_{\alpha}^*$?

A GO-space X is dense in the LOTS X^*, but generally a lexicographic product $X_0 \times X_1$ of GO-spaces need not be dense in $X_0^* \times X_1^*$. For instance, let $X_0 = [0, 1]_\mathbb{R} \cup [2, 3]_\mathbb{R}$ be the subspace of \mathbb{R} and $X_1 = [0, 1]_\mathbb{R}$. Then X_0^* can be considered as the subspace $[0, 1]_\mathbb{R} \cup [2, 3]_\mathbb{R}$ of \mathbb{R} and obviously $X_1^* = X_1$. Now $(1, 0), (1, 1) \in X_0^* \times X_1^*$ is non-empty open in $X_0^* \times X_1^*$ but disjoint from $X_0 \times X_1$.

First we consider a special case.

Lemma 3.1. Let $X = X_0 \times X_1$ be a lexicographic product of GO-spaces and let $\tilde{x} = X_0^* \times X_1^*$. If X_0 is a LOTS, then X is dense in \tilde{x}.

Proof. Let X_0 be a LOTS. First we prove:

Claim 1. If $x \in \tilde{x}$ and $(x, \to)_{\tilde{x}} \neq \emptyset$, then $(x, \to)_{\tilde{x}} \cap X \neq \emptyset$.

Proof. If $(x(0), \to)_{X_0^*} \neq \emptyset$, then pick $u \in (x(0), \to)_{X_0^*} \cap X_0$ and $v \in X_1$. Then $\langle u, v \rangle \in (x, \to)_{\tilde{x}} \cap X$. So let $\langle x(0), \to \rangle_{X_0^*} = \emptyset$, that is, $x(0) = \max X_0$. Take $y \in (x, \to)_{\tilde{x}}$. Then $x(0) = y(0)$ and $y(1) \in (x(1), \to)_{X_1^*}$. Since X_1 is dense in X_1^*, we can find $v \in (x(1), \to)_{X_1^*} \cap X_1$. Now we have $\langle x(0), v \rangle \in (x, \to)_{\tilde{x}} \cap X$.\hfill \Box

Analogously, we can prove:

Claim 2. If $x \in \tilde{x}$ and $(\leftarrow, x)_{\tilde{x}} \neq \emptyset$, then $(\leftarrow, x)_{\tilde{x}} \cap X \neq \emptyset$.

These two claims with the following claim complete the proof.

Claim 3. If $x, x' \in \tilde{x}$, $x < x'$ and $(x, x')_{\tilde{x}} \neq \emptyset$, then $(x, x')_{\tilde{x}} \cap X \neq \emptyset$.

Proof. Let $x, x' \in \tilde{x}$, $x < x'$ and $(x, x')_{\tilde{x}} \neq \emptyset$. Since X_0 is a LOTS, that is $X_0 = X_0^*$, we have $x(0), x'(0) \in X_0$.

Case 1. $x(0) = x'(0)$.

In this case, take $y \in (x, x')_{\tilde{x}}$. Then we have $x(0) = x'(0) = y(0)$ and $y(1) \in (x(1), x'(1))_{X_1^*}$. Since X_1 is dense in X_1^*, there is $v \in (x(1), x'(1))_{X_1^*} \cap X_1$. Now $\langle x(0), v \rangle \in (x, x')_{\tilde{x}} \cap X$.

Case 2. $x(0) < x'(0)$.

First assume $(x(0), x'(0))_{X_0} \neq \emptyset$. In this case, pick $u \in (x(0), x'(0))_{X_0}$ and $v \in X_1$. Then $\langle u, v \rangle \in (x, x')_{\tilde{x}} \cap X$.

Next assume $(x(0), x'(0))_{X_0} = \emptyset$. Since $(x, x')_{\tilde{x}} \neq \emptyset$, we have either $(x(1), \to)_{X_1^*} \neq \emptyset$ or $(\leftarrow, x'(1))_{X_1^*} \neq \emptyset$. In the case $(x(1), \to)_{X_1^*} \neq \emptyset$, taking $v \in (x(1), \to)_{X_1^*} \cap X_1$, we see $\langle x(0), v \rangle \in (x, x')_{\tilde{x}} \cap X$. In the case $(\leftarrow, x'(1))_{X_1^*} \neq \emptyset$, taking $v \in (\leftarrow, x'(1))_{X_1^*} \cap X_1$, we see $\langle x'(0), v \rangle \in (x, x')_{\tilde{x}} \cap X$.\hfill \Box
Theorem 3.2. Let \(X = \prod_{\alpha < \gamma} X_\alpha \) be a lexicographic product of GO-spaces. Then \(X \) is dense in \(\hat{X} = \prod_{\alpha < \gamma} X_\alpha^* \) if and only if for every \(\alpha < \gamma \) with \(\alpha + 1 < \gamma \), \(X_\alpha \) is a LOTS.

Proof. First assume that \(X \) is dense in \(\hat{X} \) and there is \(\alpha_0 < \gamma \) with \(\alpha_0 + 1 < \gamma \) such that \(X_{\alpha_0} \) is not a LOTS. We may assume \(X_{\alpha_0} \neq \emptyset \), so fix \(u \in X_{\alpha_0}^+ \) and take \(u' \in X_{\alpha_0}^+ \setminus X_{\alpha_0} \) such that \(u <_{X_{\alpha_0}^*} u' \) and \((u, u')_{X_{\alpha_0}^*} = \emptyset \). Fix \(x \in X \).

Case 1. \(|\prod_{\alpha_0 < \alpha < \gamma} X_\alpha| > 2 \).

Take \(v_0, v_1, v_2 \in \prod_{\alpha_0 < \alpha < \gamma} X_\alpha \) with \(v_0 < v_1 < v_2 \). Let \(x_i = (x \upharpoonright \alpha_0)\langle u \rangle^i \upharpoonright v_i \) for \(i = 0, 1, 2 \). Then \(x_1 \in (x_0, x_2)_X \) but \((x_0, x_2)_X \cap X = \emptyset \), a contradiction.

Case 2. \(|\prod_{\alpha_0 < \alpha < \gamma} X_\alpha| = 2 \).

In this case, note \(\gamma = \alpha_0 + 2 \) and \(\prod_{\alpha_0 < \alpha < \gamma} X_\alpha = X_{\alpha_0 + 1} \), say \(X_{\alpha_0 + 1} = \{v_0, v_1\} \) with \(v_0 < v_1 \). Let \(x_0 = (x \upharpoonright \alpha_0)\langle u \rangle^0 \upharpoonright v_1 \) and \(x_1 = (x \upharpoonright \alpha_0)\langle u \rangle^1 \upharpoonright v_1 \). Then \((x \upharpoonright \alpha_0)\langle u \rangle^0 v_0 \in (x_0, x_1)_X \) but \((x_0, x_1)_X \cap X = \emptyset \), a contradiction.

Next assume that for every \(\alpha < \gamma \) with \(\alpha + 1 < \gamma \), \(X_\alpha = X_\alpha^* \) holds. If \(\gamma \) is limit, then \(\prod_{\alpha < \gamma} X_\alpha = \prod_{\alpha < \gamma} X_\alpha^* \). If \(\gamma = \delta + 1 \), then \(\prod_{\alpha < \delta} X_\alpha \) is a LOTS. Therefore by the lemma above, \(X \) is dense in \(\hat{X} \).

Corollary 3.3. Let \(X = \prod_{\alpha < \gamma} X_\alpha \) be a lexicographic product of GO-spaces. Then:

1. if \(\gamma \) is limit, then \(X \) is dense in \(\hat{X} = \prod_{\alpha < \gamma} X_\alpha^* \) if and only if \(X = \hat{X} \).
2. if \(\gamma = \delta + 1 \), then \(X \) is dense in \(\hat{X} \) if and only if \(\prod_{\alpha < \delta} X_\alpha \) is a LOTS.

Note that the reverse implication of Lemma 3.1 is also true.

Example 3.4. For instance, we see:

- \(S \times X \) is not dense in \(S^* \times X \) for every GO-space \(X \).
- \(X \times S \) is dense in \(X \times S^* \) if \(X \) is a LOTS.
- \(P \times M \) is dense in \(P \times M^* \) but \(M \times P \) is not dense in \(M^* \times P \).

4. Paracompactness of lexicographic products

It is known that lexicographic products of paracompact LOTS’s are paracompact. In this section, we extend this result for paracompact GO-spaces.
Definition 4.1. Let X be a GO-space. A subset A of X is called an initial segment or a 0-segment of X if for every $x, x' \in X$ with $x \leq x'$, if $x' \in A$, then $x \in A$. Similarly a subset A of X is called a final segment or a 1-segment of X if for every $x, x' \in X$ with $x \leq x'$, if $x \in A$, then $x' \in A$. Both \emptyset and X are 0-segments and 1-segments.

Let A be a 0-segment of a GO-space X. A subset U of A is 0-unbounded in A if for every $x \in A$, there is $x' \in U$ such that $x < x'$. Let

$$0 \text{-} \text{cf}_X A = \min \{|U| : U \text{ is 0-unbounded in } A\}.$$

Similar notions are also defined in linearly ordered compactifications, see [3]. If the context is clear, $0 \text{-} \text{cf}_X A$ is denoted by $0 \text{-} \text{cf} A$. Obviously $A = \emptyset$ iff $0 \text{-} \text{cf} A = 0$, and A has max iff $0 \text{-} \text{cf} A = 1$. Moreover we can easily check that a 0-segment A has no max iff $0 \text{-} \text{cf} A \neq 0$, and in this case, $0 \text{-} \text{cf} A$ is a regular cardinal. Also remark:

- if A is a 0-segment of a GO-space X having no max, then A is open in X, because of $A = \bigcup_{a \in A} (\leftarrow, a)_X$.
- if U is a 0-unbounded subset of a 0-segment A of a GO-space X, then we can define, by induction, a 0-order preserving sequence $\{x_\alpha : \alpha < \kappa\} \subset U$ (i.e., $x_\alpha < x_\alpha'$ whenever $\alpha < \alpha' < \kappa$) which is also 0-unbounded in A, where $\kappa = 0 \text{-} \text{cf} A$.

Analogous concepts such as 1-unbounded, 1- cf A, etc, are also defined.

A cut of a GO-space X is a pair $\langle A_0, A_1 \rangle$ of subsets of X such that $A_1 = X \setminus A_0$ and A_0 is a 0-segment (equivalently A_1 is a 1-segment). A cut $\langle A_0, A_1 \rangle$ is said to be a gap if A_0 has no max and A_1 has no min. Thus if X has no max, then $\langle X, \emptyset \rangle$ is a gap. Remark that if $\langle A_0, A_1 \rangle$ is a gap, then both A_0 and A_1 are clopen in X. A cut $\langle A_0, A_1 \rangle$ is said to be a pseudo-gap if either “A_0 has max and A_1 has no min” or “A_0 has no max and A_1 has min”, moreover A_0 (equivalently A_1) is clopen in X.

The following is known:

Lemma 4.2 ([2], Theorem 2.4.6). Let X be a GO-space, then the following are equivalent:

1. X is paracompact,
2. for each gap and pseudo-gap $\langle A_0, A_1 \rangle$ of X and for each $i \in 2$, there is a closed discrete i-unbounded subset of A_i.

Note that in the notations above:

- if $A_0 = \emptyset$, then \emptyset is a closed discrete 0-unbounded subset of A_0,
- if A_0 has max, then the one element set $\{\max A_0\}$ is a closed discrete 0-unbounded subset of A_0.

if $\operatorname{cf} A_0 = \omega$, then every 0-unbounded 0-order preserving sequence $\{a_n : n \in \omega\}$ in A_0 is closed discrete in A_0.

Definition 4.3. A GO-space X is said to be 0-paracompact if for every closed 0-segment A of X with $0-\operatorname{cf} A \geq \omega_1$, say $\kappa = 0-\operatorname{cf} A$, there is a 0-unbounded closed discrete subset of A. In this case, we can take a 0-order preserving sequence $\{a_\alpha : \alpha < \kappa\}$ in A which is 0-unbounded and closed discrete in A (equivalently, closed discrete in X). 1-paracompactness is defined analogously.

Now with the consideration above, Lemma 4.2 says the following:

Lemma 4.4. A GO-space is paracompact if and only if it is both 0-paracompact and 1-paracompact.

Remark that Lemma 1.2 says something about pseudo-gaps in lexicographic products. On the other hand, the following says about gaps of lexicographic products.

Lemma 4.5. Let $X = \prod_{\alpha < \gamma} X_\alpha$ be a lexicographic product of GO-spaces. Assume that A is a 0-segment with $0-\operatorname{cf} A \geq \omega$ and $1-\operatorname{cf}(X \setminus A) \geq \omega$, that is, $(A, X \setminus A)$ is a gap with $A \neq \emptyset$ and $X \setminus A \neq \emptyset$. Say $\kappa = 0-\operatorname{cf} A$, then there are $\alpha_0 < \gamma$, $y_0 \in Y_0 := \prod_{\alpha < \alpha_0} X_\alpha$ and a 0-segment A_0 of X_{α_0} such that:

1. for every $a \in A$, $a \upharpoonright \alpha_0 \leq_{Y_0} y_0$ holds,
2. for every $x \in X$,
 (i) if $x \upharpoonright \alpha_0 \leq_{Y_0} y_0$, then $x \in A$ holds,
 (ii) if $x \upharpoonright \alpha_0 >_{Y_0} y_0$, then $x \in X \setminus A$ holds,
3. for every $x \in X$ with $x \upharpoonright \alpha_0 = y_0$, $x(\alpha_0) \in A_0$ holds iff so does $x \in A$,
4. if A_0 is non-empty and has no max, then $\kappa = 0-\operatorname{cf}_{X_{\alpha_0}} A_0$,
5. if A_0 is non-empty and has max, then there is $\alpha > \alpha_0$ such that X_α has no max and $\kappa = 0-\operatorname{cf}_{X_{\alpha}} X_{\alpha_1}$ holds, where $\alpha_1 := \min\{\alpha < \gamma : \alpha > \alpha_0 \text{ and } X_\alpha \text{ has no max}\}$,
6. if A_0 is empty, then:
 (i) for every $a \in A$, $a \upharpoonright \alpha_0 <_{Y_0} y_0$ holds,
 (ii) α_0 is limit,
 (iii) there is $\alpha \geq \alpha_0$ such that X_α has no min.
 (iv) $A = (\leftarrow, y_0)_{Y_0} \times Y_1$, where $Y_1 := \prod_{\alpha \leq \alpha < \gamma} X_\alpha$.
 (v) $\leftarrow, y_0)_{Y_0}$ has no max,
 (vi) $\kappa = 0-\operatorname{cf}_{Y_0}(\leftarrow, y_0)_{Y_0} = \operatorname{cf} \alpha_0$.
 (vii) for every $\beta < \alpha_0$, there is $a \in A$ satisfying $\beta < \min\{\alpha < \alpha_0 : a(\alpha) \neq y_0(\alpha)\}$.

Proof. Set \(B = X \setminus A \). For each \(a \in A \) and \(b \in B \), let \(\alpha(a, b) = \min \{ \alpha < \gamma : a(\alpha) \neq b(\alpha) \} \) and \(\alpha_0 = \sup \{ \alpha(a, b) : a \in A, b \in B \} \). Note \(\alpha_0 \leq \gamma \).

Claim 1. Let \(a_0, a_1 \in A \) and \(b_0, b_1 \in B \). If \(\alpha(a_0, b_0) \leq \alpha(a_1, b_1) \), then \(a_0 \upharpoonright \alpha(a_0, b_0) = a_1 \upharpoonright \alpha(a_0, b_0) \).

Proof. Assume that there is \(\beta < \alpha(a_0, b_0) \) such that \(a_0(\beta) \neq a_1(\beta) \). Let \(\beta_0 = \min \{ \beta < \alpha(a_0, b_0) : a_0(\beta) \neq a_1(\beta) \} \). Then \(b_0 \upharpoonright \beta_0 = a_0 \upharpoonright \beta_0 = a_1 \upharpoonright \beta_0 = b_1 \upharpoonright \beta_0 \) and \(b_0(\beta_0) = a_0(\beta_0) \neq a_1(\beta_0) = b_1(\beta_0) \). If \(a_0(\beta_0) < a_1(\beta_0) \), then we have \(b_0 < b_1 \), \(b_0, b_1 \in B \) and \(a_0, a_1 \in A \), a contradiction. If \(a_0(\beta_0) > a_1(\beta_0) \), then we have \(a_0 > b_1 \), \(b_1 \in B \) and \(a_0 \in A \), a contradiction. \(\square \)

This claim ensures that the function \(y_0 := \bigcup \{ a \upharpoonright \alpha(a, b) : a \in A, b \in B \} \) is well-defined and \(y_0 \in \prod_{\alpha < \alpha_0} X_\alpha \).

Claim 2. \(\alpha_0 < \gamma \).

Proof. Assume \(\alpha_0 = \gamma \). Then \(y_0 \in X = A \cup B \). If \(y_0 \in A \), then there is \(\alpha_0 \in A \) with \(y_0 <_X \alpha_0 \). Letting \(\beta_0 = \min \{ \beta < \gamma : y_0(\beta) \neq \alpha_0(\beta) \} \), take \(a \in A \) and \(b \in B \) with \(\beta_0 < \alpha(a, b) \). Then we have \(b <_X \alpha_0 \), a contradiction. When \(y_0 \in B \), similarly we can get a contradiction. \(\square \)

By a similar argument of the proof above, we can check the clauses (1) and (2). Now let \(A_0 = \{ a(\alpha_0) : a \in A, a \upharpoonright \alpha_0 = y_0 \} \) and \(B_0 = X_{\alpha_0} \setminus A_0 \). Obviously \(A_0 \) is a 0-segment of \(X_{\alpha_0} \) and \(B_0 \) is a 1-segment of \(X_{\alpha_0} \).

Claim 3. \(B_0 = \{ a(\alpha_0) : a \in B, a \upharpoonright \alpha_0 = y_0 \} \) holds.

Proof. The inclusion “\(\subseteq \)” is obvious.

To see the other inclusion, let \(b \in B \) with \(b \upharpoonright \alpha_0 = y_0 \). If \(b(\alpha_0) \in A_0 \) were true, then there is \(a \in A \) with \(a \upharpoonright \alpha_0 = y_0 \) and \(b(\alpha_0) = a(\alpha_0) \). This means \(a \upharpoonright (\alpha_0 + 1) = b \upharpoonright (\alpha_0 + 1) \), thus \(\alpha_0 < \alpha(a, b) \), a contradiction. We have \(b(\alpha_0) \in B_0 \). \(\square \)

This claim shows the clause (3).

Claim 4. The clause (4) holds.

Proof. Assume that \(A_0 \neq \emptyset \) and \(A_0 \) has no max. To see \(\kappa \geq 0\)-cf \(A_0 \), let \(U \) be a 0-unbounded subset of \(A \). Fix \(u_0 \in A_0 \) and \(a_0 \in A \) with \(a_0 \upharpoonright \alpha_0 = y_0 \) and \(a_0(\alpha_0) = u_0 \). Then it is easy to check that \(V := \{ a(\alpha_0) : a_0 <_X a \in U \} \) is 0-unbounded in \(A_0 \).

To see \(\kappa \leq 0\)-cf \(A_0 \), let \(V \) be a 0-unbounded in \(A_0 \). For every \(u \in V \), we can fix \(a_u \in A \) with \(a_u \upharpoonright \alpha_0 = y_0 \) and \(a_u(\alpha_0) = u \). Then \(U := \{ a_u : u \in V \} \) is 0-unbounded in \(A \). \(\square \)
Claim 5. The clause (5) holds.

Proof. Assume that $A_0 \neq \emptyset$ and A_0 has max u_0. If for every $\alpha < \gamma$ with $\alpha_0 < \alpha$, X_{α} has max, then $y_0^{\wedge}(u_0)^{\wedge}(\max X_{\alpha} : \alpha_0 < \alpha < \gamma) = \max A$, a contradiction. Therefore there is $\alpha < \gamma$ with $\alpha_0 < \alpha$ such that X_{α} has no max. Let α_1 be such a smallest one. By a similar argument in Claim 4, we see $\kappa = 0$-cf$_{X_{\alpha_1}} X_{\alpha_1}$.

Claim 6. The clause (6) holds.

Proof. Let $A_0 = \emptyset$. If there is $a \in A$ with $a \cap \alpha_0 = y_0$, then $a(\alpha_0) \in A_0$, a contradiction. This shows (i).

If $\alpha_0 = \beta + 1$ for some ordinal β, then we can find $a \in A$ and $b \in B$ with $\beta < \alpha(a, b) \leq \alpha_0$, so $a(\alpha, b) = \alpha_0$. Now we have $y_0 = a \cap \alpha_0$, this contradicts (i). This shows (ii).

If $Y_1 = \prod_{\alpha_0 < \alpha < \gamma} X_{\alpha}$ has min, then we have $b_0 := y_0^{\wedge}(\min X_{\alpha} : \alpha_0 \leq \alpha < \gamma) \in B$ by $A_0 = \emptyset$. If $a \in X$ and $a < b_0$, then $a \uparrow \alpha_0 < b \uparrow \alpha_0 = y_0$, thus $a \in A$ by (i). This shows $b_0 = \min B$, a contradiction. We see (iii). (2-i) and (i) show (iv).

To see (v), assume that $y_1 := \max(\leftarrow, y_0)_{\gamma_0}$ exists. Let $\alpha_1 = \min\{\alpha < \alpha_0 : y_1(\alpha) \neq y_0(\alpha)\}$, moreover take $a \in A$ and $b \in B$ with $\alpha_1 < \alpha(a, b)$. By (i), we have $a \uparrow \alpha_0 < y_0$, therefore $a \uparrow \alpha_0 \leq y_1$. By $y_1 \uparrow \alpha_1 = y_0 \uparrow \alpha_1 = a \uparrow \alpha_1$ and $y_1(\alpha_1) < y_0(\alpha_1) = a(\alpha_1)$, we have $y_1 < a \uparrow \alpha_0$, a contradiction.

(vi) can be similarly proved as in Claim 4. (vii) follows from the definition of α_0.

Theorem 4.6. If X_{α} is a 0-paracompact GO-space for every $\alpha < \gamma$, then the lexicographic product $X = \prod_{\alpha < \gamma} X_{\alpha}$ is also 0-paracompact.

Proof. Let A be a closed 0-segment of X with 0-cf $A \geq \omega_1$, set $\kappa = 0$-cf A. We will find a 0-unbounded 0-order preserving sequence $\{a_\delta : \delta < \kappa\} \subset A$ which is closed discrete in A. We have to consider several cases. Let $B = X \setminus A$.

Case 1. B has min b_0.

In this case, since A is closed and has no max, b_0 belongs to X^-. From Lemma 1.3, we can find $\alpha_0 < \gamma$ such that $b_0(\alpha_0) \in X^-_{\alpha_0}$ and for every $\alpha < \gamma$ with $\alpha_0 < \alpha$, $b_0(\alpha) = \min X_{\alpha}$ holds. Let $A_0 = (\leftarrow, b_0(\alpha_0))_{X^-_{\alpha_0}}$. Then A_0 is a closed 0-segment of X_{α_0}. By a similar argument of Claim 4 in the previous lemma, we see $\kappa = 0$-cf$_{X^-_{\alpha_0}} A_0$. Since X_{α_0} is 0-paracompact, we can take a 0-unbounded 0-order preserving sequence
\{u_\delta : \delta < \kappa\} in \(A_0\) which is closed discrete in \(A_0\) and \((\leftarrow, u_0)X_{\alpha_0} \neq \emptyset\). For each \(\delta < \kappa\), let \(a_\delta = (b_0 \upharpoonright \alpha_0)^\langle u_\delta \rangle \langle b_0 \upharpoonright (\alpha_0, \gamma)\rangle\).

Claim 1. The sequence \(F = \{a_\delta : \delta < \kappa\}\) is 0-unbounded, 0-order preserving and closed discrete in \(A\).

Proof. Obviously \(F\) is 0-order preserving. Let \(a \in A\). Then we have \(a \upharpoonright \alpha_0 \leq b_0 \upharpoonright \alpha_0\). If \(a \upharpoonright \alpha_0 < b_0 \upharpoonright \alpha_0\), then \(a < a_0\). If \(a \upharpoonright \alpha_0 = b_0 \upharpoonright \alpha_0\), then we can take \(\delta < \kappa\) with \(a(\alpha_0) < u_\delta\) (otherwise, \(a \geq b_0\), a contradiction). Then we have \(a < a_\delta\). Thus \(F\) is 0-unbounded in \(A\). To see the closed discreteness of \(F\), take the smallest \(\delta_0 < \kappa\) with \(a < a_{\delta_0}\). If \(\delta_0 = 0\), then \((\leftarrow, a_0)X\) is a neighborhood of \(a\) disjoint from \(F\). If \(\delta_0 > 0\), then we have \(a \upharpoonright \alpha_0 = b_0 \upharpoonright \alpha_0\) and \(a(\alpha_0) \in A_0\). Note \(u_0 \leq a(\alpha_0)\) because of \(a_0 \leq a\). Since \(\{u_\delta : \delta < \kappa\}\) is closed discrete in \(X_{\alpha_0}\), we can find \(u^* \in X_{\alpha_0}^*\) with \(u^* < X_{\alpha_0}^* a(\alpha_0)\) such that \((u^*, a(\alpha_0)]_{X_{\alpha_0}^*} \cap X_{\alpha_0}\) contains at most one \(u_\delta\). Let \(a^* = (b_0 \upharpoonright \alpha_0)^\langle u^* \rangle \langle b_0 \upharpoonright (\alpha_0, \gamma)\rangle\). Then \((a^*, a_{\delta_0}]_{X} \cap X\) is a neighborhood of \(a\) witnessing the closed discreteness of \(F\) at \(a\). \(\square\)

Case 2. \(B \neq \emptyset\) and has no min.

This case is a modification of Theorem 4.2.2 in [2]. In this case, take \(\alpha_0 < \gamma\), \(y_0 \in \prod_{\alpha < \alpha_0} X_{\alpha}\) and the 0-segment \(A_0\) of \(X_{\alpha_0}\) in Lemma 4.5. Further we divide Case 2 into several subcases.

Case 2-1. \(A_0 = \emptyset\).

In this case, we use (6) of Lemma 4.5. By induction using (i) and (vi) in (6), define \(\{a_\delta : \delta < \kappa\} \subset A\) such that \(\{\min\{\alpha < \alpha_0 : a_\delta(\alpha) \neq y_0(\alpha)\} : \delta < \kappa\}\) is 0-unbounded and 0-order preserving in \(\alpha_0\).

Claim 2. The sequence \(F = \{a_\delta : \delta < \kappa\}\) is 0-unbounded, 0-order preserving and closed discrete in \(A\).

Proof. The proof that \(F\) is 0-unbounded and 0-order preserving is easy. Let \(a \in A\) and \(\delta_0 < \kappa\) be the smallest \(\delta < \kappa\) with \(a < a_\delta\). By (6-iiii) in Lemma 4.5, \(Y_1 := \prod_{\alpha_0 \leq \alpha < \gamma} X_{\alpha}\) has no min, so take \(y_1 \in Y_1\) with \(y_1 < Y_1 a \upharpoonright (\alpha_0, \gamma)\). Then \(((a \upharpoonright \alpha_0)^\langle y_1 \rangle, a_{\delta_0}]_{X}\) is a neighborhood of \(a\) witnessing the closed discreteness of \(F\) at \(a\). \(\square\)

Case 2-2. \(A_0 \neq \emptyset\).

We further divide this case into several cases.

Case 2-2-1. \(A_0\) has no max and \(B_0 := X_{\alpha_0} \setminus A_0\) has min.

Note that in this case, \(A_0\) need not be closed in \(X_{\alpha_0}\). We can find \(\alpha > \alpha_0\) such that \(X_{\alpha}\) has no min (otherwise, \(B\) has min). Let \(\alpha_1\) be
such a smallest one. By (4) in Lemma 4.5, we can find a 0-unbounded 0-order preserving sequence \(\{u_\delta : \delta < \kappa\} \) in \(A_0 \). But remark that in general, \(\{u_\delta : \delta < \kappa\} \) cannot be closed discrete in \(A_0 \). For each \(\delta < \kappa \), take \(a_\delta \in X \) with \(a_\delta \restriction (\alpha_0 + 1) = y_0 \wedge \langle u_\delta \rangle \), then \(a_\delta \in A \).

Claim 3. The sequence \(F = \{a_\delta : \delta < \kappa\} \) is 0-unbounded, 0-order preserving and closed discrete in \(A \).

Proof. Obviously \(F \) is 0-unbounded and 0-order preserving in \(A \). Let \(a \in A \) and \(\delta_0 < \kappa \) be the smallest \(\delta < \kappa \) with \(a < a_\delta \). If \(\delta_0 = 0 \), then \((\leftarrow, a_0)_X \) is a neighborhood of \(a \) disjoint from \(F \).

Let \(\delta_0 > 0 \), then we have \(a \restriction \alpha_0 = y_0 \). Since \(Y_1 := \prod_{\alpha_0 < \alpha < \gamma} X_\alpha \) has no min, take \(y_1 \in Y_1 \) with \(y_1 < a \restriction (\alpha_0, \gamma) \). Then \((a \restriction (\alpha_0 + 1))^\wedge y_1, a_{\delta_0}) \) is a neighborhood of \(a \) witnessing the closed discreteness of \(F \) at \(a \).

Case 2-2-2. \(A_0 \) has no max and \(B_0 := X_{\alpha_0} \setminus A_0 \) has no min.

In this case \(A_0 \) is a closed 0-segment in the 0-paracompact GO-space \(X_{\alpha_0} \). Using (4) in Lemma 4.5, take a 0-unbounded 0-order preserving sequence \(\{u_\delta : \delta < \kappa\} \) which is closed discrete in \(A_0 \) and \((\leftarrow, u_0)_{X_{\alpha_0}} \neq \emptyset \). For each \(\delta < \kappa \), take \(a_\delta \in X \) with \(a_\delta \restriction (\alpha_0 + 1) = y_0 \wedge \langle u_\delta \rangle \), then \(a_\delta \in A \). \(\square \)

Claim 4. The sequence \(F = \{a_\delta : \delta < \kappa\} \) is 0-unbounded, 0-order preserving and closed discrete in \(A \).

Proof. Obviously \(F \) is 0-unbounded and 0-order preserving in \(A \). Let \(a \in A \) and \(\delta_0 < \kappa \) be the smallest \(\delta < \kappa \) with \(a < a_\delta \). As in the proof of the claim above, when \(\delta_0 = 0 \), then \((\leftarrow, a_0)_X \) witnesses the closed discreteness of \(F \) at \(a \). When \(\delta_0 > 0 \), we have \(a \restriction \alpha_0 = y_0 \) and \(a(\alpha_0) \in A_0 \). Since \(\{u_\delta : \delta < \kappa\} \) is closed discrete in \(X_{\alpha_0} \), we can take \(u^* \in X_{\alpha_0}^* \) with \(u^* < a(\alpha_0) \), \((u^*, a(\alpha_0)]_{X_{\alpha_0}^*} \cap X_{\alpha_0} \) contains at most one \(u_\delta \). Take \(a^* \in X \) with \(a^* \restriction (\alpha_0 + 1) = (a \restriction \alpha_0)^\wedge \langle u^* \rangle \). Then \((a^*, a_{\delta_0})_X \cap X \) is a neighborhood of \(a \) witnessing the closed discreteness of \(F \) at \(a \). \(\square \)

Case 2-2-3. \(A_0 \) has max.

In this case, by (5) of Lemma 4.5, there is \(\alpha > \alpha_0 \) such that \(X_\alpha \) has no max. Let \(\alpha_1 \) be such a smallest one. Since \(\kappa = 0 \cdot \text{cf}_{X_{\alpha_1}} X_{\alpha_1} \) and \(X_{\alpha_1} \) is 0-paracompact, the 0-segment \(X_{\alpha_1} \) has a 0-unbounded 0-order preserving sequence \(\{u_\delta : \delta < \kappa\} \subset X_{\alpha_1} \) which is closed discrete in \(X_{\alpha_1} \) and \((\leftarrow, u_0)_{X_{\alpha_1}} \neq \emptyset \). For each \(\delta < \kappa \), take \(a_\delta \in X \) with \(a_\delta \restriction (\alpha_1 + 1) = y_0 \wedge \langle \max A_0 \rangle \wedge \langle \max X_\alpha : \alpha_0 < \alpha < \alpha_1 \rangle \wedge \langle u_\delta \rangle \). Note \(a_\delta \in A \). As in Claim 4, we see:
Claim 5. The sequence $F = \{a_\delta : \delta < \kappa\}$ is 0-unbounded, 0-order preserving and closed discrete in A.

Case 3. $B = \emptyset$, i.e., $A = X$.

Since X has no max, let $\alpha_0 = \min\{\alpha < \gamma : X_\alpha \text{ has no max}\}$. Then as in Claim 4 in Lemma 4.5, we see $\kappa = 0$-cfX_{α_0} X_{α_0}. Since X_{α_0} is 0-paracompact, we can find a 0-unbounded 0-order preserving sequence $\{u_\delta : \delta < \kappa\} \subset X_{\alpha_0}$ which is closed discrete in X_{α_0} and $(\leftarrow, u_0)X_{\alpha_0} \neq \emptyset$. For every $\delta < \kappa$, take $a_\delta \in X$ with $a_\delta \upharpoonright (\alpha_0 + 1) = (\max X_\alpha : \alpha < \alpha_0)^\wedge (u_\delta)$. Note $a_\delta \in A$. Similarly we can see:

Claim 6. The sequence $F = \{a_\delta : \delta < \kappa\}$ is 0-unbounded, 0-order preserving and closed discrete in A. □

With the analogy of the theorem above, we extends the result Theorem 4.2.2 in [2] as follows:

Corollary 4.7. Lexicographic products of paracompact GO-spaces are paracompact.

Example 4.8. For example we see:

- the lexicographic products S^γ and M^γ are paracompact for every ordinal γ.
- the lexicographic products $M \times P$ and $P \times M$ are paracompact.
- lexicographic products of metrizable GO-spaces are paracompact. For instance, the lexicographic product $([0, 1]_R \cup [2, 3]_R)^\omega_1$ is paracompact.

However, there is a paracompact lexicographic product of non-paracompact LOTS’s, see Example in page 73 in [2]. We end this paper with the following question.

References
