LEXICOGRAPHIC PRODUCTS OF GO-SPACES
NOBUYUKI KEMOTO

ABSTRACT. It is known that lexicographic products of paracom-
pact LOTS’s are also paracompact, see [2]. In this paper, the no-
tion of lexicographic products of GO-spaces is defined. We char-
acterize when a lexicographic product of GO-spaces is a LOTS.
Moreover, we show that lexicographic products of paracompact
GO-spaces are also paracompact. For example, we see
e the lexicographic products M x P and S x [0, 1)g are LOTS’s,
but P x M and S x (0, 1]g are not LOTS’s,
e the lexicographic product S” of the y-many copies of S is a
LOTS iff 7 is a limit ordinal,
e the lexicographic products M x P and P x M are paracompact,
e the lexicographic product S” is paracompact for every ordinal

7,
where P, M, S and [0, 1)g denote the irrationals, the Michael line,

the Sorgenfrey line and the interval [0,1) in the reals R, respec-
tively.

1. INTRODUCTION

We assume all topological spaces have cardinality at least 2.

A linearly ordered set (X, <x) (see [1]) has a natural Ty-topology
denoted by Ax or A(<x) so called the interval topology which is the
topology generated by {(+—,z)x : 2 € X} U{(z,—=)x :x € X} as a
subbase, where (z,—=)x = {w € X : x <x w}, (z,y]x = {w € X :
r <x w <x y}, ..., etc. Here w <y x means w <y x or w = z. If
the contexts are clear, we simply write < and (z, ] instead of <x and
(x,y]x respectively. Note that this subbase induces a base by convex
subsets ( e.g., the collection of all intersections of at most two members
of this subbase), where a subset B of X is convez if for every z,y € B
with  <x vy, [z,y]x C B holds. The triple (X, <x, Ax) is called a
LOTS (= Linearly Ordered Topological Space) and simply denoted by
LOTS X. Observe that if v € U € Ax and (+—,z) # (), then there is
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y € X such that y < z and (y,x] C U. Note that for every z € X,
(¢, z] ¢ Ax iff (z, —) is non-empty and has no minimum (briefly, min),
also analogously [z, —) ¢ Ax iff («—, x) is non-empty and has no max.
Let

Xp={reX:(+,z]¢ X x}and Xy ={x € X : [z,—) & A\x}.

Unless otherwise stated, the real line R is considered as a linearly
ordered set (hence LOTS) with the usual order, similarly so are the set
Q of rationals, the set IP of irrationals and an ordinal «.

A generalized ordered space (= GO-space ) is a triple (X, <x, Tx),
where < is linear order on X and 7y is a T topology on X which has
a base consisting of convex sets, also simply denoted by GO-space X.
For LOTS’s and GO-spaces, see also the nice text book [5]. It is easy
to verify that 7x is stronger than A\x. Also let

X:_; ={zeX:(+,z]x €7x \ Ax},

X,;(:{IEXZ[I’,—))XETx\Ax}.

Obviously Xj_; C Xg and X C Xp. When contexts are clear, we
usually simply write X* and X~ instead of X! and X_ | respectively.
Note that X is a LOTS iff XT U X~ = (. For A C Xp and B C
X1, let 7(A, B) be the topology generated by {(+—,z)x : = € X} U
{(z,=)x 12z € X} U{(«,z]x : 2 € A} U{[z,—=)x : © € B} as a
subbase. Obviously 7x = 7(X*, X ™) whenever X is a GO-space, and
also 7(A, B) defines a GO-space topology on X whenever X is a LOTS
with A C Xz and B C X. The Sorgenfrey line S is (R, <g, 7(R,0))
and the Michael line M is (R, <g, 7(P,P)). These spaces are GO-spaces
but not LOTS’s.

Let X be a GO-space and Y C X, then “the subspace Y of a GO-
space X7 means the GO-space (Y, <x| Y, Ax [ Y), where <x| Y is
the restricted order of <y on Y and Ax [ Y :={UNY : U € Ax}, that
is, Ax ['Y is the subspace topology of \x.

Now for a given GO-space X, let

X' = (X" x{-1})u (X x{0}) U (X x{1})

and consider the lexicographic order <y, on X* induced by the lex-
icographic order on X x {—1,0, 1}, here of course —1 < 0 < 1. We
usually identify X as X = X x {0} in the obvious way (i.e., x = (x,0)),
thus we may consider X* = (X~ x {—1}) UX U (X* x {1}). Note
(¢, 2]lx = («, (2,1))x+NX € A(<x+) | X whenever x € X, and also
its analogy. Then the GO-space X is a dense subspace of the LOTS
X* and X has max iff X* has max, in this case, max X = max X*
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(and similarly for min). Note S* =R x {0} UR x {1} with the identi-
fication S =R x {0} and M* =P x {—1} UR x {0} UP x {1} with the
identification M = R x {0}.

Definition 1.1. Let X, be a LOTS for every a < vy and X = Haq X,
where 7 is an ordinal. When v = 0, we consider as [[,_, X, = {0},
which is a trivial LOTS, for notational conveniences. When v > 0,
every element x € X is identified with the sequence (z(«) : o < 7).
Recall that the lexicographic order <x on X is defied as follows: for
x,x' € X,

x <x ' iff for some o <7,z | a=2" | @ and z(«a) < 2'(a),

where z [ a = (z(8) : f < a). Then X = (X, <x,\x) is a LOTS and
called the lexicographic product of LOTS’s X, ’s.
Now let X, be a GO-space for every a < v and X = Ha<7 X,. Then

the lexicographic product X = [I.-, Xa, which is a LOTS, can be de-
fined. The lexicographic product of GO-spaces X,’s is the GO-space
(X, <4l X,A¢ | X). Obviously this definition extends the lexico-
graphic product of LOTS’s, and is reasonable because each X is the
smallest LOTS which contains X, as a dense subspace, see [4]. When
n € w, then [[,_, X; is denoted by X x --- x X, 4. If all X,,’s are X,
then [],_. Xo is denoted by X7.

Let X and Y be LOTS’s. A map f : X — Y is said to be 0-
order preserving if f(z) <y f(2') whenever x <x z’. Similarly a map
f: X =Y is said to be 1-order preserving if f(x) >y f(z') whenever
x <x z'. Obviously a O-order preserving map f : X — Y between
LOTS’s X and Y, which is onto, is a homeomorphism, i.e., both f and
f~1 are continuous. But when X =S and Y = M, the identity map is
0-order preserving onto but not a homeomorphism.

So now let X and Y be GO-spaces. A 0-order preserving map f :
X — Y is said to be embedding if f is a homeomorphism between X
and f[X], where f[X] is the subspace of the GO-space Y. In this case,
we can identify X with f[X] as a GO-space. In the definition of X*,
the map f: X — X x {0} C X* defined by f(z) = (x,0) is a 0-order
preserving embedding, so we have identified as X x {0} = X.

In the rest of this section, we prepare basic tools to handle the lexi-
cographic products of GO-spaces.

Lemma 1.2. Let X = Ha<7 X, be a lexicographic product of GO-
spaces and x € X. The following are equivalent:

(1) z€ X7,

(2) there is oy < 7y such that:
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(l) ZL'(O&Q) S X;m
(ii) for every a < v with ay < «a, X, has maz and z(a) =

max X, .

Proof. Let X = IL.- ., X, be the lexicographic product.

(1) = (2): Assume z € XT. Because of («,z]x ¢ \x, (z,—)x
is non-empty and has no min. By («,z]x € 7x = Ay | X, there
is y € X with <% y such that (+—, z]x D [z,y)x N X, that is,
(z,y)5 = 0. Since (z,—)x has no min, we have y € X \ X. Let
ap = min{a < v : z(a) # y(a)}. Then we have = [ ap = y | o
and z(ao) <x; y(aop). Since Xq, is dense in X7, (z(an), =)x,, is
non-empty.

Claim 1. For every a < v with ay < «, X, has max and z(«a) =
max X,

Proof. First assume that for some o < v with oy < o, X, has no max.
Then we can take v € X, with z(a) <x, v. Set 2/ = (z | a)"(v)(x |
(., 7)), that is,

2(8) it B<a,
Z(B)=<wv if 8= a,
z(f) ifa<f<n.
Then 2’ € (z,y) N X, a contradiction. Therefore for every a < v with
ap < a, max X, exists.
Next assume that for some o < v with oy < o, z(a) <x, max X,

holds. Then (z | )" (max X,)"(z | (o,7)) € (x,y)x N X, a contradic-
tion. =

Claim 2. (z(a0),y(a0))xz, = 0, therefore («—, z(a0)]x., € Txa,-

Proof. Assume (z(ao), y(aw))xz, # (. Since X,, is dense in X , take

v € (z(a0), y(a))xz, NXao- Then (2 [ ag)"(v)"(z | (a0, 7)) € (z,y)xN
X, a contradiction. O

The following claim shows z(ag) € X,
Claim 3. ((—7[E((X0)]Xao ¢ )\Xao'

Proof. Since z(ap) <x; y(ao) and X, is dense in X7, we have
(2(), =)x., # 0. Assume (<, z(a)]x,, € Ax,,, then there is v €
Xa, such that z(ap) <x,, vand (z(ag),v)x,, = 0. Since (z(ay), v)xz, =
0, we have v = y(ap), thus y(ag) € X, Let o = min{a < v:y(a) ¢
X,}. Because of y ¢ Y and the definition of y, we have apy < ay. If
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(¢, y(ou))x;, were empty, then y(oq) = min X; =minX,, € X,,, a
contradiction. Therefore we can take v € («—,y(a1))x;, N Xa,. Then
(y [ a) (V)Y (x| (a1,7)) € (z,y)x N X, a contradiction. O

(2) = (1): Assume (2). By (i), we can take v € X \ X,, such that
z(ap) <xz, vand (z(ap), v)xy, = 0. Lety = (z [ o) (v)" (2 | (a0,7))-
Then we have z < y € X\ X and (2, —)x # 0. Obviously (z,y) ¢ = 0
holds. Thus (+—,z]x = (<, y)x N X € Ay [ X = 7x. The following
Claim completes the proof.

Claim 4. ((—,,I]X ¢ Ax.

Proof. Assume (+—,z]x € Ax. It follows from (z,—)x # () that for
some 2’ € X with z <x 2/, (x,2’)x = () holds. Let a; = min{a < 7 :
2'(a) # x(a)}. Then by x(a;) <x,, 2'(a1), we have oy < ag. Since
v € (z(ao), —)x;,, we can take u € (z(ao), =)x.,- If a1 < ag were
true, then (z [ ap)™(w)"(z | (a0,7)) € (z,2")x, a contradiction. Thus
we have a; = ay.

Now by (z(ao), v)xz, = 0, we also have v <xz, @'(ap) moreover
(v, 7'(a))xz, # 0 (otherwise, v is an isolated point in X7 and v ¢
Xao, a contradiction). Taking w € (v, 2'(ap))xz, N Xay, we have (z |
o) (w)(z | (ao,7)) € (z,2')x, a contradiction. O

O
Similarly, we have an analogous result:

Lemma 1.3. Let X = Ha<7 X, be a lexicographic product of GO-
spaces and x € X. The following are equivalent:
(1) z € X,
(2) there is g < 7y such that:
(i) () € X5,
(i) for every a < v with ag < «, X, has min and z(a) =
min X, .

From now on, we do not write down such an analogous result, we
refer, for instance, Lemma 1.3 as the analogous result of Lemma 1.2.

Corollary 1.4. Let X = Ha<7 X, be a lexicographic product of GO-
spaces. If X1 =0 for every a < =y, then X = ().

This corollary with the analogous result also shows that lexicographic
products of LOTS’s are LOTS’s. However, lexicographic products of

GO-spaces, some of which are not LOTS’s, can be LOTS’s. This fact
will be discussed in the next section.
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Now, let X = Hoé<7 X, be a lexicographic product of LOTS’s and
d < 7. For x € X, the correspondence x — (z [ d,x | [d,7)) defines
a O-order preserving onto map from X to ([],.5 Xa) X (I[5<aey Xa),
which is a lexicographic product of two lexicographic products. So
they are topologically homeomorphic, thus we can identify [],_ o Xa
with ([[,.5 Xa) X (I [5<acy Xa) as a LOTS whenever X,,’s are LOTS’s,
see [2].

Next, let X = [], < Xa be a lexicographic product of GO-spaces
and 0 < . The correspondence above also defines a 0-order preserving
onto map from X to ([], 5 Xa) X ([[5<ney Xa). Is this map a homeo-
morphism between them? We show in the next lemma that the answer
is positive, while the proof is not so trivial. It will be a key tool through
the theory.

Lemma 1.5. Let X = Ha<W Xo be a lexicographic product of GO-
spaces and § < . The correspondence x — (x | o,z [ [0,7)) is
a homeomorphism. So we can identify [],.. Xo with (I], s Xa) X
(Is<acy Xa) as a GO-space.

Proof. Let Yy = [[,.s Xo and Y} = H5§a<7 X,. We may identify the
correspondence as x = (xz [ d,x | [0,7)) for every z € X. By this
identification, the order <x coincides with the order <y, y,, where
Yo x Y; is the lexicographic product of the GO-spaces Y, and Y; . It
suffices to see Tx = Ty,xy;. Note that 7x = Ay [ X, 7y, = >‘Yo I Yo,

a<ly

Ty, — )\3}1 r Yi and TYyxY: — )\Yo*xyf f Yb X 3/1 hOld, where X =
Ha<'y X:w }/0 = Ha<§ X; and }/1 = H6§a<'y X:u
Claim 1. 7y C TYyxY; -

Proof. Tt suffices to show that the subbase {(+—,z)x : z € X} U{(z, —
Jx iz € X} U{(+—z]x :x € XT}U{[r,—)x : € X~} is contained
in 7y,xy;. Note under the identification, (+—,2)x = (=, T)vyxy;, (¢
,x]x = (¢, x]yyxy, -+, etc hold. Therefore, it only suffices to prove
the following fact:.

Fact. Ifz € X' (x € X7), then (+—, z]x € Tvy;xv; ([T, =)x € Tyvoxvi,
respectively).

Proof. Let x € X*. By Lemma 1.3, take ay < 7y such that z(ag) € X7,
and for every a < v with oy < a, z(a) = max X, = max X} holds.

We consider two cases.
Case 1. ag < 6.

In this case, again applying Lemma 1.2 to x | § € Y,, we see x |
0 € Y™ Therefore there is yo € Yy \ Yp such that [ § <y: yo and
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(x | 6,90)yy = 0, that is, yo = (z [ 6,1). Let 2 = " (z [ [,7)),
then z € Y x Y; C Yy x Y{". Assume that there is an element u €
(7, 2)ygxyy N Yo x Yy, Then we have v [ 6 <y, u [§. Ifx [d=u 0
were true, then x | [§,7) <y, u | [0,7) has to be true. But this is a
contradiction, because of () = max Xj for all § > §. Therefore we
have z [ § <y, u [ . Since yo ¢ Yp and (v [ 0,y0)y; = 0, we see
z 0=y <y; u | 0. Thus we have z <ygxv; u which contradicts
u <ysxys 2, 80 we have seen (7, 2)yxxyy N (Yo x Y1) = (. This shows
(= Tlyoxy; = (Faz)yo*xyl* MYy X Y1 € Aypxvy [ Yo X Y1 = Tyguny.

Case 2. ) < «ay.

Applying Lemma 1.2 to Y;, we see x | [§,7y) € Y;©. Therefore, there
is Y1 € Yi* \ Yi such that x f [57 7) <Y1* hn and (*T f [57 W)Jyl)Yl* = Q)
Then by (z,(x [ 8)"y1)yyxys = 0, we have (+—, zly,xy; = (+ (v |
6) Y1)y vy NYo X Y1 € Typuy; - 0

This completes the proof of Claim 1. U

Claim 2. 7y D TYyxY; -

Proof. As in Claim 1, it suffices to see that if x € (Yo x Y))* (z €
(Yo x Y1)7), then (+= Z]y,xv; € 7x ([2,—)vyxvi € Tx, respectively).
Let z € (Yo x Yy)T, say o =« | 6 and x; = = [ [§,7). Apply Lemma
1.2 to z € (Yo x Y1), we can find iy < 2, where 2 := {0, 1}, such that
z;, € YT and for every i < 2 with iy < i, 2; = max¥; (= maxY})
holds.

Case 1. ip = 0.

It follows from xo € Yj© that for some 2y € Yy \ Yy with 29 <y 20,
(T0, 20)yy is empty. By x | [6,7) = 71 = maxY), we have z(a) =
max X,, for every a <y with ¢ < a. It follows from Ays [ Yo = 1y, =
Ay, | Yo and zo € Yy, applying Lemma 1.2, that for some ag < 6,
z(ag) € X and for every o < § with g < a, x(a) = max X, hold.
Since z(ap) € X7 and for every a < v with oy < @, z(a) = max X,
hold, applying Lemma 1.2 again, we have x € X*. Thus we have
((—,ZL‘]yoxyl = ((—,l’]X € Tx.

Case 2. iy = 1.

In this case, x | [6,7) = 21 € Y;*. So applying Lemma 1.2, there
is ap < v with 0 < g such that xz(ag) € X and for every a < v
with ap < «a, z(a) = max X, holds. Again by Lemma 1.2, we have
((—,l’]yoxyl = (%,ZL’]X € Tx.

The remaining case is similar. 0
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This completes the proof of the lemma. O

2. WHEN ARE LEXICOGRAPHIC PRODUCTS OF GO-SPACES
LOTS’s?

It is easy to verify that the lexicographic product S x R is a LOTS,
while S is not a LOTS. In this section, we characterize when lexico-
graphic products of GO-spaces are LOTS’s. Using Lemma 1.2, the
following is easy to prove.

Lemma 2.1. Let X = Xyx X, be a lexicographic product of GO-spaces.
Then the following are equivalent:
1) Xt=0 (X" =0),
(2) (i) if X1 has max (min), then X =0 (X; =0 ),
(i) XF =0 (X; =0 ).

The previous lemma shows:

Lemma 2.2. Let X = Xyx X, be a lexicographic product of GO-spaces.
Then the following are equivalent:

(1) X is a LOTS,

(2) (i) if Xy has mazx, then X =0,
(i) of X1 has min, then X; =0,
(iii) X is a LOTS.

Corollary 2.3. Let X = Xy x X1 be a lexicographic product of GO-
spaces. Then:

(1) if X1 has neither min nor max, then X is a LOTS iff X; is a
LOTS,

(2) if X1 has min (max) but has no max (min), then X is a LOTS
iff Xo =0 (XS =0) and X, is a LOTS,

(3) if X1 has both min and maz, then X is a LOTS iff both Xy and
X are LOTSs.

Example 2.4. S x R, S x [0,1)g, M x P are LOTS’s. But R x S,
S x (0,1]g, S x {0,1}, S x [0,1]g, S?, P x M are not LOTS’s.

More generally we have:

Theorem 2.5. Let X = Haq X, be a lexicographic product of GO-
spaces. Let J* = {a < v : X, has no maz.} and J- = {a < v :
X, has no min.}. Then the following are equivalent:
(1) X* =0 (X" =90)
(2) for every a < v with supJ* < a (supJ” < a), X7 =10
(X, =0) holds.
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Proof. Let ag = sup J*. Note ag < 7.

(1) = (2): Let X* =0 and ap < B <. Since X = [[,c5Xa X
[I5caey Xaand [[5 ., Xo has max, by Lemma 2.1, ([,<5 Xo)* =
holds. Moreover by [],<3 Xo = [[,.5 Xa X Xp, again by Lemma 2.1,
we have X7 = 0.

(2) = (1): Assume that X} = 0 for every a@ < v with o < . If
ag = 0, then by Cororally 1.4, we have Xt = (). So we assume ag > 0.

Case 1. oy € JT.

In this case, ap = maxJ™ < ~. Since Hagao X, = Ha<a0 Xo X Xoy,
Xa, has no max and X, = ), by Lemma 2.1, ([[,<,, Xa)" is empty. It
follows from Corollary 1.4 that ([ ], -, Xa)™ is also empty. Because

of X = [[cn, Xa X I 1aycacy Xa» by the same corollary, we have X+ =
0. -

Case 2. ag ¢ J™.
In this case, agp is a limit ordinal with oy < 7.

Claim. (J] X,)T =0.

a<ag

Proof. If there were x € ([[,.o, Xa)*, then by Lemma 1.2, there is
some oy < g such that fore every a < ay with o < a, max X, exists.

This means sup J© < oy < ag, a contradiction. OJ
By X = []acq, Xo XH&0§a<’y X, and the assumption (Ha0§a<'y Xo)"
= (), we have X+ = 0.
The remaining is similar. U

Corollary 2.6. Under the same assumption of Theorem 2.5, X is a
LOTS if and only if the following hold:

(1) for every a <~ with sup J* < o, X =0 holds,
(2) for every a < v with sup J~ < o, X, = 0 holds,

Corollary 2.7. Let X = Hagw X be a lexicographic product of GO-
spaces. Assume that X, has neither min nor max. Then X is a LOTS
if and only if X, is a LOTS. In particular, [],.. Xo X R is a LOTS.

a<y

Above two corollaries show:

Corollary 2.8. For every non-zero ordinal vy, S” is a LOTS if and
only if v s limat.
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3. WHEN 1s [, X, DENSE IN [[,__ X}

A GO-space X is dense in the LOTS X*, but generally a lexico-
graphic product X, x X; of GO-spaces need not be dense in X x X7.
For instance, let Xy, = [0,1)r U [2,3]g be the subspace of R and
X; = [0,1]g. Then X can be con51dered as the subspace [0, 1] U[2, 3|r
of R and obviously X} = X;. Now ((1,0),(1,1))x:xx; is non-empty
open in X x X7 but disjoint from X, x Xj.

First we consider a special case.

Lemma 3.1. Let X = Xy x X, be a lexicographic product of GO-spaces
and let X = X5 x X7, If Xy is a LOTS, then X is dense in X.

Proof. Let Xy be a LOTS. First we prove:
Claim 1. If z € X and (z, =) # 0, then (z, =) N X # 0.
—)

Proof. If ((0), =) x; # 0, then pick u € (2(0), =)x: N Xp and v € X,
Then (u,v) € (z,—=)g NX. Solet (z(0), =)x; = (Z) that is, z(0) =
max Xo. Take y € (z,—)g. Then 2(0) = y(0) and y(1) € (:v(l),—>)xf.
Since X is dense in X7, we can find v € (z(1 ), —)xr N X1. Now we
have (2(0),v) € (z,—)¢ N X. O

Analogously, we can prove:

Claim 2. If z € X and (+, )¢ # 0, then («—,2) ¢ N X # 0.
These two claims with the following claim complete the proof.

Claim 3. If z,2/ € X,z <x @ and (x,2") ; # 0, then (x,2") yNX # 0.

Proof. Let 2,2’ € X,z <% o' and (z,2’); # (0. Since X, is a LOTS,
that is Xy = X, we have 2(0),2'(0) € X,.

Case 1. z(0) = 2/(0).

In this case, take y € (z,2')x. Then we have z(0) = 2/(0) = y(0)
and y(1) € (x(1),2'(1))xy. Since X; is dense in X7, there is v €
(z(1),2'(1))x: N X1. Now (z(0),v) € (v,2") ¢ N X.

Case 2. z(0) < 2/(0).

First assume (z(0),2'(0))x, # 0. In this case, pick u € (z(0),2'(0))x,
and v € X;. Then (u,v) € (z,2') ¢ N X.

Next assume (z(0),2'(0))x, = 0. Since (z,2’)y # 0, we have either
(z(1),=)x; # 0 or («,2'(1))xs # 0. In the case (z(1),—=)x; # 0,
taking v € ( ( ), =) x: ﬂXl, we see (2(0),v) € (z,2')x N X. In the
case (<, 2'(1))xr # 0, taking v € (+, 2'(1))x: N X1, we see (2'(0),v) €
(z,2") ¢ N X. O
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O

Theorem 3.2. Let X = Ha<7 X, be a lexicographic product of GO-

spaces. Then X 1is dense in X = IT
a<~vywitha+1<vy, Xy isa LOTS.

X if and only if for every

a<y

Proof. First assume that X is dense in X and there is oy < ~v with
ap + 1 < v such that X,, is not a LOTS. We may assume X[ # 0,
so fix u € X7 and take v’ € X7 \ Xq, such that u <x; « and
(u,u')X;O =(. Fixx € X.

Case 1. |]] Xol > 2.

Take vy, v1,v9 € Ha0<a<7Xa with v9 < v; < vy, Let z; = (x |
ap)(u)M; for i = 0,1,2. Then x1 € (xg, 22) i but (x,x9) 5 N X =0,
a contradiction.

apg<a<y

Case 2. |[[,,cqcy Xal = 2.
In this case, note v = ag + 2 and Hao@é<7 Xo = Xagt1, say Xog41 =
{vo, 1} with vg < v1. Let 2y = (z | ao)™(uw)*vy and z; = (z |

ap) (W) 1. Then (x | o)™ (u') vy € (w0, 1) but (xg,z1)x N X =0,
a contradiction.

Next assume that for every a < v with a4+ 1 < v, X, = X holds.
If 7 is limit, then [[,_ Xo =[[,., X5 Ifv=0+1, then [],_; X, is
a LOTS. Therefore by the lemma above, X is dense in X. O

Corollary 3.3. Let X =]
spaces. Then:

(1) if ~ is limit, then X is dense in X = []

X, be a lexicographic product of GO-

a<y

XX if and only if

R a<y
X =X,
(2) if vy =06+ 1, then X is dense in X if and only if [[oes Xa is a
LOTS.

Note that the reverse implication of Lemma 3.1 is also true.

Example 3.4. For instance, we see:

e S x X is not dense in §* x X for every GO-space X.
e X x Sisdensein X x S*if X is a LOTS.
o P x M is dense in P x M* but M x P is not dense in M* x P.

4. PARACOMPACTNESS OF LEXICOGRAPHIC PRODUCTS

It is known that lexicographic products of paracompact LOTS’s are
paracompact. In this section, we extend this result for paracompact
GO-spaces.
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Definition 4.1. Let X be a GO-space. A subset A of X is called an
initial segment or a 0-segment of X if for every z, 2’ € X with x < 2/, if
2’ € A, then x € A. Similarly a subset A of X is called a final segment
or a 1-segment of X if for every z,2’ € X with x < 2/, if © € A, then
2’ € A. Both () and X are 0-segments and 1-segments.

Let A be a 0-segment of a GO-space X. A subset U of A is 0-
unbounded in A if for every x € A, there is 2’ € U such that = < /.
Let

0-cfx A =min{|U|: U is 0-unbounded in A.}.
Similar notions are also defined in linearly ordered compactifications,
see [3]. If the context is clear, 0- cfx A is denoted by 0- cf A. Obviously
A=0iff 0-cf A =0, and A has max iff 0-cf A = 1. Moreover we can
easily check that a 0-segment A has no max iff 0-c¢f A > w, and in this
case, 0-cf A is a regular cardinal. Also remark:

e if Ais a 0-segment of a GO-space X having no max, then A is
open in X, because of A = J,c4(+,a)x,

e if U is a O-unbounded subset of a 0-segment A of a GO-space X,
then we can define, by induction, a 0-order preserving sequence
{zo :a <k} CU (ie., x4 <x To whenever a < o < k) which
is also 0-unbounded in A, where x = 0-cf A.

Analogous concepts such as 1-unbounded, 1-cf A, ... etc, are also de-
fined.

A cut of a GO-space X is a pair (Ag, A;) of subsets of X such that
A; = X\ Ay and Ag is a 0-segment (equivalently A; is a 1-segment).
A cut (A, A;) is said to be a gap if Ay has no max and A; has no min.
Thus if X has no max, then (X, ) is a gap. Remark that if (Ag, A;)
is a gap, then both Ay and A; are clopen in X. A cut (Ao, A1) is said
to be a pseudo-gap if either “Ay has max and A; has no min” or “Ag
has no max and A; has min”, moreover Ay (equivalently A;) is clopen
in X.

The following is known:

Lemma 4.2 ([2], Theorem 2.4.6). Let X be a GO-space, then the fol-
lowing are equivalent:
(1) X is paracompact,
(2) for each gap and pseudo-gap (Ao, A1) of X and for each i € 2,
there is a closed discrete i-unbounded subset of A;.

Note that in the notations above:

e if Ag = (), then ) is a closed discrete O-unbounded subset of Ay,
e if Ay has max, then the one element set {max Ay} is a closed
discrete O-unbounded subset of Ay,
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e if 0-cf Ag = w, then every 0-unbounded 0-order preserving se-
quence {a, : n € w} in Ag is closed discrete in Ay.

Definition 4.3. A GO-space X is said to be 0-paracompact if for every
closed O-segment A of X with 0-cf A > wq, say kK = 0-cf A, there
is a O-unbounded closed discrete subset of A. In this case, we can
take a 0-order preserving sequence {a, : o < k} in A which is 0-
unbounded and closed discrete in A (equivalently, closed discrete in
X). 1-paracompactness is defined analogously.

Now with the consideration above, Lemma 4.2 says the following:

Lemma 4.4. A GO-space is paracompact if and only if it is both 0O-
paracompact and 1-paracompact.

Remark that Lemma 1.2 says something about pseudo-gaps in lexi-
cographic products. On the other hand, the following says about gaps
of lexicographic products.

Lemma 4.5. Let X = Ha<7 X, be a lexicographic product of GO-
spaces. Assume that A is a 0-segment with 0-cf A > w and 1-cf(X \
A) > w, that is, (A, X \ A) is a gap with A # 0 and X \ A # (.
Say k = 0-cf A, then there are ag < 7y, yo € Yo := [] X, and a
0-segment Ay of Xa, such that:

(1) for everya € A, a | ag <y, yo holds,
(2) for every x € X,
(i) if x | ap <y, Yo, then x € A holds,
(ii) if © | ap >v, Yo, then x € X \ A holds,

(3) for every x € X with x | oy = yo, x(v) € Ao holds iff so does
x € A,

(4) if Ay is non-empty and has no maz, then k = 0-cfx, Ay,

(5) if Ao is non-empty and has mazx, then there is o > g such
that X, has no mar and k = 0- cfXa1 X, holds, where oy :=
min{a <vy: a>ay and X, ha no maz.},

(6) if Ag is empty, then:

(i) for everya € A, a | oy <y, Yo holds,

a<agp

i) ag is limit,
(iii) there is a > g such that X, has no min.
(iv) A= (+,90)y, X Y1, where Y} := Haogaq X,.
(V) (<=, %)y, has no maz,
(vi) Kk = 0-cfy, (<=, %0)y, = cf a,
(vii) for every f < ap, there is a € A satisfying 5 < min{a <

ao = a(e) # yo(a)}.
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Proof. Set B = X \ A. For each a € A and b € B, let a(a,b) =
min{a < v : a(a) # b(a)} and oy = sup{a(a,b) : a € A,b € B}. Note
Q) S Y-

Claim 1. Let ag,a; € A and by, by € B. If a(ag,by) < a(ay,by), then
ap [ a(ag, bo) = a1 | a(ag, bo).

Proof. Assume that there is 5 < «(ag,bp) such that ag(5) # ai(fB).
Let By = min{f < a(ap,by) : ao(B) # a1(B)}. Then by | By = ag |
Bo = ar | Bo = b | Bo and bo(ﬁo) = ao(ﬁo) #* al(ﬂo) = bl(ﬂo)-
If ap(Bo) < a1(Bo), then we have by < ay, by € B and a; € A, a
contradiction. If ag(fy) > a1(fo), then we have ag > by, by € B and
ag € A, a contradiction. O

This claim ensures that the function yo := (J{a | a(a,b) :a € A,b €
B} is well-defined and yo € [],, Xa-

Claim 2. o < 7.

Proof. Assume oy = . Then yp € X = AU B. If yg € A, then there
is ap € A with yo <x ag. Letting Sy = min{s < v : yo(8) # ao(B)},
take a € A and b € B with 5y < a(a,b). Then we have b <x ag, a
contradiction. When yy € B, similarly we can get a contradiction. [l

By a similar argument of the proof above, we can check the clauses
(1) and (2). Now let Ay = {a(ag) : a € A,a | ap = yo} amd By =
Xop \ Ag. Obviously Ay is a 0-segment of X,, and By is a 1-segment
of Xy,-

Claim 3. By = {a(ap) : a € B,a | ap = 4o} holds.

Proof. The inclusion “C” is obvious.

To see the other inclusion, let b € B with b [ ag = yo. If b(ag) € A
were true, then there isa € A with a [ ap = yo and b(ap) = a(ay). This
means a | (o +1) =0 [ (ap + 1), thus oy < a(a,b), a contradiction.
We have b(ag) € By. O

This claim shows the clause (3).
Claim 4. The clause (4) holds.

Proof. Assume that Ay # () and Ay has no max. To see k > 0-cf Ay,
let U be a 0-unbounded subset of A. Fix ug € Ay and a9 € A with
ap | ap = yo and ag(ag) = ug. Then it is easy to check that V :=
{a(ap) : agp <x a € U} is 0-unbounded in Ay.

To see k < 0-cf Ay, let V' be a 0-unbounded in Ay. For every u € V,
we can fix a, € A with a, | a9 = yo and a,(ap) = w. Then U := {a, :
u € V'} is 0-unbounded in A. O
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Claim 5. The clause (5) holds.

Proof. Assume that Ay # () and Ay has max ug. If for every a < v with
ag < a, X, has max, then yo" (ug)(max X, : @y < a < 7) = max A,
a contradiction. Therefore there is @ < v with oy < « such that X,
has no max. Let a; be such a smallest one. By a similar argument in
Claim 4, we see £ = 0-cfx, X, O

Claim 6. The clause (6) holds.

Proof. Let Ag = (. If there is a € A with a [ ag = o, then a(ag) € Ay,
a contradiction. Tis shows (i).

If ag = 4+ 1 for some ordinal £, then we can find a € A and b € B
with 8 < a(a,b) < ag, so a(a,b) = ag. Now we have yg = a | ap, this
contradicts (i). This shows (ii).

fYy, = Ha0§a<fy X, has min, then we have by := yo" (min X, : ap <
a<vy)eBbyAy=0.Ifa € X and a < by, then a [ ap < b [ g = yo,
thus a € A by (i). This shows by = min B, a contradiction. We see
(iii). (2-i) and (i) show (iv).

To see (v), assume that y; := max (4, o)y, exists. Let a; = min{a <
ap : y1(a) # yo(a)}, moreover take a € A and b € B with oy < a(a, b).
By (i), we have a | oy < %o, therefore a [ g < 31. By y1 [ on = yo |
a; = a [ ag and y1(1) < yo(ay) = alay), we have y; < a | ap, a
contradiction.

(vi) can be similarly proved as in Claim 4. (vii) follows from the
definition of «y O

O

Theorem 4.6. If X, is a 0-paracompact GO-space for every a < 7,

then the lexicographic product X = Haq X, 15 also 0-paracompact.

Proof. Let A be a closed 0-segment of X with 0-cf A > wy, set kK =
0-cf A. We will find a 0-unbounded 0-order preserving sequence {a; :
d < Kk} C A which is closed discrete in A. We have to consider several
cases. Let B =X\ A.

Case 1. B has min by.

In this case, since A is closed and has no max, by belongs to X . From
Lemma 1.3, we can find o < 7 such that by(ag) € X, and for every
a < v with ap < a, by(a) = min X, holds. Let Ay = (+,bo(w))x.,, -
Then Ay is a closed 0-segment of X,,,. By a similar argument of Claim
4 in the previous lemma, we see £ = 0-cfx, Ap. Since X,, is 0-
paracompact, we can take a 0-unbounded 0-order preserving sequence



16 NOBUYUKI KEMOTO

{us : 6 < k} in Ay which is closed discrete in Ay and (<, uo)x,, # 0.
For each § < k, let as = (by | )" (us)™(bo [ (cv,7)).

Claim 1. The sequence F' = {as : 6 < k} is 0-unbounded, 0-order
preserving and closed discrete in A.

Proof. Obviously F' is O-order preserving. Let a € A. Then we have a |
ag < by [ag. Ifa|ay<by| g, then a < ag. If a | ag = by | ag, then
we can take § < k with a(ag) < us (otherwise, a > by, a contradiction).
Then we have a < as. Thus F' is O-unbounded in A. To see the closed
discreteness of F', take the smallest 0g < K with a < as,. If 69 = 0,
then (<, ag)x is a neighborhood of a disjoint from F. If 6y > 0, then
we have a [ ag = by [ o and a(ag) € Ag. Note uy < a(ap) because
of ap < a. Since {us : § < K} is closed discrete in X,,, we can find
u* € X3, with u* <x; a(a) such that (u*, a(ao)]x; NXq, contains at
most one us. Let a* = (by | o) (u*)(by | (t,7)). Then a* € X and
(a*, as,) ¢ N X is a neighborhood of a witnessing the closed discreteness
of F at a. O

Case 2. B # () and has no min.

This case is a modification of Theorem 4.2.2 in [2]. In this case, take
ag < 7, Yo € Ha<ao X, and the 0-segment Ay of X,, in Lemma 4.5.
Further we divide Case 2 into several subcases.

Case 2-1. Ay = 0.

In this case, we use (6) of Lemma 4.5. By induction using (i) and (vi
in (6), define {as : 6 < K} C A such that {min{a < g : as(a)
yo(a)} : 0 < Kk} is O-unbounded and 0-order preserving in «y.

Claim 2. The sequence F' = {as : 6 < k} is O-unbounded, 0-order
preserving and closed discrete in A.

Proof. The proof that F'is O-unbounded and 0-order preserving is easy.
Let a € A and §y < K be the smallest 6 < x with a < as. By (6-iii)
in Lemma 4.5, Y7 = Ha0<a<7 X, has no min, so take y; € Y; with
Y1 <v, a | [,7). Then ((a | ag)y1,as)x is a neighborhood of a
witnessing the closed discreteness of F at a. 0

Case 2-2. Ay # 0.
We further divide this case into several cases.

Case 2-2-1. Ay has no max and By := X,, \ Ap has min.

Note that in this case, Ay need not be closed in X,,. We can find
a > ap such that X, has no min (otherwise, B has min). Let ay be
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such a smallest one. By (4) in Lemma 4.5, we can find a 0-unbounded
0-order preserving sequence {us : § < k} in Ap. But remark that in
general, {us : § < Kk} cannot be closed discrete in Ay. For each § < &,
take as € X with as [ (ap + 1) = yo"(us), then as € A.

Claim 3. The sequence F' = {as : 6 < k} is O-unbounded, 0-order
preserving and closed discrete in A.

Proof. Obviously F' is 0-unbounded and 0-order preserving in A. Let
a € A and 0y < k be the smallest § < k with a < as. If 69 = 0, then
(«—, ap)x is a neighborhood of a disjoint from F.

Let 69 > 0, then we have a [ ag = 1. Since Y] := Hag<o¢<'y X, has
no min, take y; € Yy with y; < a [ (ag,7). Then ((a | (+1)) v, as,)
is a neighborhood of a witnessing the closed discreteness of F' at a.

Case 2-2-2. Aj has no max and By := X,, \ A¢ has no min.

In this case Ay is a closed 0-segment in the 0-paracompact GO-space
Xo- Using (4) in Lemma 4.5, take a 0-unbounded 0-oder preserving
sequence {us : 0 < r} which is closed discrete in Ag and (+, uo)x,, # 0.
For each § < k, take as € X with as [ (ap + 1) = yo"(us), then
as € A. O

Claim 4. The sequence F' = {as : 6 < k} is O-unbounded, 0-order
preserving and closed discrete in A.

Proof. Obviously F' is 0-unbounded and 0-order preserving in A. Let
a € A and 6y < k be the smallest 6 < k with a < as. As in the
proof of the claim above, when 0y = 0, then (+,ag)y witnesses the
closed discreteness of F' at a. When dy > 0, we have a | ay = yo and
a(ag) € Ag. Since {us : 6 < K} is closed discrete in X,,, we can take
ut € X3, with u* < a(ao), (u*, a(ao)]x; NXa, contains at most one us.
Take a* € X with a* | (ag+1) = (a | ap) (u*). Then (a*,as,) ¢ N X is
a neighborhood of a witnessing the closed discreteness of F' at a. [

Case 2-2-3. Ay has max.

In this case, by (5) of Lemma 4.5, there is @ > ag such that X,
has no max. Let a; be such a smallest one. Since k = 0-cfx, Xo,
and X,, is O-paracompact, the 0-segment X,, has a O-unbounded 0-
order preserving sequence {us : 6 < K} C X,, which is closed discrete
in X,, and (<, ug)x,, # 0 . For each 6 < &, take a5 € X with
as | (an +1) = yo"(max Ap) (max X, : ap < a < a1)"(us). Note
as € A. As in Claim 4, we see:
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Claim 5. The sequence F' = {as : 6 < k} is O-unbounded, 0-order
preserving and closed discrete in A.

Case 3. B=10,ie., A= X.

Since X has no max, let oy = min{ar < v : X, has no max.}. Then
as in Claim 4 in Lemma 4.5, we see k = 0-cf Xag Xa,- Since X, is 0-
paracompact, we can find a O-unbounded 0O-order preserving sequence
{us : 6 < Kk} C Xq, which is closed discrete in X,, and (¢, u)x,, 7 0.
For every 6 < k, take a; € X with a5 [ (ap+ 1) = (max X, : o <
ap){us). Note as € A. Similarly we can see:

Claim 6. The sequence F' = {as : 6 < k} is O-unbounded, 0-order
preserving and closed discrete in A. U

With the analogy of the theorem above, we extends the result The-
orem 4.2.2 in [2] as follows:

Corollary 4.7. Lexicographic products of paracompact GO-spaces are
paracompact.

Example 4.8. For example we see:

e the lexicographic products S” and M are paracompact for every
ordinal ~.

e the lexicographic products M x PP and P x M are paracompact.

e lexicographic products of metrizable GO-spaces are paracom-
pact. For instance, the lexicographic product ([0, 1)gr U[2, 3]r)“*
is paracompact.

However, there is a paracompact lexicographic product of non-para-
compact LOTS’s, see Example in page 73 in [2]. We end this paper
with the following question.

Question 4.9. Characterize paracompactness of lexicographic prod-
ucts of GO-spaces.
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