
LEXICOGRAPHIC PRODUCTS OF GO-SPACES

NOBUYUKI KEMOTO

Abstract. It is known that lexicographic products of paracom-
pact LOTS’s are also paracompact, see [2]. In this paper, the no-
tion of lexicographic products of GO-spaces is defined. We char-
acterize when a lexicographic product of GO-spaces is a LOTS.
Moreover, we show that lexicographic products of paracompact
GO-spaces are also paracompact. For example, we see
• the lexicographic products M×P and S× [0, 1)R are LOTS’s,
but P×M and S× (0, 1]R are not LOTS’s,
• the lexicographic product Sγ of the γ-many copies of S is a
LOTS iff γ is a limit ordinal,
• the lexicographic products M×P and P×M are paracompact,
• the lexicographic product Sγ is paracompact for every ordinal
γ,

where P, M, S and [0, 1)R denote the irrationals, the Michael line,
the Sorgenfrey line and the interval [0, 1) in the reals R, respec-
tively.

1. Introduction

We assume all topological spaces have cardinality at least 2.
A linearly ordered set ⟨X,<X⟩ (see [1]) has a natural T2-topology

denoted by λX or λ(<X) so called the interval topology which is the
topology generated by {(←, x)X : x ∈ X} ∪ {(x,→)X : x ∈ X} as a
subbase, where (x,→)X = {w ∈ X : x <X w}, (x, y]X = {w ∈ X :
x <X w ≤X y}, ..., etc. Here w ≤X x means w <X x or w = x. If
the contexts are clear, we simply write < and (x, y] instead of <X and
(x, y]X respectively. Note that this subbase induces a base by convex
subsets ( e.g., the collection of all intersections of at most two members
of this subbase), where a subset B of X is convex if for every x, y ∈ B
with x <X y, [x, y]X ⊂ B holds. The triple ⟨X,<X , λX⟩ is called a
LOTS (= Linearly Ordered Topological Space) and simply denoted by
LOTS X. Observe that if x ∈ U ∈ λX and (←, x) ̸= ∅, then there is
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y ∈ X such that y < x and (y, x] ⊂ U . Note that for every x ∈ X,
(←, x] /∈ λX iff (x,→) is non-empty and has no minimum (briefly, min),
also analogously [x,→) /∈ λX iff (←, x) is non-empty and has no max.
Let

XR = {x ∈ X : (←, x] /∈ λX} and XL = {x ∈ X : [x,→) /∈ λX}.

Unless otherwise stated, the real line R is considered as a linearly
ordered set (hence LOTS) with the usual order, similarly so are the set
Q of rationals, the set P of irrationals and an ordinal α.

A generalized ordered space (= GO-space ) is a triple ⟨X,<X , τX⟩,
where <X is linear order on X and τX is a T2 topology on X which has
a base consisting of convex sets, also simply denoted by GO-space X.
For LOTS’s and GO-spaces, see also the nice text book [5]. It is easy
to verify that τX is stronger than λX . Also let

X+
τX

= {x ∈ X : (←, x]X ∈ τX \ λX},

X−
τX

= {x ∈ X : [x,→)X ∈ τX \ λX}.
Obviously X+

τX
⊂ XR and X−

τX
⊂ XL. When contexts are clear, we

usually simply write X+ and X− instead of X+
τX

and X−
τX
, respectively.

Note that X is a LOTS iff X+ ∪ X− = ∅. For A ⊂ XR and B ⊂
XL, let τ(A,B) be the topology generated by {(←, x)X : x ∈ X} ∪
{(x,→)X : x ∈ X} ∪ {(←, x]X : x ∈ A} ∪ {[x,→)X : x ∈ B} as a
subbase. Obviously τX = τ(X+, X−) whenever X is a GO-space, and
also τ(A,B) defines a GO-space topology on X whenever X is a LOTS
with A ⊂ XR and B ⊂ XL. The Sorgenfrey line S is ⟨R, <R, τ(R, ∅)⟩
and the Michael line M is ⟨R, <R, τ(P,P)⟩. These spaces are GO-spaces
but not LOTS’s.

Let X be a GO-space and Y ⊂ X, then “the subspace Y of a GO-
space X” means the GO-space ⟨Y,<X↾ Y, λX ↾ Y ⟩, where <X↾ Y is
the restricted order of <X on Y and λX ↾ Y := {U ∩Y : U ∈ λX}, that
is, λX ↾ Y is the subspace topology of λX .

Now for a given GO-space X, let

X∗ =
(
X− × {−1}

)
∪
(
X × {0}

)
∪
(
X+ × {1}

)
and consider the lexicographic order <X∗ on X∗ induced by the lex-
icographic order on X × {−1, 0, 1}, here of course −1 < 0 < 1. We
usually identify X as X = X×{0} in the obvious way (i.e., x = ⟨x, 0⟩),
thus we may consider X∗ =

(
X− × {−1}

)
∪ X ∪

(
X+ × {1}

)
. Note

(←, x]X = (←, ⟨x, 1⟩)X∗ ∩X ∈ λ(<X∗) ↾ X whenever x ∈ X+, and also
its analogy. Then the GO-space X is a dense subspace of the LOTS
X∗, and X has max iff X∗ has max, in this case, maxX = maxX∗
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(and similarly for min). Note S∗ = R× {0} ∪R× {1} with the identi-
fication S = R×{0} and M∗ = P×{−1} ∪R×{0}∪P×{1} with the
identification M = R× {0}.

Definition 1.1. LetXα be a LOTS for every α < γ andX =
∏

α<γ Xα,

where γ is an ordinal. When γ = 0, we consider as
∏

α<γ Xα = {∅},
which is a trivial LOTS, for notational conveniences. When γ > 0,
every element x ∈ X is identified with the sequence ⟨x(α) : α < γ⟩.
Recall that the lexicographic order <X on X is defied as follows: for
x, x′ ∈ X,

x <X x′ iff for some α < γ, x ↾ α = x′ ↾ α and x(α) < x′(α),

where x ↾ α = ⟨x(β) : β < α⟩. Then X = ⟨X,<X , λX⟩ is a LOTS and
called the lexicographic product of LOTS’s Xα’s.

Now let Xα be a GO-space for every α < γ and X =
∏

α<γ Xα. Then

the lexicographic product X̂ =
∏

α<γ X
∗
α, which is a LOTS, can be de-

fined. The lexicographic product of GO-spaces Xα’s is the GO-space
⟨X,<X̂↾ X,λX̂ ↾ X⟩. Obviously this definition extends the lexico-
graphic product of LOTS’s, and is reasonable because each X∗

α is the
smallest LOTS which contains Xα as a dense subspace, see [4]. When
n ∈ ω, then

∏
i<n Xi is denoted by X0 × · · · ×Xn−1. If all Xα’s are X,

then
∏

α<γ Xα is denoted by Xγ.

Let X and Y be LOTS’s. A map f : X → Y is said to be 0-
order preserving if f(x) <Y f(x′) whenever x <X x′. Similarly a map
f : X → Y is said to be 1-order preserving if f(x) >Y f(x′) whenever
x <X x′. Obviously a 0-order preserving map f : X → Y between
LOTS’s X and Y , which is onto, is a homeomorphism, i.e., both f and
f−1 are continuous. But when X = S and Y = M, the identity map is
0-order preserving onto but not a homeomorphism.

So now let X and Y be GO-spaces. A 0-order preserving map f :
X → Y is said to be embedding if f is a homeomorphism between X
and f [X], where f [X] is the subspace of the GO-space Y . In this case,
we can identify X with f [X] as a GO-space. In the definition of X∗,
the map f : X → X × {0} ⊂ X∗ defined by f(x) = ⟨x, 0⟩ is a 0-order
preserving embedding, so we have identified as X × {0} = X.

In the rest of this section, we prepare basic tools to handle the lexi-
cographic products of GO-spaces.

Lemma 1.2. Let X =
∏

α<γ Xα be a lexicographic product of GO-
spaces and x ∈ X. The following are equivalent:

(1) x ∈ X+,
(2) there is α0 < γ such that:
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(i) x(α0) ∈ X+
α0
,

(ii) for every α < γ with α0 < α, Xα has max and x(α) =
maxXα.

Proof. Let X̂ =
∏

α<γ X
∗
α be the lexicographic product.

(1) ⇒ (2): Assume x ∈ X+. Because of (←, x]X /∈ λX , (x,→)X
is non-empty and has no min. By (←, x]X ∈ τX = λX̂ ↾ X, there

is y ∈ X̂ with x <X̂ y such that (←, x]X ⊃ [x, y)X̂ ∩ X, that is,

(x, y)X̂ = ∅. Since (x,→)X has no min, we have y ∈ X̂ \ X. Let
α0 = min{α < γ : x(α) ̸= y(α)}. Then we have x ↾ α0 = y ↾ α0

and x(α0) <X∗
α0

y(α0). Since Xα0 is dense in X∗
α0
, (x(α0),→)Xα0

is
non-empty.

Claim 1. For every α < γ with α0 < α, Xα has max and x(α) =
maxXα

Proof. First assume that for some α < γ with α0 < α, Xα has no max.
Then we can take v ∈ Xα with x(α) <Xα v. Set x′ = (x ↾ α)∧⟨v⟩∧(x ↾
(α, γ)), that is,

x′(β) =


x(β) if β < α,

v if β = α,

x(β) if α < β < γ.

Then x′ ∈ (x, y)X̂ ∩X, a contradiction. Therefore for every α < γ with
α0 < α, maxXα exists.

Next assume that for some α < γ with α0 < α, x(α) <Xα maxXα

holds. Then (x ↾ α)∧⟨maxXα⟩∧(x ↾ (α, γ)) ∈ (x, y)X̂ ∩X, a contradic-
tion. □

Claim 2. (x(α0), y(α0))X∗
α0

= ∅, therefore (←, x(α0)]Xα0
∈ τXα0

.

Proof. Assume (x(α0), y(α0))X∗
α0
̸= ∅. Since Xα0 is dense in X∗

α0
, take

v ∈ (x(α0), y(α0))X∗
α0
∩Xα0 . Then (x ↾ α0)

∧⟨v⟩∧(x ↾ (α0, γ)) ∈ (x, y)X̂∩
X, a contradiction. □

The following claim shows x(α0) ∈ X+
α0
.

Claim 3. (←, x(α0)]Xα0
/∈ λXα0

.

Proof. Since x(α0) <X∗
α0

y(α0) and Xα0 is dense in X∗
α0
, we have

(x(α0),→)Xα0
̸= ∅. Assume (←, x(α0)]Xα0

∈ λXα0
, then there is v ∈

Xα0 such that x(α0) <Xα0
v and (x(α0), v)Xα0

= ∅. Since (x(α0), v)X∗
α0

=

∅, we have v = y(α0), thus y(α0) ∈ Xα0 . Let α1 = min{α < γ : y(α) /∈
Xα}. Because of y /∈ Y and the definition of y, we have α0 < α1. If
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(←, y(α1))X∗
α1

were empty, then y(α1) = minX∗
α1

= minXα1 ∈ Xα1 , a

contradiction. Therefore we can take v′ ∈ (←, y(α1))X∗
α1
∩Xα1 . Then

(y ↾ α1)
∧⟨v′⟩∧(x ↾ (α1, γ)) ∈ (x, y)X̂ ∩X, a contradiction. □

(2)⇒ (1): Assume (2). By (i), we can take v ∈ X∗
α0
\Xα0 such that

x(α0) <X∗
α0

v and (x(α0), v)X∗
α0

= ∅. Let y = (x ↾ α0)
∧⟨v⟩∧(x ↾ (α0, γ)).

Then we have x <X̂ y ∈ X̂\X and (x,→)X ̸= ∅. Obviously (x, y)X̂ = ∅
holds. Thus (←, x]X = (←, y)X̂ ∩ X ∈ λX̂ ↾ X = τX . The following
Claim completes the proof.

Claim 4. (←, x]X /∈ λX .

Proof. Assume (←, x]X ∈ λX . It follows from (x,→)X ̸= ∅ that for
some x′ ∈ X with x <X x′, (x, x′)X = ∅ holds. Let α1 = min{α < γ :
x′(α) ̸= x(α)}. Then by x(α1) <Xα1

x′(α1), we have α1 ≤ α0. Since
v ∈ (x(α0),→)X∗

α0
, we can take u ∈ (x(α0),→)Xα0

. If α1 < α0 were

true, then (x ↾ α0)
∧⟨u⟩∧(x ↾ (α0, γ)) ∈ (x, x′)X , a contradiction. Thus

we have α1 = α0.
Now by (x(α0), v)X∗

α0
= ∅, we also have v <X∗

α0
x′(α0) moreover

(v, x′(α0))X∗
α0
̸= ∅ (otherwise, v is an isolated point in X∗

α0
and v /∈

Xα0 , a contradiction). Taking w ∈ (v, x′(α0))X∗
α0
∩ Xα0 , we have (x ↾

α0)
∧⟨w⟩∧(x ↾ (α0, γ)) ∈ (x, x′)X , a contradiction. □

□
Similarly, we have an analogous result:

Lemma 1.3. Let X =
∏

α<γ Xα be a lexicographic product of GO-
spaces and x ∈ X. The following are equivalent:

(1) x ∈ X−,
(2) there is α0 < γ such that:

(i) x(α0) ∈ X−
α0
,

(ii) for every α < γ with α0 < α, Xα has min and x(α) =
minXα.

From now on, we do not write down such an analogous result, we
refer, for instance, Lemma 1.3 as the analogous result of Lemma 1.2.

Corollary 1.4. Let X =
∏

α<γ Xα be a lexicographic product of GO-

spaces. If X+
α = ∅ for every α < γ, then X+ = ∅.

This corollary with the analogous result also shows that lexicographic
products of LOTS’s are LOTS’s. However, lexicographic products of
GO-spaces, some of which are not LOTS’s, can be LOTS’s. This fact
will be discussed in the next section.
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Now, let X =
∏

α<γ Xα be a lexicographic product of LOTS’s and

δ < γ. For x ∈ X, the correspondence x → ⟨x ↾ δ, x ↾ [δ, γ)⟩ defines
a 0-order preserving onto map from X to (

∏
α<δ Xα) × (

∏
δ≤α<γ Xα),

which is a lexicographic product of two lexicographic products. So
they are topologically homeomorphic, thus we can identify

∏
α<γ Xα

with (
∏

α<δ Xα)× (
∏

δ≤α<γ Xα) as a LOTS whenever Xα’s are LOTS’s,

see [2].
Next, let X =

∏
α<γ Xα be a lexicographic product of GO-spaces

and δ < γ. The correspondence above also defines a 0-order preserving
onto map from X to (

∏
α<δ Xα)× (

∏
δ≤α<γ Xα). Is this map a homeo-

morphism between them? We show in the next lemma that the answer
is positive, while the proof is not so trivial. It will be a key tool through
the theory.

Lemma 1.5. Let X =
∏

α<γ Xα be a lexicographic product of GO-

spaces and δ < γ. The correspondence x → ⟨x ↾ δ, x ↾ [δ, γ)⟩ is
a homeomorphism. So we can identify

∏
α<γ Xα with (

∏
α<δ Xα) ×

(
∏

δ≤α<γ Xα) as a GO-space.

Proof. Let Y0 =
∏

α<δ Xα and Y1 =
∏

δ≤α<γ Xα. We may identify the

correspondence as x = ⟨x ↾ δ, x ↾ [δ, γ)⟩ for every x ∈ X. By this
identification, the order <X coincides with the order <Y0×Y1 , where
Y0 × Y1 is the lexicographic product of the GO-spaces Y0 and Y1 . It
suffices to see τX = τY0×Y1 . Note that τX = λX̂ ↾ X, τY0 = λŶ0

↾ Y0,

τY1 = λŶ1
↾ Y1 and τY0×Y1 = λY ∗

0 ×Y ∗
1

↾ Y0 × Y1 hold, where X̂ =∏
α<γ X

∗
α, Ŷ0 =

∏
α<δ X

∗
α and Ŷ1 =

∏
δ≤α<γ X

∗
α.

Claim 1. τX ⊂ τY0×Y1 .

Proof. It suffices to show that the subbase {(←, x)X : x ∈ X}∪{(x,→
)X : x ∈ X} ∪ {(←, x]X : x ∈ X+} ∪ {[x,→)X : x ∈ X−} is contained
in τY0×Y1 . Note under the identification, (←, x)X = (←, x)Y0×Y1 , (←
, x]X = (←, x]Y0×Y1 · · · , etc hold. Therefore, it only suffices to prove
the following fact:.

Fact. If x ∈ X+ (x ∈ X−), then (←, x]X ∈ τY0×Y1 ([x,→)X ∈ τY0×Y1 ,
respectively).

Proof. Let x ∈ X+. By Lemma 1.3, take α0 < γ such that x(α0) ∈ X+
α0
,

and for every α < γ with α0 < α, x(α) = maxXα = maxX∗
α holds.

We consider two cases.

Case 1. α0 < δ.

In this case, again applying Lemma 1.2 to x ↾ δ ∈ Y0, we see x ↾
δ ∈ Y +

0 . Therefore there is y0 ∈ Y ∗
0 \ Y0 such that x ↾ δ <Y ∗

0
y0 and
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(x ↾ δ, y0)Y ∗
0

= ∅, that is, y0 = ⟨x ↾ δ, 1⟩. Let z = y0
∧(x ↾ [δ, γ)),

then z ∈ Y ∗
0 × Y1 ⊂ Y ∗

0 × Y ∗
1 . Assume that there is an element u ∈

(x, z)Y ∗
0 ×Y ∗

1
∩ Y0 × Y1. Then we have x ↾ δ ≤Y0 u ↾ δ. If x ↾ δ = u ↾ δ

were true, then x ↾ [δ, γ) <Y1 u ↾ [δ, γ) has to be true. But this is a
contradiction, because of x(β) = maxXβ for all β ≥ δ. Therefore we
have x ↾ δ <Y0 u ↾ δ. Since y0 /∈ Y0 and (x ↾ δ, y0)Y ∗

0
= ∅, we see

z ↾ δ = y0 <Y ∗
0
u ↾ δ. Thus we have z <Y ∗

0 ×Y ∗
1
u which contradicts

u <Y ∗
0 ×Y ∗

1
z, so we have seen (x, z)Y ∗

0 ×Y ∗
1
∩ (Y0 × Y1) = ∅. This shows

(←, x]Y0×Y1 = (←, z)Y ∗
0 ×Y ∗

1
∩ Y0 × Y1 ∈ λY ∗

0 ×Y ∗
1
↾ Y0 × Y1 = τY0×Y1 .

Case 2. δ ≤ α0.

Applying Lemma 1.2 to Y1, we see x ↾ [δ, γ) ∈ Y +
1 . Therefore, there

is y1 ∈ Y ∗
1 \ Y1 such that x ↾ [δ, γ) <Y ∗

1
y1 and (x ↾ [δ, γ), y1)Y ∗

1
= ∅.

Then by (x, (x ↾ δ)∧y1)Y ∗
0 ×Y ∗

1
= ∅, we have (←, x]Y0×Y1 = (←, (x ↾

δ)∧y1)Y ∗
0 ×Y ∗

1
∩ Y0 × Y1 ∈ τY0×Y1 . □

This completes the proof of Claim 1. □

Claim 2. τX ⊃ τY0×Y1 .

Proof. As in Claim 1, it suffices to see that if x ∈ (Y0 × Y1)
+ ( x ∈

(Y0 × Y1)
−), then (← x]Y0×Y1 ∈ τX ([x,→)Y0×Y1 ∈ τX , respectively).

Let x ∈ (Y0 × Y1)
+, say x0 = x ↾ δ and x1 = x ↾ [δ, γ). Apply Lemma

1.2 to x ∈ (Y0 × Y1)
+, we can find i0 < 2, where 2 := {0, 1}, such that

xi0 ∈ Y +
i0

and for every i < 2 with i0 < i, xi = maxYi (= maxY ∗
i )

holds.

Case 1. i0 = 0.

It follows from x0 ∈ Y +
0 that for some z0 ∈ Y ∗

0 \ Y0 with x0 <Y ∗
0
z0,

(x0, z0)Y ∗
0

is empty. By x ↾ [δ, γ) = x1 = maxY1, we have x(α) =
maxXα for every α < γ with δ ≤ α. It follows from λY ∗

0
↾ Y0 = τY0 =

λŶ0
↾ Y0 and x0 ∈ Y +

0 , applying Lemma 1.2, that for some α0 < δ,
x(α0) ∈ X+

α0
and for every α < δ with α0 < α, x(α) = maxXα hold.

Since x(α0) ∈ X+
α0

and for every α < γ with α0 < α, x(α) = maxXα

hold, applying Lemma 1.2 again, we have x ∈ X+. Thus we have
(←, x]Y0×Y1 = (←, x]X ∈ τX .

Case 2. i0 = 1.

In this case, x ↾ [δ, γ) = x1 ∈ Y +
1 . So applying Lemma 1.2, there

is α0 < γ with δ ≤ α0 such that x(α0) ∈ X+
α0

and for every α < γ
with α0 < α, x(α) = maxXα holds. Again by Lemma 1.2, we have
(←, x]Y0×Y1 = (←, x]X ∈ τX .

The remaining case is similar. □
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This completes the proof of the lemma. □

2. When are lexicographic products of GO-spaces
LOTS’s?

It is easy to verify that the lexicographic product S× R is a LOTS,
while S is not a LOTS. In this section, we characterize when lexico-
graphic products of GO-spaces are LOTS’s. Using Lemma 1.2, the
following is easy to prove.

Lemma 2.1. Let X = X0×X1 be a lexicographic product of GO-spaces.
Then the following are equivalent:

(1) X+ = ∅ (X− = ∅),
(2) (i) if X1 has max (min), then X+

0 = ∅ (X−
0 = ∅ ),

(ii) X+
1 = ∅ (X−

1 = ∅ ).

The previous lemma shows:

Lemma 2.2. Let X = X0×X1 be a lexicographic product of GO-spaces.
Then the following are equivalent:

(1) X is a LOTS,
(2) (i) if X1 has max, then X+

0 = ∅,
(ii) if X1 has min, then X−

0 = ∅,
(iii) X1 is a LOTS.

Corollary 2.3. Let X = X0 × X1 be a lexicographic product of GO-
spaces. Then:

(1) if X1 has neither min nor max, then X is a LOTS iff X1 is a
LOTS,

(2) if X1 has min (max) but has no max (min), then X is a LOTS
iff X−

0 = ∅ (X+
0 = ∅) and X1 is a LOTS,

(3) if X1 has both min and max, then X is a LOTS iff both X0 and
X1 are LOTS’s.

Example 2.4. S × R, S × [0, 1)R, M × P are LOTS’s. But R × S,
S× (0, 1]R, S× {0, 1}, S× [0, 1]R, S2, P×M are not LOTS’s.

More generally we have:

Theorem 2.5. Let X =
∏

α<γ Xα be a lexicographic product of GO-

spaces. Let J+ = {α < γ : Xα has no max.} and J− = {α < γ :
Xα has no min.}. Then the following are equivalent:

(1) X+ = ∅ (X− = ∅),
(2) for every α < γ with sup J+ ≤ α ( sup J− ≤ α), X+

α = ∅
(X−

α = ∅) holds.
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Proof. Let α0 = sup J+. Note α0 ≤ γ.
(1) ⇒ (2): Let X+ = ∅ and α0 ≤ β < γ. Since X =

∏
α≤β Xα ×∏

β<α<γ Xα and
∏

β<α<γ Xα has max, by Lemma 2.1, (
∏

α≤β Xα)
+ = ∅

holds. Moreover by
∏

α≤β Xα =
∏

α<β Xα ×Xβ, again by Lemma 2.1,

we have X+
β = ∅.

(2) ⇒ (1): Assume that X+
α = ∅ for every α < γ with α0 ≤ α. If

α0 = 0, then by Cororally 1.4, we have X+ = ∅. So we assume α0 > 0.

Case 1. α0 ∈ J+.

In this case, α0 = max J+ < γ. Since
∏

α≤α0
Xα =

∏
α<α0

Xα × Xα0 ,

Xα0 has no max and X+
α0

= ∅, by Lemma 2.1, (
∏

α≤α0
Xα)

+ is empty. It

follows from Corollary 1.4 that (
∏

α0<α<γ Xα)
+ is also empty. Because

of X =
∏

α≤α0
Xα×

∏
α0<α<γ Xα, by the same corollary, we have X+ =

∅.

Case 2. α0 /∈ J+.

In this case, α0 is a limit ordinal with α0 ≤ γ.

Claim. (
∏

α<α0
Xα)

+ = ∅.

Proof. If there were x ∈ (
∏

α<α0
Xα)

+, then by Lemma 1.2, there is
some α1 < α0 such that fore every α < α0 with α1 < α, maxXα exists.
This means sup J+ ≤ α1 < α0, a contradiction. □

ByX =
∏

α<α0
Xα×

∏
α0≤α<γ Xα and the assumption (

∏
α0≤α<γ Xα)

+

= ∅, we have X+ = ∅.
The remaining is similar. □

Corollary 2.6. Under the same assumption of Theorem 2.5, X is a
LOTS if and only if the following hold:

(1) for every α < γ with sup J+ ≤ α, X+
α = ∅ holds,

(2) for every α < γ with sup J− ≤ α, X−
α = ∅ holds,

Corollary 2.7. Let X =
∏

α≤γ Xα be a lexicographic product of GO-
spaces. Assume that Xγ has neither min nor max. Then X is a LOTS
if and only if Xγ is a LOTS. In particular,

∏
α<γ Xα × R is a LOTS.

Above two corollaries show:

Corollary 2.8. For every non-zero ordinal γ, Sγ is a LOTS if and
only if γ is limit.
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3. When is
∏

α<γ Xα dense in
∏

α<γ X
∗
α?

A GO-space X is dense in the LOTS X∗, but generally a lexico-
graphic product X0×X1 of GO-spaces need not be dense in X∗

0 ×X∗
1 .

For instance, let X0 = [0, 1)R ∪ [2, 3]R be the subspace of R and
X1 = [0, 1]R. Then X∗

0 can be considered as the subspace [0, 1]R∪[2, 3]R
of R and obviously X∗

1 = X1. Now (⟨1, 0⟩, ⟨1, 1⟩)X∗
0×X∗

1
is non-empty

open in X∗
0 ×X∗

1 but disjoint from X0 ×X1.
First we consider a special case.

Lemma 3.1. Let X = X0×X1 be a lexicographic product of GO-spaces
and let X̂ = X∗

0 ×X∗
1 . If X0 is a LOTS, then X is dense in X̂.

Proof. Let X0 be a LOTS. First we prove:

Claim 1. If x ∈ X̂ and (x,→)X̂ ̸= ∅, then (x,→)X̂ ∩X ̸= ∅.

Proof. If (x(0),→)X∗
0
̸= ∅, then pick u ∈ (x(0),→)X∗

0
∩X0 and v ∈ X1.

Then ⟨u, v⟩ ∈ (x,→)X̂ ∩ X. So let (x(0),→)X∗
0
= ∅, that is, x(0) =

maxX0. Take y ∈ (x,→)X̂ . Then x(0) = y(0) and y(1) ∈ (x(1),→)X∗
1
.

Since X1 is dense in X∗
1 , we can find v ∈ (x(1),→)X∗

1
∩ X1. Now we

have ⟨x(0), v⟩ ∈ (x,→)X̂ ∩X. □
Analogously, we can prove:

Claim 2. If x ∈ X̂ and (←, x)X̂ ̸= ∅, then (←, x)X̂ ∩X ̸= ∅.
These two claims with the following claim complete the proof.

Claim 3. If x, x′ ∈ X̂, x <X̂ x′ and (x, x′)X̂ ̸= ∅, then (x, x′)X̂∩X ̸= ∅.

Proof. Let x, x′ ∈ X̂, x <X̂ x′ and (x, x′)X̂ ̸= ∅. Since X0 is a LOTS,
that is X0 = X∗

0 , we have x(0), x′(0) ∈ X0.

Case 1. x(0) = x′(0).

In this case, take y ∈ (x, x′)X̂ . Then we have x(0) = x′(0) = y(0)
and y(1) ∈ (x(1), x′(1))X∗

1
. Since X1 is dense in X∗

1 , there is v ∈
(x(1), x′(1))X∗

1
∩X1. Now ⟨x(0), v⟩ ∈ (x, x′)X̂ ∩X.

Case 2. x(0) < x′(0).

First assume (x(0), x′(0))X0 ̸= ∅. In this case, pick u ∈ (x(0), x′(0))X0

and v ∈ X1. Then ⟨u, v⟩ ∈ (x, x′)X̂ ∩X.
Next assume (x(0), x′(0))X0 = ∅. Since (x, x′)X̂ ̸= ∅, we have either

(x(1),→)X∗
1
̸= ∅ or (←, x′(1))X∗

1
̸= ∅. In the case (x(1),→)X∗

1
̸= ∅,

taking v ∈ (x(1),→)X∗
1
∩ X1, we see ⟨x(0), v⟩ ∈ (x, x′)X̂ ∩ X. In the

case (←, x′(1))X∗
1
̸= ∅, taking v ∈ (←, x′(1))X∗

1
∩X1, we see ⟨x′(0), v⟩ ∈

(x, x′)X̂ ∩X. □
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□
Theorem 3.2. Let X =

∏
α<γ Xα be a lexicographic product of GO-

spaces. Then X is dense in X̂ =
∏

α<γ X
∗
α if and only if for every

α < γ with α + 1 < γ, Xα is a LOTS.

Proof. First assume that X is dense in X̂ and there is α0 < γ with
α0 + 1 < γ such that Xα0 is not a LOTS. We may assume X+

α0
̸= ∅,

so fix u ∈ X+
α0

and take u′ ∈ X∗
α0
\ Xα0 such that u <X∗

α0
u′ and

(u, u′)X∗
α0

= ∅. Fix x ∈ X.

Case 1. |
∏

α0<α<γ Xα| > 2.

Take v0, v1, v2 ∈
∏

α0<α<γ Xα with v0 < v1 < v2. Let xi = (x ↾
α0)

∧⟨u′⟩∧vi for i = 0, 1, 2. Then x1 ∈ (x0, x2)X̂ but (x0, x2)X̂ ∩X = ∅,
a contradiction.

Case 2. |
∏

α0<α<γ Xα| = 2.

In this case, note γ = α0 + 2 and
∏

α0<α<γ Xα = Xα0+1, say Xα0+1 =

{v0, v1} with v0 < v1. Let x0 = (x ↾ α0)
∧⟨u⟩∧v1 and x1 = (x ↾

α0)
∧⟨u′⟩∧v1. Then (x ↾ α0)

∧⟨u′⟩∧v0 ∈ (x0, x1)X̂ but (x0, x1)X̂ ∩X = ∅,
a contradiction.

Next assume that for every α < γ with α + 1 < γ, Xα = X∗
α holds.

If γ is limit, then
∏

α<γ Xα =
∏

α<γ X
∗
α. If γ = δ + 1, then

∏
α<δ Xα is

a LOTS. Therefore by the lemma above, X is dense in X̂. □
Corollary 3.3. Let X =

∏
α<γ Xα be a lexicographic product of GO-

spaces. Then:

(1) if γ is limit, then X is dense in X̂ =
∏

α<γ X
∗
α if and only if

X = X̂,
(2) if γ = δ + 1, then X is dense in X̂ if and only if

∏
α<δ Xα is a

LOTS.

Note that the reverse implication of Lemma 3.1 is also true.

Example 3.4. For instance, we see:

• S×X is not dense in S∗ ×X for every GO-space X.
• X × S is dense in X × S∗ if X is a LOTS.
• P×M is dense in P×M∗ but M× P is not dense in M∗ × P.

4. Paracompactness of lexicographic products

It is known that lexicographic products of paracompact LOTS’s are
paracompact. In this section, we extend this result for paracompact
GO-spaces.
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Definition 4.1. Let X be a GO-space. A subset A of X is called an
initial segment or a 0-segment of X if for every x, x′ ∈ X with x ≤ x′, if
x′ ∈ A, then x ∈ A. Similarly a subset A of X is called a final segment
or a 1-segment of X if for every x, x′ ∈ X with x ≤ x′, if x ∈ A, then
x′ ∈ A. Both ∅ and X are 0-segments and 1-segments.

Let A be a 0-segment of a GO-space X. A subset U of A is 0-
unbounded in A if for every x ∈ A, there is x′ ∈ U such that x ≤ x′.
Let

0- cfX A = min{|U | : U is 0-unbounded in A.}.
Similar notions are also defined in linearly ordered compactifications,
see [3]. If the context is clear, 0- cfX A is denoted by 0- cf A. Obviously
A = ∅ iff 0- cf A = 0, and A has max iff 0- cf A = 1. Moreover we can
easily check that a 0-segment A has no max iff 0- cf A ≥ ω, and in this
case, 0- cf A is a regular cardinal. Also remark:

• if A is a 0-segment of a GO-space X having no max, then A is
open in X, because of A =

∪
a∈A(←, a)X ,

• if U is a 0-unbounded subset of a 0-segment A of a GO-space X,
then we can define, by induction, a 0-order preserving sequence
{xα : α < κ} ⊂ U (i.e., xα <X xα′ whenever α < α′ < κ) which
is also 0-unbounded in A, where κ = 0- cf A.

Analogous concepts such as 1-unbounded, 1- cf A, . . . etc, are also de-
fined.

A cut of a GO-space X is a pair ⟨A0, A1⟩ of subsets of X such that
A1 = X \ A0 and A0 is a 0-segment (equivalently A1 is a 1-segment).
A cut ⟨A0, A1⟩ is said to be a gap if A0 has no max and A1 has no min.
Thus if X has no max, then ⟨X, ∅⟩ is a gap. Remark that if ⟨A0, A1⟩
is a gap, then both A0 and A1 are clopen in X. A cut ⟨A0, A1⟩ is said
to be a pseudo-gap if either “A0 has max and A1 has no min” or “A0

has no max and A1 has min”, moreover A0 (equivalently A1) is clopen
in X.

The following is known:

Lemma 4.2 ([2], Theorem 2.4.6). Let X be a GO-space, then the fol-
lowing are equivalent:

(1) X is paracompact,
(2) for each gap and pseudo-gap ⟨A0, A1⟩ of X and for each i ∈ 2,

there is a closed discrete i-unbounded subset of Ai.

Note that in the notations above:

• if A0 = ∅, then ∅ is a closed discrete 0-unbounded subset of A0,
• if A0 has max, then the one element set {maxA0} is a closed
discrete 0-unbounded subset of A0,
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• if 0- cf A0 = ω, then every 0-unbounded 0-order preserving se-
quence {an : n ∈ ω} in A0 is closed discrete in A0.

Definition 4.3. A GO-space X is said to be 0-paracompact if for every
closed 0-segment A of X with 0- cf A ≥ ω1, say κ = 0- cf A, there
is a 0-unbounded closed discrete subset of A. In this case, we can
take a 0-order preserving sequence {aα : α < κ} in A which is 0-
unbounded and closed discrete in A (equivalently, closed discrete in
X). 1-paracompactness is defined analogously.

Now with the consideration above, Lemma 4.2 says the following:

Lemma 4.4. A GO-space is paracompact if and only if it is both 0-
paracompact and 1-paracompact.

Remark that Lemma 1.2 says something about pseudo-gaps in lexi-
cographic products. On the other hand, the following says about gaps
of lexicographic products.

Lemma 4.5. Let X =
∏

α<γ Xα be a lexicographic product of GO-

spaces. Assume that A is a 0-segment with 0- cf A ≥ ω and 1- cf(X \
A) ≥ ω, that is, ⟨A,X \ A⟩ is a gap with A ̸= ∅ and X \ A ̸= ∅.
Say κ = 0- cf A, then there are α0 < γ, y0 ∈ Y0 :=

∏
α<α0

Xα and a
0-segment A0 of Xα0 such that:

(1) for every a ∈ A, a ↾ α0 ≤Y0 y0 holds,
(2) for every x ∈ X,

(i) if x ↾ α0 <Y0 y0, then x ∈ A holds,
(ii) if x ↾ α0 >Y0 y0, then x ∈ X \ A holds,

(3) for every x ∈ X with x ↾ α0 = y0, x(α0) ∈ A0 holds iff so does
x ∈ A,

(4) if A0 is non-empty and has no max, then κ = 0- cfXα0
A0,

(5) if A0 is non-empty and has max, then there is α > α0 such
that Xα has no max and κ = 0- cfXα1

Xα1 holds, where α1 :=
min{α < γ : α > α0 and Xα ha no max.},

(6) if A0 is empty, then:
(i) for every a ∈ A, a ↾ α0 <Y0 y0 holds,
(ii) α0 is limit,
(iii) there is α ≥ α0 such that Xα has no min.
(iv) A = (←, y0)Y0 × Y1, where Y1 :=

∏
α0≤α<γ Xα.

(v) (←, y0)Y0 has no max,
(vi) κ = 0- cfY0(←, y0)Y0 = cf α0,
(vii) for every β < α0, there is a ∈ A satisfying β < min{α <

α0 : a(α) ̸= y0(α)}.
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Proof. Set B = X \ A. For each a ∈ A and b ∈ B, let α(a, b) =
min{α < γ : a(α) ̸= b(α)} and α0 = sup{α(a, b) : a ∈ A, b ∈ B}. Note
α0 ≤ γ.

Claim 1. Let a0, a1 ∈ A and b0, b1 ∈ B. If α(a0, b0) ≤ α(a1, b1), then
a0 ↾ α(a0, b0) = a1 ↾ α(a0, b0).
Proof. Assume that there is β < α(a0, b0) such that a0(β) ̸= a1(β).
Let β0 = min{β < α(a0, b0) : a0(β) ̸= a1(β)}. Then b0 ↾ β0 = a0 ↾
β0 = a1 ↾ β0 = b1 ↾ β0 and b0(β0) = a0(β0) ̸= a1(β0) = b1(β0).
If a0(β0) < a1(β0), then we have b0 < a1, b0 ∈ B and a1 ∈ A, a
contradiction. If a0(β0) > a1(β0), then we have a0 > b1, b1 ∈ B and
a0 ∈ A, a contradiction. □

This claim ensures that the function y0 :=
∪
{a ↾ α(a, b) : a ∈ A, b ∈

B} is well-defined and y0 ∈
∏

α<α0
Xα.

Claim 2. α0 < γ.

Proof. Assume α0 = γ. Then y0 ∈ X = A ∪ B. If y0 ∈ A, then there
is a0 ∈ A with y0 <X a0. Letting β0 = min{β < γ : y0(β) ̸= a0(β)},
take a ∈ A and b ∈ B with β0 < α(a, b). Then we have b <X a0, a
contradiction. When y0 ∈ B, similarly we can get a contradiction. □

By a similar argument of the proof above, we can check the clauses
(1) and (2). Now let A0 = {a(α0) : a ∈ A, a ↾ α0 = y0} amd B0 =
Xα0 \ A0. Obviously A0 is a 0-segment of Xα0 and B0 is a 1-segment
of Xα0 .

Claim 3. B0 = {a(α0) : a ∈ B, a ↾ α0 = y0} holds.

Proof. The inclusion “⊂” is obvious.
To see the other inclusion, let b ∈ B with b ↾ α0 = y0. If b(α0) ∈ A0

were true, then there is a ∈ A with a ↾ α0 = y0 and b(α0) = a(α0). This
means a ↾ (α0 + 1) = b ↾ (α0 + 1), thus α0 < α(a, b), a contradiction.
We have b(α0) ∈ B0. □

This claim shows the clause (3).

Claim 4. The clause (4) holds.

Proof. Assume that A0 ̸= ∅ and A0 has no max. To see κ ≥ 0- cf A0,
let U be a 0-unbounded subset of A. Fix u0 ∈ A0 and a0 ∈ A with
a0 ↾ α0 = y0 and a0(α0) = u0. Then it is easy to check that V :=
{a(α0) : a0 <X a ∈ U} is 0-unbounded in A0.

To see κ ≤ 0- cf A0, let V be a 0-unbounded in A0. For every u ∈ V ,
we can fix au ∈ A with au ↾ α0 = y0 and au(α0) = u. Then U := {au :
u ∈ V } is 0-unbounded in A. □
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Claim 5. The clause (5) holds.

Proof. Assume that A0 ̸= ∅ and A0 has max u0. If for every α < γ with
α0 < α, Xα has max, then y0

∧⟨u0⟩∧⟨maxXα : α0 < α < γ⟩ = maxA,
a contradiction. Therefore there is α < γ with α0 < α such that Xα

has no max. Let α1 be such a smallest one. By a similar argument in
Claim 4, we see κ = 0- cfXα1

Xα1 □

Claim 6. The clause (6) holds.

Proof. Let A0 = ∅. If there is a ∈ A with a ↾ α0 = y0, then a(α0) ∈ A0,
a contradiction. Tis shows (i).

If α0 = β + 1 for some ordinal β, then we can find a ∈ A and b ∈ B
with β < α(a, b) ≤ α0, so α(a, b) = α0. Now we have y0 = a ↾ α0, this
contradicts (i). This shows (ii).

If Y1 =
∏

α0≤α<γ Xα has min, then we have b0 := y0
∧⟨minXα : α0 ≤

α < γ⟩ ∈ B by A0 = ∅. If a ∈ X and a < b0, then a ↾ α0 < b ↾ α0 = y0,
thus a ∈ A by (i). This shows b0 = minB, a contradiction. We see
(iii). (2-i) and (i) show (iv).

To see (v), assume that y1 := max(←, y0)Y0 exists. Let α1 = min{α <
α0 : y1(α) ̸= y0(α)}, moreover take a ∈ A and b ∈ B with α1 < α(a, b).
By (i), we have a ↾ α0 < y0, therefore a ↾ α0 ≤ y1. By y1 ↾ α1 = y0 ↾
α1 = a ↾ α1 and y1(α1) < y0(α1) = a(α1), we have y1 < a ↾ α0, a
contradiction.

(vi) can be similarly proved as in Claim 4. (vii) follows from the
definition of α0 □

□
Theorem 4.6. If Xα is a 0-paracompact GO-space for every α < γ,
then the lexicographic product X =

∏
α<γ Xα is also 0-paracompact.

Proof. Let A be a closed 0-segment of X with 0- cf A ≥ ω1, set κ =
0- cf A. We will find a 0-unbounded 0-order preserving sequence {aδ :
δ < κ} ⊂ A which is closed discrete in A. We have to consider several
cases. Let B = X \ A.

Case 1. B has min b0.

In this case, since A is closed and has no max, b0 belongs to X−. From
Lemma 1.3, we can find α0 < γ such that b0(α0) ∈ X−

α0
and for every

α < γ with α0 < α, b0(α) = minXα holds. Let A0 = (←, b0(α0))Xα0
.

Then A0 is a closed 0-segment of Xα0 . By a similar argument of Claim
4 in the previous lemma, we see κ = 0- cfXα0

A0. Since Xα0 is 0-
paracompact, we can take a 0-unbounded 0-order preserving sequence
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{uδ : δ < κ} in A0 which is closed discrete in A0 and (←, u0)Xα0
̸= ∅.

For each δ < κ, let aδ = (b0 ↾ α0)
∧⟨uδ⟩∧(b0 ↾ (α0, γ)).

Claim 1. The sequence F = {aδ : δ < κ} is 0-unbounded, 0-order
preserving and closed discrete in A.

Proof. Obviously F is 0-order preserving. Let a ∈ A. Then we have a ↾
α0 ≤ b0 ↾ α0. If a ↾ α0 < b0 ↾ α0, then a < a0. If a ↾ α0 = b0 ↾ α0, then
we can take δ < κ with a(α0) < uδ (otherwise, a ≥ b0, a contradiction).
Then we have a < aδ. Thus F is 0-unbounded in A. To see the closed
discreteness of F , take the smallest δ0 < κ with a < aδ0 . If δ0 = 0,
then (←, a0)X is a neighborhood of a disjoint from F . If δ0 > 0, then
we have a ↾ α0 = b0 ↾ α0 and a(α0) ∈ A0. Note u0 ≤ a(α0) because
of a0 ≤ a. Since {uδ : δ < κ} is closed discrete in Xα0 , we can find
u∗ ∈ X∗

α0
with u∗ <X∗

α0
a(α0) such that (u∗, a(α0)]X∗

α0
∩Xα0 contains at

most one uδ. Let a
∗ = (b0 ↾ α0)

∧⟨u∗⟩∧(b0 ↾ (α0, γ)). Then a∗ ∈ X̂ and
(a∗, aδ0)X̂ ∩X is a neighborhood of a witnessing the closed discreteness
of F at a. □

Case 2. B ̸= ∅ and has no min.

This case is a modification of Theorem 4.2.2 in [2]. In this case, take
α0 < γ, y0 ∈

∏
α<α0

Xα and the 0-segment A0 of Xα0 in Lemma 4.5.
Further we divide Case 2 into several subcases.

Case 2-1. A0 = ∅.
In this case, we use (6) of Lemma 4.5. By induction using (i) and (vi)
in (6), define {aδ : δ < κ} ⊂ A such that {min{α < α0 : aδ(α) ̸=
y0(α)} : δ < κ} is 0-unbounded and 0-order preserving in α0.

Claim 2. The sequence F = {aδ : δ < κ} is 0-unbounded, 0-order
preserving and closed discrete in A.

Proof. The proof that F is 0-unbounded and 0-order preserving is easy.
Let a ∈ A and δ0 < κ be the smallest δ < κ with a < aδ. By (6-iii)
in Lemma 4.5, Y1 :=

∏
α0≤α<γ Xα has no min, so take y1 ∈ Y1 with

y1 <Y1 a ↾ [α0, γ). Then ((a ↾ α0)
∧y1, aδ0)X is a neighborhood of a

witnessing the closed discreteness of F at a. □

Case 2-2. A0 ̸= ∅.
We further divide this case into several cases.

Case 2-2-1. A0 has no max and B0 := Xα0 \ A0 has min.

Note that in this case, A0 need not be closed in Xα0 . We can find
α > α0 such that Xα has no min (otherwise, B has min). Let α1 be
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such a smallest one. By (4) in Lemma 4.5, we can find a 0-unbounded
0-order preserving sequence {uδ : δ < κ} in A0. But remark that in
general, {uδ : δ < κ} cannot be closed discrete in A0. For each δ < κ,
take aδ ∈ X with aδ ↾ (α0 + 1) = y0

∧⟨uδ⟩, then aδ ∈ A.

Claim 3. The sequence F = {aδ : δ < κ} is 0-unbounded, 0-order
preserving and closed discrete in A.

Proof. Obviously F is 0-unbounded and 0-order preserving in A. Let
a ∈ A and δ0 < κ be the smallest δ < κ with a < aδ. If δ0 = 0, then
(←, a0)X is a neighborhood of a disjoint from F .

Let δ0 > 0, then we have a ↾ α0 = y0. Since Y1 :=
∏

α0<α<γ Xα has

no min, take y1 ∈ Y1 with y1 < a ↾ (α0, γ). Then ((a ↾ (α0+1))∧y1, aδ0)
is a neighborhood of a witnessing the closed discreteness of F at a.

Case 2-2-2. A0 has no max and B0 := Xα0 \ A0 has no min.

In this case A0 is a closed 0-segment in the 0-paracompact GO-space
Xα0 . Using (4) in Lemma 4.5, take a 0-unbounded 0-oder preserving
sequence {uδ : δ < κ} which is closed discrete in A0 and (←, u0)Xα0

̸= ∅.
For each δ < κ, take aδ ∈ X with aδ ↾ (α0 + 1) = y0

∧⟨uδ⟩, then
aδ ∈ A. □

Claim 4. The sequence F = {aδ : δ < κ} is 0-unbounded, 0-order
preserving and closed discrete in A.

Proof. Obviously F is 0-unbounded and 0-order preserving in A. Let
a ∈ A and δ0 < κ be the smallest δ < κ with a < aδ. As in the
proof of the claim above, when δ0 = 0, then (←, a0)X witnesses the
closed discreteness of F at a. When δ0 > 0, we have a ↾ α0 = y0 and
a(α0) ∈ A0. Since {uδ : δ < κ} is closed discrete in Xα0 , we can take
u∗ ∈ X∗

α0
with u∗ < a(α0), (u

∗, a(α0)]X∗
α0
∩Xα0 contains at most one uδ.

Take a∗ ∈ X̂ with a∗ ↾ (α0+1) = (a ↾ α0)
∧⟨u∗⟩. Then (a∗, aδ0)X̂ ∩X is

a neighborhood of a witnessing the closed discreteness of F at a. □

Case 2-2-3. A0 has max.

In this case, by (5) of Lemma 4.5, there is α > α0 such that Xα

has no max. Let α1 be such a smallest one. Since κ = 0- cfXα1
Xα1

and Xα1 is 0-paracompact, the 0-segment Xα1 has a 0-unbounded 0-
order preserving sequence {uδ : δ < κ} ⊂ Xα1 which is closed discrete
in Xα1 and (←, u0)Xα1

̸= ∅ . For each δ < κ, take aδ ∈ X with
aδ ↾ (α1 + 1) = y0

∧⟨maxA0⟩∧⟨maxXα : α0 < α < α1⟩∧⟨uδ⟩. Note
aδ ∈ A. As in Claim 4, we see:
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Claim 5. The sequence F = {aδ : δ < κ} is 0-unbounded, 0-order
preserving and closed discrete in A.

Case 3. B = ∅, i.e., A = X.

Since X has no max, let α0 = min{α < γ : Xα has no max.}. Then
as in Claim 4 in Lemma 4.5, we see κ = 0- cfXα0

Xα0 . Since Xα0 is 0-
paracompact, we can find a 0-unbounded 0-order preserving sequence
{uδ : δ < κ} ⊂ Xα0 which is closed discrete in Xα0 and (←, u0)Xα0

̸= ∅.
For every δ < κ, take aδ ∈ X with aδ ↾ (α0 + 1) = ⟨maxXα : α <
α0⟩∧⟨uδ⟩. Note aδ ∈ A. Similarly we can see:

Claim 6. The sequence F = {aδ : δ < κ} is 0-unbounded, 0-order
preserving and closed discrete in A. □

With the analogy of the theorem above, we extends the result The-
orem 4.2.2 in [2] as follows:

Corollary 4.7. Lexicographic products of paracompact GO-spaces are
paracompact.

Example 4.8. For example we see:

• the lexicographic products Sγ andMγ are paracompact for every
ordinal γ.
• the lexicographic products M×P and P×M are paracompact.
• lexicographic products of metrizable GO-spaces are paracom-
pact. For instance, the lexicographic product ([0, 1)R∪ [2, 3]R)ω1

is paracompact.

However, there is a paracompact lexicographic product of non-para-
compact LOTS’s, see Example in page 73 in [2]. We end this paper
with the following question.

Question 4.9. Characterize paracompactness of lexicographic prod-
ucts of GO-spaces.
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