LEXICOGRAPHIC PRODUCTS OF GO-SPACES

NOBUYUKI KEMOTO

Abstract

It is known that lexicographic products of paracompact LOTS's are also paracompact, see [2]. In this paper, the notion of lexicographic products of GO-spaces is defined. We characterize when a lexicographic product of GO-spaces is a LOTS. Moreover, we show that lexicographic products of paracompact GO-spaces are also paracompact. For example, we see - the lexicographic products $\mathbb{M} \times \mathbb{P}$ and $\mathbb{S} \times[0,1)_{\mathbb{R}}$ are LOTS's, but $\mathbb{P} \times \mathbb{M}$ and $\mathbb{S} \times(0,1]_{\mathbb{R}}$ are not LOTS's, - the lexicographic product \mathbb{S}^{γ} of the γ-many copies of \mathbb{S} is a LOTS iff γ is a limit ordinal, - the lexicographic products $\mathbb{M} \times \mathbb{P}$ and $\mathbb{P} \times \mathbb{M}$ are paracompact, - the lexicographic product \mathbb{S}^{γ} is paracompact for every ordinal γ, where $\mathbb{P}, \mathbb{M}, \mathbb{S}$ and $[0,1)_{\mathbb{R}}$ denote the irrationals, the Michael line, the Sorgenfrey line and the interval $[0,1)$ in the reals \mathbb{R}, respectively.

1. Introduction

We assume all topological spaces have cardinality at least 2 .
A linearly ordered set $\left\langle X,<_{X}\right\rangle$ (see [1]) has a natural T_{2}-topology denoted by λ_{X} or $\lambda\left(<_{X}\right)$ so called the interval topology which is the topology generated by $\left\{(\leftarrow, x)_{X}: x \in X\right\} \cup\left\{(x, \rightarrow)_{X}: x \in X\right\}$ as a subbase, where $(x, \rightarrow)_{X}=\left\{w \in X: x<_{X} w\right\},(x, y]_{X}=\{w \in X:$ $\left.x<_{X} w \leq_{X} y\right\}, \ldots$, etc. Here $w \leq_{X} x$ means $w<_{X} x$ or $w=x$. If the contexts are clear, we simply write $<$ and $(x, y]$ instead of $<_{X}$ and $(x, y]_{X}$ respectively. Note that this subbase induces a base by convex subsets (e.g., the collection of all intersections of at most two members of this subbase), where a subset B of X is convex if for every $x, y \in B$ with $x<_{X} y,[x, y]_{X} \subset B$ holds. The triple $\left\langle X,<_{X}, \lambda_{X}\right\rangle$ is called a LOTS (= Linearly Ordered Topological Space) and simply denoted by LOTS X. Observe that if $x \in U \in \lambda_{X}$ and $(\leftarrow, x) \neq \emptyset$, then there is

[^0]$y \in X$ such that $y<x$ and $(y, x] \subset U$. Note that for every $x \in X$, $(\leftarrow, x] \notin \lambda_{X}$ iff (x, \rightarrow) is non-empty and has no minimum (briefly, min), also analogously $[x, \rightarrow) \notin \lambda_{X}$ iff (\leftarrow, x) is non-empty and has no max. Let
$$
X_{R}=\left\{x \in X:(\leftarrow, x] \notin \lambda_{X}\right\} \text { and } X_{L}=\left\{x \in X:[x, \rightarrow) \notin \lambda_{X}\right\} .
$$

Unless otherwise stated, the real line \mathbb{R} is considered as a linearly ordered set (hence LOTS) with the usual order, similarly so are the set \mathbb{Q} of rationals, the set \mathbb{P} of irrationals and an ordinal α.

A generalized ordered space ($=$ GO-space) is a triple $\left\langle X,<_{X}, \tau_{X}\right\rangle$, where $<_{X}$ is linear order on X and τ_{X} is a T_{2} topology on X which has a base consisting of convex sets, also simply denoted by GO-space X. For LOTS's and GO-spaces, see also the nice text book [5]. It is easy to verify that τ_{X} is stronger than λ_{X}. Also let

$$
\begin{aligned}
& X_{\tau_{X}}^{+}=\left\{x \in X:(\leftarrow, x]_{X} \in \tau_{X} \backslash \lambda_{X}\right\}, \\
& X_{\tau_{X}}^{-}=\left\{x \in X:[x, \rightarrow)_{X} \in \tau_{X} \backslash \lambda_{X}\right\} .
\end{aligned}
$$

Obviously $X_{\tau_{X}}^{+} \subset X_{R}$ and $X_{\tau_{X}}^{-} \subset X_{L}$. When contexts are clear, we usually simply write X^{+}and X^{-}instead of $X_{\tau_{X}}^{+}$and $X_{\tau_{X}}^{-}$, respectively. Note that X is a LOTS iff $X^{+} \cup X^{-}=\emptyset$. For $A \subset X_{R}$ and $B \subset$ X_{L}, let $\tau(A, B)$ be the topology generated by $\left\{(\leftarrow, x)_{X}: x \in X\right\} \cup$ $\left\{(x, \rightarrow)_{X}: x \in X\right\} \cup\left\{(\leftarrow, x]_{X}: x \in A\right\} \cup\left\{[x, \rightarrow)_{X}: x \in B\right\}$ as a subbase. Obviously $\tau_{X}=\tau\left(X^{+}, X^{-}\right)$whenever X is a GO-space, and also $\tau(A, B)$ defines a GO-space topology on X whenever X is a LOTS with $A \subset X_{R}$ and $B \subset X_{L}$. The Sorgenfrey line \mathbb{S} is $\left\langle\mathbb{R},<_{\mathbb{R}}, \tau(\mathbb{R}, \emptyset)\right\rangle$ and the Michael line \mathbb{M} is $\left\langle\mathbb{R},<_{\mathbb{R}}, \tau(\mathbb{P}, \mathbb{P})\right\rangle$. These spaces are GO-spaces but not LOTS's.

Let X be a GO-space and $Y \subset X$, then "the subspace Y of a GOspace $X^{\prime \prime}$ means the GO-space $\left\langle Y,<_{X} \upharpoonright Y, \lambda_{X} \upharpoonright Y\right\rangle$, where $<_{X} \upharpoonright Y$ is the restricted order of $<_{X}$ on Y and $\lambda_{X} \upharpoonright Y:=\left\{U \cap Y: U \in \lambda_{X}\right\}$, that is, $\lambda_{X} \upharpoonright Y$ is the subspace topology of λ_{X}.

Now for a given GO-space X, let

$$
X^{*}=\left(X^{-} \times\{-1\}\right) \cup(X \times\{0\}) \cup\left(X^{+} \times\{1\}\right)
$$

and consider the lexicographic order $<_{X *}$ on X^{*} induced by the lexicographic order on $X \times\{-1,0,1\}$, here of course $-1<0<1$. We usually identify X as $X=X \times\{0\}$ in the obvious way (i.e., $x=\langle x, 0\rangle$), thus we may consider $X^{*}=\left(X^{-} \times\{-1\}\right) \cup X \cup\left(X^{+} \times\{1\}\right)$. Note $(\leftarrow, x]_{X}=(\leftarrow,\langle x, 1\rangle)_{X^{*}} \cap X \in \lambda\left(<_{X^{*}}\right) \upharpoonright X$ whenever $x \in X^{+}$, and also its analogy. Then the GO-space X is a dense subspace of the LOTS X^{*}, and X has max iff X^{*} has max, in this case, $\max X=\max X^{*}$
(and similarly for min). Note $\mathbb{S}^{*}=\mathbb{R} \times\{0\} \cup \mathbb{R} \times\{1\}$ with the identification $\mathbb{S}=\mathbb{R} \times\{0\}$ and $\mathbb{M}^{*}=\mathbb{P} \times\{-1\} \cup \mathbb{R} \times\{0\} \cup \mathbb{P} \times\{1\}$ with the identification $\mathbb{M}=\mathbb{R} \times\{0\}$.

Definition 1.1. Let X_{α} be a LOTS for every $\alpha<\gamma$ and $X=\prod_{\alpha<\gamma} X_{\alpha}$, where γ is an ordinal. When $\gamma=0$, we consider as $\prod_{\alpha<\gamma} X_{\alpha}=\{\emptyset\}$, which is a trivial LOTS, for notational conveniences. When $\gamma>0$, every element $x \in X$ is identified with the sequence $\langle x(\alpha): \alpha<\gamma\rangle$. Recall that the lexicographic order $<_{X}$ on X is defied as follows: for $x, x^{\prime} \in X$,

$$
x<_{X} x^{\prime} \text { iff for some } \alpha<\gamma, x \upharpoonright \alpha=x^{\prime} \upharpoonright \alpha \text { and } x(\alpha)<x^{\prime}(\alpha)
$$

where $x \upharpoonright \alpha=\langle x(\beta): \beta<\alpha\rangle$. Then $X=\left\langle X,<_{X}, \lambda_{X}\right\rangle$ is a LOTS and called the lexicographic product of LOTS's X_{α} 's.

Now let X_{α} be a GO-space for every $\alpha<\gamma$ and $X=\prod_{\alpha<\gamma} X_{\alpha}$. Then the lexicographic product $\hat{X}=\prod_{\alpha<\gamma} X_{\alpha}^{*}$, which is a LOTS, can be defined. The lexicographic product of GO-spaces X_{α} 's is the GO-space $\left\langle X,<_{\hat{X}} \upharpoonright X, \lambda_{\hat{X}} \upharpoonright X\right\rangle$. Obviously this definition extends the lexicographic product of LOTS's, and is reasonable because each X_{α}^{*} is the smallest LOTS which contains X_{α} as a dense subspace, see [4]. When $n \in \omega$, then $\prod_{i<n} X_{i}$ is denoted by $X_{0} \times \cdots \times X_{n-1}$. If all X_{α} 's are X, then $\prod_{\alpha<\gamma} X_{\alpha}$ is denoted by X^{γ}.

Let X and Y be LOTS's. A map $f: X \rightarrow Y$ is said to be 0 order preserving if $f(x)<_{Y} f\left(x^{\prime}\right)$ whenever $x<_{X} x^{\prime}$. Similarly a map $f: X \rightarrow Y$ is said to be 1-order preserving if $f(x)>_{Y} f\left(x^{\prime}\right)$ whenever $x<_{X} x^{\prime}$. Obviously a 0-order preserving map $f: X \rightarrow Y$ between LOTS's X and Y, which is onto, is a homeomorphism, i.e., both f and f^{-1} are continuous. But when $X=\mathbb{S}$ and $Y=\mathbb{M}$, the identity map is 0 -order preserving onto but not a homeomorphism.

So now let X and Y be GO-spaces. A 0 -order preserving map f : $X \rightarrow Y$ is said to be embedding if f is a homeomorphism between X and $f[X]$, where $f[X]$ is the subspace of the GO-space Y. In this case, we can identify X with $f[X]$ as a GO-space. In the definition of X^{*}, the map $f: X \rightarrow X \times\{0\} \subset X^{*}$ defined by $f(x)=\langle x, 0\rangle$ is a 0-order preserving embedding, so we have identified as $X \times\{0\}=X$.

In the rest of this section, we prepare basic tools to handle the lexicographic products of GO-spaces.

Lemma 1.2. Let $X=\prod_{\alpha<\gamma} X_{\alpha}$ be a lexicographic product of $G O$ spaces and $x \in X$. The following are equivalent:
(1) $x \in X^{+}$,
(2) there is $\alpha_{0}<\gamma$ such that:
(i) $x\left(\alpha_{0}\right) \in X_{\alpha_{0}}^{+}$,
(ii) for every $\alpha<\gamma$ with $\alpha_{0}<\alpha$, X_{α} has max and $x(\alpha)=$ $\max X_{\alpha}$.

Proof. Let $\hat{X}=\prod_{\alpha<\gamma} X_{\alpha}^{*}$ be the lexicographic product.
$(1) \Rightarrow(2)$: Assume $x \in X^{+}$. Because of $(\leftarrow, x]_{X} \notin \lambda_{X},(x, \rightarrow)_{X}$ is non-empty and has no min. By $(\leftarrow, x]_{X} \in \tau_{X}=\lambda_{\hat{X}} \upharpoonright X$, there is $y \in \hat{X}$ with $x<_{\hat{X}} y$ such that $(\leftarrow, x]_{X} \supset[x, y)_{\hat{X}} \cap X$, that is, $(x, y)_{\hat{X}}=\emptyset$. Since $(x, \rightarrow)_{X}$ has no min, we have $y \in \hat{X} \backslash X$. Let $\alpha_{0}=\min \{\alpha<\gamma: x(\alpha) \neq y(\alpha)\}$. Then we have $x \upharpoonright \alpha_{0}=y \upharpoonright \alpha_{0}$ and $x\left(\alpha_{0}\right)<_{X_{\alpha_{0}}^{*}} y\left(\alpha_{0}\right)$. Since $X_{\alpha_{0}}$ is dense in $X_{\alpha_{0}}^{*},\left(x\left(\alpha_{0}\right), \rightarrow\right)_{X_{\alpha_{0}}}$ is non-empty.

Claim 1. For every $\alpha<\gamma$ with $\alpha_{0}<\alpha, X_{\alpha}$ has max and $x(\alpha)=$ $\max X_{\alpha}$

Proof. First assume that for some $\alpha<\gamma$ with $\alpha_{0}<\alpha, X_{\alpha}$ has no max. Then we can take $v \in X_{\alpha}$ with $x(\alpha)<_{X_{\alpha}} v$. Set $x^{\prime}=(x \upharpoonright \alpha)^{\wedge}\langle v\rangle^{\wedge}(x \upharpoonright$ $(\alpha, \gamma))$, that is,

$$
x^{\prime}(\beta)= \begin{cases}x(\beta) & \text { if } \beta<\alpha, \\ v & \text { if } \beta=\alpha, \\ x(\beta) & \text { if } \alpha<\beta<\gamma\end{cases}
$$

Then $x^{\prime} \in(x, y)_{\hat{X}} \cap X$, a contradiction. Therefore for every $\alpha<\gamma$ with $\alpha_{0}<\alpha, \max X_{\alpha}$ exists.

Next assume that for some $\alpha<\gamma$ with $\alpha_{0}<\alpha, x(\alpha)<_{X_{\alpha}} \max X_{\alpha}$ holds. Then $(x \upharpoonright \alpha)^{\wedge}\left\langle\max X_{\alpha}\right\rangle^{\wedge}(x \upharpoonright(\alpha, \gamma)) \in(x, y)_{\hat{X}} \cap X$, a contradiction.

Claim 2. $\left(x\left(\alpha_{0}\right), y\left(\alpha_{0}\right)\right)_{X_{\alpha_{0}}^{*}}=\emptyset$, therefore $\left(\leftarrow, x\left(\alpha_{0}\right)\right]_{X_{\alpha_{0}}} \in \tau_{X_{\alpha_{0}}}$.
Proof. Assume $\left(x\left(\alpha_{0}\right), y\left(\alpha_{0}\right)\right)_{X_{\alpha_{0}}^{*}} \neq \emptyset$. Since $X_{\alpha_{0}}$ is dense in $X_{\alpha_{0}}^{*}$, take $v \in\left(x\left(\alpha_{0}\right), y\left(\alpha_{0}\right)\right)_{X_{\alpha_{0}}^{*}} \cap X_{\alpha_{0}}$. Then $\left(x \upharpoonright \alpha_{0}\right)^{\wedge}\langle v\rangle^{\wedge}\left(x \upharpoonright\left(\alpha_{0}, \gamma\right)\right) \in(x, y)_{\hat{X}} \cap$ X, a contradiction.

The following claim shows $x\left(\alpha_{0}\right) \in X_{\alpha_{0}}^{+}$.
Claim 3. $\left(\leftarrow, x\left(\alpha_{0}\right)\right]_{X_{\alpha_{0}}} \notin \lambda_{X_{\alpha_{0}}}$.
Proof. Since $x\left(\alpha_{0}\right)<_{X_{\alpha_{0}}^{*}} y\left(\alpha_{0}\right)$ and $X_{\alpha_{0}}$ is dense in $X_{\alpha_{0}}^{*}$, we have $\left(x\left(\alpha_{0}\right), \rightarrow\right)_{X_{\alpha_{0}}} \neq \emptyset$. Assume $\left(\leftarrow, x\left(\alpha_{0}\right)\right]_{X_{\alpha_{0}}} \in \lambda_{X_{\alpha_{0}}}$, then there is $v \in$ $X_{\alpha_{0}}$ such that $x\left(\alpha_{0}\right)<_{X_{\alpha_{0}}} v$ and $\left(x\left(\alpha_{0}\right), v\right)_{X_{\alpha_{0}}}=\emptyset$. Since $\left(x\left(\alpha_{0}\right), v\right)_{X_{\alpha_{0}}^{*}}=$ \emptyset, we have $v=y\left(\alpha_{0}\right)$, thus $y\left(\alpha_{0}\right) \in X_{\alpha_{0}}$. Let $\alpha_{1}=\min \{\alpha<\gamma: y(\alpha) \notin$ $\left.X_{\alpha}\right\}$. Because of $y \notin Y$ and the definition of y, we have $\alpha_{0}<\alpha_{1}$. If
$\left(\leftarrow, y\left(\alpha_{1}\right)\right)_{X_{\alpha_{1}}^{*}}$ were empty, then $y\left(\alpha_{1}\right)=\min X_{\alpha_{1}}^{*}=\min X_{\alpha_{1}} \in X_{\alpha_{1}}$, a contradiction. Therefore we can take $v^{\prime} \in\left(\leftarrow, y\left(\alpha_{1}\right)\right)_{X_{\alpha_{1}}^{*}} \cap X_{\alpha_{1}}$. Then $\left(y \upharpoonright \alpha_{1}\right)^{\wedge}\left\langle v^{\prime}\right\rangle^{\wedge}\left(x \upharpoonright\left(\alpha_{1}, \gamma\right)\right) \in(x, y)_{\hat{X}} \cap X$, a contradiction.
$(2) \Rightarrow(1)$: Assume (2). By (i), we can take $v \in X_{\alpha_{0}}^{*} \backslash X_{\alpha_{0}}$ such that $x\left(\alpha_{0}\right)<_{X_{\alpha_{0}}^{*}} v$ and $\left(x\left(\alpha_{0}\right), v\right)_{X_{\alpha_{0}}^{*}}=\emptyset$. Let $y=\left(x \upharpoonright \alpha_{0}\right)^{\wedge}\langle v\rangle^{\wedge}\left(x \upharpoonright\left(\alpha_{0}, \gamma\right)\right)$. Then we have $x<_{\hat{X}} y \in \hat{X} \backslash X$ and $(x, \rightarrow)_{X} \neq \emptyset$. Obviously $(x, y)_{\hat{X}}=\emptyset$ holds. Thus $(\leftarrow, x]_{X}=(\leftarrow, y)_{\hat{X}} \cap X \in \lambda_{\hat{X}} \upharpoonright X=\tau_{X}$. The following Claim completes the proof.
Claim 4. $(\leftarrow, x]_{X} \notin \lambda_{X}$.
Proof. Assume $(\leftarrow, x]_{X} \in \lambda_{X}$. It follows from $(x, \rightarrow)_{X} \neq \emptyset$ that for some $x^{\prime} \in X$ with $x<_{X} x^{\prime},\left(x, x^{\prime}\right)_{X}=\emptyset$ holds. Let $\alpha_{1}=\min \{\alpha<\gamma$: $\left.x^{\prime}(\alpha) \neq x(\alpha)\right\}$. Then by $x\left(\alpha_{1}\right)<_{X_{\alpha_{1}}} x^{\prime}\left(\alpha_{1}\right)$, we have $\alpha_{1} \leq \alpha_{0}$. Since $v \in\left(x\left(\alpha_{0}\right), \rightarrow\right)_{X_{\alpha_{0}}^{*}}$, we can take $u \in\left(x\left(\alpha_{0}\right), \rightarrow\right)_{X_{\alpha_{0}}}$. If $\alpha_{1}<\alpha_{0}$ were true, then $\left(x \upharpoonright \alpha_{0}\right)^{\wedge}\langle u\rangle^{\wedge}\left(x \upharpoonright\left(\alpha_{0}, \gamma\right)\right) \in\left(x, x^{\prime}\right)_{X}$, a contradiction. Thus we have $\alpha_{1}=\alpha_{0}$.

Now by $\left(x\left(\alpha_{0}\right), v\right)_{X_{\alpha_{0}}^{*}}=\emptyset$, we also have $v<_{X_{\alpha_{0}}^{*}} x^{\prime}\left(\alpha_{0}\right)$ moreover $\left(v, x^{\prime}\left(\alpha_{0}\right)\right)_{X_{\alpha_{0}}^{*}} \neq \emptyset$ (otherwise, v is an isolated point in $X_{\alpha_{0}}^{*}$ and $v \notin$ $X_{\alpha_{0}}$, a contradiction). Taking $w \in\left(v, x^{\prime}\left(\alpha_{0}\right)\right)_{X_{\alpha_{0}}^{*}} \cap X_{\alpha_{0}}$, we have $(x \upharpoonright$ $\left.\alpha_{0}\right)^{\wedge}\langle w\rangle^{\wedge}\left(x \upharpoonright\left(\alpha_{0}, \gamma\right)\right) \in\left(x, x^{\prime}\right)_{X}$, a contradiction.

Similarly, we have an analogous result:
Lemma 1.3. Let $X=\prod_{\alpha<\gamma} X_{\alpha}$ be a lexicographic product of GOspaces and $x \in X$. The following are equivalent:
(1) $x \in X^{-}$,
(2) there is $\alpha_{0}<\gamma$ such that:
(i) $x\left(\alpha_{0}\right) \in X_{\alpha_{0}}^{-}$,
(ii) for every $\alpha<\gamma$ with $\alpha_{0}<\alpha, X_{\alpha}$ has min and $x(\alpha)=$ $\min X_{\alpha}$.
From now on, we do not write down such an analogous result, we refer, for instance, Lemma 1.3 as the analogous result of Lemma 1.2.
Corollary 1.4. Let $X=\prod_{\alpha<\gamma} X_{\alpha}$ be a lexicographic product of GOspaces. If $X_{\alpha}^{+}=\emptyset$ for every $\alpha<\gamma$, then $X^{+}=\emptyset$.

This corollary with the analogous result also shows that lexicographic products of LOTS's are LOTS's. However, lexicographic products of GO-spaces, some of which are not LOTS's, can be LOTS's. This fact will be discussed in the next section.

Now, let $X=\prod_{\alpha<\gamma} X_{\alpha}$ be a lexicographic product of LOTS's and $\delta<\gamma$. For $x \in X$, the correspondence $x \rightarrow\langle x \upharpoonright \delta, x \upharpoonright[\delta, \gamma)\rangle$ defines a 0 -order preserving onto map from X to $\left(\prod_{\alpha<\delta} X_{\alpha}\right) \times\left(\prod_{\delta \leq \alpha<\gamma} X_{\alpha}\right)$, which is a lexicographic product of two lexicographic products. So they are topologically homeomorphic, thus we can identify $\prod_{\alpha<\gamma} X_{\alpha}$ with $\left(\prod_{\alpha<\delta} X_{\alpha}\right) \times\left(\prod_{\delta \leq \alpha<\gamma} X_{\alpha}\right)$ as a LOTS whenever X_{α} 's are LOTS's, see [2].

Next, let $X=\prod_{\alpha<\gamma} X_{\alpha}$ be a lexicographic product of GO-spaces and $\delta<\gamma$. The correspondence above also defines a 0 -order preserving onto map from X to $\left(\prod_{\alpha<\delta} X_{\alpha}\right) \times\left(\prod_{\delta \leq \alpha<\gamma} X_{\alpha}\right)$. Is this map a homeomorphism between them? We show in the next lemma that the answer is positive, while the proof is not so trivial. It will be a key tool through the theory.
Lemma 1.5. Let $X=\prod_{\alpha<\gamma} X_{\alpha}$ be a lexicographic product of GOspaces and $\delta<\gamma$. The correspondence $x \rightarrow\langle x \upharpoonright \delta, x \upharpoonright[\delta, \gamma)\rangle$ is a homeomorphism. So we can identify $\prod_{\alpha<\gamma} X_{\alpha}$ with $\left(\prod_{\alpha<\delta} X_{\alpha}\right) \times$ $\left(\prod_{\delta \leq \alpha<\gamma} X_{\alpha}\right)$ as a GO-space.
Proof. Let $Y_{0}=\prod_{\alpha<\delta} X_{\alpha}$ and $Y_{1}=\prod_{\delta \leq \alpha<\gamma} X_{\alpha}$. We may identify the correspondence as $x=\langle x \upharpoonright \delta, x \upharpoonright[\delta, \gamma)\rangle$ for every $x \in X$. By this identification, the order $<_{X}$ coincides with the order $<_{Y_{0} \times Y_{1}}$, where $Y_{0} \times Y_{1}$ is the lexicographic product of the GO-spaces Y_{0} and Y_{1}. It suffices to see $\tau_{X}=\tau_{Y_{0} \times Y_{1}}$. Note that $\tau_{X}=\lambda_{\hat{X}} \upharpoonright X, \tau_{Y_{0}}=\lambda_{\hat{Y}_{0}} \upharpoonright Y_{0}$, $\tau_{Y_{1}}=\lambda_{\hat{Y}_{1}} \upharpoonright Y_{1}$ and $\tau_{Y_{0} \times Y_{1}}=\lambda_{Y_{0}^{*} \times Y_{1}^{*}} \upharpoonright Y_{0} \times Y_{1}$ hold, where $\hat{X}=$ $\prod_{\alpha<\gamma} X_{\alpha}^{*}, \hat{Y}_{0}=\prod_{\alpha<\delta} X_{\alpha}^{*}$ and $\hat{Y}_{1}=\prod_{\delta \leq \alpha<\gamma} X_{\alpha}^{*}$.
Claim 1. $\tau_{X} \subset \tau_{Y_{0} \times Y_{1}}$.
Proof. It suffices to show that the subbase $\left\{(\leftarrow, x)_{X}: x \in X\right\} \cup\{(x, \rightarrow$ $\left.)_{X}: x \in X\right\} \cup\left\{(\leftarrow, x]_{X}: x \in X^{+}\right\} \cup\left\{[x, \rightarrow)_{X}: x \in X^{-}\right\}$is contained in $\tau_{Y_{0} \times Y_{1}}$. Note under the identification, $(\leftarrow, x)_{X}=(\leftarrow, x)_{Y_{0} \times Y_{1}},(\leftarrow$ $, x]_{X}=(\leftarrow, x]_{Y_{0} \times Y_{1}} \cdots$, etc hold. Therefore, it only suffices to prove the following fact:.
Fact. If $x \in X^{+}\left(x \in X^{-}\right)$, then $(\leftarrow, x]_{X} \in \tau_{Y_{0} \times Y_{1}}\left([x, \rightarrow)_{X} \in \tau_{Y_{0} \times Y_{1}}\right.$, respectively).
Proof. Let $x \in X^{+}$. By Lemma 1.3, take $\alpha_{0}<\gamma$ such that $x\left(\alpha_{0}\right) \in X_{\alpha_{0}}^{+}$, and for every $\alpha<\gamma$ with $\alpha_{0}<\alpha, x(\alpha)=\max X_{\alpha}=\max X_{\alpha}^{*}$ holds. We consider two cases.
Case 1. $\alpha_{0}<\delta$.
In this case, again applying Lemma 1.2 to $x \upharpoonright \delta \in Y_{0}$, we see $x \upharpoonright$ $\delta \in Y_{0}^{+}$. Therefore there is $y_{0} \in Y_{0}^{*} \backslash Y_{0}$ such that $x \upharpoonright \delta<_{Y_{0}^{*}} y_{0}$ and
$\left(x \upharpoonright \delta, y_{0}\right)_{Y_{0}^{*}}=\emptyset$, that is, $y_{0}=\langle x \upharpoonright \delta, 1\rangle$. Let $z=y_{0} \wedge(x \upharpoonright[\delta, \gamma))$, then $z \in Y_{0}^{*} \times Y_{1} \subset Y_{0}^{*} \times Y_{1}^{*}$. Assume that there is an element $u \in$ $(x, z)_{Y_{0}^{*} \times Y_{1}^{*}} \cap Y_{0} \times Y_{1}$. Then we have $x \upharpoonright \delta \leq_{Y_{0}} u \upharpoonright \delta$. If $x \upharpoonright \delta=u \upharpoonright \delta$ were true, then $x \upharpoonright[\delta, \gamma)<_{Y_{1}} u \upharpoonright[\delta, \gamma)$ has to be true. But this is a contradiction, because of $x(\beta)=\max X_{\beta}$ for all $\beta \geq \delta$. Therefore we have $x \upharpoonright \delta<_{Y_{0}} u \upharpoonright \delta$. Since $y_{0} \notin Y_{0}$ and $\left(x \upharpoonright \delta, y_{0}\right)_{Y_{0}^{*}}=\emptyset$, we see $z \upharpoonright \delta=y_{0}<_{Y_{0}^{*}} u \upharpoonright \delta$. Thus we have $z<_{Y_{0}^{*} \times Y_{1}^{*}} u$ which contradicts $u<_{Y_{0}^{*} \times Y_{1}^{*}} z$, so we have seen $(x, z)_{Y_{0}^{*} \times Y_{1}^{*}} \cap\left(Y_{0} \times Y_{1}\right)=\emptyset$. This shows $(\leftarrow, x]_{Y_{0} \times Y_{1}}=(\leftarrow, z)_{Y_{0}^{*} \times Y_{1}^{*}} \cap Y_{0} \times Y_{1} \in \lambda_{Y_{0}^{*} \times Y_{1}^{*}} \upharpoonright Y_{0} \times Y_{1}=\tau_{Y_{0} \times Y_{1}}$.

Case 2. $\delta \leq \alpha_{0}$.
Applying Lemma 1.2 to Y_{1}, we see $x \upharpoonright[\delta, \gamma) \in Y_{1}^{+}$. Therefore, there is $y_{1} \in Y_{1}^{*} \backslash Y_{1}$ such that $x \upharpoonright[\delta, \gamma)<_{Y_{1}^{*}} y_{1}$ and $\left(x \upharpoonright[\delta, \gamma), y_{1}\right)_{Y_{1}^{*}}=\emptyset$. Then by $\left(x,(x \upharpoonright \delta)^{\wedge} y_{1}\right)_{Y_{0}^{*} \times Y_{1}^{*}}=\emptyset$, we have $(\leftarrow, x]_{Y_{0} \times Y_{1}}=(\leftarrow,(x \upharpoonright$ $\left.\delta)^{\wedge} y_{1}\right)_{Y_{0}^{*} \times Y_{1}^{*}} \cap Y_{0} \times Y_{1} \in \tau_{Y_{0} \times Y_{1}}$.

This completes the proof of Claim 1.

Claim 2. $\tau_{X} \supset \tau_{Y_{0} \times Y_{1}}$.
Proof. As in Claim 1, it suffices to see that if $x \in\left(Y_{0} \times Y_{1}\right)^{+}(x \in$ $\left.\left(Y_{0} \times Y_{1}\right)^{-}\right)$, then $(\leftarrow x]_{Y_{0} \times Y_{1}} \in \tau_{X}\left([x, \rightarrow)_{Y_{0} \times Y_{1}} \in \tau_{X}\right.$, respectively $)$. Let $x \in\left(Y_{0} \times Y_{1}\right)^{+}$, say $x_{0}=x \upharpoonright \delta$ and $x_{1}=x \upharpoonright[\delta, \gamma)$. Apply Lemma 1.2 to $x \in\left(Y_{0} \times Y_{1}\right)^{+}$, we can find $i_{0}<2$, where $2:=\{0,1\}$, such that $x_{i_{0}} \in Y_{i_{0}}^{+}$and for every $i<2$ with $i_{0}<i, x_{i}=\max Y_{i}\left(=\max Y_{i}^{*}\right)$ holds.

Case 1. $i_{0}=0$.
It follows from $x_{0} \in Y_{0}^{+}$that for some $z_{0} \in Y_{0}^{*} \backslash Y_{0}$ with $x_{0}<_{Y_{0}^{*}} z_{0}$, $\left(x_{0}, z_{0}\right)_{Y_{0}^{*}}$ is empty. By $x \upharpoonright[\delta, \gamma)=x_{1}=\max Y_{1}$, we have $x(\alpha)=$ $\max X_{\alpha}$ for every $\alpha<\gamma$ with $\delta \leq \alpha$. It follows from $\lambda_{Y_{0}^{*}} \upharpoonright Y_{0}=\tau_{Y_{0}}=$ $\lambda_{\hat{Y}_{0}} \upharpoonright Y_{0}$ and $x_{0} \in Y_{0}^{+}$, applying Lemma 1.2, that for some $\alpha_{0}<\delta$, $x\left(\alpha_{0}\right) \in X_{\alpha_{0}}^{+}$and for every $\alpha<\delta$ with $\alpha_{0}<\alpha, x(\alpha)=\max X_{\alpha}$ hold. Since $x\left(\alpha_{0}\right) \in X_{\alpha_{0}}^{+}$and for every $\alpha<\gamma$ with $\alpha_{0}<\alpha, x(\alpha)=\max X_{\alpha}$ hold, applying Lemma 1.2 again, we have $x \in X^{+}$. Thus we have $(\leftarrow, x]_{Y_{0} \times Y_{1}}=(\leftarrow, x]_{X} \in \tau_{X}$.

Case 2. $i_{0}=1$.
In this case, $x \upharpoonright[\delta, \gamma)=x_{1} \in Y_{1}^{+}$. So applying Lemma 1.2, there is $\alpha_{0}<\gamma$ with $\delta \leq \alpha_{0}$ such that $x\left(\alpha_{0}\right) \in X_{\alpha_{0}}^{+}$and for every $\alpha<\gamma$ with $\alpha_{0}<\alpha, x(\alpha)=\max X_{\alpha}$ holds. Again by Lemma 1.2, we have $(\leftarrow, x]_{Y_{0} \times Y_{1}}=(\leftarrow, x]_{X} \in \tau_{X}$.

The remaining case is similar.

This completes the proof of the lemma.

2. When are lexicographic products of GO-spaces LOTS's?

It is easy to verify that the lexicographic product $\mathbb{S} \times \mathbb{R}$ is a LOTS, while \mathbb{S} is not a LOTS. In this section, we characterize when lexicographic products of GO-spaces are LOTS's. Using Lemma 1.2, the following is easy to prove.
Lemma 2.1. Let $X=X_{0} \times X_{1}$ be a lexicographic product of GO-spaces. Then the following are equivalent:
(1) $X^{+}=\emptyset\left(X^{-}=\emptyset\right)$,
(2) (i) if X_{1} has max (min), then $X_{0}^{+}=\emptyset\left(X_{0}^{-}=\emptyset\right)$,
(ii) $X_{1}^{+}=\emptyset\left(X_{1}^{-}=\emptyset\right)$.

The previous lemma shows:
Lemma 2.2. Let $X=X_{0} \times X_{1}$ be a lexicographic product of GO-spaces. Then the following are equivalent:
(1) X is a LOTS,
(2) (i) if X_{1} has max, then $X_{0}^{+}=\emptyset$,
(ii) if X_{1} has min, then $X_{0}^{-}=\emptyset$,
(iii) X_{1} is a LOTS.

Corollary 2.3. Let $X=X_{0} \times X_{1}$ be a lexicographic product of GOspaces. Then:
(1) if X_{1} has neither min nor max, then X is a LOTS iff X_{1} is a LOTS,
(2) if X_{1} has min (max) but has no max (min), then X is a LOTS iff $X_{0}^{-}=\emptyset\left(X_{0}^{+}=\emptyset\right)$ and X_{1} is a LOTS,
(3) if X_{1} has both min and max, then X is a LOTS iff both X_{0} and X_{1} are LOTS's.

Example 2.4. $\mathbb{S} \times \mathbb{R}, \mathbb{S} \times[0,1)_{\mathbb{R}}, \mathbb{M} \times \mathbb{P}$ are LOTS's. But $\mathbb{R} \times \mathbb{S}$, $\mathbb{S} \times(0,1]_{\mathbb{R}}, \mathbb{S} \times\{0,1\}, \mathbb{S} \times[0,1]_{\mathbb{R}}, \mathbb{S}^{2}, \mathbb{P} \times \mathbb{M}$ are not LOTS's.

More generally we have:
Theorem 2.5. Let $X=\prod_{\alpha<\gamma} X_{\alpha}$ be a lexicographic product of GOspaces. Let $J^{+}=\left\{\alpha<\gamma: X_{\alpha}\right.$ has no max. $\}$ and $J^{-}=\{\alpha<\gamma$: X_{α} has no min. $\}$. Then the following are equivalent:
(1) $X^{+}=\emptyset\left(X^{-}=\emptyset\right)$,
(2) for every $\alpha<\gamma$ with $\sup J^{+} \leq \alpha\left(\sup J^{-} \leq \alpha\right), X_{\alpha}^{+}=\emptyset$ ($X_{\alpha}^{-}=\emptyset$) holds.

Proof. Let $\alpha_{0}=\sup J^{+}$. Note $\alpha_{0} \leq \gamma$.
(1) $\Rightarrow(2)$: Let $X^{+}=\emptyset$ and $\alpha_{0} \leq \beta<\gamma$. Since $X=\prod_{\alpha \leq \beta} X_{\alpha} \times$ $\prod_{\beta<\alpha<\gamma} X_{\alpha}$ and $\prod_{\beta<\alpha<\gamma} X_{\alpha}$ has max, by Lemma 2.1, $\left(\prod_{\alpha \leq \beta} X_{\alpha}\right)^{+}=\emptyset$ holds. Moreover by $\prod_{\alpha \leq \beta} X_{\alpha}=\prod_{\alpha<\beta} X_{\alpha} \times X_{\beta}$, again by Lemma 2.1, we have $X_{\beta}^{+}=\emptyset$.
$(2) \Rightarrow(1)$: Assume that $X_{\alpha}^{+}=\emptyset$ for every $\alpha<\gamma$ with $\alpha_{0} \leq \alpha$. If $\alpha_{0}=0$, then by Cororally 1.4, we have $X^{+}=\emptyset$. So we assume $\alpha_{0}>0$.

Case 1. $\alpha_{0} \in J^{+}$.
In this case, $\alpha_{0}=\max J^{+}<\gamma$. Since $\prod_{\alpha \leq \alpha_{0}} X_{\alpha}=\prod_{\alpha<\alpha_{0}} X_{\alpha} \times X_{\alpha_{0}}$, $X_{\alpha_{0}}$ has no max and $X_{\alpha_{0}}^{+}=\emptyset$, by Lemma 2. $\overline{1},\left(\prod_{\alpha \leq \alpha_{0}} X_{\alpha}\right)^{+}$is empty. It follows from Corollary 1.4 that $\left(\prod_{\alpha_{0}<\alpha<\gamma} X_{\alpha}\right)^{+}$is also empty. Because of $X=\prod_{\alpha \leq \alpha_{0}} X_{\alpha} \times \prod_{\alpha_{0}<\alpha<\gamma} X_{\alpha}$, by the same corollary, we have $X^{+}=$ \emptyset.

Case 2. $\alpha_{0} \notin J^{+}$.
In this case, α_{0} is a limit ordinal with $\alpha_{0} \leq \gamma$.
Claim. $\left(\prod_{\alpha<\alpha_{0}} X_{\alpha}\right)^{+}=\emptyset$.
Proof. If there were $x \in\left(\prod_{\alpha<\alpha_{0}} X_{\alpha}\right)^{+}$, then by Lemma 1.2, there is some $\alpha_{1}<\alpha_{0}$ such that fore every $\alpha<\alpha_{0}$ with $\alpha_{1}<\alpha$, $\max X_{\alpha}$ exists. This means $\sup J^{+} \leq \alpha_{1}<\alpha_{0}$, a contradiction.

By $X=\prod_{\alpha<\alpha_{0}} X_{\alpha} \times \prod_{\alpha_{0} \leq \alpha<\gamma} X_{\alpha}$ and the assumption $\left(\prod_{\alpha_{0} \leq \alpha<\gamma} X_{\alpha}\right)^{+}$ $=\emptyset$, we have $X^{+}=\emptyset$.

The remaining is similar.
Corollary 2.6. Under the same assumption of Theorem 2.5, X is a LOTS if and only if the following hold:
(1) for every $\alpha<\gamma$ with $\sup J^{+} \leq \alpha, X_{\alpha}^{+}=\emptyset$ holds,
(2) for every $\alpha<\gamma$ with $\sup J^{-} \leq \alpha, X_{\alpha}^{-}=\emptyset$ holds,

Corollary 2.7. Let $X=\prod_{\alpha \leq \gamma} X_{\alpha}$ be a lexicographic product of GOspaces. Assume that X_{γ} has neither min nor max. Then X is a LOTS if and only if X_{γ} is a LOTS. In particular, $\prod_{\alpha<\gamma} X_{\alpha} \times \mathbb{R}$ is a LOTS.

Above two corollaries show:
Corollary 2.8. For every non-zero ordinal $\gamma, \mathbb{S}^{\gamma}$ is a LOTS if and only if γ is limit.

3. When is $\prod_{\alpha<\gamma} X_{\alpha}$ dense in $\prod_{\alpha<\gamma} X_{\alpha}^{*}$?

A GO-space X is dense in the LOTS X^{*}, but generally a lexicographic product $X_{0} \times X_{1}$ of GO-spaces need not be dense in $X_{0}^{*} \times X_{1}^{*}$. For instance, let $X_{0}=[0,1)_{\mathbb{R}} \cup[2,3]_{\mathbb{R}}$ be the subspace of \mathbb{R} and $X_{1}=[0,1]_{\mathbb{R}}$. Then X_{0}^{*} can be considered as the subspace $[0,1]_{\mathbb{R}} \cup[2,3]_{\mathbb{R}}$ of \mathbb{R} and obviously $X_{1}^{*}=X_{1}$. Now $(\langle 1,0\rangle,\langle 1,1\rangle)_{X_{0}^{*} \times X_{1}^{*}}$ is non-empty open in $X_{0}^{*} \times X_{1}^{*}$ but disjoint from $X_{0} \times X_{1}$.

First we consider a special case.
Lemma 3.1. Let $X=X_{0} \times X_{1}$ be a lexicographic product of GO-spaces and let $\hat{X}=X_{0}^{*} \times X_{1}^{*}$. If X_{0} is a LOTS, then X is dense in \hat{X}.

Proof. Let X_{0} be a LOTS. First we prove:
Claim 1. If $x \in \hat{X}$ and $(x, \rightarrow)_{\hat{X}} \neq \emptyset$, then $(x, \rightarrow)_{\hat{X}} \cap X \neq \emptyset$.
Proof. If $(x(0), \rightarrow)_{X_{0}^{*}} \neq \emptyset$, then pick $u \in(x(0), \rightarrow)_{X_{0}^{*}} \cap X_{0}$ and $v \in X_{1}$. Then $\langle u, v\rangle \in(x, \rightarrow)_{\hat{X}} \cap X$. So let $(x(0), \rightarrow)_{X_{0}^{*}}=\emptyset$, that is, $x(0)=$ $\max X_{0}$. Take $y \in(x, \rightarrow)_{\hat{X}}$. Then $x(0)=y(0)$ and $y(1) \in(x(1), \rightarrow)_{X_{1}^{*}}$. Since X_{1} is dense in X_{1}^{*}, we can find $v \in(x(1), \rightarrow)_{X_{1}^{*}} \cap X_{1}$. Now we have $\langle x(0), v\rangle \in(x, \rightarrow)_{\hat{X}} \cap X$.

Analogously, we can prove:
Claim 2. If $x \in \hat{X}$ and $(\leftarrow, x)_{\hat{X}} \neq \emptyset$, then $(\leftarrow, x)_{\hat{X}} \cap X \neq \emptyset$.
These two claims with the following claim complete the proof.
Claim 3. If $x, x^{\prime} \in \hat{X}, x<_{\hat{X}} x^{\prime}$ and $\left(x, x^{\prime}\right)_{\hat{X}} \neq \emptyset$, then $\left(x, x^{\prime}\right)_{\hat{X}} \cap X \neq \emptyset$.
Proof. Let $x, x^{\prime} \in \hat{X}, x<_{\hat{X}} x^{\prime}$ and $\left(x, x^{\prime}\right)_{\hat{X}} \neq \emptyset$. Since X_{0} is a LOTS, that is $X_{0}=X_{0}^{*}$, we have $x(0), x^{\prime}(0) \in X_{0}$.

Case 1. $x(0)=x^{\prime}(0)$.
In this case, take $y \in\left(x, x^{\prime}\right)_{\hat{X}}$. Then we have $x(0)=x^{\prime}(0)=y(0)$ and $y(1) \in\left(x(1), x^{\prime}(1)\right)_{X_{1}^{*}}$. Since X_{1} is dense in X_{1}^{*}, there is $v \in$ $\left(x(1), x^{\prime}(1)\right)_{X_{1}^{*}} \cap X_{1}$. Now $\langle x(0), v\rangle \in\left(x, x^{\prime}\right)_{\hat{X}} \cap X$.
Case 2. $x(0)<x^{\prime}(0)$.
First assume $\left(x(0), x^{\prime}(0)\right)_{X_{0}} \neq \emptyset$. In this case, pick $u \in\left(x(0), x^{\prime}(0)\right)_{X_{0}}$ and $v \in X_{1}$. Then $\langle u, v\rangle \in\left(x, x^{\prime}\right)_{\hat{X}} \cap X$.

Next assume $\left(x(0), x^{\prime}(0)\right)_{X_{0}}=\emptyset$. Since $\left(x, x^{\prime}\right)_{\hat{x}} \neq \emptyset$, we have either $(x(1), \rightarrow)_{X_{1}^{*}} \neq \emptyset$ or $\left(\leftarrow, x^{\prime}(1)\right)_{X_{1}^{*}} \neq \emptyset$. In the case $(x(1), \rightarrow)_{X_{1}^{*}} \neq \emptyset$, taking $v \in(x(1), \rightarrow)_{X_{1}^{*}} \cap X_{1}$, we see $\langle x(0), v\rangle \in\left(x, x^{\prime}\right)_{\hat{X}} \cap X$. In the case $\left(\leftarrow, x^{\prime}(1)\right)_{X_{1}^{*}} \neq \emptyset$, taking $v \in\left(\leftarrow, x^{\prime}(1)\right)_{X_{1}^{*}} \cap X_{1}$, we see $\left\langle x^{\prime}(0), v\right\rangle \in$ $\left(x, x^{\prime}\right)_{\hat{X}} \cap X$.

Theorem 3.2. Let $X=\prod_{\alpha<\gamma} X_{\alpha}$ be a lexicographic product of GOspaces. Then X is dense in $\hat{X}=\prod_{\alpha<\gamma} X_{\alpha}^{*}$ if and only if for every $\alpha<\gamma$ with $\alpha+1<\gamma, X_{\alpha}$ is a LOTS.
Proof. First assume that X is dense in \hat{X} and there is $\alpha_{0}<\gamma$ with $\alpha_{0}+1<\gamma$ such that $X_{\alpha_{0}}$ is not a LOTS. We may assume $X_{\alpha_{0}}^{+} \neq \emptyset$, so fix $u \in X_{\alpha_{0}}^{+}$and take $u^{\prime} \in X_{\alpha_{0}}^{*} \backslash X_{\alpha_{0}}$ such that $u<_{X_{\alpha_{0}}^{*}} u^{\prime}$ and $\left(u, u^{\prime}\right)_{X_{\alpha_{0}}^{*}}=\emptyset$. Fix $x \in X$.
Case 1. $\left|\prod_{\alpha_{0}<\alpha<\gamma} X_{\alpha}\right|>2$.
Take $v_{0}, v_{1}, v_{2} \in \prod_{\alpha_{0}<\alpha<\gamma} X_{\alpha}$ with $v_{0}<v_{1}<v_{2}$. Let $x_{i}=(x \upharpoonright$ $\left.\alpha_{0}\right)^{\wedge}\left\langle u^{\prime}\right\rangle^{\wedge} v_{i}$ for $i=0,1,2$. Then $x_{1} \in\left(x_{0}, x_{2}\right)_{\hat{X}}$ but $\left(x_{0}, x_{2}\right)_{\hat{X}} \cap X=\emptyset$, a contradiction.

Case 2. $\left|\prod_{\alpha_{0}<\alpha<\gamma} X_{\alpha}\right|=2$.
In this case, note $\gamma=\alpha_{0}+2$ and $\prod_{\alpha_{0}<\alpha<\gamma} X_{\alpha}=X_{\alpha_{0}+1}$, say $X_{\alpha_{0}+1}=$ $\left\{v_{0}, v_{1}\right\}$ with $v_{0}<v_{1}$. Let $x_{0}=\left(x \upharpoonright \alpha_{0}\right)^{\wedge}\langle u\rangle^{\wedge} v_{1}$ and $x_{1}=(x \upharpoonright$ $\left.\alpha_{0}\right)^{\wedge}\left\langle u^{\prime}\right\rangle^{\wedge} v_{1}$. Then $\left(x \upharpoonright \alpha_{0}\right)^{\wedge}\left\langle u^{\prime}\right\rangle^{\wedge} v_{0} \in\left(x_{0}, x_{1}\right)_{\hat{X}}$ but $\left(x_{0}, x_{1}\right)_{\hat{X}} \cap X=\emptyset$, a contradiction.

Next assume that for every $\alpha<\gamma$ with $\alpha+1<\gamma, X_{\alpha}=X_{\alpha}^{*}$ holds. If γ is limit, then $\prod_{\alpha<\gamma} X_{\alpha}=\prod_{\alpha<\gamma} X_{\alpha}^{*}$. If $\gamma=\delta+1$, then $\prod_{\alpha<\delta} X_{\alpha}$ is a LOTS. Therefore by the lemma above, X is dense in \hat{X}.
Corollary 3.3. Let $X=\prod_{\alpha<\gamma} X_{\alpha}$ be a lexicographic product of GOspaces. Then:
(1) if γ is limit, then X is dense in $\hat{X}=\prod_{\alpha<\gamma} X_{\alpha}^{*}$ if and only if $X=\hat{X}$,
(2) if $\gamma=\delta+1$, then X is dense in \hat{X} if and only if $\prod_{\alpha<\delta} X_{\alpha}$ is a LOTS.

Note that the reverse implication of Lemma 3.1 is also true.
Example 3.4. For instance, we see:

- $\mathbb{S} \times X$ is not dense in $\mathbb{S}^{*} \times X$ for every GO-space X.
- $X \times \mathbb{S}$ is dense in $X \times \mathbb{S}^{*}$ if X is a LOTS.
- $\mathbb{P} \times \mathbb{M}$ is dense in $\mathbb{P} \times \mathbb{M}^{*}$ but $\mathbb{M} \times \mathbb{P}$ is not dense in $\mathbb{M}^{*} \times \mathbb{P}$.

4. Paracompactness of lexicographic products

It is known that lexicographic products of paracompact LOTS's are paracompact. In this section, we extend this result for paracompact GO-spaces.

Definition 4.1. Let X be a GO-space. A subset A of X is called an initial segment or a 0 -segment of X if for every $x, x^{\prime} \in X$ with $x \leq x^{\prime}$, if $x^{\prime} \in A$, then $x \in A$. Similarly a subset A of X is called a final segment or a 1-segment of X if for every $x, x^{\prime} \in X$ with $x \leq x^{\prime}$, if $x \in A$, then $x^{\prime} \in A$. Both \emptyset and X are 0 -segments and 1 -segments.

Let A be a 0 -segment of a GO-space X. A subset U of A is 0 unbounded in A if for every $x \in A$, there is $x^{\prime} \in U$ such that $x \leq x^{\prime}$. Let

$$
0-\operatorname{cf}_{X} A=\min \{|U|: U \text { is } 0 \text {-unbounded in } A .\} .
$$

Similar notions are also defined in linearly ordered compactifications, see [3]. If the context is clear, $0-\mathrm{cf}_{X} A$ is denoted by $0-\mathrm{cf} A$. Obviously $A=\emptyset$ iff $0-\operatorname{cf} A=0$, and A has max iff $0-\operatorname{cf} A=1$. Moreover we can easily check that a 0 -segment A has no max iff 0 - cf $A \geq \omega$, and in this case, $0-\mathrm{cf} A$ is a regular cardinal. Also remark:

- if A is a 0 -segment of a GO-space X having no max, then A is open in X, because of $A=\bigcup_{a \in A}(\leftarrow, a)_{X}$,
- if U is a 0 -unbounded subset of a 0 -segment A of a GO-space X, then we can define, by induction, a 0 -order preserving sequence $\left\{x_{\alpha}: \alpha<\kappa\right\} \subset U$ (i.e., $x_{\alpha}<_{X} x_{\alpha^{\prime}}$ whenever $\alpha<\alpha^{\prime}<\kappa$) which is also 0 -unbounded in A, where $\kappa=0-\operatorname{cf} A$.
Analogous concepts such as 1-unbounded, 1-cf A, \ldots etc, are also defined.

A cut of a GO-space X is a pair $\left\langle A_{0}, A_{1}\right\rangle$ of subsets of X such that $A_{1}=X \backslash A_{0}$ and A_{0} is a 0 -segment (equivalently A_{1} is a 1 -segment). A cut $\left\langle A_{0}, A_{1}\right\rangle$ is said to be a gap if A_{0} has no max and A_{1} has no min. Thus if X has no max, then $\langle X, \emptyset\rangle$ is a gap. Remark that if $\left\langle A_{0}, A_{1}\right\rangle$ is a gap, then both A_{0} and A_{1} are clopen in X. A cut $\left\langle A_{0}, A_{1}\right\rangle$ is said to be a pseudo-gap if either " A_{0} has max and A_{1} has no min" or " A_{0} has no max and A_{1} has min", moreover A_{0} (equivalently A_{1}) is clopen in X.

The following is known:
Lemma 4.2 ([2], Theorem 2.4.6). Let X be a GO-space, then the following are equivalent:
(1) X is paracompact,
(2) for each gap and pseudo-gap $\left\langle A_{0}, A_{1}\right\rangle$ of X and for each $i \in 2$, there is a closed discrete i-unbounded subset of A_{i}.

Note that in the notations above:

- if $A_{0}=\emptyset$, then \emptyset is a closed discrete 0 -unbounded subset of A_{0},
- if A_{0} has max, then the one element set $\left\{\max A_{0}\right\}$ is a closed discrete 0 -unbounded subset of A_{0},
- if 0 - cf $A_{0}=\omega$, then every 0 -unbounded 0 -order preserving sequence $\left\{a_{n}: n \in \omega\right\}$ in A_{0} is closed discrete in A_{0}.

Definition 4.3. A GO-space X is said to be 0-paracompact if for every closed 0 -segment A of X with 0 - cf $A \geq \omega_{1}$, say $\kappa=0$ - cf A, there is a 0 -unbounded closed discrete subset of A. In this case, we can take a 0 -order preserving sequence $\left\{a_{\alpha}: \alpha<\kappa\right\}$ in A which is 0 unbounded and closed discrete in A (equivalently, closed discrete in $X)$. 1-paracompactness is defined analogously.

Now with the consideration above, Lemma 4.2 says the following:
Lemma 4.4. A GO-space is paracompact if and only if it is both 0paracompact and 1-paracompact.

Remark that Lemma 1.2 says something about pseudo-gaps in lexicographic products. On the other hand, the following says about gaps of lexicographic products.

Lemma 4.5. Let $X=\prod_{\alpha<\gamma} X_{\alpha}$ be a lexicographic product of GOspaces. Assume that A is a 0 -segment with $0-\mathrm{cf} A \geq \omega$ and $1-\operatorname{cf}(X \backslash$ $A) \geq \omega$, that is, $\langle A, X \backslash A\rangle$ is a gap with $A \neq \emptyset$ and $X \backslash A \neq \emptyset$. Say $\kappa=0$ - cf A, then there are $\alpha_{0}<\gamma, y_{0} \in Y_{0}:=\prod_{\alpha<\alpha_{0}} X_{\alpha}$ and a 0 -segment A_{0} of $X_{\alpha_{0}}$ such that:
(1) for every $a \in A, a \upharpoonright \alpha_{0} \leq_{Y_{0}} y_{0}$ holds,
(2) for every $x \in X$,
(i) if $x \upharpoonright \alpha_{0}<_{Y_{0}} y_{0}$, then $x \in A$ holds,
(ii) if $x \upharpoonright \alpha_{0}>_{Y_{0}} y_{0}$, then $x \in X \backslash A$ holds,
(3) for every $x \in X$ with $x \upharpoonright \alpha_{0}=y_{0}, x\left(\alpha_{0}\right) \in A_{0}$ holds iff so does $x \in A$,
(4) if A_{0} is non-empty and has no max, then $\kappa=0-\mathrm{cf}_{X_{\alpha_{0}}} A_{0}$,
(5) if A_{0} is non-empty and has max, then there is $\alpha>\alpha_{0}$ such that X_{α} has no max and $\kappa=0-\operatorname{cf}_{X_{\alpha_{1}}} X_{\alpha_{1}}$ holds, where $\alpha_{1}:=$ $\min \left\{\alpha<\gamma: \alpha>\alpha_{0}\right.$ and X_{α} ha no max. $\}$,
(6) if A_{0} is empty, then:
(i) for every $a \in A, a \upharpoonright \alpha_{0}<_{Y_{0}} y_{0}$ holds,
(ii) α_{0} is limit,
(iii) there is $\alpha \geq \alpha_{0}$ such that X_{α} has no min.
(iv) $A=\left(\leftarrow, y_{0}\right)_{Y_{0}} \times Y_{1}$, where $Y_{1}:=\prod_{\alpha_{0} \leq \alpha<\gamma} X_{\alpha}$.
(v) $\left(\leftarrow, y_{0}\right)_{Y_{0}}$ has no max,
(vi) $\kappa=0-\operatorname{cf}_{Y_{0}}\left(\leftarrow, y_{0}\right)_{Y_{0}}=\operatorname{cf} \alpha_{0}$,
(vii) for every $\beta<\alpha_{0}$, there is $a \in A$ satisfying $\beta<\min \{\alpha<$ $\left.\alpha_{0}: a(\alpha) \neq y_{0}(\alpha)\right\}$.

Proof. Set $B=X \backslash A$. For each $a \in A$ and $b \in B$, let $\alpha(a, b)=$ $\min \{\alpha<\gamma: a(\alpha) \neq b(\alpha)\}$ and $\alpha_{0}=\sup \{\alpha(a, b): a \in A, b \in B\}$. Note $\alpha_{0} \leq \gamma$.

Claim 1. Let $a_{0}, a_{1} \in A$ and $b_{0}, b_{1} \in B$. If $\alpha\left(a_{0}, b_{0}\right) \leq \alpha\left(a_{1}, b_{1}\right)$, then $a_{0} \upharpoonright \alpha\left(a_{0}, b_{0}\right)=a_{1} \upharpoonright \alpha\left(a_{0}, b_{0}\right)$.
Proof. Assume that there is $\beta<\alpha\left(a_{0}, b_{0}\right)$ such that $a_{0}(\beta) \neq a_{1}(\beta)$. Let $\beta_{0}=\min \left\{\beta<\alpha\left(a_{0}, b_{0}\right): a_{0}(\beta) \neq a_{1}(\beta)\right\}$. Then $b_{0} \upharpoonright \beta_{0}=a_{0} \upharpoonright$ $\beta_{0}=a_{1} \upharpoonright \beta_{0}=b_{1} \upharpoonright \beta_{0}$ and $b_{0}\left(\beta_{0}\right)=a_{0}\left(\beta_{0}\right) \neq a_{1}\left(\beta_{0}\right)=b_{1}\left(\beta_{0}\right)$. If $a_{0}\left(\beta_{0}\right)<a_{1}\left(\beta_{0}\right)$, then we have $b_{0}<a_{1}, b_{0} \in B$ and $a_{1} \in A$, a contradiction. If $a_{0}\left(\beta_{0}\right)>a_{1}\left(\beta_{0}\right)$, then we have $a_{0}>b_{1}, b_{1} \in B$ and $a_{0} \in A$, a contradiction.

This claim ensures that the function $y_{0}:=\bigcup\{a \upharpoonright \alpha(a, b): a \in A, b \in$ $B\}$ is well-defined and $y_{0} \in \prod_{\alpha<\alpha_{0}} X_{\alpha}$.
Claim 2. $\alpha_{0}<\gamma$.
Proof. Assume $\alpha_{0}=\gamma$. Then $y_{0} \in X=A \cup B$. If $y_{0} \in A$, then there is $a_{0} \in A$ with $y_{0}<_{X} a_{0}$. Letting $\beta_{0}=\min \left\{\beta<\gamma: y_{0}(\beta) \neq a_{0}(\beta)\right\}$, take $a \in A$ and $b \in B$ with $\beta_{0}<\alpha(a, b)$. Then we have $b<_{X} a_{0}$, a contradiction. When $y_{0} \in B$, similarly we can get a contradiction.

By a similar argument of the proof above, we can check the clauses (1) and (2). Now let $A_{0}=\left\{a\left(\alpha_{0}\right): a \in A, a \upharpoonright \alpha_{0}=y_{0}\right\}$ amd $B_{0}=$ $X_{\alpha_{0}} \backslash A_{0}$. Obviously A_{0} is a 0 -segment of $X_{\alpha_{0}}$ and B_{0} is a 1 -segment of $X_{\alpha_{0}}$.

Claim 3. $B_{0}=\left\{a\left(\alpha_{0}\right): a \in B, a \upharpoonright \alpha_{0}=y_{0}\right\}$ holds.
Proof. The inclusion " \subset " is obvious.
To see the other inclusion, let $b \in B$ with $b \upharpoonright \alpha_{0}=y_{0}$. If $b\left(\alpha_{0}\right) \in A_{0}$ were true, then there is $a \in A$ with $a \upharpoonright \alpha_{0}=y_{0}$ and $b\left(\alpha_{0}\right)=a\left(\alpha_{0}\right)$. This means $a \upharpoonright\left(\alpha_{0}+1\right)=b \upharpoonright\left(\alpha_{0}+1\right)$, thus $\alpha_{0}<\alpha(a, b)$, a contradiction. We have $b\left(\alpha_{0}\right) \in B_{0}$.

This claim shows the clause (3).
Claim 4. The clause (4) holds.
Proof. Assume that $A_{0} \neq \emptyset$ and A_{0} has no max. To see $\kappa \geq 0$ - cf A_{0}, let U be a 0 -unbounded subset of A. Fix $u_{0} \in A_{0}$ and $a_{0} \in A$ with $a_{0} \upharpoonright \alpha_{0}=y_{0}$ and $a_{0}\left(\alpha_{0}\right)=u_{0}$. Then it is easy to check that $V:=$ $\left\{a\left(\alpha_{0}\right): a_{0}<_{X} a \in U\right\}$ is 0-unbounded in A_{0}.

To see $\kappa \leq 0$ - cf A_{0}, let V be a 0 -unbounded in A_{0}. For every $u \in V$, we can fix $a_{u} \in A$ with $a_{u} \upharpoonright \alpha_{0}=y_{0}$ and $a_{u}\left(\alpha_{0}\right)=u$. Then $U:=\left\{a_{u}\right.$: $u \in V\}$ is 0 -unbounded in A.

Claim 5. The clause (5) holds.
Proof. Assume that $A_{0} \neq \emptyset$ and A_{0} has max u_{0}. If for every $\alpha<\gamma$ with $\alpha_{0}<\alpha, X_{\alpha}$ has max, then $y_{0} \wedge\left\langle u_{0}\right\rangle^{\wedge}\left\langle\max X_{\alpha}: \alpha_{0}<\alpha<\gamma\right\rangle=\max A$, a contradiction. Therefore there is $\alpha<\gamma$ with $\alpha_{0}<\alpha$ such that X_{α} has no max. Let α_{1} be such a smallest one. By a similar argument in Claim 4, we see $\kappa=0-\operatorname{cf}_{X_{\alpha_{1}}} X_{\alpha_{1}}$

Claim 6. The clause (6) holds.
Proof. Let $A_{0}=\emptyset$. If there is $a \in A$ with $a \upharpoonright \alpha_{0}=y_{0}$, then $a\left(\alpha_{0}\right) \in A_{0}$, a contradiction. Tis shows (i).

If $\alpha_{0}=\beta+1$ for some ordinal β, then we can find $a \in A$ and $b \in B$ with $\beta<\alpha(a, b) \leq \alpha_{0}$, so $\alpha(a, b)=\alpha_{0}$. Now we have $y_{0}=a \upharpoonright \alpha_{0}$, this contradicts (i). This shows (ii).

If $Y_{1}=\prod_{\alpha_{0} \leq \alpha<\gamma} X_{\alpha}$ has min, then we have $b_{0}:=y_{0} \wedge\left\langle\min X_{\alpha}: \alpha_{0} \leq\right.$ $\alpha<\gamma\rangle \in B$ by $A_{0}=\emptyset$. If $a \in X$ and $a<b_{0}$, then $a \upharpoonright \alpha_{0}<b \upharpoonright \alpha_{0}=y_{0}$, thus $a \in A$ by (i). This shows $b_{0}=\min B$, a contradiction. We see (iii). (2-i) and (i) show (iv).

To see (v), assume that $y_{1}:=\max \left(\leftarrow, y_{0}\right)_{Y_{0}}$ exists. Let $\alpha_{1}=\min \{\alpha<$ $\left.\alpha_{0}: y_{1}(\alpha) \neq y_{0}(\alpha)\right\}$, moreover take $a \in A$ and $b \in B$ with $\alpha_{1}<\alpha(a, b)$. By (i), we have $a \upharpoonright \alpha_{0}<y_{0}$, therefore $a \upharpoonright \alpha_{0} \leq y_{1}$. By $y_{1} \upharpoonright \alpha_{1}=y_{0} \upharpoonright$ $\alpha_{1}=a \upharpoonright \alpha_{1}$ and $y_{1}\left(\alpha_{1}\right)<y_{0}\left(\alpha_{1}\right)=a\left(\alpha_{1}\right)$, we have $y_{1}<a \upharpoonright \alpha_{0}$, a contradiction.
(vi) can be similarly proved as in Claim 4. (vii) follows from the definition of α_{0}

Theorem 4.6. If X_{α} is a 0-paracompact GO-space for every $\alpha<\gamma$, then the lexicographic product $X=\prod_{\alpha<\gamma} X_{\alpha}$ is also 0-paracompact.
Proof. Let A be a closed 0 -segment of X with $0-\mathrm{cf} A \geq \omega_{1}$, set $\kappa=$ 0 - cf A. We will find a 0 -unbounded 0 -order preserving sequence $\left\{a_{\delta}\right.$: $\delta<\kappa\} \subset A$ which is closed discrete in A. We have to consider several cases. Let $B=X \backslash A$.

Case 1. B has min b_{0}.
In this case, since A is closed and has no max, b_{0} belongs to X^{-}. From Lemma 1.3, we can find $\alpha_{0}<\gamma$ such that $b_{0}\left(\alpha_{0}\right) \in X_{\alpha_{0}}^{-}$and for every $\alpha<\gamma$ with $\alpha_{0}<\alpha, b_{0}(\alpha)=\min X_{\alpha}$ holds. Let $A_{0}=\left(\leftarrow, b_{0}\left(\alpha_{0}\right)\right)_{X_{\alpha_{0}}}$. Then A_{0} is a closed 0 -segment of $X_{\alpha_{0}}$. By a similar argument of Claim 4 in the previous lemma, we see $\kappa=0-\mathrm{cf}_{X_{\alpha_{0}}} A_{0}$. Since $X_{\alpha_{0}}$ is $0-$ paracompact, we can take a 0 -unbounded 0 -order preserving sequence
$\left\{u_{\delta}: \delta<\kappa\right\}$ in A_{0} which is closed discrete in A_{0} and $\left(\leftarrow, u_{0}\right)_{X_{\alpha_{0}}} \neq \emptyset$.
For each $\delta<\kappa$, let $a_{\delta}=\left(b_{0} \upharpoonright \alpha_{0}\right)^{\wedge}\left\langle u_{\delta}\right\rangle^{\wedge}\left(b_{0} \upharpoonright\left(\alpha_{0}, \gamma\right)\right)$.
Claim 1. The sequence $F=\left\{a_{\delta}: \delta<\kappa\right\}$ is 0 -unbounded, 0 -order preserving and closed discrete in A.

Proof. Obviously F is 0 -order preserving. Let $a \in A$. Then we have $a \upharpoonright$ $\alpha_{0} \leq b_{0} \upharpoonright \alpha_{0}$. If $a \upharpoonright \alpha_{0}<b_{0} \upharpoonright \alpha_{0}$, then $a<a_{0}$. If $a \upharpoonright \alpha_{0}=b_{0} \upharpoonright \alpha_{0}$, then we can take $\delta<\kappa$ with $a\left(\alpha_{0}\right)<u_{\delta}$ (otherwise, $a \geq b_{0}$, a contradiction). Then we have $a<a_{\delta}$. Thus F is 0 -unbounded in A. To see the closed discreteness of F, take the smallest $\delta_{0}<\kappa$ with $a<a_{\delta_{0}}$. If $\delta_{0}=0$, then $\left(\leftarrow, a_{0}\right)_{X}$ is a neighborhood of a disjoint from F. If $\delta_{0}>0$, then we have $a \upharpoonright \alpha_{0}=b_{0} \upharpoonright \alpha_{0}$ and $a\left(\alpha_{0}\right) \in A_{0}$. Note $u_{0} \leq a\left(\alpha_{0}\right)$ because of $a_{0} \leq a$. Since $\left\{u_{\delta}: \delta<\kappa\right\}$ is closed discrete in $X_{\alpha_{0}}$, we can find $u^{*} \in X_{\alpha_{0}}^{*}$ with $u^{*}<_{X_{\alpha_{0}}^{*}} a\left(\alpha_{0}\right)$ such that $\left(u^{*}, a\left(\alpha_{0}\right)\right]_{X_{\alpha_{0}}^{*}} \cap X_{\alpha_{0}}$ contains at most one u_{δ}. Let $a^{*}=\left(b_{0} \upharpoonright \alpha_{0}\right)^{\wedge}\left\langle u^{*}\right\rangle^{\wedge}\left(b_{0} \upharpoonright\left(\alpha_{0}, \gamma\right)\right)$. Then $a^{*} \in \hat{X}$ and $\left(a^{*}, a_{\delta_{0}}\right)_{\hat{X}} \cap X$ is a neighborhood of a witnessing the closed discreteness of F at a.

Case 2. $B \neq \emptyset$ and has no min.
This case is a modification of Theorem 4.2.2 in [2]. In this case, take $\alpha_{0}<\gamma, y_{0} \in \prod_{\alpha<\alpha_{0}} X_{\alpha}$ and the 0 -segment A_{0} of $X_{\alpha_{0}}$ in Lemma 4.5. Further we divide Case 2 into several subcases.

Case 2-1. $A_{0}=\emptyset$.
In this case, we use (6) of Lemma 4.5. By induction using (i) and (vi) in (6), define $\left\{a_{\delta}: \delta<\kappa\right\} \subset A$ such that $\left\{\min \left\{\alpha<\alpha_{0}: a_{\delta}(\alpha) \neq\right.\right.$ $\left.\left.y_{0}(\alpha)\right\}: \delta<\kappa\right\}$ is 0 -unbounded and 0 -order preserving in α_{0}.
Claim 2. The sequence $F=\left\{a_{\delta}: \delta<\kappa\right\}$ is 0 -unbounded, 0 -order preserving and closed discrete in A.

Proof. The proof that F is 0 -unbounded and 0 -order preserving is easy. Let $a \in A$ and $\delta_{0}<\kappa$ be the smallest $\delta<\kappa$ with $a<a_{\delta}$. By (6 -iii) in Lemma 4.5, $Y_{1}:=\prod_{\alpha_{0} \leq \alpha<\gamma} X_{\alpha}$ has no min, so take $y_{1} \in Y_{1}$ with $y_{1}<_{Y_{1}} a \upharpoonright\left[\alpha_{0}, \gamma\right)$. Then $\left(\left(a \upharpoonright \alpha_{0}\right)^{\wedge} y_{1}, a_{\delta_{0}}\right)_{X}$ is a neighborhood of a witnessing the closed discreteness of F at a.

Case 2-2. $A_{0} \neq \emptyset$.
We further divide this case into several cases.
Case 2-2-1. A_{0} has no max and $B_{0}:=X_{\alpha_{0}} \backslash A_{0}$ has min.
Note that in this case, A_{0} need not be closed in $X_{\alpha_{0}}$. We can find $\alpha>\alpha_{0}$ such that X_{α} has no min (otherwise, B has min). Let α_{1} be
such a smallest one. By (4) in Lemma 4.5 , we can find a 0 -unbounded 0 -order preserving sequence $\left\{u_{\delta}: \delta<\kappa\right\}$ in A_{0}. But remark that in general, $\left\{u_{\delta}: \delta<\kappa\right\}$ cannot be closed discrete in A_{0}. For each $\delta<\kappa$, take $a_{\delta} \in X$ with $a_{\delta} \upharpoonright\left(\alpha_{0}+1\right)=y_{0} \wedge\left\langle u_{\delta}\right\rangle$, then $a_{\delta} \in A$.
Claim 3. The sequence $F=\left\{a_{\delta}: \delta<\kappa\right\}$ is 0-unbounded, 0-order preserving and closed discrete in A.

Proof. Obviously F is 0 -unbounded and 0 -order preserving in A. Let $a \in A$ and $\delta_{0}<\kappa$ be the smallest $\delta<\kappa$ with $a<a_{\delta}$. If $\delta_{0}=0$, then $\left(\leftarrow, a_{0}\right)_{X}$ is a neighborhood of a disjoint from F.

Let $\delta_{0}>0$, then we have $a \upharpoonright \alpha_{0}=y_{0}$. Since $Y_{1}:=\prod_{\alpha_{0}<\alpha<\gamma} X_{\alpha}$ has no min, take $y_{1} \in Y_{1}$ with $y_{1}<a \upharpoonright\left(\alpha_{0}, \gamma\right)$. Then $\left(\left(a \upharpoonright\left(\alpha_{0}+1\right)\right)^{\wedge} y_{1}, a_{\delta_{0}}\right)$ is a neighborhood of a witnessing the closed discreteness of F at a.

Case 2-2-2. A_{0} has no max and $B_{0}:=X_{\alpha_{0}} \backslash A_{0}$ has no min.
In this case A_{0} is a closed 0 -segment in the 0 -paracompact GO-space $X_{\alpha_{0}}$. Using (4) in Lemma 4.5, take a 0 -unbounded 0 -oder preserving sequence $\left\{u_{\delta}: \delta<\kappa\right\}$ which is closed discrete in A_{0} and $\left(\leftarrow, u_{0}\right)_{X_{\alpha_{0}}} \neq \emptyset$. For each $\delta<\kappa$, take $a_{\delta} \in X$ with $a_{\delta} \upharpoonright\left(\alpha_{0}+1\right)=y_{0} \wedge\left\langle u_{\delta}\right\rangle$, then $a_{\delta} \in A$.

Claim 4. The sequence $F=\left\{a_{\delta}: \delta<\kappa\right\}$ is 0 -unbounded, 0 -order preserving and closed discrete in A.

Proof. Obviously F is 0 -unbounded and 0 -order preserving in A. Let $a \in A$ and $\delta_{0}<\kappa$ be the smallest $\delta<\kappa$ with $a<a_{\delta}$. As in the proof of the claim above, when $\delta_{0}=0$, then $\left(\leftarrow, a_{0}\right)_{X}$ witnesses the closed discreteness of F at a. When $\delta_{0}>0$, we have $a \upharpoonright \alpha_{0}=y_{0}$ and $a\left(\alpha_{0}\right) \in A_{0}$. Since $\left\{u_{\delta}: \delta<\kappa\right\}$ is closed discrete in $X_{\alpha_{0}}$, we can take $u^{*} \in X_{\alpha_{0}}^{*}$ with $u^{*}<a\left(\alpha_{0}\right),\left(u^{*}, a\left(\alpha_{0}\right)\right]_{X_{\alpha_{0}}^{*}} \cap X_{\alpha_{0}}$ contains at most one u_{δ}. Take $a^{*} \in \hat{X}$ with $a^{*} \upharpoonright\left(\alpha_{0}+1\right)=\left(a \upharpoonright \alpha_{0}\right)^{\wedge}\left\langle u^{*}\right\rangle$. Then $\left(a^{*}, a_{\delta_{0}}\right)_{\hat{X}} \cap X$ is a neighborhood of a witnessing the closed discreteness of F at a.

Case 2-2-3. A_{0} has max.
In this case, by (5) of Lemma 4.5, there is $\alpha>\alpha_{0}$ such that X_{α} has no max. Let α_{1} be such a smallest one. Since $\kappa=0-\operatorname{cf}_{X_{\alpha_{1}}} X_{\alpha_{1}}$ and $X_{\alpha_{1}}$ is 0-paracompact, the 0 -segment $X_{\alpha_{1}}$ has a 0 -unbounded 0 order preserving sequence $\left\{u_{\delta}: \delta<\kappa\right\} \subset X_{\alpha_{1}}$ which is closed discrete in $X_{\alpha_{1}}$ and $\left(\leftarrow, u_{0}\right)_{X_{\alpha_{1}}} \neq \emptyset$. For each $\delta<\kappa$, take $a_{\delta} \in X$ with $a_{\delta} \upharpoonright\left(\alpha_{1}+1\right)=y_{0} \wedge\left\langle\max A_{0}\right\rangle^{\wedge}\left\langle\max X_{\alpha}: \alpha_{0}<\alpha<\alpha_{1}\right\rangle^{\wedge}\left\langle u_{\delta}\right\rangle$. Note $a_{\delta} \in A$. As in Claim 4, we see:

Claim 5. The sequence $F=\left\{a_{\delta}: \delta<\kappa\right\}$ is 0 -unbounded, 0 -order preserving and closed discrete in A.

Case 3. $B=\emptyset$, i.e., $A=X$.
Since X has no \max, let $\alpha_{0}=\min \left\{\alpha<\gamma: X_{\alpha}\right.$ has no max. $\}$. Then as in Claim 4 in Lemma 4.5, we see $\kappa=0-\mathrm{cf}_{X_{\alpha_{0}}} X_{\alpha_{0}}$. Since $X_{\alpha_{0}}$ is 0paracompact, we can find a 0 -unbounded 0 -order preserving sequence $\left\{u_{\delta}: \delta<\kappa\right\} \subset X_{\alpha_{0}}$ which is closed discrete in $X_{\alpha_{0}}$ and $\left(\leftarrow, u_{0}\right)_{X_{\alpha_{0}}} \neq \emptyset$. For every $\delta<\kappa$, take $a_{\delta} \in X$ with $a_{\delta} \upharpoonright\left(\alpha_{0}+1\right)=\left\langle\max X_{\alpha}: \alpha<\right.$ $\left.\alpha_{0}\right\rangle^{\wedge}\left\langle u_{\delta}\right\rangle$. Note $a_{\delta} \in A$. Similarly we can see:
Claim 6. The sequence $F=\left\{a_{\delta}: \delta<\kappa\right\}$ is 0-unbounded, 0-order preserving and closed discrete in A.

With the analogy of the theorem above, we extends the result Theorem 4.2.2 in [2] as follows:

Corollary 4.7. Lexicographic products of paracompact GO-spaces are paracompact.
Example 4.8. For example we see:

- the lexicographic products \mathbb{S}^{γ} and \mathbb{M}^{γ} are paracompact for every ordinal γ.
- the lexicographic products $\mathbb{M} \times \mathbb{P}$ and $\mathbb{P} \times \mathbb{M}$ are paracompact.
- lexicographic products of metrizable GO-spaces are paracompact. For instance, the lexicographic product $\left([0,1)_{\mathbb{R}} \cup[2,3]_{\mathbb{R}}\right)^{\omega_{1}}$ is paracompact.

However, there is a paracompact lexicographic product of non-paracompact LOTS's, see Example in page 73 in [2]. We end this paper with the following question.

Question 4.9. Characterize paracompactness of lexicographic products of GO-spaces.

References

[1] R. Engelking, General Topology-Revized and completed ed.. Herdermann Verlag, Berlin (1989).
[2] Faber, M. J. , Metrizability in generalized ordered spaces., Mathematical Centre Tracts, No. 53. Mathematisch Centrum, Amsterdam, 1974.
[3] N. Kemoto, Normality of products of GO-spaces and cardinals, Topology Proc., 18 (1993), 133-142.
[4] T. Miwa and N. Kemoto, Linearly ordered extensions of GO-spaces, Top. Appl., 54 (1993), 133-140.
[5] D.J. Lutzer, On generalized ordered spaces, Dissertationes Math. Rozprawy Mat. 89 (1971).

Department of Mathematics, Oita University, Oita, 870-1192 Japan E-mail address: nkemoto@cc.oita-u.ac.jp

[^0]: Date: October 14, 2017.
 2010 Mathematics Subject Classification. Primary 54F05, 54B10, 54B05 . Secondary 54 C 05 .

 Key words and phrases. lexicographic product, GO-space, LOTS, paracompact.

