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Abstract. A linearly ordered extension of a GO-space X is a
LOTS L such that the LOTS L contains the GO-space X as a
subspace and the order <L on L extends the order <X on X,
moreover if X is dense in L, then L is called a linearly ordered
d-extension. A linearly ordered compactification of a GO-space X
is a compact linearly ordered d-extension of X. We will visualize
all linearly ordered compactifications of a given GO-space in a cer-
tain way. For a given linearly ordered set ⟨X,<X⟩, LX denotes the
class of all linearly ordered compactifications of GO-spaces whose
underlying linearly ordered set is ⟨X,<X⟩. We will also see the
partial order structure ⟨LX ,≤⟩, where L0 ≤ L1 if there is a contin-
uous map f : L1 → L0 such that f(x) = x for every x ∈ X, is order
isomorphic to the product ⟨P(A),⊆⟩ × ⟨P(B),⊆⟩ × ⟨P(C),⊆⟩ for
some sets A,B and C, where ⟨P(A)),⊆⟩ denotes the partial or-
dered set of the set of all subset of A with the usual inclusion.
The sets A,B and C will be described exactly. Moreover, we will
see that the partial order structure on the class of all linearly or-
dered compactifications of a fixed GO-space only depends on its
underlying linearly ordered set, does not depend on its topology.

1. Introduction

We assume that all topological spaces have cardinality at least 2.
We will prove the results in the abstract. At first, we give precise
definitions for later arguments.

A linearly ordered set ⟨L,<L⟩ (see [1]) has a natural T2-topology
λ(<L) so called the interval topology which is the topology generated
by {(←, u)L : u ∈ L} ∪ {(u,→)L : u ∈ L} as a subbase, where (←, u)L
= {w ∈ L : w <L u} and (u,→)L = {w ∈ L : u <L w}. Also we
denote {w ∈ L : u <L w ≤L v} by (u, v]L, and [u, v]L, (u, v]L ...,
etc are similarly defined, where w ≤L v means w <L v or w = v.
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. If the contexts are clear, we write < and (u, v] instead of <L and
(u, v]L respectively. Note that this subbase induces a base by convex
subsets (e.g., the collection of all intersections of at most two members
of this subbase), where a subset B of L is convex if for every u, v ∈
B with u <L v, [u, v]L ⊆ B. The triple ⟨L,<L, λ(<L)⟩ is called a
LOTS (= Linearly Ordered Topological Space) and simply denoted by
LOTS L. Observe that if u ∈ U ∈ λ(<L) and (←, u)L ̸= ∅, then
there is v ∈ L such that v <L u and (v, u]L ⊆ U . Also observe its
analogous result. Unless otherwise stated, the real line R is considered
as a linearly ordered set (hence LOTS) with the usual order, similarly
so are the set Q of rationals, the set P of irrationals and an ordinal α.

A triple ⟨L,<L, τ⟩, where <L is linear order on L and τ is a T2

topology on L, is called a GO-space (= Generalized ordered Space) if τ
has a base consisting of convex sets, also simply denoted by GO-space
L, see [4]. The pair ⟨L,<L⟩ (the triple ⟨L,<L, λ(<L)⟩) is said to be the
underlying linearly ordered set (the underlying LOTS, respectively) of
the GO-space L and such a topology τ is called a GO-space topology
on L. It is easy to verify that τ as described above is stronger than
the topology λ(<L) of the underlying linearly ordered set, that is, τ ⊃
λ(<L). Obviously every LOTS is a GO-space but not conversely, for
example, the Sorgenfrey line S is such an example.

Let L = ⟨L,<L, λ(<L)⟩ be a LOTS and X = ⟨X,<X , τ⟩ a GO-space
with X ⊆ L. If <L extends <X and the space ⟨X, τ⟩ is a subspace of
⟨L, λ(<L)⟩, that is τ = λ(<L) ↾ X = {U ∩X : U ∈ λ(<L)}, then the
LOTS L is called a linearly ordered extension of X. Moreover if X is
dense in L, then the LOTS L is called a linearly ordered d-extension of
X, see [5]. A compact linearly ordered d-extension is called a linearly
ordered compactification, see [2, 3, 6].

A pair ⟨A,B⟩ of subsets of a linearly ordered set ⟨L,<L⟩ is called a
cut if A ∪ B = L and if u ∈ A and v ∈ B then u <L v. A cut is called
a jump if A has a maximal element (denoted by maxA) and B has a
minimal element (denoted by minB). A cut ⟨A,B⟩ is called a gap if
A has no maximal element (we write, A has no max) and B has no
min. In particular if A = ∅ or B = ∅, then ⟨A,B⟩ is called an end gap,
other gaps are called middle gaps. Usually if ⟨∅, X⟩ is a gap, then it is
written as −∞. Similarly if ⟨X, ∅⟩ is a gap, then it is written as ∞. It
is easy to verify:

• A compact GO-spaces is a LOTS.
• A LOTS L is compact iff the linearly ordered set L has no gaps.

Now let X = ⟨X,<X , τ⟩ be a GO-space and λ = λ(<X). Note that
for every x ∈ X, (←, x]X /∈ λ iff (x,→)X is non-empty and has no min,
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also analogously [x,→)X /∈ λ iff (←, x)X is non-empty and has no max.
Let

XR = {x ∈ X : (←, x]X /∈ λ},

XL = {x ∈ X : [x,→)X /∈ λ}.
Note that the definitions of XR and XL only depend on the underlying
LOTS. Also let

X+
τ = {x ∈ X : (←, x]X ∈ τ \ λ},

X−
τ = {x ∈ X : [x,→)X ∈ τ \ λ}.

Obviously X+
τ ⊆ XR and X−

τ ⊆ XL. Note that X+
τ ∩X−

τ might be
non-empty. If there is no confusion, we usually simply write X+ and
X− instead of X+

τ and X−
τ . The following two lemmas are straightfor-

ward.

Lemma 1.1. In the situation above, the topology τ coincides with the
topology generated by {(←, x)X : x ∈ X} ∪ {(x,→)X : x ∈ X} ∪ {(←
, x]X : x ∈ X+

τ } ∪ {[x,→)X : x ∈ X−
τ } as a subbase.

Lemma 1.2. Let ⟨X,<X⟩ be a linearly ordered set with A ⊆ XR and
B ⊆ XL. Moreover let τ(A,B) be the topology generated by {(←, x)X :
x ∈ X} ∪ {(x,→)X : x ∈ X} ∪ {(←, x]X : x ∈ A} ∪ {[x,→)X : x ∈ B}
as a subbase. Then τ(A,B) is a GO-space topology and A = X+

τ(A,B)

and B = X−
τ(A,B).

In the case X = R, note XR = XL = R. The Sorgenfrey line S is
the GO-space ⟨R, <R, τ(∅,R)⟩ and the Michael line M is the GO-space
⟨R, <R, τ(P,P)⟩. Given a linearly ordered set ⟨X,<X⟩, let GTX be the
set of all GO-space topologies on ⟨X,<X⟩, i.e.,

GTX = {τ : ⟨X,<X , τ⟩ is a GO-space. }.

We consider GTX as a partially ordered set ⟨GTX ,⊆⟩ with the usual
inclusion “⊆”, where ⟨P,≤⟩ is a partially ordered set if ≤ is reflexive
(p ≤ p), transitive (p ≤ q, q ≤ r → p ≤ r) and antisymmetric (p ≤
q, q ≤ p→ p = q). For two partially ordered sets ⟨P,≤P⟩ and ⟨Q,≤Q⟩,
one can define the partial order ≤P×Q on the product P × Q, that is,
⟨p, q⟩ ≤P×Q ⟨p′, q′⟩ iff p ≤P p′ and q ≤Q q′. This partial ordered set is
denoted by ⟨P,≤P⟩×⟨Q,≤Q⟩. Similarly we can define the product of 3
(and so on) partially ordered sets. Now, the two lemmas above show:

Proposition 1.3. Let ⟨X,<X⟩ be a linearly ordered set. Then the
partially ordered set ⟨GTX ,⊆⟩ is order isomorphic to the partial ordered
set ⟨P(XR),⊆⟩ × ⟨P(XL),⊆⟩.
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Here two partially ordered sets ⟨P,≤P⟩ and ⟨Q,≤Q⟩ are said to be order
isomorphic if there is a 1-1 onto map f : P → Q such tat p ≤P p′ iff
f(p) ≤P f(p′). In the case X = R, the structure ⟨GTR,⊆⟩ is order
isomorphic to ⟨P(R),⊆⟩ × ⟨P(R),⊆⟩.

Given two linearly ordered set L0 and L1, one can define a order <L

on L = L0 × L1 so called the lexicographic order by :

⟨u, v⟩ <L ⟨u′, v′⟩ iff u <L0 u
′, or (u = u′ and v <L1 v

′).

In the case Z ⊆ L0 × L1, the restricted order <L0×L1↾ Z of the lexico-
graphic order <L0×L1 to Z is also called the lexicographic order on Z
and denoted by <Z .

Now for a given GO-space X = ⟨X,<X , τ⟩, let

X∗ =
(
X− × {−1}

)
∪
(
X × {0}

)
∪
(
X+ × {1}

)
and consider the lexicographic order <X∗ on X∗ induced by the lex-
icographic order on X × {−1, 0, 1}, here of course −1 < 0 < 1. We
usually identify X as X = X×{0} in the obvious way (i.e., x = ⟨x, 0⟩),
thus we may consider X∗ =

(
X− × {−1}

)
∪ X ∪

(
X+ × {1}

)
. It is

easy to verify that X∗ is a linearly ordered d-extension of X. More-
over, under the trivial identification, we may consider that X∗ is the
smallest linearly ordered d-extension of X, that is, if L is a linearly
ordered d-extension of X then X∗ ⊆ L, see [5, Theorem 2.1]. Note
(←, x]X = (←, ⟨x, 1⟩)X∗ ∩X ∈ λ(<X∗) ↾ X whenever x ∈ X+, and also
its analogy. Using this fact and easy arguments, one can show:

Lemma 1.4. Let X = ⟨X,<X , τ⟩ be a GO-space and consider the
LOTS X∗ = ⟨X∗, <X∗ , λ(<X∗)⟩ defined above. Let L be a linearly
ordered compactification of X. Regarding X∗ ⊆ L, the following holds:

(1) if x ∈ X+, then (x, ⟨x, 1⟩)L = ∅,
(2) if x ∈ X−, then (⟨x,−1⟩, x)L = ∅,
(3) if u ∈ L, v ∈ X− × {−1} and u <L v, then (u, v)L ∩X ̸= ∅,
(4) if u ∈ L, v ∈ X+ × {1} and v <L u, then (v, u)L ∩X ̸= ∅,
(5) if u, v ∈ X∗ \X and u <X∗ v, then (u, v)X∗ ∩X ̸= ∅.

Let X = [0, 1)∪(2, 3] and L = [0, 1]∪[2, 3] be the subspaces of R. We
may consider that X is a GO-space and L is a linearly ordered com-
pactification of X. In (5) in the lemma above, X∗ cannot be replaced
by L, because the case “u = 1, v = 2” is witnessing.

2. Compact LOTS

In this section, we will present a machine from a compact LOTS
making another compact LOTS.
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First let L be a LOTS. For a subset W ⊆ L, L[W ] denotes the LOTS
L×{0}∪W×{1} with the lexicographic order <L[W ]. Also as above we
identify L× {0} with L, so we may consider as L[W ] = L ∪W × {1}.
Obviously the interval topology λ(<L) is weaker than the subspace
topology λ(<L[W ]) ↾ L and in general not equal. Remark that L is not
a subspace of L[W ] whenever u ∈ ClL(u,→)L for some u ∈ W , because
of u /∈ ClL[W ](u,→)L, where ClL denotes the closure with respect to L.
Later we use the following easy lemma:

Lemma 2.1. Let f : L1 → L0 be an order preserving (i.e., u <L1

v → f(u) ≤L0 f(v)) onto map between LOTS’s L1 and L0. Then the
following holds:

(1) If for each y ∈ L0, f
−1[{y}] has max and min, then f is con-

tinuous.
(2) Let f be 2-1 (i.e., |f−1[{y}]| ≤ 2 for each y ∈ L0) and W =

{y ∈ L0 : |f−1[{y}]| = 2}. Then f̃ : L1 → L0[W ] defined by

f̃(u) =

{
⟨f(u), 1⟩ if u = max f−1[{y}] for some y ∈ W ,

f(u) otherwise,

is an order isomorphism, therefore the LOTS L1 can be identi-
fied with the LOTS L0[W ].

To see (1) in the lemma above, use the fact that f−1[(←, y)L0 ] is
equal to (←,min f−1[{y}])L1 whenever min f−1[(←, y)L0 ] exists. It is
known:

Lemma 2.2. [1, Problem 3.12.3(a)] Let L be a LOTS. Then the fol-
lowing are equivalent.

(1) L is compact.
(2) Every subset A of L, including A = ∅, has a least upper bound

supL A.
(3) Every subset A of L, including A = ∅, has a greatest lower

bound infL A.

Note supL ∅ = infL L = minL and supL L = infL ∅ = maxL when-
ever L is compact. Also note that (←, u)L = ∅ iff u = minL and
analogously (u,→)L = ∅ iff u = maxL.

Now in the remaining of this section, fix a compact LOTS L = ⟨L,<L

, λ(<L)⟩. Set
G(L) = {u ∈ L : u = supL(←, u)L = infL(u,→)L},
GM(L) = {u ∈ G(L) : (←, u)L ̸= ∅, (u,→)L ̸= ∅}.

Note GM(L) = G(L)\{minL,maxL}. Note that if W ⊆ GM(L), then
minL = minL[W ] and maxL = maxL[W ] hold.
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Lemma 2.3. Let L be a compact LOTS and W ⊆ GM(L). Then the
following hold:

(1) the LOTS L[W ] is compact,
(2) the subspace topology λ(<L) ↾ (L \W ) on L \W coincides with

the subspace topology λ(<L[W ]) ↾ (L \W ),
(3) if L \W is dense in L, then it is also dense in L[W ].

Proof. (1) and (2) are straightforward, for (3), assume that L \W is
dense in L and there is a non-empty open set U in L[W ] disjoint from
L \W . Pick u ∈ U . First assume u ∈ L. Then we have u ∈ W ⊆
GM(L). Since U is open in L[W ], we can pick v ∈ L[W ] with v <L[W ] u
and (v, u]L[W ] ⊆ U . In the case v ∈ L, by u = supL(←, u)L, (v, u)L is
non-empty open in L. Thus ∅ ̸= (v, u)L ∩ (L \W ) ⊆ U ∩ (L \W ) = ∅,
a contradiction. In the case v ∈ W × {1}, say v = ⟨v′, 1⟩ for some
v′ ∈ W . Similarly as above (v′, u)L is non-empty open in L, then
∅ ̸= (v′, u)L ∩ (L \ W ) = (v, u)L[W ] ∩ (L \ W ) ⊆ U ∩ (L \ W ) = ∅,
a contradiction. Next assume u ∈ W × {1}, say u = ⟨u′, 1⟩ for some
u′ ∈ W . We can pick v ∈ L[W ] with u <L[W ] v and [u, v)L[W ] ⊆ U . In
the case v ∈ L, by u′ = infL(u

′,→)L, (u
′, v)L is non-empty open in L.

Thus ∅ ̸= (u′, v)L∩ (L\W ) = [u, v)L[W ]∩ (L\W ) ⊆ U ∩ (L\W ) = ∅, a
contradiction. In the case v ∈ W×{1}, say v = ⟨w, 1⟩ for some w ∈ W .
Since u <L[W ] v, we have u′ <L w. Similarly as above (u′, w)L is non-
empty open in L, then ∅ ̸= (u′, w)L∩ (L \W ) = (u,w)L[W ]∩ (L \W ) ⊆
U ∩ (L \W ) = ∅, a contradiction. This completes the proof. □

Now we have:

Corollary 2.4. Let L be a compact LOTS and W ⊆ GM(L). If X is
dense in L and X ⊆ L \W , then X is also a dense subspace of L[W ].

The following lemma may clarify the structure of L[W ].

Lemma 2.5. Let L be a compact LOTS and W ⊆ GM(L).

(1) If u, v ∈ L and u <L v and (u, v)L = ∅, then (u, v)L[W ] = ∅.
(2) If u ∈ G(L), then u = supL[W ](←, u)L[W ] = supL[W ](←, u)L.
(3) If u ∈ G(L) \W , then u = infL[W ](u,→)L[W ] = infL[W ](u,→)L.
(4) If u ∈ W , then ⟨u, 1⟩ = min(u,→)L[W ], u = max(←, ⟨u, 1⟩)L[W ],

u = supL[W ](←, u)L[W ] = supL[W ](←, u)L and ⟨u, 1⟩ = infL[W ]

(⟨u, 1⟩,→)L[W ] = infL[W ](u,→)L.

Proof. (1): Assume (u, v)L = ∅ and (u, v)L[W ] ̸= ∅. Then (u, v)L[W ] is
{⟨u, 1⟩} with u ∈ W ⊆ GM(L). This contradicts u = infL(u,→)L.

(2): Let u ∈ G(L). As in the proof of th lemma above, using u =
supL(←, u)L, for every v <L[W ] u, one can take v′ ∈ L with v <L[W ]

v′ <L[W ] u. Then we are done.
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(3): Similar to (2).
(4): The first and second are evident. Third follows from (2). The

fourth is similar to (2) □

3. The simplest linearly ordered compactification

In this section, we fix a GO-space X = ⟨X,<X , τ⟩. We will visualize
the simplest linearly ordered compactification (denoted by lX) of X.

First we remark:

Lemma 3.1. Let L be a linearly ordered compactification of a GO-
space X.

(1) If u ∈ L \X, then u = supL(←, u)L or u = infL(u,→)L.
(2) If u ∈ L and u = supL(←, u)L, then u = supL((←, u)L ∩X).
(3) If u ∈ L and u = infL(u,→)L, then u = infL((u,→)L ∩X).

To prove the lemma, use the density of X.
Now we describe lX. First let XG denote the set of all gaps of the

lineraly ordered set ⟨X,<X⟩, that is,
XG = {⟨A,B⟩ : ⟨A,B⟩ is a gap of X}.

Remark that XG does not depend on its GO-topology τ . We may
assume X ∩ XG = ∅, in fact, this is a thorem of ZFC. Let X∗ =
⟨X∗, <X∗ , λ(<X∗)⟩ be the LOTS described in section 1, that is,

X∗ = (X− × {−1}) ∪X ∪ (X+ × {1})
with the lexicographic order <X∗ under the identification X = X×{0}.
Our lX is

lX = X∗ ∪XG

with the order <lX , where for u, v ∈ lX, u <lX v is defined by
• u, v ∈ X∗ and u <X∗ v,

• u = ⟨A,B⟩ ∈ XG, v = ⟨x, i⟩ ∈ X∗ and x ∈ B,

• u = ⟨x, i⟩ ∈ X∗, v = ⟨A,B⟩ ∈ XG and x ∈ A,

• u = ⟨A,B⟩, v = ⟨C,D⟩ ∈ XG and A ⊊ C,

where ⟨x, 0⟩ is identified with x. Obviously <lX extends <X∗ , therefore
it also extends<X . Also note that ifX has no min (max), then ⟨∅, X⟩ ∈
XG (⟨X, ∅⟩ ∈ XG) and it is min lX (max lX, respectively).

Define f : X∗ ∪ (X∗)G → lX, where (X∗)G is the set of all gaps in
X∗, by

f(u) =

{
u if u ∈ X∗

⟨H ∩X,K ∩X⟩ if u = ⟨H,K⟩ ∈ (X∗)G.
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By the density of X in X∗, f is well-defined and an order isomor-
phism with f ↾ X = 1X . Since X∗ ∪ (X∗)G is a linearly ordered
compactification of X∗, lX is also a a linearly ordered compactification
of X. We show:

Lemma 3.2. Let X be a GO-space. Then lX is a linearly ordered
compactification of X such that (u, v)lX ̸= ∅ for every u, v ∈ lX \ X
with u <lX v.

Proof. Let u, v ∈ lX \ X with u <lX v. The case u, v ∈ X∗ \ X
follows from Lemma 1.4 (5), so we may assume u ∈ lX \ X∗ = XG,
say u = ⟨A,B⟩. Let assume v ∈ X∗, say v = ⟨x, i⟩. It follows from
u <lX v that x ∈ B. Since B has no min, take x′ ∈ B with x′ <X x.
Then u <lX x′ <lX v. Next assume v ∈ lX \X∗, say v = ⟨C,D⟩. Then
A ⊊ C, so taking x′ ∈ C \ A, we have u <lX x′ <lX v. □

4. The structure of linearly ordered compactifications

We fix a linearly ordered set ⟨X,<X⟩. In this section, from the
need to distinguish between the topologies τ ’s on ⟨X,<X⟩, we use the
terminology Xτ for expressing the GO-space ⟨X,<X , τ⟩.

Definition 4.1. LX denotes the class of all linearly ordered compactifi-
cations of GO-spaces whose underlying linearly ordered set is ⟨X,<X⟩.
Also for a GO-space Xτ = ⟨X,<X , τ⟩, LXτ denotes the class of all lin-
early ordered compactifications of Xτ . Note LX =

∪
τ∈GTX

LXτ , where
GTX is the set of all GO-topologies on ⟨X,<X⟩, see section 1.

For L0, L1 ∈ LX , define L0 ≤ L1 if there is a continuous map f :
L1 → L0 such that f ↾ X = 1X . Obviously, the order ≤ is reflexive
and transitive.

First we check:

Lemma 4.2. Let L0, L1 ∈ LX and assume that there is a map f :
L1 → L0 such that f ↾ X = 1X . Then the following are equivalent:

(1) f is continuous,
(2) f is 3-1, order preserving and onto.

Proof. (2) → (1) follows from Lemma 2.1(1).
(1) → (2): Assume that f is continuous. Since X = f [X] ⊆ f [L1]

and X is dense in L0, we have f [L1] = L0.

Claim 1. f is order preserving.

Proof. Assume u <L1 u′ and f(u′) <L0 f(u). We will derive a contra-
diction. Since L0 is a T2 GO-space, there are disjoint convex open sets
U,U ′ in L0 with f(u) ∈ U, f(u′) ∈ U ′. Because of the continuity of
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f , one can take convex open sets V, V ′ in L1 with u ∈ V, u′ ∈ V ′ and
f [V ] ⊆ U, f [V ′] ⊆ U ′. Then obviously V ∩ V ′ = ∅. Since X is dense in
L1, one can take x ∈ V ∩ X, x′ ∈ V ′ ∩ X. Then by u <L1 u′ and the
convexity of V, V ′, we have x <X x′. By f(u′) <L0 f(u), the convexity
of U,U ′, f(x) ∈ U and f(x′) ∈ U ′ , we have x′ = f(x′) <L0 f(x) = x,
a contradiction. □

Claim 2. If u <L1 u
′, f(u) = f(u′) and (u, u′)L1 ̸= ∅, then (u, u′)L1 =

{x} for some x ∈ X.

Proof. Assuming u <L1 u′, f(u) = f(u′) and (u, u′)L1 ̸= ∅, take x in
(u, u′)L1∩X. If (u, x)L1 ̸= ∅ were true, then by taking x′ ∈ (u, x)L1∩X,
we have f(u) ≤ f(x′) ≤ f(x) ≤ f(u′), thus x = f(x) = f(x′) = x′, a
contradiction. So we have (u, x)L1 = ∅, similarly (x, u)L1 = ∅. □

Claim 3. f is 3-1.

Proof. Assume u0 <L1 u1 <L1 u2 <L1 u3 and f(u0) = f(u1) = f(u2) =
f(u3). It follows from (u0, u2) ̸= ∅ and Claim 2 that (u0, u2) = {u1}
and u1 ∈ X. Similarly we have (u1, u3) = {u2} and u2 ∈ X. Now we
have f(u1) = u1 < u2 = f(u2), a contradiction. □

□
Lemma 4.3. Let L0, L1 ∈ LX , say for each i ∈ 2, Li is a linearly
ordered compactification of Xτi = ⟨X,<X , τi⟩. Assume that there is a
continuous map f : L1 → L0 such that f ↾ X = 1X . The following are
equivalent:

(1) f is 2-1,
(2) X+

τ1
∩X−

τ1
⊆ X+

τ0
∪X−

τ0
.

Proof. (1) → (2): Assume that there is x in (X+
τ1
∩X−

τ1
) \ (X+

τ0
∪X−

τ0
).

It suffices to see the following.

Claim. f(⟨x, 1⟩) = f(⟨x,−1⟩) = x.

Proof. It follows from x < ⟨x, 1⟩ ∈ X+
τ1
× {1} ⊂ X∗

τ1
that x = f(x) ≤

f(⟨x, 1⟩). If x < f(⟨x, 1⟩) were true, then using the density of X in
L0 we see (x, f(⟨x, 1⟩))L0 = ∅, thus (←, x]X ∈ τ0. On the other hand,
by x ∈ X+

τ1
, (←, x]X /∈ λ(<X) holds. Therefore we have x ∈ X+

τ0
, a

contradiction. So we have x = f(⟨x, 1⟩), x = f(⟨x,−1⟩) is similar. □
(2) → (1): Assuming that f is not 2-1, pick u0, u1, u2 ∈ L1 such

that u0 <L1 u1 <L1 u2 and f(u0) = f(u1) = f(u2). As in Claim 2
in the previous lemma, we have (u0, u2)L1 = {u1} and u1 ∈ X. By
f ↾ X = 1X , we also have u0, u2 /∈ X. (←, u1]X ∈ τ1 and [u1,→)X ∈ τ1
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are obvious. By u2 ∈ (u1,→)L1 and the density of X, we have (u1,→
)X ̸= ∅. If (←, u1]X ∈ λ(<X) were true, then there is x ∈ X such that
u1 <X x and (u1, x)X = ∅. By u2 /∈ X and (u1, u2)L1 = ∅, we have
u2 <X x, thus (u1, x)L1 ̸= ∅, a contradiction. Therefore (←, u1]X /∈
λ(<X) holds, similarly we have [u1,→)X /∈ λ(<X). Now we see u1 ∈
X+

τ1
∩X−

τ1
. If u1 ∈ X+

τ0
were true, then by u1 < ⟨u1, 1⟩ ∈ X+

τ0
×{1} ⊂ X∗

τ0

and (u1, ⟨u1, 1⟩)L0 = ∅, we have f(u2) = u1 ∈ (←, ⟨u1, 1⟩)L0 . By
continuity of f , there is an open neighborhood V of u2 in L1 such
that f [V ] ⊂ (←, ⟨u1, 1⟩)L0 . We may assume V ⊂ (u1,→)L1 . Pick
x ∈ V ∩X, then u2 <L1 x and x = f(x) ≤L0 u1 <X x, a contradiction.
Thus we have u1 /∈ X+

τ0
, similarly we have u1 /∈ X−

τ0
. □

Applying the lemma above to τ = τ0 = τ1, we see:

Corollary 4.4. Let L0, L1 ∈ LXτ for some τ ∈ GTX . If there is a
continuous map f : L1 → L0 such that f ↾ X = 1X , then f is 2-1,

Lemma 4.5. Let L0, L1 ∈ LX . Then the following are equivalent:

(1) L0 ≤ L1 and L1 ≤ L0,
(2) there is a 1-1 continuous map f : L1 → L0 such that f ↾ X =

1X ,
(3) there is an order isomorphism f : L1 → L0 such that f ↾ X =

1X ,

Proof. (3) → (1) follows from the fact that an order isomorphism be-
tween LOTS’s is a homeomorphism.

(1) → (2): Let f : L1 → L0 and g : L0 → L1 be continuous maps
with f ↾ X = 1X and g ↾ X = 1X . Then the combination g ◦ f has to
be 1L1 , therefore f is 1-1.

(2) → (3): Let f : L1 → L0 be a 1-1 continuous map with f ↾ X =
1X . It follows from Lemma 4.2 that f is 1-1, order preserving onto,
which means f is an order isomorphism. □

Note that if L0, L1 ∈ LX with L0 ≤ L1 and L1 ≤ L0, then L0, L1 ∈
LXτ for some τ ∈ GTX . If one of the equivalents in the lemma above
is satisfied, then we identify L0 with L1. Under this identification, we
will investigate the structure of the partially ordered sets ⟨LX ,≤⟩ and
⟨LXτ ,≤⟩. Remember that XG is the set of all gaps of X and lXτ =
X∗

τ ∪ XG (in section 3, apply for X = Xτ ), where Xτ = ⟨X,<X , τ⟩.
Now let XM

G denotes the set of all middle gaps of X, that is,

XM
G = {⟨A,B⟩ : ⟨A,B⟩ is a middle gap of X}.

Then |XG \ XM
G | ≤ 2 and note that XG and XM

G only depend on the
linearly ordered set ⟨X,<X⟩. Also remember the definitions of G(L)
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and GM(L) for a compact LOTS L in section 2, now we apply the
results in section 2 for L = lXτ .

Lemma 4.6. XM
G ⊆ GM(lXτ ) and XG ⊆ G(lXτ ) hold.

Proof. Let u ∈ XM
G , say u = ⟨A,B⟩. Because of A ̸= ∅ and B ̸= ∅,

we have (←, u)lXτ ̸= ∅ and (u,→)lXτ ̸= ∅. Assume v = suplXτ
(←

, u)lXτ <lXτ u. First assume v ∈ X. Since v ∈ A and A has no
max, we can take x ∈ A with v <X x <lXτ u, this contradicts the
definition of v. Next assume v /∈ X. It follows from Lemma 3.2 that
(v, u)lXτ ̸= ∅, also contradicts the definition of v. Therefore we have
suplXτ

(←, u)lXτ = u. Similarly we have inf lXτ (u,→)lXτ = u. Now
XG ⊆ G(lXτ ) is obvious. □

Now for every W ⊆ XM
G , using the notation in section 2, we let

lWXτ = (lXτ )[W ].

Then lXτ = l∅Xτ . We also let

LXτ = lXM
G
Xτ .

Later we will see that lXτ is the minimal and LXτ is the maximal
in ⟨LXτ ,≤⟩ and that lXλ(<X) is the minimal and LXτ(XR,XL) is the
maximal in ⟨LX ,≤⟩.

Lemma 4.7. If τ ∈ GTX , then LXτ = {lWXτ : W ⊆ XM
G }.

Proof. The inclusion “⊇” follows from Lemma 4.6 and Corollary 2.4.
To see the inclusion “⊆”, let L ∈ LXτ . Define f : L→ lXτ by

f(u) =

{
⟨{x ∈ X : x <L u}, {x ∈ X : u <L x}⟩ if u ∈ L \X∗

τ ,

u otherwise.

The following claim shows that f is well-defined and onto.

Claim 1. f [L \X∗
τ ] = XG.

Proof. To see the inclusion “⊆”, let u ∈ L \X∗
τ , A = {x ∈ X : x <L u}

and B = {x ∈ X : u <L x}. Assume that A has the maximal element
x0, then by the density of X, (x0, u)L = ∅ holds. If x0 ∈ X+

τ were
true, then we have u = ⟨x0, 1⟩ ∈ X+

τ × {1} ⊆ X∗
τ , see Lemma 1.4(1), a

contradiction. Thus we have x0 /∈ X+
τ . Because of (←, x0]X = A ∈ τ ,

we have (←, x0]X ∈ λ(<X). Since (x0,→)L ̸= ∅ holds (u witnesses
this), we have (x0,→)X ̸= ∅. Thus there is z ∈ X with z >X x and
(x0, z)X = ∅. It follows from (x0, u)L = ∅, u /∈ X and z ∈ X that
u <L z therefore (x0, z)L ̸= ∅ and hence (x0, z)X ̸= ∅, a contradiction.
We have shown that A has no max, similarly B has no min. This
means f(u) ∈ XG.
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To see the inclusion “⊇”, let w ∈ XG, say w = ⟨A,B⟩. Putting
u = supLA, we see f(u) = w. □

Claim 2. f is order preserving.

Proof. Let u, v ∈ L with u <L v. We will see f(u) ≤lXτ f(v). By
X∗

τ ⊆ L, we may assume u /∈ X∗
τ or v /∈ X∗

τ . But in the case “u /∈
X∗

τ and v /∈ X∗
τ ”, it is obvious by the definition of f and the claim

above. We consider the case “u /∈ X∗
τ and v ∈ X∗

τ ”. When v ∈ X, by
v ∈ {x ∈ X : u <L x}, we see f(u) <lX v = f(v). When v = ⟨x, 1⟩
for some x ∈ X+

τ , we have u <L x, see Lemma 1.4(1). Now we have
f(u) <lXτ x <lXτ v = f(v). When v = ⟨x,−1⟩ for some x ∈ X−

τ , by
Lemma 1.4(2) and (3), we can take z ∈ (u, v)L ∩ X. Then f(u) <lXτ

z <lXτ v = f(v). The case “u ∈ X∗
τ and v /∈ X∗

τ ” is similar. □

Claim 3. f is 2-1.

Proof. Because of f ↾ X∗
τ = 1X∗

τ
, f [L \ X∗

τ ] = XG and X∗
τ ∩ XG = ∅,

it suffices to see that f ↾ (L \ X∗
τ ) is 2-1. So assume that for some

u0, u1, u2 ∈ L \ X∗
τ with u0 < u1 < u2, f(u0) = f(u1) = f(u2) holds.

Applying the density of X to (u0, u2)L, we can take x ∈ (u0, u2)L ∩X.
Then by u0 < x < u2, we have f(u0) < x < f(u1), a contradiction. □

Now let W = {w ∈ XG : |f−1[{w}]| = 2}. We have:

Claim 4. W ⊆ XM
G .

Proof. Let w ∈ W and we fix u0, u1 ∈ L \ X∗
τ with u0 < u1 and

w = f(u0) = f(u1). If (u0, u1)L ̸= ∅ were true, then by taking x ∈
(u0, u1)L ∩ X, we have f(u0) < x < f(u1) as above, a contradiction.
Thus we have (u0, u1)L = ∅. By (←, u1)L ̸= ∅, take x ∈ (←, u1)L ∩X.
Then we have x < u0 for some x ∈ X. Moreover by (u0,→)L ̸= ∅, we
have u0 < y for some y ∈ X. This means w = f(u0) ∈ XM

G . □

Now by Lemma 2.1 (2), f̃ : L → (lXτ )[W ] = lWXτ is an order

isomorphism with f̃ ↾ X = 1X . By Lemma 4.5, we have L = lWXτ . □

Lemma 4.8. If for each i ∈ 2, let Xτi = ⟨X,<X , τi⟩ be a GO-space
and Wi ⊆ XM

G . Then the following are equivalent:

(1) lW1Xτ1 ≥ lW0Xτ0,
(2) τ1 ⊇ τ0 and W1 ⊇ W0.

Proof. Note that τ1 ⊇ τ0 is equivalent to the both X+
τ1
⊇ X+

τ0
and

X−
τ1
⊇ X−

τ0
, see Proposition 1.3.
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(2)→ (1): Let τ1 ⊇ τ0 and W1 ⊇ W0 and define f : lW1Xτ1 → lW0Xτ0

by

f(u) =


x if u = ⟨x, 1⟩ for some x ∈ X+

τ1
\X+

τ0
,

x if u = ⟨x,−1⟩ for some x ∈ X−
τ1
\X−

τ0
,

c if u = ⟨c, 1⟩ for some c ∈ W1 \W0,

u otherwise.

Obviously f is 3-1, order preserving and onto with f ↾ X = 1X . By
Lemma 4.2, we have lW1Xτ1 ≥ lW0Xτ0 .

(1) → (2): Let f : lW1Xτ1 → lW0Xτ0 be a continuous map with
f ↾ X = 1X . Since 1X is a continuous map from Xτ1 to Xτ0 , we have
τ1 ⊇ τ0. It suffices to see W1 ⊇ W0. So let c ∈ W0 and say c = ⟨A,B⟩,
where ⟨A,B⟩ is a gap of X with A ̸= ∅ and B ̸= ∅. Since f is onto and
⟨c, 1⟩ ∈ W0 × {1} ⊆ lW0Xτ0 , there is u ∈ lW1Xτ1 with f(u) = ⟨c, 1⟩. It
follows from ⟨c, 1⟩ /∈ X that u /∈ X.

Claim 1. u /∈ X∗
τ1
.

Proof. Assume u ∈ X∗
τ1
. By u /∈ X, we have u ∈ X+

τ1
×{1}∪X−

τ1
×{−1}.

First we consider the case “ u ∈ X+
τ1
× {1}”, say u = ⟨x, 1⟩ for some

x ∈ X+
τ1
. When x ∈ A, take z ∈ A with x <X z. Then by u <lW1

Xτ1
z

(see Lemma 1.4(1)), we have f(u) ≤ f(z) = z < c < ⟨c, 1⟩ = f(u),
a contradiction. When x ∈ B, take z ∈ B with z <X x. Then by
z <lW1

Xτ1
u, we have f(u) = ⟨c, 1⟩ < z = f(z) ≤ f(u), a contradiction.

Next we consider the case “ u ∈ X−
τ1
× {−1}”, say u = ⟨x,−1⟩ for

some x ∈ X−
τ1
. When x ∈ A, by u < x, we have f(u) ≤ f(x) = x <

c < ⟨c, 1⟩ = f(u), a contradiction. When x ∈ B, take z ∈ B with
z <X x. Then by z <lW1

Xτ1
u, we have z = f(z) ≤ f(u) = ⟨c, 1⟩ < z, a

contradiction. □

Claim 2. u /∈ XG.

Proof. Assume u ∈ XG, say u = ⟨C,D⟩. If c < u were true, then by
taking x ∈ C \ A, we have c < x < u. Therefore we have f(u) =
⟨c, 1⟩ < x = f(x) ≤ f(u), a contradiction. If u < c were true, then
by taking x ∈ A \ C, we have u < x < c. Therefore we have ⟨c, 1⟩ =
f(u) ≤ f(x) = x < c < ⟨c, 1⟩, a contradiction. Thus u = c holds. Since
f is order preserving, continuous and f(c) = ⟨c, 1⟩, there is v ∈ lW1Xτ1

such that v <lW1
Xτ1

c and f [(v,→)lW1
Xτ1

] ⊆ (c,→)lW0
Xτ0

. Since c is a
gap and v < c, we have (v, c)lW1

Xτ1
̸= ∅. Take x ∈ (v, c)lW1

Xτ1
∩ X,

then we have f(x) = ⟨c, 1⟩, a contradiction. □
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By Claims above and lW1Xτ1 = (X∗
τ1
∪ XG) ∪ W1 × {1}, we see

u ∈ W1 × {1}, say u = ⟨c′, 1⟩ with c′ = ⟨A′, B′⟩ for some c′ ∈ W1. The
following Claim completes the proof.

Claim 3. c = c′.

Proof. If A ⊊ A′ were true, then by taking x ∈ A′ \A, we have c < x <
c′ < ⟨c′, 1⟩ = u in lW1Xτ1 . Now we have f(u) = ⟨c, 1⟩ < x = f(x) ≤
f(u), a contradiction. If A′ ⊊ A were true, then by taking x ∈ A \ A′,
we have c′ < x < c. By u = ⟨c′, 1⟩ < x, we have f(u) ≤ f(x) = x <
c < ⟨c, 1⟩ = f(u), a contradiction. Thus we see u = u′. □

□
Now we have:

Theorem 4.9. Let ⟨X <X⟩ be a linearly ordered set. Then the follow-
ing hold:

(1) The partial ordered set ⟨LX ,≤⟩ is order isomorphic to

⟨P(XR),⊆⟩ × ⟨P(XL),⊆⟩ × ⟨P(XM
G ),⊆⟩,

therefore lXλ(<X) is the minimal and LXτ(XR,XL) is the maximal
in ⟨LX ,≤⟩.

(2) For each τ ∈ GTX , the partial ordered set ⟨LXτ ,≤⟩ is order
isomorphic to

⟨P(XM
G ),⊆⟩,

therefore lXτ is the minimal and LXτ is the maximal in ⟨LXτ ,≤
⟩.

From (2), we see that the structure of ⟨LXτ ,≤⟩ does not depend on
its topology τ .

Example 4.10. Let X = R be the LOTS, then XR = XL = R
and XM

G = ∅. Therefore ⟨LR,≤⟩ is order isomorphic to ⟨P(R),⊆
⟩ × ⟨P(R),⊆⟩. Since XM

G = ∅, each of R, S and M has the unique lin-
early ordered compactification R∪{−∞,∞}, (R∪{−∞,∞})∪R×{1}
and (R ∪ {−∞,∞}) ∪ P × {−1, 1} respectively, where −∞ = ⟨∅,R⟩,
∞ = ⟨R, ∅⟩ are the end gaps. The minimal in ⟨LR,≤⟩ is R∪{−∞,∞}
and the maximal in ⟨LR,≤⟩ is (R×{−1, 0, 1})∪{−∞,∞}, where R is
identified with R× {0}.

Example 4.11. Let X = Q be the LOTS. Then XR = XL = Q.
For every middle gap ⟨A,B⟩ of Q, assign supRA ∈ P. Using this as-
signment, we may consider XG = P ∪ {−∞,∞} and XM

G = P, where
−∞,∞ are the end gaps of Q. Therefore ⟨LQ,≤⟩ is order isomorphic
to ⟨P(Q),⊆⟩× ⟨P(Q),⊆⟩× ⟨P(P),⊆⟩. lQ = l∅Q = Q∪P∪{−∞,∞},
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which is identified with R ∪ {−∞,∞}, is the minimal in ⟨LQ,≤⟩.
lPQτ(Q,Q) = (R∪ {−∞,∞}∪Q×{−1, 1})∪ P×{1} is the maximal in
⟨LQ,≤⟩.

Similarly we see that ⟨LP,≤⟩ is order isomorphic to ⟨P(P),⊆⟩ ×
⟨P(P),⊆⟩ × ⟨P(Q),⊆⟩.
Example 4.12. Let Xτ be the GO-space (0, 1) ∪ (1, 2) ∪ [3, 4) ∪ (5, 6]
with the usual order and the subspace topology τ in R. It has one
end gap 0 = ⟨∅, X⟩. There are two middle gaps c0 = ⟨(0, 1), (1, 2) ∪
[3, 4) ∪ (5, 6]⟩ and c1 = ⟨(0, 1) ∪ (1, 2) ∪ [3, 4), (5, 6]⟩. Thus X+

τ = ∅
and X−

τ = {3}, XG = {0, c0, c1} and XM
G = {c0, c1}. So there are

22 = 4 linearly ordered compactifications of Xτ . With appropriate
identifications,

lXτ = [0, 1) ∪ (1, 2) ∪ [3, 4) ∪ (5, 6]) ∪ {⟨3,−1⟩} ∪ {c0, c1}.
Identifying 2 = ⟨3,−1⟩,

lXτ = [0, 1) ∪ {c0} ∪ (1, 2] ∪ [3, 4) ∪ {c1} ∪ (5, 6],

l{c0}Xτ = [0, 1) ∪ {c0, ⟨c0, 1⟩} ∪ (1, 2] ∪ [3, 4) ∪ {c1} ∪ (5, 6],

l{c1}Xτ = [0, 1) ∪ {c0} ∪ (1, 2] ∪ [3, 4) ∪ {c1, ⟨c1, 1⟩} ∪ (5, 6],

LXτ = [0, 1) ∪ {c0, ⟨c0, 1⟩} ∪ (1, 2] ∪ [3, 4) ∪ {c1, ⟨c1, 1⟩} ∪ (5, 6].

Moreover by identifying c0 = 1, [0, 1)∪ {c0} ∪ (1, 2] can be identified
with [0, 2]. Also identifying c1 = 4 and (5, 6] = (4, 5], [3, 4)∪{c1}∪(5, 6]
can be identified with [3, 5]. Thus topologically lXτ can be considered
as [0, 2] ∪ [3, 5]. Similarly we can identify as l{c0}Xτ = [0, 2] ∪ [3, 5] ∪
{⟨1, 1⟩}, l{c1}Xτ = [0, 2]∪ [3, 5]∪{⟨4, 1⟩} and l{c0,c1}Xτ = [0, 2]∪ [3, 5]∪
{⟨1, 1⟩, ⟨4, 1⟩}. Note that l{c0}Xτ and l{c1}Xτ are homeomorphic, but
they are different as linearly ordered compactifications.

Example 4.13. Let X = (0, 1) ∪ (1, 2) ∪ [3, 4) ∪ (5, 6] and <X be
the restriction of the usual order on R, that is, the underlying linearly
ordered set of the previous example, so XM

G = {c0, c1}. Then ⟨LX ,≤⟩
is order isomorphic to ⟨P((0, 1)∪ (1, 2)∪ [3, 4)∪ (5, 6)),⊆⟩×⟨P((0, 1)∪
(1, 2)∪ [3, 4)∪ (5, 6]),⊆⟩× ⟨P({c0, c1}),⊆⟩. The minimal in ⟨LX ,≤⟩ is
[0, 1) ∪ {c0} ∪ (1, 2) ∪ [3, 4) ∪ {c1} ∪ (5, 6], and the maximal in ⟨LX ,≤⟩
is ({⟨0, 0⟩} ∪ (0, 1)× {−1, 0, 1}) ∪ {c0, ⟨c0, 1⟩} ∪ ((1, 2))× {−1, 0, 1}) ∪
([3, 4))×{−1, 0, 1})∪{c1, ⟨c1, 1⟩}∪((5, 6))×{−1, 0, 1}∪{⟨6,−1⟩, ⟨6, 0⟩}).
Example 4.14. Let Xτ be a subspace of an ordinal α with the usual
order and the subspace topology τ . Taking a large enough ordinal, we
may assume α is a successor ordinal, so it is compact. Since the order
is a well-order, there are no middle gaps of Xτ , but ∞ can exist. So
XM

G = ∅, thus Xτ has the unique linearly ordered compactification.
The closure Clα Xτ of Xτ in α is such a unique one.



16 NOBUYUKI KEMOTO

Example 4.15. Let X = β be an ordinal. Since XL = Lim(β), XR =
XM

G = ∅, ⟨Lβ,≤⟩ is order isomorphic to ⟨P(Lim(β)),⊆⟩. where Lim(β)
denotes the all limit ordinals in β. Note that ifXτ is that in the previous
example, then by enumeratingXτ = {x(γ) : γ < β} with the increasing
oder for some β, we may consider that the underlying linearly ordered
set of Xτ is β.
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