THE STRUCTURE OF THE LINEARLY ORDERED COMPACTIFICATIONS OF GO-SPACES

NOBUYUKI KEMOTO

Abstract

A linearly ordered extension of a GO-space X is a LOTS L such that the LOTS L contains the GO-space X as a subspace and the order $<_{L}$ on L extends the order $<_{X}$ on X, moreover if X is dense in L, then L is called a linearly ordered d-extension. A linearly ordered compactification of a GO-space X is a compact linearly ordered d-extension of X. We will visualize all linearly ordered compactifications of a given GO-space in a certain way. For a given linearly ordered set $\left\langle X,<_{X}\right\rangle, \mathbb{L}_{X}$ denotes the class of all linearly ordered compactifications of GO-spaces whose underlying linearly ordered set is $\left\langle X,<_{X}\right\rangle$. We will also see the partial order structure $\left\langle\mathbb{L}_{X}, \leq\right\rangle$, where $L_{0} \leq L_{1}$ if there is a continuous map $f: L_{1} \rightarrow L_{0}$ such that $f(x)=x$ for every $x \in X$, is order isomorphic to the product $\langle\mathcal{P}(A), \subseteq\rangle \times\langle\mathcal{P}(B), \subseteq\rangle \times\langle\mathcal{P}(C), \subseteq\rangle$ for some sets A, B and C, where $\langle\mathcal{P}(A)), \subseteq\rangle$ denotes the partial ordered set of the set of all subset of A with the usual inclusion. The sets A, B and C will be described exactly. Moreover, we will see that the partial order structure on the class of all linearly ordered compactifications of a fixed GO-space only depends on its underlying linearly ordered set, does not depend on its topology.

1. Introduction

We assume that all topological spaces have cardinality at least 2 . We will prove the results in the abstract. At first, we give precise definitions for later arguments.

A linearly ordered set $\left\langle L,<_{L}\right\rangle$ (see [1]) has a natural T_{2}-topology $\lambda\left(<_{L}\right)$ so called the interval topology which is the topology generated by $\left\{(\leftarrow, u)_{L}: u \in L\right\} \cup\left\{(u, \rightarrow)_{L}: u \in L\right\}$ as a subbase, where $(\leftarrow, u)_{L}$ $=\left\{w \in L: w<_{L} u\right\}$ and $(u, \rightarrow)_{L}=\left\{w \in L: u<_{L} w\right\}$. Also we denote $\left\{w \in L: u<_{L} w \leq_{L} v\right\}$ by $(u, v]_{L}$, and $[u, v]_{L},(u, v]_{L} \ldots$, etc are similarly defined, where $w \leq_{L} v$ means $w<_{L} v$ or $w=v$.

Date: September 2, 2017.
2010 Mathematics Subject Classification. Primary 54F05, 54D35, 54B05 . Secondary 54 C 05 .

Key words and phrases. GO-space, LOTS, linearly ordered extensions, compact, connected.

If the contexts are clear, we write $<$ and $(u, v]$ instead of $<_{L}$ and $(u, v]_{L}$ respectively. Note that this subbase induces a base by convex subsets (e.g., the collection of all intersections of at most two members of this subbase), where a subset B of L is convex if for every $u, v \in$ B with $u<_{L} v,[u, v]_{L} \subseteq B$. The triple $\left\langle L,<_{L}, \lambda\left(<_{L}\right)\right\rangle$ is called a LOTS (= Linearly Ordered Topological Space) and simply denoted by LOTS L. Observe that if $u \in U \in \lambda\left(<_{L}\right)$ and $(\leftarrow, u)_{L} \neq \emptyset$, then there is $v \in L$ such that $v<_{L} u$ and $(v, u]_{L} \subseteq U$. Also observe its analogous result. Unless otherwise stated, the real line \mathbb{R} is considered as a linearly ordered set (hence LOTS) with the usual order, similarly so are the set \mathbb{Q} of rationals, the set \mathbb{P} of irrationals and an ordinal α.

A triple $\left\langle L,<_{L}, \tau\right\rangle$, where $<_{L}$ is linear order on L and τ is a T_{2} topology on L, is called a GO-space (= Generalized ordered Space) if τ has a base consisting of convex sets, also simply denoted by GO-space L, see [4]. The pair $\left\langle L,<_{L}\right\rangle$ (the triple $\left\langle L,<_{L}, \lambda\left(<_{L}\right)\right\rangle$) is said to be the underlying linearly ordered set (the underlying LOTS, respectively) of the GO-space L and such a topology τ is called a GO-space topology on L. It is easy to verify that τ as described above is stronger than the topology $\lambda\left(<_{L}\right)$ of the underlying linearly ordered set, that is, $\tau \supset$ $\lambda\left(<_{L}\right)$. Obviously every LOTS is a GO-space but not conversely, for example, the Sorgenfrey line \mathbb{S} is such an example.

Let $L=\left\langle L,<_{L}, \lambda\left(<_{L}\right)\right\rangle$ be a LOTS and $X=\left\langle X,<_{X}, \tau\right\rangle$ a GO-space with $X \subseteq L$. If $<_{L}$ extends $<_{X}$ and the space $\langle X, \tau\rangle$ is a subspace of $\left\langle L, \lambda\left(<_{L}\right)\right\rangle$, that is $\tau=\lambda\left(<_{L}\right) \upharpoonright X=\left\{U \cap X: U \in \lambda\left(<_{L}\right)\right\}$, then the LOTS L is called a linearly ordered extension of X. Moreover if X is dense in L, then the LOTS L is called a linearly ordered d-extension of X, see [5]. A compact linearly ordered d-extension is called a linearly ordered compactification, see $[2,3,6]$.

A pair $\langle A, B\rangle$ of subsets of a linearly ordered set $\left\langle L,<_{L}\right\rangle$ is called a cut if $A \cup B=L$ and if $u \in A$ and $v \in B$ then $u<_{L} v$. A cut is called a jump if A has a maximal element (denoted by $\max A$) and B has a minimal element (denoted by $\min B$). A cut $\langle A, B\rangle$ is called a gap if A has no maximal element (we write, A has no max) and B has no min. In particular if $A=\emptyset$ or $B=\emptyset$, then $\langle A, B\rangle$ is called an end gap, other gaps are called middle gaps. Usually if $\langle\emptyset, X\rangle$ is a gap, then it is written as $-\infty$. Similarly if $\langle X, \emptyset\rangle$ is a gap, then it is written as ∞. It is easy to verify:

- A compact GO-spaces is a LOTS.
- A LOTS L is compact iff the linearly ordered set L has no gaps.

Now let $X=\left\langle X,<_{X}, \tau\right\rangle$ be a GO-space and $\lambda=\lambda\left(<_{X}\right)$. Note that for every $x \in X,(\leftarrow, x]_{X} \notin \lambda$ iff $(x, \rightarrow)_{X}$ is non-empty and has no min,
also analogously $[x, \rightarrow)_{X} \notin \lambda$ iff $(\leftarrow, x)_{X}$ is non-empty and has no max. Let

$$
\begin{aligned}
X_{R} & =\left\{x \in X:(\leftarrow, x]_{X} \notin \lambda\right\}, \\
X_{L} & =\left\{x \in X:[x, \rightarrow)_{X} \notin \lambda\right\} .
\end{aligned}
$$

Note that the definitions of X_{R} and X_{L} only depend on the underlying LOTS. Also let

$$
\begin{aligned}
& X_{\tau}^{+}=\left\{x \in X:(\leftarrow, x]_{X} \in \tau \backslash \lambda\right\}, \\
& X_{\tau}^{-}=\left\{x \in X:[x, \rightarrow)_{X} \in \tau \backslash \lambda\right\} .
\end{aligned}
$$

Obviously $X_{\tau}^{+} \subseteq X_{R}$ and $X_{\tau}^{-} \subseteq X_{L}$. Note that $X_{\tau}^{+} \cap X_{\tau}^{-}$might be non-empty. If there is no confusion, we usually simply write X^{+}and X^{-}instead of X_{τ}^{+}and X_{τ}^{-}. The following two lemmas are straightforward.

Lemma 1.1. In the situation above, the topology τ coincides with the topology generated by $\left\{(\leftarrow, x)_{X}: x \in X\right\} \cup\left\{(x, \rightarrow)_{X}: x \in X\right\} \cup\{(\leftarrow$ $\left., x]_{X}: x \in X_{\tau}^{+}\right\} \cup\left\{[x, \rightarrow)_{X}: x \in X_{\tau}^{-}\right\}$as a subbase.

Lemma 1.2. Let $\left\langle X,<_{X}\right\rangle$ be a linearly ordered set with $A \subseteq X_{R}$ and $B \subseteq X_{L}$. Moreover let $\tau(A, B)$ be the topology generated by $\left\{(\leftarrow, x)_{X}\right.$: $x \in X\} \cup\left\{(x, \rightarrow)_{X}: x \in X\right\} \cup\left\{(\leftarrow, x]_{X}: x \in A\right\} \cup\left\{[x, \rightarrow)_{X}: x \in B\right\}$ as a subbase. Then $\tau(A, B)$ is a GO-space topology and $A=X_{\tau(A, B)}^{+}$ and $B=X_{\tau(A, B)}^{-}$.
In the case $X=\mathbb{R}$, note $X_{R}=X_{L}=\mathbb{R}$. The Sorgenfrey line \mathbb{S} is the GO-space $\left\langle\mathbb{R},<_{\mathbb{R}}, \tau(\emptyset, \mathbb{R})\right\rangle$ and the Michael line \mathbb{M} is the GO-space $\left\langle\mathbb{R},<_{\mathbb{R}}, \tau(\mathbb{P}, \mathbb{P})\right\rangle$. Given a linearly ordered set $\left\langle X,<_{X}\right\rangle$, let $G T_{X}$ be the set of all GO-space topologies on $\left\langle X,<_{X}\right\rangle$, i.e.,

$$
G T_{X}=\left\{\tau:\left\langle X,<_{X}, \tau\right\rangle \text { is a GO-space. }\right\} .
$$

We consider $G T_{X}$ as a partially ordered set $\left\langle G T_{X}, \subseteq\right\rangle$ with the usual inclusion " \subseteq ", where $\langle\mathbb{P}, \leq\rangle$ is a partially ordered set if \leq is reflexive $(p \leq p)$, transitive $(p \leq q, q \leq r \rightarrow p \leq r)$ and antisymmetric $(p \leq$ $q, q \leq p \rightarrow p=q)$. For two partially ordered sets $\left\langle\mathbb{P}, \leq_{\mathbb{P}}\right\rangle$ and $\left\langle\mathbb{Q}, \leq_{\mathbb{Q}}\right\rangle$, one can define the partial order $\leq_{\mathbb{P} \times \mathbb{Q}}$ on the product $\mathbb{P} \times \mathbb{Q}$, that is, $\langle p, q\rangle \leq_{\mathbb{P} \times \mathbb{Q}}\left\langle p^{\prime}, q^{\prime}\right\rangle$ iff $p \leq_{\mathbb{P}} p^{\prime}$ and $q \leq_{\mathbb{Q}} q^{\prime}$. This partial ordered set is denoted by $\left\langle\mathbb{P}, \leq_{\mathbb{P}}\right\rangle \times\left\langle\mathbb{Q}, \leq_{\mathbb{Q}}\right\rangle$. Similarly we can define the product of 3 (and so on) partially ordered sets. Now, the two lemmas above show:

Proposition 1.3. Let $\left\langle X,<_{X}\right\rangle$ be a linearly ordered set. Then the partially ordered set $\left\langle G T_{X}, \subseteq\right\rangle$ is order isomorphic to the partial ordered set $\left\langle\mathcal{P}\left(X_{R}\right), \subseteq\right\rangle \times\left\langle\mathcal{P}\left(X_{L}\right), \subseteq\right\rangle$.

Here two partially ordered sets $\left\langle\mathbb{P}, \leq_{\mathbb{P}}\right\rangle$ and $\left\langle\mathbb{Q}, \leq_{\mathbb{Q}}\right\rangle$ are said to be order isomorphic if there is a 1-1 onto map $f: \mathbb{P} \rightarrow \mathbb{Q}$ such tat $p \leq_{\mathbb{P}} p^{\prime}$ iff $f(p) \leq_{\mathbb{P}} f\left(p^{\prime}\right)$. In the case $X=\mathbb{R}$, the structure $\left\langle G T_{\mathbb{R}}, \subseteq\right\rangle$ is order isomorphic to $\langle\mathcal{P}(\mathbb{R}), \subseteq\rangle \times\langle\mathcal{P}(\mathbb{R}), \subseteq\rangle$.

Given two linearly ordered set L_{0} and L_{1}, one can define a order $<_{L}$ on $L=L_{0} \times L_{1}$ so called the lexicographic order by :

$$
\langle u, v\rangle<_{L}\left\langle u^{\prime}, v^{\prime}\right\rangle \text { iff } u<_{L_{0}} u^{\prime}, \text { or }\left(u=u^{\prime} \text { and } v<_{L_{1}} v^{\prime}\right) .
$$

In the case $Z \subseteq L_{0} \times L_{1}$, the restricted order $<_{L_{0} \times L_{1}} \upharpoonright Z$ of the lexicographic order $<_{L_{0} \times L_{1}}$ to Z is also called the lexicographic order on Z and denoted by $<_{Z}$.

Now for a given GO-space $X=\left\langle X,<_{X}, \tau\right\rangle$, let

$$
X^{*}=\left(X^{-} \times\{-1\}\right) \cup(X \times\{0\}) \cup\left(X^{+} \times\{1\}\right)
$$

and consider the lexicographic order $<_{X^{*}}$ on X^{*} induced by the lexicographic order on $X \times\{-1,0,1\}$, here of course $-1<0<1$. We usually identify X as $X=X \times\{0\}$ in the obvious way (i.e., $x=\langle x, 0\rangle$), thus we may consider $X^{*}=\left(X^{-} \times\{-1\}\right) \cup X \cup\left(X^{+} \times\{1\}\right)$. It is easy to verify that X^{*} is a linearly ordered d-extension of X. Moreover, under the trivial identification, we may consider that X^{*} is the smallest linearly ordered d-extension of X, that is, if L is a linearly ordered d-extension of X then $X^{*} \subseteq L$, see [5, Theorem 2.1]. Note $(\leftarrow, x]_{X}=(\leftarrow,\langle x, 1\rangle)_{X^{*}} \cap X \in \lambda\left(<_{X^{*}}\right) \upharpoonright X$ whenever $x \in X^{+}$, and also its analogy. Using this fact and easy arguments, one can show:

Lemma 1.4. Let $X=\left\langle X,<_{X}, \tau\right\rangle$ be a GO-space and consider the LOTS $X^{*}=\left\langle X^{*},<_{X^{*}}, \lambda\left(<_{X^{*}}\right)\right\rangle$ defined above. Let L be a linearly ordered compactification of X. Regarding $X^{*} \subseteq L$, the following holds:
(1) if $x \in X^{+}$, then $(x,\langle x, 1\rangle)_{L}=\emptyset$,
(2) if $x \in X^{-}$, then $(\langle x,-1\rangle, x)_{L}=\emptyset$,
(3) if $u \in L, v \in X^{-} \times\{-1\}$ and $u<_{L} v$, then $(u, v)_{L} \cap X \neq \emptyset$,
(4) if $u \in L, v \in X^{+} \times\{1\}$ and $v<_{L} u$, then $(v, u)_{L} \cap X \neq \emptyset$,
(5) if $u, v \in X^{*} \backslash X$ and $u<_{X^{*}} v$, then $(u, v)_{X^{*}} \cap X \neq \emptyset$.

Let $X=[0,1) \cup(2,3]$ and $L=[0,1] \cup[2,3]$ be the subspaces of \mathbb{R}. We may consider that X is a GO-space and L is a linearly ordered compactification of X. In (5) in the lemma above, X^{*} cannot be replaced by L, because the case " $u=1, v=2$ " is witnessing.

2. Compact LOTS

In this section, we will present a machine from a compact LOTS making another compact LOTS.

First let L be a LOTS. For a subset $W \subseteq L, L[W]$ denotes the LOTS $L \times\{0\} \cup W \times\{1\}$ with the lexicographic order $<_{L[W]}$. Also as above we identify $L \times\{0\}$ with L, so we may consider as $L[W]=L \cup W \times\{1\}$. Obviously the interval topology $\lambda\left(<_{L}\right)$ is weaker than the subspace topology $\lambda\left(<_{L[W]}\right) \upharpoonright L$ and in general not equal. Remark that L is not a subspace of $L[W]$ whenever $u \in \mathrm{Cl}_{L}(u, \rightarrow)_{L}$ for some $u \in W$, because of $u \notin \mathrm{Cl}_{L[W]}(u, \rightarrow)_{L}$, where Cl_{L} denotes the closure with respect to L. Later we use the following easy lemma:
Lemma 2.1. Let $f: L_{1} \rightarrow L_{0}$ be an order preserving (i.e., $u<_{L_{1}}$ $\left.v \rightarrow f(u) \leq_{L_{0}} f(v)\right)$ onto map between LOTS's L_{1} and L_{0}. Then the following holds:
(1) If for each $y \in L_{0}, f^{-1}[\{y\}]$ has max and min, then f is continuous.
(2) Let f be 2-1 (i.e., $\left|f^{-1}[\{y\}]\right| \leq 2$ for each $y \in L_{0}$) and $W=$ $\left\{y \in L_{0}:\left|f^{-1}[\{y\}]\right|=2\right\}$. Then $\tilde{f}: L_{1} \rightarrow L_{0}[W]$ defined by $\tilde{f}(u)= \begin{cases}\langle f(u), 1\rangle & \text { if } u=\max f^{-1}[\{y\}] \text { for some } y \in W, \\ f(u) & \text { otherwise, }\end{cases}$
is an order isomorphism, therefore the LOTS L_{1} can be identified with the LOTS $L_{0}[W]$.
To see (1) in the lemma above, use the fact that $f^{-1}\left[(\leftarrow, y)_{L_{0}}\right]$ is equal to $\left(\leftarrow, \min f^{-1}[\{y\}]\right)_{L_{1}}$ whenever $\min f^{-1}\left[(\leftarrow, y)_{L_{0}}\right]$ exists. It is known:
Lemma 2.2. [1, Problem 3.12.3(a)] Let L be a LOTS. Then the following are equivalent.
(1) L is compact.
(2) Every subset A of L, including $A=\emptyset$, has a least upper bound $\sup _{L} A$.
(3) Every subset A of L, including $A=\emptyset$, has a greatest lower bound $\inf _{L} A$.

Note $\sup _{L} \emptyset=\inf _{L} L=\min L$ and $\sup _{L} L=\inf _{L} \emptyset=\max L$ whenever L is compact. Also note that $(\leftarrow, u)_{L}=\emptyset$ iff $u=\min L$ and analogously $(u, \rightarrow)_{L}=\emptyset$ iff $u=\max L$.

Now in the remaining of this section, fix a compact LOTS $L=\left\langle L,<_{L}\right.$, $\left.\lambda\left(<_{L}\right)\right\rangle$. Set

$$
\begin{gathered}
G(L)=\left\{u \in L: u=\sup _{L}(\leftarrow, u)_{L}=\inf _{L}(u, \rightarrow)_{L}\right\}, \\
G^{M}(L)=\left\{u \in G(L):(\leftarrow, u)_{L} \neq \emptyset,(u, \rightarrow)_{L} \neq \emptyset\right\} .
\end{gathered}
$$

Note $G^{M}(L)=G(L) \backslash\{\min L, \max L\}$. Note that if $W \subseteq G^{M}(L)$, then $\min L=\min L[W]$ and $\max L=\max L[W]$ hold.

Lemma 2.3. Let L be a compact LOTS and $W \subseteq G^{M}(L)$. Then the following hold:
(1) the LOTS $L[W]$ is compact,
(2) the subspace topology $\lambda\left(<_{L}\right) \upharpoonright(L \backslash W)$ on $L \backslash W$ coincides with the subspace topology $\lambda\left(<_{L[W]}\right) \upharpoonright(L \backslash W)$,
(3) if $L \backslash W$ is dense in L, then it is also dense in $L[W]$.

Proof. (1) and (2) are straightforward, for (3), assume that $L \backslash W$ is dense in L and there is a non-empty open set U in $L[W]$ disjoint from $L \backslash W$. Pick $u \in U$. First assume $u \in L$. Then we have $u \in W \subseteq$ $G^{M}(L)$. Since U is open in $L[W]$, we can pick $v \in L[W]$ with $v<_{L[W]} u$ and $(v, u]_{L[W]} \subseteq U$. In the case $v \in L$, by $u=\sup _{L}(\leftarrow, u)_{L},(v, u)_{L}$ is non-empty open in L. Thus $\emptyset \neq(v, u)_{L} \cap(L \backslash W) \subseteq U \cap(L \backslash W)=\emptyset$, a contradiction. In the case $v \in W \times\{1\}$, say $v=\left\langle v^{\prime}, 1\right\rangle$ for some $v^{\prime} \in W$. Similarly as above $\left(v^{\prime}, u\right)_{L}$ is non-empty open in L, then $\emptyset \neq\left(v^{\prime}, u\right)_{L} \cap(L \backslash W)=(v, u)_{L[W]} \cap(L \backslash W) \subseteq U \cap(L \backslash W)=\emptyset$, a contradiction. Next assume $u \in W \times\{1\}$, say $u=\left\langle u^{\prime}, 1\right\rangle$ for some $u^{\prime} \in W$. We can pick $v \in L[W]$ with $u<_{L[W]} v$ and $[u, v)_{L[W]} \subseteq U$. In the case $v \in L$, by $u^{\prime}=\inf _{L}\left(u^{\prime}, \rightarrow\right)_{L},\left(u^{\prime}, v\right)_{L}$ is non-empty open in L. Thus $\emptyset \neq\left(u^{\prime}, v\right)_{L} \cap(L \backslash W)=[u, v)_{L[W]} \cap(L \backslash W) \subseteq U \cap(L \backslash W)=\emptyset$, a contradiction. In the case $v \in W \times\{1\}$, say $v=\langle w, 1\rangle$ for some $w \in W$. Since $u<_{L[W]} v$, we have $u^{\prime}<_{L} w$. Similarly as above $\left(u^{\prime}, w\right)_{L}$ is nonempty open in L, then $\emptyset \neq\left(u^{\prime}, w\right)_{L} \cap(L \backslash W)=(u, w)_{L[W]} \cap(L \backslash W) \subseteq$ $U \cap(L \backslash W)=\emptyset$, a contradiction. This completes the proof.

Now we have:
Corollary 2.4. Let L be a compact LOTS and $W \subseteq G^{M}(L)$. If X is dense in L and $X \subseteq L \backslash W$, then X is also a dense subspace of $L[W]$.

The following lemma may clarify the structure of $L[W]$.
Lemma 2.5. Let L be a compact LOTS and $W \subseteq G^{M}(L)$.
(1) If $u, v \in L$ and $u<_{L} v$ and $(u, v)_{L}=\emptyset$, then $(u, v)_{L[W]}=\emptyset$.
(2) If $u \in G(L)$, then $u=\sup _{L[W]}(\leftarrow, u)_{L[W]}=\sup _{L[W]}(\leftarrow, u)_{L}$.
(3) If $u \in G(L) \backslash W$, then $u=\inf _{L[W]}(u, \rightarrow)_{L[W]}=\inf _{L[W]}(u, \rightarrow)_{L}$.
(4) If $u \in W$, then $\langle u, 1\rangle=\min (u, \rightarrow)_{L[W]}, u=\max (\leftarrow,\langle u, 1\rangle)_{L[W]}$, $u=\sup _{L[W]}(\leftarrow, u)_{L[W]}=\sup _{L[W]}(\leftarrow, u)_{L}$ and $\langle u, 1\rangle=\inf _{L[W]}$ $(\langle u, 1\rangle, \rightarrow)_{L[W]}=\inf _{L[W]}(u, \rightarrow)_{L}$.
Proof. (1): Assume $(u, v)_{L}=\emptyset$ and $(u, v)_{L[W]} \neq \emptyset$. Then $(u, v)_{L[W]}$ is $\{\langle u, 1\rangle\}$ with $u \in W \subseteq G^{M}(L)$. This contradicts $u=\inf _{L}(u, \rightarrow)_{L}$.
(2): Let $u \in G(L)$. As in the proof of th lemma above, using $u=$ $\sup _{L}(\leftarrow, u)_{L}$, for every $v<_{L[W]} u$, one can take $v^{\prime} \in L$ with $v<_{L[W]}$ $v^{\prime}<_{L[W]} u$. Then we are done.
(3): Similar to (2).
(4): The first and second are evident. Third follows from (2). The fourth is similar to (2)

3. The simplest linearly ordered compactification

In this section, we fix a GO-space $X=\left\langle X,<_{X}, \tau\right\rangle$. We will visualize the simplest linearly ordered compactification (denoted by $l X$) of X.

First we remark:
Lemma 3.1. Let L be a linearly ordered compactification of a GOspace X.
(1) If $u \in L \backslash X$, then $u=\sup _{L}(\leftarrow, u)_{L}$ or $u=\inf _{L}(u, \rightarrow)_{L}$.
(2) If $u \in L$ and $u=\sup _{L}(\leftarrow, u)_{L}$, then $u=\sup _{L}\left((\leftarrow, u)_{L} \cap X\right)$.
(3) If $u \in L$ and $u=\inf _{L}(u, \rightarrow)_{L}$, then $u=\inf _{L}\left((u, \rightarrow)_{L} \cap X\right)$.

To prove the lemma, use the density of X.
Now we describe $l X$. First let X_{G} denote the set of all gaps of the lineraly ordered set $\left\langle X,<_{X}\right\rangle$, that is,

$$
X_{G}=\{\langle A, B\rangle:\langle A, B\rangle \text { is a gap of } X\} .
$$

Remark that X_{G} does not depend on its GO-topology τ. We may assume $X \cap X_{G}=\emptyset$, in fact, this is a thorem of ZFC. Let $X^{*}=$ $\left\langle X^{*},<_{X^{*}}, \lambda\left(<_{X^{*}}\right)\right\rangle$ be the LOTS described in section 1, that is,

$$
X^{*}=\left(X^{-} \times\{-1\}\right) \cup X \cup\left(X^{+} \times\{1\}\right)
$$

with the lexicographic order $<_{X^{*}}$ under the identification $X=X \times\{0\}$. Our $l X$ is

$$
l X=X^{*} \cup X_{G}
$$

with the order $<_{l X}$, where for $u, v \in l X, u<_{l X} v$ is defined by

$$
\left\{\begin{array}{l}
\text { • } u, v \in X^{*} \text { and } u<_{X^{*}} v, \\
\text { • } u=\langle A, B\rangle \in X_{G}, v=\langle x, i\rangle \in X^{*} \text { and } x \in B, \\
\text { • } u=\langle x, i\rangle \in X^{*}, v=\langle A, B\rangle \in X_{G} \text { and } x \in A, \\
\text { • } u=\langle A, B\rangle, v=\langle C, D\rangle \in X_{G} \text { and } A \subsetneq C,
\end{array}\right.
$$

where $\langle x, 0\rangle$ is identified with x. Obviously $<_{l X}$ extends $<_{X^{*}}$, therefore it also extends $<_{X}$. Also note that if X has no min (max), then $\langle\emptyset, X\rangle \in$ $X_{G}\left(\langle X, \emptyset\rangle \in X_{G}\right)$ and it is $\min l X(\max l X$, respectively $)$.

Define $f: X^{*} \cup\left(X^{*}\right)_{G} \rightarrow l X$, where $\left(X^{*}\right)_{G}$ is the set of all gaps in X^{*}, by

$$
f(u)= \begin{cases}u & \text { if } u \in X^{*} \\ \langle H \cap X, K \cap X\rangle & \text { if } u=\langle H, K\rangle \in\left(X^{*}\right)_{G}\end{cases}
$$

By the density of X in X^{*}, f is well-defined and an order isomorphism with $f \upharpoonright X=1_{X}$. Since $X^{*} \cup\left(X^{*}\right)_{G}$ is a linearly ordered compactification of $X^{*}, l X$ is also a a linearly ordered compactification of X. We show:

Lemma 3.2. Let X be a GO-space. Then $l X$ is a linearly ordered compactification of X such that $(u, v)_{l X} \neq \emptyset$ for every $u, v \in l X \backslash X$ with $u<_{l X} v$.
Proof. Let $u, v \in l X \backslash X$ with $u<_{l X} v$. The case $u, v \in X^{*} \backslash X$ follows from Lemma 1.4 (5), so we may assume $u \in l X \backslash X^{*}=X_{G}$, say $u=\langle A, B\rangle$. Let assume $v \in X^{*}$, say $v=\langle x, i\rangle$. It follows from $u<_{l X} v$ that $x \in B$. Since B has no min, take $x^{\prime} \in B$ with $x^{\prime}<_{X} x$. Then $u<_{l X} x^{\prime}<_{l X} v$. Next assume $v \in l X \backslash X^{*}$, say $v=\langle C, D\rangle$. Then $A \subsetneq C$, so taking $x^{\prime} \in C \backslash A$, we have $u<_{l X} x^{\prime}<_{l X} v$.

4. The structure of linearly ordered compactifications

We fix a linearly ordered set $\left\langle X,<_{X}\right\rangle$. In this section, from the need to distinguish between the topologies τ 's on $\left\langle X,<_{X}\right\rangle$, we use the terminology X_{τ} for expressing the GO-space $\left\langle X,<_{X}, \tau\right\rangle$.

Definition 4.1. \mathbb{L}_{X} denotes the class of all linearly ordered compactifications of GO-spaces whose underlying linearly ordered set is $\left\langle X,<_{X}\right\rangle$. Also for a GO-space $X_{\tau}=\left\langle X,<_{X}, \tau\right\rangle, \mathcal{L}_{X_{\tau}}$ denotes the class of all linearly ordered compactifications of X_{τ}. Note $\mathbb{L}_{X}=\bigcup_{\tau \in G T_{X}} \mathcal{L}_{X_{\tau}}$, where $G T_{X}$ is the set of all GO-topologies on $\left\langle X,<_{X}\right\rangle$, see section 1 .

For $L_{0}, L_{1} \in \mathbb{L}_{X}$, define $L_{0} \leq L_{1}$ if there is a continuous map f : $L_{1} \rightarrow L_{0}$ such that $f \upharpoonright X=1_{X}$. Obviously, the order \leq is reflexive and transitive.

First we check:
Lemma 4.2. Let $L_{0}, L_{1} \in \mathbb{L}_{X}$ and assume that there is a map f : $L_{1} \rightarrow L_{0}$ such that $f \upharpoonright X=1_{X}$. Then the following are equivalent:
(1) f is continuous,
(2) f is $3-1$, order preserving and onto.

Proof. (2) \rightarrow (1) follows from Lemma 2.1(1).
$(1) \rightarrow(2)$: Assume that f is continuous. Since $X=f[X] \subseteq f\left[L_{1}\right]$ and X is dense in L_{0}, we have $f\left[L_{1}\right]=L_{0}$.
Claim 1. f is order preserving.
Proof. Assume $u<_{L_{1}} u^{\prime}$ and $f\left(u^{\prime}\right)<_{L_{0}} f(u)$. We will derive a contradiction. Since L_{0} is a T_{2} GO-space, there are disjoint convex open sets U, U^{\prime} in L_{0} with $f(u) \in U, f\left(u^{\prime}\right) \in U^{\prime}$. Because of the continuity of
f, one can take convex open sets V, V^{\prime} in L_{1} with $u \in V, u^{\prime} \in V^{\prime}$ and $f[V] \subseteq U, f\left[V^{\prime}\right] \subseteq U^{\prime}$. Then obviously $V \cap V^{\prime}=\emptyset$. Since X is dense in L_{1}, one can take $x \in V \cap X, x^{\prime} \in V^{\prime} \cap X$. Then by $u<_{L_{1}} u^{\prime}$ and the convexity of V, V^{\prime}, we have $x<_{X} x^{\prime}$. By $f\left(u^{\prime}\right)<_{L_{0}} f(u)$, the convexity of $U, U^{\prime}, f(x) \in U$ and $f\left(x^{\prime}\right) \in U^{\prime}$, we have $x^{\prime}=f\left(x^{\prime}\right)<_{L_{0}} f(x)=x$, a contradiction.

Claim 2. If $u<_{L_{1}} u^{\prime}, f(u)=f\left(u^{\prime}\right)$ and $\left(u, u^{\prime}\right)_{L_{1}} \neq \emptyset$, then $\left(u, u^{\prime}\right)_{L_{1}}=$ $\{x\}$ for some $x \in X$.
Proof. Assuming $u<_{L_{1}} u^{\prime}, f(u)=f\left(u^{\prime}\right)$ and $\left(u, u^{\prime}\right)_{L_{1}} \neq \emptyset$, take x in $\left(u, u^{\prime}\right)_{L_{1}} \cap X$. If $(u, x)_{L_{1}} \neq \emptyset$ were true, then by taking $x^{\prime} \in(u, x)_{L_{1}} \cap X$, we have $f(u) \leq f\left(x^{\prime}\right) \leq f(x) \leq f\left(u^{\prime}\right)$, thus $x=f(x)=f\left(x^{\prime}\right)=x^{\prime}$, a contradiction. So we have $(u, x)_{L_{1}}=\emptyset$, similarly $(x, u)_{L_{1}}=\emptyset$.

Claim 3. f is 3-1.
Proof. Assume $u_{0}<_{L_{1}} u_{1}<_{L_{1}} u_{2}<_{L_{1}} u_{3}$ and $f\left(u_{0}\right)=f\left(u_{1}\right)=f\left(u_{2}\right)=$ $f\left(u_{3}\right)$. It follows from $\left(u_{0}, u_{2}\right) \neq \emptyset$ and Claim 2 that $\left(u_{0}, u_{2}\right)=\left\{u_{1}\right\}$ and $u_{1} \in X$. Similarly we have $\left(u_{1}, u_{3}\right)=\left\{u_{2}\right\}$ and $u_{2} \in X$. Now we have $f\left(u_{1}\right)=u_{1}<u_{2}=f\left(u_{2}\right)$, a contradiction.

Lemma 4.3. Let $L_{0}, L_{1} \in \mathbb{L}_{X}$, say for each $i \in 2$, L_{i} is a linearly ordered compactification of $X_{\tau_{i}}=\left\langle X,<_{X}, \tau_{i}\right\rangle$. Assume that there is a continuous map $f: L_{1} \rightarrow L_{0}$ such that $f \upharpoonright X=1_{X}$. The following are equivalent:
(1) f is 2-1,
(2) $X_{\tau_{1}}^{+} \cap X_{\tau_{1}}^{-} \subseteq X_{\tau_{0}}^{+} \cup X_{\tau_{0}}^{-}$.

Proof. (1) \rightarrow (2): Assume that there is x in $\left(X_{\tau_{1}}^{+} \cap X_{\tau_{1}}^{-}\right) \backslash\left(X_{\tau_{0}}^{+} \cup X_{\tau_{0}}^{-}\right)$. It suffices to see the following.
Claim. $f(\langle x, 1\rangle)=f(\langle x,-1\rangle)=x$.
Proof. It follows from $x<\langle x, 1\rangle \in X_{\tau_{1}}^{+} \times\{1\} \subset X_{\tau_{1}}^{*}$ that $x=f(x) \leq$ $f(\langle x, 1\rangle)$. If $x<f(\langle x, 1\rangle)$ were true, then using the density of X in L_{0} we see $(x, f(\langle x, 1\rangle))_{L_{0}}=\emptyset$, thus $(\leftarrow, x]_{X} \in \tau_{0}$. On the other hand, by $x \in X_{\tau_{1}}^{+},(\leftarrow, x]_{X} \notin \lambda\left(<_{X}\right)$ holds. Therefore we have $x \in X_{\tau_{0}}^{+}$, a contradiction. So we have $x=f(\langle x, 1\rangle), x=f(\langle x,-1\rangle)$ is similar.
$(2) \rightarrow(1)$: Assuming that f is not $2-1$, pick $u_{0}, u_{1}, u_{2} \in L_{1}$ such that $u_{0}<_{L_{1}} u_{1}<_{L_{1}} u_{2}$ and $f\left(u_{0}\right)=f\left(u_{1}\right)=f\left(u_{2}\right)$. As in Claim 2 in the previous lemma, we have $\left(u_{0}, u_{2}\right)_{L_{1}}=\left\{u_{1}\right\}$ and $u_{1} \in X$. By $f \upharpoonright X=1_{X}$, we also have $u_{0}, u_{2} \notin X .\left(\leftarrow, u_{1}\right]_{X} \in \tau_{1}$ and $\left[u_{1}, \rightarrow\right)_{X} \in \tau_{1}$
are obvious. By $u_{2} \in\left(u_{1}, \rightarrow\right)_{L_{1}}$ and the density of X, we have $\left(u_{1}, \rightarrow\right.$ $)_{X} \neq \emptyset$. If $\left(\leftarrow, u_{1}\right]_{X} \in \lambda\left(<_{X}\right)$ were true, then there is $x \in X$ such that $u_{1}<_{X} x$ and $\left(u_{1}, x\right)_{X}=\emptyset$. By $u_{2} \notin X$ and $\left(u_{1}, u_{2}\right)_{L_{1}}=\emptyset$, we have $u_{2}<_{X}$, thus $\left(u_{1}, x\right)_{L_{1}} \neq \emptyset$, a contradiction. Therefore $\left(\leftarrow, u_{1}\right]_{X} \notin$ $\lambda\left(<_{X}\right)$ holds, similarly we have $\left[u_{1}, \rightarrow\right)_{X} \notin \lambda\left(<_{X}\right)$. Now we see $u_{1} \in$ $X_{\tau_{1}}^{+} \cap X_{\tau_{1}}^{-}$. If $u_{1} \in X_{\tau_{0}}^{+}$were true, then by $u_{1}<\left\langle u_{1}, 1\right\rangle \in X_{\tau_{0}}^{+} \times\{1\} \subset X_{\tau_{0}}^{*}$ and $\left(u_{1},\left\langle u_{1}, 1\right\rangle\right)_{L_{0}}=\emptyset$, we have $f\left(u_{2}\right)=u_{1} \in\left(\leftarrow,\left\langle u_{1}, 1\right\rangle\right)_{L_{0}}$. By continuity of f, there is an open neighborhood V of u_{2} in L_{1} such that $f[V] \subset\left(\leftarrow,\left\langle u_{1}, 1\right\rangle\right)_{L_{0}}$. We may assume $V \subset\left(u_{1}, \rightarrow\right)_{L_{1}}$. Pick $x \in V \cap X$, then $u_{2}<_{L_{1}} x$ and $x=f(x) \leq_{L_{0}} u_{1}<_{X} x$, a contradiction. Thus we have $u_{1} \notin X_{\tau_{0}}^{+}$, similarly we have $u_{1} \notin X_{\tau_{0}}^{-}$.

Applying the lemma above to $\tau=\tau_{0}=\tau_{1}$, we see:
Corollary 4.4. Let $L_{0}, L_{1} \in \mathcal{L}_{X_{\tau}}$ for some $\tau \in G T_{X}$. If there is a continuous map $f: L_{1} \rightarrow L_{0}$ such that $f \upharpoonright X=1_{X}$, then f is 2-1,

Lemma 4.5. Let $L_{0}, L_{1} \in \mathbb{L}_{X}$. Then the following are equivalent:
(1) $L_{0} \leq L_{1}$ and $L_{1} \leq L_{0}$,
(2) there is a 1-1 continuous map $f: L_{1} \rightarrow L_{0}$ such that $f \upharpoonright X=$ 1_{X},
(3) there is an order isomorphism $f: L_{1} \rightarrow L_{0}$ such that $f \upharpoonright X=$ 1_{X},

Proof. (3) \rightarrow (1) follows from the fact that an order isomorphism between LOTS's is a homeomorphism.
(1) $\rightarrow(2):$ Let $f: L_{1} \rightarrow L_{0}$ and $g: L_{0} \rightarrow L_{1}$ be continuous maps with $f \upharpoonright X=1_{X}$ and $g \upharpoonright X=1_{X}$. Then the combination $g \circ f$ has to be $1_{L_{1}}$, therefore f is 1-1.
(2) $\rightarrow(3)$: Let $f: L_{1} \rightarrow L_{0}$ be a 1-1 continuous map with $f \upharpoonright X=$ 1_{X}. It follows from Lemma 4.2 that f is $1-1$, order preserving onto, which means f is an order isomorphism.

Note that if $L_{0}, L_{1} \in \mathbb{L}_{X}$ with $L_{0} \leq L_{1}$ and $L_{1} \leq L_{0}$, then $L_{0}, L_{1} \in$ $\mathcal{L}_{X_{\tau}}$ for some $\tau \in G T_{X}$. If one of the equivalents in the lemma above is satisfied, then we identify L_{0} with L_{1}. Under this identification, we will investigate the structure of the partially ordered sets $\left\langle\mathbb{L}_{X}, \leq\right\rangle$ and $\left\langle\mathcal{L}_{X_{\tau}}, \leq\right\rangle$. Remember that X_{G} is the set of all gaps of X and $l X_{\tau}=$ $X_{\tau}^{*} \cup X_{G}$ (in section 3, apply for $X=X_{\tau}$), where $X_{\tau}=\left\langle X,<_{X}, \tau\right\rangle$. Now let X_{G}^{M} denotes the set of all middle gaps of X, that is,

$$
X_{G}^{M}=\{\langle A, B\rangle:\langle A, B\rangle \text { is a middle gap of } X\} .
$$

Then $\left|X_{G} \backslash X_{G}^{M}\right| \leq 2$ and note that X_{G} and X_{G}^{M} only depend on the linearly ordered set $\left\langle X,<_{X}\right\rangle$. Also remember the definitions of $G(L)$
and $G^{M}(L)$ for a compact LOTS L in section 2, now we apply the results in section 2 for $L=l X_{\tau}$.
Lemma 4.6. $X_{G}^{M} \subseteq G^{M}\left(l X_{\tau}\right)$ and $X_{G} \subseteq G\left(l X_{\tau}\right)$ hold.
Proof. Let $u \in X_{G}^{M}$, say $u=\langle A, B\rangle$. Because of $A \neq \emptyset$ and $B \neq \emptyset$, we have $(\leftarrow, u)_{l X_{\tau}} \neq \emptyset$ and $(u, \rightarrow)_{l X_{\tau}} \neq \emptyset$. Assume $v=\sup _{l X_{\tau}}(\leftarrow$ $, u)_{l X_{\tau}}<_{l X_{\tau}} u$. First assume $v \in X$. Since $v \in A$ and A has no max, we can take $x \in A$ with $v<_{X} x<_{l X_{\tau}} u$, this contradicts the definition of v. Next assume $v \notin X$. It follows from Lemma 3.2 that $(v, u)_{l X_{\tau}} \neq \emptyset$, also contradicts the definition of v. Therefore we have $\sup _{l X_{\tau}}(\leftarrow, u)_{l X_{\tau}}=u$. Similarly we have $\inf _{l X_{\tau}}(u, \rightarrow)_{l X_{\tau}}=u$. Now $X_{G} \subseteq G\left(l X_{\tau}\right)$ is obvious.

Now for every $W \subseteq X_{G}^{M}$, using the notation in section 2, we let

$$
l_{W} X_{\tau}=\left(l X_{\tau}\right)[W] .
$$

Then $l X_{\tau}=l_{\emptyset} X_{\tau}$. We also let

$$
L X_{\tau}=l_{X_{G}^{M}} X_{\tau} .
$$

Later we will see that $l X_{\tau}$ is the minimal and $L X_{\tau}$ is the maximal in $\left\langle\mathcal{L}_{X_{\tau}}, \leq\right\rangle$ and that $l X_{\lambda(<x)}$ is the minimal and $L X_{\tau\left(X_{R}, X_{L}\right)}$ is the maximal in $\left\langle\mathbb{L}_{X}, \leq\right\rangle$.
Lemma 4.7. If $\tau \in G T_{X}$, then $\mathcal{L}_{X_{\tau}}=\left\{l_{W} X_{\tau}: W \subseteq X_{G}^{M}\right\}$.
Proof. The inclusion " \supseteq " follows from Lemma 4.6 and Corollary 2.4.
To see the inclusion " \subseteq ", let $L \in \mathcal{L}_{X_{\tau}}$. Define $f: L \rightarrow l X_{\tau}$ by

$$
f(u)= \begin{cases}\left\langle\left\{x \in X: x<_{L} u\right\},\left\{x \in X: u<_{L} x\right\}\right\rangle & \text { if } u \in L \backslash X_{\tau}^{*}, \\ u & \text { otherwise } .\end{cases}
$$

The following claim shows that f is well-defined and onto.
Claim 1. $f\left[L \backslash X_{\tau}^{*}\right]=X_{G}$.
Proof. To see the inclusion " \subseteq ", let $u \in L \backslash X_{\tau}^{*}, A=\left\{x \in X: x<_{L} u\right\}$ and $B=\left\{x \in X: u<_{L} x\right\}$. Assume that A has the maximal element x_{0}, then by the density of $X,\left(x_{0}, u\right)_{L}=\emptyset$ holds. If $x_{0} \in X_{\tau}^{+}$were true, then we have $u=\left\langle x_{0}, 1\right\rangle \in X_{\tau}^{+} \times\{1\} \subseteq X_{\tau}^{*}$, see Lemma 1.4(1), a contradiction. Thus we have $x_{0} \notin X_{\tau}^{+}$. Because of $\left(\leftarrow, x_{0}\right]_{X}=A \in \tau$, we have $\left(\leftarrow, x_{0}\right]_{X} \in \lambda\left(<_{X}\right)$. Since $\left(x_{0}, \rightarrow\right)_{L} \neq \emptyset$ holds $(u$ witnesses this), we have $\left(x_{0}, \rightarrow\right)_{X} \neq \emptyset$. Thus there is $z \in X$ with $z>_{X} x$ and $\left(x_{0}, z\right)_{X}=\emptyset$. It follows from $\left(x_{0}, u\right)_{L}=\emptyset, u \notin X$ and $z \in X$ that $u<_{L} z$ therefore $\left(x_{0}, z\right)_{L} \neq \emptyset$ and hence $\left(x_{0}, z\right)_{X} \neq \emptyset$, a contradiction. We have shown that A has no max, similarly B has no min. This means $f(u) \in X_{G}$.

To see the inclusion "?", let $w \in X_{G}$, say $w=\langle A, B\rangle$. Putting $u=\sup _{L} A$, we see $f(u)=w$.

Claim 2. f is order preserving.
Proof. Let $u, v \in L$ with $u<_{L} v$. We will see $f(u) \leq_{l X_{\tau}} f(v)$. By $X_{\tau}^{*} \subseteq L$, we may assume $u \notin X_{\tau}^{*}$ or $v \notin X_{\tau}^{*}$. But in the case " $u \notin$ X_{τ}^{*} and $v \notin X_{\tau}^{* ",}$, it is obvious by the definition of f and the claim above. We consider the case " $u \notin X_{\tau}^{*}$ and $v \in X_{\tau}^{*}$ ". When $v \in X$, by $v \in\left\{x \in X: u<_{L} x\right\}$, we see $f(u)<_{l X} v=f(v)$. When $v=\langle x, 1\rangle$ for some $x \in X_{\tau}^{+}$, we have $u<_{L} x$, see Lemma 1.4(1). Now we have $f(u)<_{l X_{\tau}} x<_{l X_{\tau}} v=f(v)$. When $v=\langle x,-1\rangle$ for some $x \in X_{\tau}^{-}$, by Lemma 1.4(2) and (3), we can take $z \in(u, v)_{L} \cap X$. Then $f(u)<_{l X_{\tau}}$ $z<_{l X_{\tau}} v=f(v)$. The case " $u \in X_{\tau}^{*}$ and $v \notin X_{\tau}^{* "}$ is similar.

Claim 3. f is 2-1.
Proof. Because of $f \upharpoonright X_{\tau}^{*}=1_{X_{\tau}^{*}}, f\left[L \backslash X_{\tau}^{*}\right]=X_{G}$ and $X_{\tau}^{*} \cap X_{G}=\emptyset$, it suffices to see that $f \upharpoonright\left(L \backslash X_{\tau}^{*}\right)$ is 2-1. So assume that for some $u_{0}, u_{1}, u_{2} \in L \backslash X_{\tau}^{*}$ with $u_{0}<u_{1}<u_{2}, f\left(u_{0}\right)=f\left(u_{1}\right)=f\left(u_{2}\right)$ holds. Applying the density of X to $\left(u_{0}, u_{2}\right)_{L}$, we can take $x \in\left(u_{0}, u_{2}\right)_{L} \cap X$. Then by $u_{0}<x<u_{2}$, we have $f\left(u_{0}\right)<x<f\left(u_{1}\right)$, a contradiction.

Now let $W=\left\{w \in X_{G}:\left|f^{-1}[\{w\}]\right|=2\right\}$. We have:
Claim 4. $W \subseteq X_{G}^{M}$.
Proof. Let $w \in W$ and we fix $u_{0}, u_{1} \in L \backslash X_{\tau}^{*}$ with $u_{0}<u_{1}$ and $w=f\left(u_{0}\right)=f\left(u_{1}\right)$. If $\left(u_{0}, u_{1}\right)_{L} \neq \emptyset$ were true, then by taking $x \in$ $\left(u_{0}, u_{1}\right)_{L} \cap X$, we have $f\left(u_{0}\right)<x<f\left(u_{1}\right)$ as above, a contradiction. Thus we have $\left(u_{0}, u_{1}\right)_{L}=\emptyset$. By $\left(\leftarrow, u_{1}\right)_{L} \neq \emptyset$, take $x \in\left(\leftarrow, u_{1}\right)_{L} \cap X$. Then we have $x<u_{0}$ for some $x \in X$. Moreover by $\left(u_{0}, \rightarrow\right)_{L} \neq \emptyset$, we have $u_{0}<y$ for some $y \in X$. This means $w=f\left(u_{0}\right) \in X_{G}^{M}$.

Now by Lemma 2.1 (2), $\tilde{f}: L \rightarrow\left(l X_{\tau}\right)[W]=l_{W} X_{\tau}$ is an order isomorphism with $\tilde{f} \upharpoonright X=1_{X}$. By Lemma 4.5, we have $L=l_{W} X_{\tau}$.

Lemma 4.8. If for each $i \in 2$, let $X_{\tau_{i}}=\left\langle X,<_{X}, \tau_{i}\right\rangle$ be a GO-space and $W_{i} \subseteq X_{G}^{M}$. Then the following are equivalent:
(1) $l_{W_{1}} X_{\tau_{1}} \geq l_{W_{0}} X_{\tau_{0}}$,
(2) $\tau_{1} \supseteq \tau_{0}$ and $W_{1} \supseteq W_{0}$.

Proof. Note that $\tau_{1} \supseteq \tau_{0}$ is equivalent to the both $X_{\tau_{1}}^{+} \supseteq X_{\tau_{0}}^{+}$and $X_{\tau_{1}}^{-} \supseteq X_{\tau_{0}}^{-}$, see Proposition 1.3.
$(2) \rightarrow(1)$: Let $\tau_{1} \supseteq \tau_{0}$ and $W_{1} \supseteq W_{0}$ and define $f: l_{W_{1}} X_{\tau_{1}} \rightarrow l_{W_{0}} X_{\tau_{0}}$ by

$$
f(u)= \begin{cases}x & \text { if } u=\langle x, 1\rangle \text { for some } x \in X_{\tau_{1}}^{+} \backslash X_{\tau_{0}}^{+} \\ x & \text { if } u=\langle x,-1\rangle \text { for some } x \in X_{\tau_{1}}^{-} \backslash X_{\tau_{0}}^{-} \\ c & \text { if } u=\langle c, 1\rangle \text { for some } c \in W_{1} \backslash W_{0} \\ u & \text { otherwise }\end{cases}
$$

Obviously f is $3-1$, order preserving and onto with $f \upharpoonright X=1_{X}$. By Lemma 4.2, we have $l_{W_{1}} X_{\tau_{1}} \geq l_{W_{0}} X_{\tau_{0}}$.
$(1) \rightarrow(2)$: Let $f: l_{W_{1}} X_{\tau_{1}} \rightarrow l_{W_{0}} X_{\tau_{0}}$ be a continuous map with $f \upharpoonright X=1_{X}$. Since 1_{X} is a continuous map from $X_{\tau_{1}}$ to $X_{\tau_{0}}$, we have $\tau_{1} \supseteq \tau_{0}$. It suffices to see $W_{1} \supseteq W_{0}$. So let $c \in W_{0}$ and say $c=\langle A, B\rangle$, where $\langle A, B\rangle$ is a gap of X with $A \neq \emptyset$ and $B \neq \emptyset$. Since f is onto and $\langle c, 1\rangle \in W_{0} \times\{1\} \subseteq l_{W_{0}} X_{\tau_{0}}$, there is $u \in l_{W_{1}} X_{\tau_{1}}$ with $f(u)=\langle c, 1\rangle$. It follows from $\langle c, 1\rangle \notin X$ that $u \notin X$.

Claim 1. $u \notin X_{\tau_{1}}^{*}$.
Proof. Assume $u \in X_{\tau_{1}}^{*}$. By $u \notin X$, we have $u \in X_{\tau_{1}}^{+} \times\{1\} \cup X_{\tau_{1}}^{-} \times\{-1\}$.
First we consider the case " $u \in X_{\tau_{1}}^{+} \times\{1\}$ ", say $u=\langle x, 1\rangle$ for some $x \in X_{\tau_{1}}^{+}$. When $x \in A$, take $z \in A$ with $x<_{X} z$. Then by $u<_{l_{W_{1}} X_{\tau_{1}}} z$ (see Lemma 1.4(1)), we have $f(u) \leq f(z)=z<c<\langle c, 1\rangle=f(u)$, a contradiction. When $x \in B$, take $z \in B$ with $z<_{X} x$. Then by $z<_{l_{W_{1}} X_{\tau_{1}}} u$, we have $f(u)=\langle c, 1\rangle<z=f(z) \leq f(u)$, a contradiction.

Next we consider the case " $u \in X_{\tau_{1}}^{-} \times\{-1\}$ ", say $u=\langle x,-1\rangle$ for some $x \in X_{\tau_{1}}^{-}$. When $x \in A$, by $u<x$, we have $f(u) \leq f(x)=x<$ $c<\langle c, 1\rangle=f(u)$, a contradiction. When $x \in B$, take $z \in B$ with $z<_{X} x$. Then by $z<_{l_{W_{1}} X_{\tau_{1}}} u$, we have $z=f(z) \leq f(u)=\langle c, 1\rangle<z$, a contradiction.

Claim 2. $u \notin X_{G}$.
Proof. Assume $u \in X_{G}$, say $u=\langle C, D\rangle$. If $c<u$ were true, then by taking $x \in C \backslash A$, we have $c<x<u$. Therefore we have $f(u)=$ $\langle c, 1\rangle<x=f(x) \leq f(u)$, a contradiction. If $u<c$ were true, then by taking $x \in A \backslash C$, we have $u<x<c$. Therefore we have $\langle c, 1\rangle=$ $f(u) \leq f(x)=x<c<\langle c, 1\rangle$, a contradiction. Thus $u=c$ holds. Since f is order preserving, continuous and $f(c)=\langle c, 1\rangle$, there is $v \in l_{W_{1}} X_{\tau_{1}}$ such that $v<_{l_{W_{1}} X_{\tau_{1}}} c$ and $f\left[(v, \rightarrow)_{l_{W_{1}} X_{\tau_{1}}}\right] \subseteq(c, \rightarrow)_{l_{W_{0}} X_{\tau_{0}}}$. Since c is a gap and $v<c$, we have $(v, c)_{l_{W_{1}} X_{\tau_{1}}} \neq \emptyset$. Take $x \in(v, c)_{l_{W_{1}} X_{\tau_{1}}} \cap X$, then we have $f(x)=\langle c, 1\rangle$, a contradiction.

By Claims above and $l_{W_{1}} X_{\tau_{1}}=\left(X_{\tau_{1}}^{*} \cup X_{G}\right) \cup W_{1} \times\{1\}$, we see $u \in W_{1} \times\{1\}$, say $u=\left\langle c^{\prime}, 1\right\rangle$ with $c^{\prime}=\left\langle A^{\prime}, B^{\prime}\right\rangle$ for some $c^{\prime} \in W_{1}$. The following Claim completes the proof.

Claim 3. $c=c^{\prime}$.
Proof. If $A \subsetneq A^{\prime}$ were true, then by taking $x \in A^{\prime} \backslash A$, we have $c<x<$ $c^{\prime}<\left\langle c^{\prime}, 1\right\rangle=u$ in $l_{W_{1}} X_{\tau_{1}}$. Now we have $f(u)=\langle c, 1\rangle<x=f(x) \leq$ $f(u)$, a contradiction. If $A^{\prime} \subsetneq A$ were true, then by taking $x \in A \backslash A^{\prime}$, we have $c^{\prime}<x<c$. By $u=\left\langle c^{\prime}, 1\right\rangle<x$, we have $f(u) \leq f(x)=x<$ $c<\langle c, 1\rangle=f(u)$, a contradiction. Thus we see $u=u^{\prime}$.

Now we have:
Theorem 4.9. Let $\left\langle X<_{X}\right\rangle$ be a linearly ordered set. Then the following hold:
(1) The partial ordered set $\left\langle\mathbb{L}_{X}, \leq\right\rangle$ is order isomorphic to

$$
\left\langle\mathcal{P}\left(X_{R}\right), \subseteq\right\rangle \times\left\langle\mathcal{P}\left(X_{L}\right), \subseteq\right\rangle \times\left\langle\mathcal{P}\left(X_{G}^{M}\right), \subseteq\right\rangle
$$

therefore $l X_{\lambda\left(<_{x}\right)}$ is the minimal and $L X_{\tau\left(X_{R}, X_{L}\right)}$ is the maximal in $\left\langle\mathbb{L}_{X}, \leq\right\rangle$.
(2) For each $\tau \in G T_{X}$, the partial ordered set $\left\langle\mathcal{L}_{X_{\tau}}, \leq\right\rangle$ is order isomorphic to

$$
\left\langle\mathcal{P}\left(X_{G}^{M}\right), \subseteq\right\rangle,
$$

therefore $l X_{\tau}$ is the minimal and $L X_{\tau}$ is the maximal in $\left\langle\mathcal{L}_{X_{\tau}}\right.$, \leq \rangle.

From (2), we see that the structure of $\left\langle\mathcal{L}_{X_{\tau}}, \leq\right\rangle$ does not depend on its topology τ.

Example 4.10. Let $X=\mathbb{R}$ be the LOTS, then $X_{R}=X_{L}=\mathbb{R}$ and $X_{G}^{M}=\emptyset$. Therefore $\left\langle\mathbb{L}_{\mathbb{R}}, \leq\right\rangle$ is order isomorphic to $\langle\mathcal{P}(\mathbb{R}), \subseteq$ $\rangle \times\langle\mathcal{P}(\mathbb{R}), \subseteq\rangle$. Since $X_{G}^{M}=\emptyset$, each of \mathbb{R}, \mathbb{S} and \mathbb{M} has the unique linearly ordered compactification $\mathbb{R} \cup\{-\infty, \infty\},(\mathbb{R} \cup\{-\infty, \infty\}) \cup \mathbb{R} \times\{1\}$ and $(\mathbb{R} \cup\{-\infty, \infty\}) \cup \mathbb{P} \times\{-1,1\}$ respectively, where $-\infty=\langle\emptyset, \mathbb{R}\rangle$, $\infty=\langle\mathbb{R}, \emptyset\rangle$ are the end gaps. The minimal in $\left\langle\mathbb{L}_{\mathbb{R}}, \leq\right\rangle$ is $\mathbb{R} \cup\{-\infty, \infty\}$ and the maximal in $\left\langle\mathbb{L}_{\mathbb{R}}, \leq\right\rangle$ is $(\mathbb{R} \times\{-1,0,1\}) \cup\{-\infty, \infty\}$, where \mathbb{R} is identified with $\mathbb{R} \times\{0\}$.

Example 4.11. Let $X=\mathbb{Q}$ be the LOTS. Then $X_{R}=X_{L}=\mathbb{Q}$. For every middle gap $\langle A, B\rangle$ of \mathbb{Q}, assign $\sup _{\mathbb{R}} A \in \mathbb{P}$. Using this assignment, we may consider $X_{G}=\mathbb{P} \cup\{-\infty, \infty\}$ and $X_{G}^{M}=\mathbb{P}$, where $-\infty, \infty$ are the end gaps of \mathbb{Q}. Therefore $\left\langle\mathbb{L}_{\mathbb{Q}}, \leq\right\rangle$ is order isomorphic to $\langle\mathcal{P}(\mathbb{Q}), \subseteq\rangle \times\langle\mathcal{P}(\mathbb{Q}), \subseteq\rangle \times\langle\mathcal{P}(\mathbb{P}), \subseteq\rangle . l \mathbb{Q}=l_{\emptyset} \mathbb{Q}=\mathbb{Q} \cup \mathbb{P} \cup\{-\infty, \infty\}$,
which is identified with $\mathbb{R} \cup\{-\infty, \infty\}$, is the minimal in $\left\langle\mathbb{L}_{\mathbb{Q}}, \leq\right\rangle$. $l_{\mathbb{P}} \mathbb{Q}_{\tau(\mathbb{Q}, \mathbb{Q})}=(\mathbb{R} \cup\{-\infty, \infty\} \cup \mathbb{Q} \times\{-1,1\}) \cup \mathbb{P} \times\{1\}$ is the maximal in $\left\langle\mathbb{L}_{\mathbb{Q}}, \leq\right\rangle$.

Similarly we see that $\left\langle\mathbb{L}_{\mathbb{P}}, \leq\right\rangle$ is order isomorphic to $\langle\mathcal{P}(\mathbb{P}), \subseteq\rangle \times$ $\langle\mathcal{P}(\mathbb{P}), \subseteq\rangle \times\langle\mathcal{P}(\mathbb{Q}), \subseteq\rangle$.
Example 4.12. Let X_{τ} be the GO-space $(0,1) \cup(1,2) \cup[3,4) \cup(5,6]$ with the usual order and the subspace topology τ in \mathbb{R}. It has one end gap $0=\langle\emptyset, X\rangle$. There are two middle gaps $c_{0}=\langle(0,1),(1,2) \cup$ $[3,4) \cup(5,6]\rangle$ and $c_{1}=\langle(0,1) \cup(1,2) \cup[3,4),(5,6]\rangle$. Thus $X_{\tau}^{+}=\emptyset$ and $X_{\tau}^{-}=\{3\}, X_{G}=\left\{0, c_{0}, c_{1}\right\}$ and $X_{G}^{M}=\left\{c_{0}, c_{1}\right\}$. So there are $2^{2}=4$ linearly ordered compactifications of X_{τ}. With appropriate identifications,

$$
\left.l X_{\tau}=[0,1) \cup(1,2) \cup[3,4) \cup(5,6]\right) \cup\{\langle 3,-1\rangle\} \cup\left\{c_{0}, c_{1}\right\} .
$$

Identifying $2=\langle 3,-1\rangle$,

$$
\begin{gathered}
l X_{\tau}=[0,1) \cup\left\{c_{0}\right\} \cup(1,2] \cup[3,4) \cup\left\{c_{1}\right\} \cup(5,6], \\
l_{\left\{c_{0}\right\}} X_{\tau}=[0,1) \cup\left\{c_{0},\left\langle c_{0}, 1\right\rangle\right\} \cup(1,2] \cup[3,4) \cup\left\{c_{1}\right\} \cup(5,6], \\
l_{\left\{c_{1}\right\}} X_{\tau}=[0,1) \cup\left\{c_{0}\right\} \cup(1,2] \cup[3,4) \cup\left\{c_{1},\left\langle c_{1}, 1\right\rangle\right\} \cup(5,6], \\
L X_{\tau}=[0,1) \cup\left\{c_{0},\left\langle c_{0}, 1\right\rangle\right\} \cup(1,2] \cup[3,4) \cup\left\{c_{1},\left\langle c_{1}, 1\right\rangle\right\} \cup(5,6] .
\end{gathered}
$$

Moreover by identifying $c_{0}=1,[0,1) \cup\left\{c_{0}\right\} \cup(1,2]$ can be identified with $[0,2]$. Also identifying $c_{1}=4$ and $(5,6]=(4,5],[3,4) \cup\left\{c_{1}\right\} \cup(5,6]$ can be identified with $[3,5]$. Thus topologically $l X_{\tau}$ can be considered as $[0,2] \cup[3,5]$. Similarly we can identify as $l_{\left\{c_{0}\right\}} X_{\tau}=[0,2] \cup[3,5] \cup$ $\{\langle 1,1\rangle\}, l_{\left\{c_{1}\right\}} X_{\tau}=[0,2] \cup[3,5] \cup\{\langle 4,1\rangle\}$ and $l_{\left\{c_{0}, c_{1}\right\}} X_{\tau}=[0,2] \cup[3,5] \cup$ $\{\langle 1,1\rangle,\langle 4,1\rangle\}$. Note that $l_{\left\{c_{0}\right\}} X_{\tau}$ and $l_{\left\{c_{1}\right\}} X_{\tau}$ are homeomorphic, but they are different as linearly ordered compactifications.
Example 4.13. Let $X=(0,1) \cup(1,2) \cup[3,4) \cup(5,6]$ and $<_{X}$ be the restriction of the usual order on \mathbb{R}, that is, the underlying linearly ordered set of the previous example, so $X_{G}^{M}=\left\{c_{0}, c_{1}\right\}$. Then $\left\langle\mathbb{L}_{X}, \leq\right\rangle$ is order isomorphic to $\langle\mathcal{P}((0,1) \cup(1,2) \cup[3,4) \cup(5,6)), \subseteq\rangle \times\langle\mathcal{P}((0,1) \cup$ $(1,2) \cup[3,4) \cup(5,6]), \subseteq\rangle \times\left\langle\mathcal{P}\left(\left\{c_{0}, c_{1}\right\}\right), \subseteq\right\rangle$. The minimal in $\left\langle\mathbb{L}_{X}, \leq\right\rangle$ is $[0,1) \cup\left\{c_{0}\right\} \cup(1,2) \cup[3,4) \cup\left\{c_{1}\right\} \cup(5,6]$, and the maximal in $\left\langle\mathbb{L}_{X}, \leq\right\rangle$ is $\left.(\{\langle 0,0\rangle\} \cup(0,1) \times\{-1,0,1\}) \cup\left\{c_{0},\left\langle c_{0}, 1\right\rangle\right\} \cup((1,2)) \times\{-1,0,1\}\right) \cup$ $\left.([3,4)) \times\{-1,0,1\}) \cup\left\{c_{1},\left\langle c_{1}, 1\right\rangle\right\} \cup((5,6)) \times\{-1,0,1\} \cup\{\langle 6,-1\rangle,\langle 6,0\rangle\}\right)$.
Example 4.14. Let X_{τ} be a subspace of an ordinal α with the usual order and the subspace topology τ. Taking a large enough ordinal, we may assume α is a successor ordinal, so it is compact. Since the order is a well-order, there are no middle gaps of X_{τ}, but ∞ can exist. So $X_{G}^{M}=\emptyset$, thus X_{τ} has the unique linearly ordered compactification. The closure $\mathrm{Cl}_{\alpha} X_{\tau}$ of X_{τ} in α is such a unique one.

Example 4.15. Let $X=\beta$ be an ordinal. Since $X_{L}=\operatorname{Lim}(\beta), X_{R}=$ $X_{G}^{M}=\emptyset,\left\langle\mathbb{L}_{\beta}, \leq\right\rangle$ is order isomorphic to $\langle\mathcal{P}(\operatorname{Lim}(\beta)), \subseteq\rangle$. where $\operatorname{Lim}(\beta)$ denotes the all limit ordinals in β. Note that if X_{τ} is that in the previous example, then by enumerating $X_{\tau}=\{x(\gamma): \gamma<\beta\}$ with the increasing oder for some β, we may consider that the underlying linearly ordered set of X_{τ} is β.

Acknowledgment. The author thanks the reviewer for careful reading the manuscript and for giving useful comments.

References

[1] R. Engelking, General Topology-Revized and completed ed.. Herdermann Verlag, Berlin (1989).
[2] V. V. Fedorchuk, On some problems in topological dimension theory, translation in Russian Math. Surveys 57 (2002), no. 2, 361-398.
[3] R. Kaufman, Ordered sets and compact spaces, ColI. Math., 17 (1967), 35-39.
[4] D.J. Lutzer, On generalized ordered spaces, Dissertationes Math. Rozprawy Mat. 89 (1971).
[5] T. Miwa and N. Kemoto, Linearly ordered extensions of GO-spaces, Top. Appl., 54 (1993), 133-140.
[6] Y. Tanaka and T. Shinoda, Orderability of compactifications, Questions Answers Gen. Topology 21 (2003), no. 1, 79-89.

Department of Mathematics, Oita University, Oita, 870-1192 Japan
E-mail address: nkemoto@cc.oita-u.ac.jp

