
NORMALITY, ORTHOCOMPACTNESS AND
COUNTABLE PARACOMPACTNESS OF PRODUCTS

OF GO-SPACES

NOBUYUKI KEMOTO

Abstract. In [4], it is asked whether orthocompact products of
two GO-spaces are normal or not. In this paper we discuss when
products of GO-spaces are normal iff they are orthocompact. As
a corollary, we see that products of two countably compact GO-
spaces are normal iff they are orthocompact. Also we discuss when
normal products of two GO-spaces are countably paracompact.

1. Introduction

It is known:

• If X and Y are subspaces of ordinals, then normality and or-
thocompactness of X × Y are equivalent, see [10].
• If X and Y are subspaces of ordinals and X×Y is normal, then
X × Y is countably paracompact, see [8].

Note that subspaces of ordinals with the usual order are GO-spaces.
Recently the first result above is extended as:

• If X is a subspace of an ordinal and Y is a GO-space, then
normality and orthocompactness of X × Y are equivalent, see
[4].

In the same paper, the following are asked:

(1) If X and Y are GO-spaces, then is X × Y normal whenever it
is orthocompact?

(2) If X and Y are GO-spaces, then is X×Y rectangular whenever
it is codecop product?

(3) If X and Y are GO-spaces, then is X × Y countably paracom-
pact whenever it is codecop product?

We will remark that the Sorgenfrey square S2 answers these problems
negatively, moreover we will discuss when products of two GO-spaces
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are normal iff they are orthocompact, and when normal products of
two GO-spaces are countably paracompact.

Recall that a triple ⟨X,<, τ⟩ is called a GO-space (= Generalized
Ordered space) if < is a linear order on X and τ is a T2-topology on
X which has a base by convex subsets by <, where a subset C of X
is convex if b belongs to C whenever a < b < c, b ∈ X and a, c ∈ C.
A linearly ordered set ⟨X,<⟩ has a natural T2-topology λ(<) so called
the interval topology which is the topology generated by {(←, a) : a ∈
X} ∪ {(a,→) : a ∈ X} as a subbase, where (a,→) = {x ∈ X : a < x},
(a, b) = {x ∈ X : a < x < b}, ..., etc. If necessary, we write as
(a, b)X instead of (a, b). Note that this subbase induce a base by convex
subsets. The triple ⟨X,<, λ(<)⟩ is called a LOTS (= Linearly Ordered
Topological Space). Obviously if ⟨X,<, τ⟩ is a GO-space, then the
topology τ is stronger than λ(<), that is, λ(<) ⊂ τ . If there are no
confusion, then a GO-space X means the triple ⟨X,<, τ⟩ and a LOTS
X means the triple ⟨X,<, λ(<)⟩. Obviously LOTS’ are GO-spaces but
not vice versa, for example, the Sorgenfrey line S is such an example.

We need some tools handling GO-spaces which are appeared in [6].
For reader’s convenience, we give their abstracts here. At first, recall
a well-known lemma below.

Lemma 1.1. [2, Problem 3.12.3(a)] Let ⟨L,<, λ(<)⟩ be a LOTS. Then
the following are equivalent:

(1) The space ⟨L, λ(<)⟩ is compact.
(2) For every subset A of L, A has the least upper bound supL A in
⟨L,<⟩.

(3) For every subset A of L, A has the greatest lower bound infL A
in ⟨L,<⟩.

Note that supL ∅ = minL (=the smallest element of L) and infL ∅ =
maxL (=the largest element of L) whenever L is a compact LOTS.

Definition 1.2. Let L be a compact LOTS and x ∈ L. A subset
A ⊂ (←, x) is said to be 0-unbounded for x in L if for every y < x,
there is a ∈ A with y ≤ a. Similarly for a subset A ⊂ (x,→), “1-
unbounded for x” is defined. Now 0-cofinality 0- cfL x of x in L is
defined by:

0- cfL x = min{|A| : A is 0-unbounded for x in L.}.
Also 1- cfL x is defined. If there are no confusion, we write simply 0- cf x
and 1- cf x. Observe that

• if x is the smallest element of L, then 0- cf x = 0,
• if x has the immediate predecessor in L, then 0- cf x = 1,
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• otherwise, then 0- cf x is a regular infinite cardinal.

Moreover, remark:

• Whenever minL < x, ω ≤ 0- cf x iff supL(←, x) = x iff x ∈
ClL(←, x).

Let x ∈ L and κ = 0- cf x. We can take a sequence c : κ → L
which is strictly increasing and continuous as a function, and the range
{c(α) : α ∈ κ} is a subset of (←, x) which is 0-unbounded for x in L.
We call such c a 0-normal sequence for x in L. Similarly, a 1-normal
sequence for x in L is defined.

Lemma 1.3. [6, Lemma 3.3] Let x be a point in a compact LOTS L
with κ = 0- cf x ≥ ω1. Let {c(α) : α ∈ κ} and {c′(α) : α < κ} be
two 0-normal sequences for x. Then {α ∈ κ : c(α) = c′(α)} is club(=
closed and unbounded) in κ.

In our discussion, wheneverX is a GO-space, we apply these methods
for L = lX below, and consider 0-cf lX a or 1-cf lX a for a ∈ lX.

Lemma 1.4. [6, Lemma 2.1] Let X be a GO-space. Then there is a
unique (up to order isomorphisms) compact LOTS lX such that X ⊂
lX, the order on lX extends the order on X, the original GO-topology
on X coincides with the subspace topology on X with respect to the
interval topology on lX, X is dense in lX, and for every a, b ∈ lX \X
with a < b, (a, b) ̸= ∅ holds.

In particular, ifX is a subspace of an ordinal, sayX ⊂ [0, γ], with the
usual order, then using Lemma 1.4, we can easily check lX = Cl[0,γ]X.
Moreover in this case, for every a ∈ lX, obviously 1- cf a is 0 or 1,
furthermore we can easily check that 0- cf a is equal to cf a in the usual
sense whenever a is a cluster point of X.

Let C be a subset of a regular uncountable cardinal κ. Define
pC(α) = sup(C ∩ α) for α < κ, Lim(C) = {α ∈ κ : α = pC(α)} and
Succ(C) = C \ Lim(C), where for notational convenience we consider
that −1 is the immediate predecessor of the ordinal 0 and sup ∅ = −1.
Note that Lim(C) is the set of all cluster points of C in κ therefore it
is club in κ whenever C is unbounded in κ, also note that Succ(C) is
the set of isolated points in the subspace C. In particular, Succ(κ) is
the set of all successor ordinals of κ. A subset of κ is stationary if it
intersects all club sets of κ.

Let X be a GO-space, a ∈ lX and κ = 0- cf a. We can always fix
a 0-normal sequence {a0(α) : α ∈ κ} for a(also we can fix a 1-normal
sequence {a1(α) : α ∈ κ} for a where κ = 1- cf lX a). Observe that by
Lemma 1.3, the stationarity of {α ∈ κ : a0(α) ∈ X} does not depend
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on the choices of 0-normal sequences whenever κ ≥ ω1. It follows from
Lemmas 1.3 and 1.4 that we may assume that Succ(κ) ⊂ {α ∈ κ :
a0(α) ∈ X} whenever κ ≥ ω ( by induction, redefine another 0-normal
sequence for a ). We say that X is 0-stationary at a if κ = 0- cf a is un-
countable and {α ∈ κ : a0(α) ∈ X} is stationary in κ. By the argument
above, 0-stationarity at a does not depend on choices of 0-normal se-
quences for a. Similarly 1-stationarity at a is (well-)defined. If {α ∈ κ :
a0(α) ∈ X} is non-stationary in κ, then we can take a club set C in κ
such that {a0(α) : α ∈ C} ⊂ lX \X. Then remark that (←, a)∩X can
be represented as the disjoint sum

∪
α∈Succ(C)((a0(pC(α)), a0(α)) ∩ X)

of open subspaces, where a0(−1) =←.

Definition 1.5. A GO-space X is said to be countably 0-compact
(countably 1-compact) if each strictly increasing (decreasing) sequence
{xn : n ∈ ω} ⊂ X of length ω has a cluster point in X, equivalently
for every a ∈ lX \X, 0- cf a ̸= ω ( 1- cf a ̸= ω ) holds.

Remark that a GO-space is countably compact iff it is both countably
0-compact and countably 1-compact, moreover that subspaces of ordi-
nals are countably 1-compact but in general not countably 0-compact.

Lemma 1.6. Let X be a countably 0-compact GO-space with a ∈ lX \
X. Then X is 0-stationary at a.

Proof. Let λ0 = 0- cf a and S0 = {α ∈ λ0 : a0(α) ∈ X}, where {a0(α) :
α ∈ λ0} is the fixed 0-normal sequence for a. By the assumption,
obviously λ0 > ω. If S0 were non-stationary in λ0, then there is a club
set C in λ0 disjoint from S0. Take α ∈ Lim(C) with cf α = ω. Then
0- cf a0(α) = ω. Since X is countably 0-compact, we have a0(α) ∈ X,
a contradiction because of α ∈ Lim(C) ⊂ C. �

Also there is an analogous result:

• Let X be a countably 1-compact GO-space with a ∈ lX \ X.
Then X is 1-stationary at a.

But here after, we do not write down such analogous results.
Let U be an open cover of a topological space X. A collection F =

{F (U) : U ∈ U} of closed sets in X indexed by U is said to be a partial
closed shrinking of U in X if F (U) ⊂ U holds for every U ∈ U . When
Z ⊂ X, F � Z denotes {F (U)∩Z : U ∈ U}. A partial closed shrinking
F of U is said to be a closed shrinking if it covers X. Recall that a
space X is normal iff every binary open cover has a closed shrinking
in X, where a binary open cover means an open cover of size at most
2. Remark that if for every λ ∈ Λ, Fλ = {Fλ(U) : U ∈ U} is a partial
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closed shrinking of U in X, moreover {
∪
Fλ : λ ∈ Λ} is locally finite

in X, then ∨
λ∈Λ

Fλ = {
∪
λ∈Λ

Fλ(U) : U ∈ U}

is also a partial closed shrinking of U in X.
∨

i∈{0,1}Fi is denoted by
F0 ∨ F1. A collection V of open sets in a topological space X is said
to be interior preserving if

∩
V ′ is open for every V ′ ⊂ V . Observe

that a collection V of open sets is interior preserving iff
∩
(V)x is a

neighborhood of x in X for every x ∈ X, where (V)x = {V ∈ V : x ∈
V }. Here note that

∩
∅ = X and

∪
∅ = ∅ by the usual sense of

∩
and∪

. A space X is said to be orthocompact if every open cover U has
an interior preserving open refinement V , that is,

∪
V = X, V is an

interior preserving collection of open sets, moreover every member of V
is contained in some member of U . When we do not require “

∪
V = X”,

then we say such a V as a partial interior preserving open refinement of
U . Remark that if for every λ ∈ Λ, Vλ is an interior preserving (a point
finite) collection of open sets, moreover {

∪
Vλ : λ ∈ Λ} is point finite,

then
∪

λ∈Λ Vλ is also interior preserving (point finite). When Z ⊂ X,
V � Z denotes {V ∩ Z : V ∈ V}.

In the product theory, the normality has been compared with the
orthocompactness, for example:

• If a space X is normal, then X × I is normal iff X is countably
paracompact [1], where I denotes the unit interval.
• If a space X is orthocompact, then X × I is orthocompact iff
X is countably metacompact [12].

Here recall that a space is countably paracompact (countably metacom-
pact) if every countable open cover has a locally finite (a point finite)
open refinement. Note that normal countably metacompact spaces are
countably paracompact. It is well-known that the Sorgenfrey square S2

is neither normal nor countably paracompact but it is countably meta-
compact. Recently in [3], it is known that S2 is orthocompact, thus the
question (1) above is negative. Also it was pointed out in [14] that the
product of the Michael line and the irrationals is orthocompact but not
normal. Also it is known that S2 is not rectangular, see Remark after
Theorem 7 in [5]. Since S is hereditarily separable and first countable,
it is easy to see that S2 is codecop product (for this definition see [4]).
Therefore the questions (2) and (3) above are also negative. In this
paper, we will prove:

Theorem 1.7. Let X and Y be GO-spaces satisfying:

(1) X is countably 1-compact,
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(2) if there is c ∈ lX with 1- cf c ≥ ω (equivalently, ⟨X <⟩ is not
well-ordered), then Y is countably compact.

Then X × Y is normal if and only if it is orthocompact.

If X is a subspace of an ordinal, then it is countably 1-compact and
the assumption in the assumption (2) above is not true (therefore (2)
is true). Therefore we have:

Corollary 1.8. [4] Let X be a subspace of an ordinal and Y a GO-
space. Then X × Y is normal if and only if it is orthocompact.

Moreover, we have:

Corollary 1.9. Let X be a countably 1-compact GO-space and Y a
countably compact GO-space. Then X × Y is normal if and only if it
is orthocompact.

In particular:

Corollary 1.10. Let X and Y be countably compact GO-spaces. Then
X × Y is normal if and only if it is orthocompact.

Here note that ω1+1 is compact and ω1 is countably compact but not
compact. Also note that ω2

1 is normal but ω1× (ω1 + 1) is not normal.
In a different line, it is known that X × Y is normal if and only if it is
orthocompact, whenever X and Y are locally compact GO-spaces, see
[13, 14].

Moreover we show:

Theorem 1.11. Let X and Y be GO-spaces satisfying:

(1) X is countably 1-compact,
(2) if there is c ∈ lX with 1- cf c ≥ ω, then Y is countably compact.

If X × Y is normal, then it is countably paracompact.

Therefore we have:

Corollary 1.12. Let X be a subspace of an ordinal and Y a GO-space.
If X × Y is normal, then it is countably paracompact.

Corollary 1.13. Let X be a countably 1-compact GO-space and Y a
countably compact GO-space. If X × Y is normal, then it is countably
paracompact.

2. Basic lemmas

In this section, we prepare basic lemmas for proving the theorem.
We frequently use the following lemma.
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Lemma 2.1. [7, 10] Let λ be a regular uncountable cardinal, S and T
subsets of λ. Then:

(1) If S × T is normal (orthocompact), then S is non-stationary in
λ, T is non-stationary in λ or S ∩ T is stationary.

(2) If S × (T ∪ {λ}) is normal (orthocompact), then S is non-
stationary in λ or T is not unbounded in λ.

In the rest of this section, let X and Y be GO-spaces with a ∈ lX
and b ∈ lY . Moreover, for i ∈ 2 = {0, 1}, let λi = i- cf a and {ai(α) :
α ∈ λi} be the fixed i-normal sequence for a such that Succ(λi) ⊂ {α ∈
λi : ai(α) ∈ X} whenever λi ≥ ω. Similarly, for i ∈ 2, let µi = i- cf b
and {bi(β) : β ∈ µi} be the fixed i-normal sequence for b such that
Succ(µi) ⊂ {β ∈ µi : bi(β) ∈ Y } whenever µi ≥ ω.

Lemma 2.2. If a ∈ X, b ∈ Y and U is an open cover of X × Y ,
then there are α0 ∈ λ0 ∪ {−1}, α1 ∈ λ1 ∪ {−1}, β0 ∈ µ0 ∪ {−1},
β1 ∈ µ1 ∪ {−1} and U0 ∈ U such that

((a0(α0), a1(α1)) ∩X)× ((b0(β0), b1(β1)) ∩ Y ) ⊂ U0.

Therefore there is a closed shrinking F of U in ((a0(α0), a1(α1))∩X)×
((b0(β0), b1(β1))∩Y ), moreover there is an interior preserving (a point
finite) partial open refinement V of U such that

∪
V = ((a0(α0), a1(α1))∩

X)× ((b0(β0), b1(β1)) ∩ Y ).

The proof is almost obvious (note, if λ0 = 0 then let α0 = −1),
moreover F = {F (U) : U ∈ U} is defined by

F (U) =

{
((a0(α0), a1(α1)) ∩X)× ((b0(β0), b1(β1)) ∩ Y ) if U = U0,

∅ otherwise.

Also define V = {((a0(α0), a1(α1)) ∩X)× ((b0(β0), b1(β1)) ∩ Y )}.

Lemma 2.3. If a ∈ lX \ X, b ∈ Y , X is 0-stationary at a, U is an
open cover of X × Y and X × Y is normal, then there are α0 ∈ λ0,
β0 ∈ µ0∪{−1}, β1 ∈ µ1∪{−1} and an interior preserving partial open
refinement V of U such that∪

V = ((a0(α0), a] ∩X)× ((b0(β0), b1(β1)) ∩ Y ).

Proof. Let S0 = {α ∈ λ0 : a0(α) ∈ X}. By the assumption, S0 is
stationary in λ0. For every α ∈ S0∩Lim(S0), it follows from ⟨a0(α), b⟩ ∈
X×Y that for some U(α) ∈ U , f(α) < α and gi(α) ∈ µi∪{−1} (i ∈ 2),

((a0(f(α)), a0(α)] ∩X)× ((b0(g0(α)), b1(g1(α))) ∩ Y ) ⊂ U(α)

holds.
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Claim. λ0 ̸= µ0 and λ0 ̸= µ1 hold.

Proof. Assume that λ0 = µ0 is true. Note that S0 × (T0 ∪ {µ0}) is
homeomorphic to a closed subspace of the normal space X × Y , where
T0 = {β ∈ µ0 : b0(β) ∈ Y }. Since Succ(µ0) ⊂ T0, T0 is unbounded in
µ0 = λ0. This contradicts Lemma 2.1 (2). The remaining is similar. �

Applying the Pressing Down Lemma (PDL), we find a stationary set
S ′
0 ⊂ S0 ∩ Lim(S0) and α0 ∈ λ0 such that f(α) ≤ α0 for every α ∈ S ′

0.
Whenever λ0 < µ0, take β0 ∈ µ0 with sup{g0(α) : α ∈ S ′

0} ≤ β0 and
set S ′′

0 = S ′
0. Whenever λ0 > µ0, also applying PDL, it follows from

|{g0(α) : α ∈ S ′
0}| < λ0 that for some stationary set S ′′

0 ⊂ S ′
0 and

β0 ∈ µ0 ∪{−1}, g0(α) ≤ β0 holds for every α ∈ S ′′
0 . Note that in either

cases f(α) ≤ α0 and g0(α) ≤ β0 hold for every α ∈ S ′′
0 . By λ0 ̸= µ1,

similarly we can find a stationary set S ′′′
0 ⊂ S ′′

0 and β1 ∈ µ1 ∪ {−1}
such that g1(α) ≤ β1 holds for every α ∈ S ′′′

0 . Then for every α ∈ S ′′′
0 ,

we have

((a0(α0), a0(α)] ∩X)× ((b0(β0), b1(β1)) ∩ Y ) ⊂ U(α).

Set V (α) = ((a0(α0), a0(α)) ∩ X) × ((b0(β0), b1(β1)) ∩ Y ) for every
α ∈ S ′′′

0 and let V = {V (α) : α ∈ S ′′′
0 }. Obviously V is a partial open

refinement of U with
∪
V = ((a0(α0), a] ∩ X) × ((b0(β0), b1(β1)) ∩ Y )

because of a /∈ X. To see that V is interior preserving, let ⟨x, y⟩ ∈
X × Y . We may assume ⟨x, y⟩ ∈

∪
V . Let α∗ = min{α ∈ S ′′′

0 : ⟨x, y⟩ ∈
V (α)}. Then V (α∗) is a neighborhood of ⟨x, y⟩ contained in

∩
(V)⟨x,y⟩,

thus V is interior preserving. �
Lemma 2.4. If a ∈ lX \ X, b ∈ Y , X is 0-stationary at a, U is a
binary open cover of X×Y and X×Y is orthocompact, then there are
α0 ∈ λ0, β0 ∈ µ0 ∪ {−1}, β1 ∈ µ1 ∪ {−1} and U0 ∈ U such that

((a0(α0), a] ∩X)× ((b0(β0), b1(β1)) ∩ Y ) ⊂ U0,

therefore there is a closed shrinking of U in

((a0(α0), a] ∩X)× ((b0(β0), b1(β1)) ∩ Y ).

Proof. The proof is parallel to that of the lemma above by using Lemma
2.1. Let S0 = {α ∈ λ0 : a0(α) ∈ X}. For every α ∈ S0 ∩ Lim(S0), it
follows from ⟨a0(α), b⟩ ∈ X×Y that for some U(α) ∈ U , f(α) < α and
gi(α) ∈ µi ∪ {−1} (i ∈ 2),

((a0(f(α)), a0(α)] ∩X)× ((b0(g0(α)), b1(g1(α))) ∩ Y ) ⊂ U(α)

holds. This time using orthocompactness of X × Y , we see:

Claim. λ0 ̸= µ0 and λ0 ̸= µ1 hold.
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By PDL and |U| ≤ 2, we find a stationary set S ′
0 ⊂ S0 ∩ Lim(S0),

α0 ∈ λ0 and U0 ∈ U such that f(α) ≤ α0 and U(α) = U0 for every
α ∈ S ′

0. Whenever λ0 < µ0, take β0 ∈ µ0 with sup{g0(α) : α ∈ S ′
0} ≤ β0

and set S ′′
0 = S ′

0. Whenever λ0 > µ0, also applying PDL, it follows that
for some stationary set S ′′

0 ⊂ S ′
0 and β0 ∈ µ0 ∪ {−1}, g0(α) ≤ β0 holds

for every α ∈ S ′′
0 . By λ0 ̸= µ1, similarly we can find a stationary set

S ′′′
0 ⊂ S ′′

0 and β1 ∈ µ1 ∪ {−1} such that g1(α) ≤ β1 holds for every
α ∈ S ′′′

0 . Then α0, β0, β1 and U0 are as desired and a desired closed
shrinking can be easily constructed. �

The proof of the lemma below is analogous to Lemma 2.3.

Lemma 2.5. If a ∈ lX \ X, b ∈ Y , X is 0-stationary at a, U is a
countable open cover of X × Y and X × Y is normal, then there are
α0 ∈ λ0, β0 ∈ µ0 ∪ {−1}, β1 ∈ µ1 ∪ {−1} and U0 ∈ U such that

((a0(α0), a] ∩X)× ((b0(β0), b1(β1)) ∩ Y ) ⊂ U0,

therefore there is a point finite partial open refinement V of U such that∪
V = ((a0(α0), a] ∩X)× ((b0(β0), b1(β1)) ∩ Y ).

Lemma 2.6. If a ∈ lX \X, b ∈ lY \ Y , X is 0-stationary at a, Y is
0-stationary at b, U is an open cover of X × Y and X × Y is normal,
then there are α0 ∈ λ0, β0 ∈ µ0 and an interior preserving partial open
refinement V of U such that∪

V = ((a0(α0), a] ∩X)× ((b0(β0), b] ∩ Y ).

Proof. Let S0 = {α ∈ λ0 : a0(α) ∈ X} and T0 = {β ∈ µ0 : b0(β) ∈ Y }.
Case 1. λ0 < µ0.

For every α ∈ S0 ∩ Lim(S0) and β ∈ T0 ∩ Lim(T0), it follows from
⟨a0(α), b0(β)⟩ ∈ X × Y that for some U(α, β) ∈ U , f(α, β) < α and
g(α, β) < β,

((a0(f(α, β)), a0(α)] ∩X)× ((b0(g0(α, β)), b0(β)] ∩ Y ) ⊂ U(α, β)

holds. First fix α ∈ S0 ∩ Lim(S0). Because of |{f(α, β) : β ∈ T0}| ≤
|α| < λ0 < µ0, applying PDL to g, we can find a stationary set T0(α) ⊂
T0 ∩ Lim(T0), f(α) < α and g(α) < µ0 such that f(α, β) ≤ f(α) and
g(α, β) ≤ g(α) for every β ∈ T0(α). Next applying PDL to S0∩Lim(S0)
and f , we can find a stationary set S ′

0 ⊂ S0∩Lim(S0) and α0 ∈ λ0 such
that f(α) ≤ α0 for every α ∈ S ′

0. Because g(α) < µ0 for every α ∈ S ′
0

and |S ′
0| = λ0 < µ0, we can take β0 ∈ µ0 such that g(α) ≤ β0 for every

α ∈ S ′
0. Now for every α ∈ S ′

0 and β ∈ T0(α), we have

((a0(α0)), a0(α)] ∩X)× ((b0(β0), b0(β)] ∩ Y ) ⊂ U(α, β).
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For every α ∈ (α0, λ0) and β ∈ (β0, µ0), set

V (α, β) = ((a0(α0)), a0(α)) ∩X)× ((b0(β0), b0(β)) ∩ Y ).

And set
V = {V (α, β) : α ∈ (α0, λ0), β ∈ (β0, µ0)}.

Then it is easy to see that V is a partial open refinement of U and∪
V = ((a0(α0)), a] ∩ X) × ((b0(β0), b] ∩ Y ). To see that V is interior

preserving, let ⟨x, y⟩ ∈ X × Y . We may assume ⟨x, y⟩ ∈
∪
V . First

let α∗ = min{α ∈ λ0 : x < a0(α)} and next β∗ = min{α ∈ λ0 :
y < b0(β)}. Then V (α∗, β∗) is a neighborhood of ⟨x, y⟩ contained in∩
(V)⟨x,y⟩, thus V is interior preserving. Remark that this case does not

require normality of X × Y .

Case 2. λ0 > µ0.

This case is similar to Case 1.

Case 3. λ0 = µ0.

It follows from the normality ofX×Y and Lemma 2.1 (1) that S0∩T0 is
stationary in λ0. For every α ∈ (S0∩T0)∩Lim(S0∩T0), take U(α) ∈ U ,
f(α) < α such that

((a0(f(α)), a0(α)] ∩X)× ((b0(f(α)), b0(α)] ∩ Y ) ⊂ U(α)

holds. Applying PDL, we can find a stationary set S ′
0 ⊂ (S0 ∩ T0) ∩

Lim(S0 ∩ T0) and α0 ∈ λ0 such that f(α) ≤ α0 for every α ∈ S ′
0. For

every α ∈ S ′
0, set

V (α) = ((a0(α0)), a0(α)) ∩X)× ((b0(α0), b0(α)) ∩ Y ).

Then α0 and V = {V (α) : α ∈ S ′
0} with β0 = α0 satisfy the required

condition. �
Lemma 2.7. If a ∈ lX \ X, b ∈ lY \ Y , X is 0-stationary at a, Y
is 0-stationary at b, U is a binary open cover of X × Y and X × Y is
orthocompact, then there are α0 ∈ λ0, β0 ∈ µ0 and U0 ∈ U such that

((a0(α0), a] ∩X)× ((b0(β0), b] ∩ Y ) ⊂ U0,

therefore there is a closed shrinking of U in ((a0(α0), a]∩X)×((b0(β0), b]∩
Y ).

Proof. Let S0 = {α ∈ λ0 : a0(α) ∈ X} and T0 = {β ∈ µ0 : b0(β) ∈ Y }.
Case 1. λ0 < µ0.

For every α ∈ S0 ∩ Lim(S0) and β ∈ T0 ∩ Lim(T0), fix U(α, β) ∈ U ,
f(α, β) < α and g(α, β) < β with

((a0(f(α, β)), a0(α)] ∩X)× ((b0(g0(α, β)), b0(β)] ∩ Y ) ⊂ U(α, β).
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First fix α ∈ S0∩Lim(S0). Applying PDL to g, we can find a stationary
set T0(α) ⊂ T0 ∩ Lim(T0), f(α) < α, g(α) < µ0 and U(α) ∈ U such
that f(α, β) ≤ f(α), g(α, β) ≤ g(α) and U(α, β) = U(α) for every
β ∈ T0(α). Next applying PDL to S0 ∩ Lim(S0) and f , we can find
a stationary set S ′

0 ⊂ S0 ∩ Lim(S0), α0 ∈ λ0 and U0 ∈ U such that
f(α) ≤ α0 and U(α) = U0 for every α ∈ S ′

0. By λ0 < µ0, we can take
β0 ∈ µ0 such that g(α) ≤ β0 for every α ∈ S ′

0. Then α0, β0 and U0 are
as required.

Case 2. λ0 > µ0.

This case is similar to Case 1.

Case 3. λ0 = µ0.

It follows from orthocompactness of X × Y and Lemma 2.1 (1) that
S0 ∩ T0 is stationary in λ0. Then using PDL, we can find α0 ∈ λ0 and
U0 ∈ U with ((a0(α0)), a] ∩X)× ((b0(α0), b] ∩ Y ) ⊂ U0. �

The proof of the following lemma is analogous to Lemma 2.6.

Lemma 2.8. If a ∈ lX \X, b ∈ lY \ Y , X is 0-stationary at a, Y is
0-stationary at b, U is a countable open cover of X × Y and X × Y is
normal, then there are α0 ∈ λ0, β0 ∈ µ0 and U0 ∈ U such that

((a0(α0), a] ∩X)× ((b0(β0), b] ∩ Y ) ⊂ U0,

therefore there is a point finite partial open refinement V of U such that∪
V = ((a0(α0), a] ∩X)× ((b0(β0), b] ∩ Y ).

3. Proof of “only if” part of Theorem 1.7

In this section we prove “only if” part of Theorem 1.7. Throughout
this section, we assume that X and Y are GO-spaces satisfying:

(1) X is countably 1-compact,
(2) if there is c ∈ lX with 1- cf c ≥ ω, then Y is countably compact.

Moreover we assume that X × Y is normal and U is an open cover
of X × Y . We will find an interior preserving open refinement V of
U . Generally in this section and the next section, for a ∈ lX and
i ∈ 2, we let λi = i- cf a and let {ai(α) : α ∈ λi} be the fixed i-
normal sequence for a such that Succ(λi) ⊂ {α ∈ λi : ai(α) ∈ X}
whenever λi ≥ ω. Similarly for b ∈ lY and i ∈ 2, we let µi = i- cf b
and let {bi(β) : β ∈ µi} be the fixed i-normal sequence for b such that
Succ(µi) ⊂ {β ∈ µi : bi(β) ∈ Y } whenever µi ≥ ω.
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Definition 3.1. Let

A = {a ∈ lX : there is an interior preserving partial

open refinement V of U with
∪
V ⊃ ((←, a] ∩X)× Y . },

Ba = {b ∈ lY : there are α1 ∈ λ1 ∪ {−1} and
an interior preserving partial open refinement V of U with∪

V ⊃ ((a, a1(α1)] ∩X)× ((←, b]) ∩ Y ). },
for every a ∈ lX.

Obviously A is an initial segment of lX, that is, if a′ ≤ a ∈ A then
a′ ∈ A. Also for every a ∈ lX, Ba is an initial segment of lY .

Lemma 3.2. If a ∈ X, then the following hold:

(1) there is an interior preserving partial open refinement V of U
with

∪
V ⊃ {a} × Y ,

(2) if (←, a) ⊂ A, then a ∈ A.

Proof. For b, b′ ∈ lY , we define b ∼= b′ by either one of the following:

(1) b = b′

(2) b < b′ and there are α0 ∈ λ0 ∪ {−1} and an interior preserving
partial open refinement V of U with

∪
V ⊃ ((a0(α0), a] ∩X)×

([b, b′] ∩ Y ),
(3) b′ < b and there are α0 ∈ λ0 ∪ {−1} and an interior preserving

partial open refinement V of U with
∪
V ⊃ ((a0(α0), a] ∩X)×

([b′, b] ∩ Y ).

Obviously ∼= is an equivalence relation on lY and each equivalence
class is convex in lY . Let E be the collection of all equivalence classes
intersecting with Y , that is, E = {E ∈ lY/∼= : E ∩ Y ̸= ∅}.
Claim 1. E ∩ Y is open in Y for every E ∈ E .

Proof. Let b ∈ E∩Y , where λi = i- cf a, µi = i- cf b, ..., etc as above. It
follws from ⟨a, b⟩ ∈ X×Y and Lemma 2.2 that there are α0 ∈ λ0∪{−1},
β0 ∈ µ0 ∪ {−1}, β1 ∈ µ1 ∪ {−1} and U0 ∈ U such that

((a0(α0), a] ∩X)× ((b0(β0), b1(β1)) ∩ Y ) ⊂ U0.

If y ∈ (b0(β0), b1(β1)) ∩ Y , then α0 and V = {U0} witnesse y ∼= b thus
y ∈ E ∩ Y . Hence (b0(β0), b1(β1)) ∩ Y is a neighborhood of b in Y
contained in E ∩ Y . �

Claim 1 shows {E ∩ Y : E ∈ E} is a pairwise disjoint clopen cover
of Y .

Claim 2. For every E ∈ E , the following hold:
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(1) there is an interior preserving partial open refinement VE of U
with

∪
VE ⊃ {a} × (E ∩ Y ),

(2) if (←, a) ⊂ A, then there is an interior preserving partial open
refinement VE of U with

∪
VE ⊃ ((←, a] ∩X)× (E ∩ Y ).

Proof. Because the proof of (1) is simpler than that of (2), we only
show (2). Assume (←, a) ⊂ A. For each α ∈ λ0, from a0(α) ∈ A, take
an interior preserving partial open refinement Wα of U with

∪
Wα ⊃

((←, a0(α)] ∩X) × Y . Moreover let W−1 = ∅. Fix y ∈ E ∩ Y and let
b = suplY (E∩Y ) (as stated above, reset µi = i- cf b, ..., etc). Obviously
y ≤ b. We show:

Subclaim 1. There is an interior preserving partial open refinement
V ′ of U with

∪
V ′ ⊃ ((←, a] ∩X)× ([y, b] ∩ Y ).

Proof. First assume b ∈ Y . Since b ∈ CllY (E ∩ Y ) and E ∩ Y is clopen
in Y , we have b ∈ E ∩ Y thus b ∼= y. Take α0 and V witnessing b ∼= y,
that is, V is an interior preserving partial open refinement of U with∪
V ⊃ ((a0(α0), a] ∩ X) × ([y, b] ∩ Y ). Then V ′ = Wα0 ∪ V witnesses

the subclaim.
Next assume b /∈ Y , then µ0 ≥ ω. Take β∗ ∈ µ0 with y < b0(β

∗) and
for every β ∈ µ0 with β∗ ≤ β, fix α(β) ∈ λ0 ∪ {−1} and an interior
preserving partial open refinement Vβ of U witnessing y ∼= b0(β). When
µ0 = ω,

V ′ =
(
(Vβ∗+1 ∪Wα(β∗+1)) � X × ((←, b0(β

∗ + 1)) ∩ Y )
)
∪∪

β∗<β∈µ0

(Vβ+1 ∪Wα(β+1)) � X × ((b0(β − 1), b0(β + 1)) ∩ Y )

witnesses the subclaim, because the collection of X×((b0(β−1), b0(β+
1)) ∩ Y )’s are point finite. Let T0 = {β ∈ µ0 : b0(β) ∈ Y }. When
µ0 > ω and T0 is not stationary in µ0, take a club set D ⊂ (β∗, µ0) in
µ0 disjoint from T0. Then

V ′ =
∪

β∈Succ(D)

(Vβ ∪Wα(β)) � X × ((b0(pD(β)), b0(β)) ∩ Y )

witnesses the subclaim, because the collection ofX×((b0(pD(β)), b0(β))∩
Y )’s are point finite, in fact disjoint. When µ0 > ω and T0 is station-
ary in µ0 (i.e., Y is 0-stationary at b), by Lemma 2.3, we can take
α0 ∈ λ0 ∪{−1}, β0 ∈ µ0 and an interior preserving partial open refine-
ment V of U with

∪
V ⊃ ((a0(α0), a] ∩X)× ((b0(β0), b] ∩ Y ). We may

assume β∗ ≤ β0. Then

V ′ =Wα0 ∪ Vβ0 ∪ V
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witnesses the subclaim. �
Let b′ = inf lY (E ∩ Y ), then similarly we have:

Subclaim 2. There is an interior preserving partial open refinement
V ′′ of U with

∪
V ′′ ⊃ ((←, a] ∩X)× ([b′, y] ∩ Y ).

Then VE = V ′ ∪ V ′′ satisfies Claim 2. �
Now V =

∪
E∈E VE � X × (E ∩ Y ) proves the lemma. �

Lemma 3.3. If a ∈ lX \ X, X is 0-stationary at a and (←, a) ⊂ A,
then a ∈ A.

Proof. For b, b′ ∈ lY , define b ∼= b′ as in the previous lemma. Then ∼=
is an equivalence relation on lY . Set E = {E ∈ lY/∼= : E ∩ Y ̸= ∅}.
Claim 1. E ∩ Y is open in Y for every E ∈ E .

Proof. Let b ∈ E ∩ Y , where λi = i- cf a, µi = i- cf b, ..., etc as above.
By Lemma 2.3, we can take α0 ∈ λ0, β0 ∈ µ0 ∪ {−1}, β1 ∈ µ1 ∪ {−1}
and an interior preserving partial open refinement V of U with

∪
V ⊃

((a0(α0), a]∩X)× ((b0(β0), b1(β1))∩ Y ). Then (b0(β0), b1(β1))∩ Y is a
neighborhood of b in Y contained in E ∩ Y . �

To see a ∈ A, it suffices to check the following claim (see the lemma
above).

Claim 2. For every E ∈ E , there is an interior preserving partial open
refinement VE of U with

∪
VE ⊃ ((←, a] ∩X)× (E ∩ Y ).

Proof. Let E ∈ E , y ∈ E ∩ Y and b = suplY (E ∩ Y ) (as stated above,
reset µi = i- cf b, ..., etc). For each α ∈ λ0, fix an interior preserving
partial open refinement Wα of U witnessing a0(α) ∈ A. Moreover let
W−1 = ∅.
Subclaim 1. There is an interior preserving partial open refinement
V ′ of U with

∪
V ′ ⊃ ((←, a] ∩X)× ([y, b] ∩ Y ).

Proof. The proof is similar to the corresponding proof of the lemma
above by using Lemma 2.6 instead of Lemma 2.3, so we leave it to the
reader. �

Let b′ = inf lY (E ∩ Y ), then similarly we have:

Subclaim 2. There is an interior preserving partial open refinement
V ′′ of U with

∪
V ′′ ⊃ ((←, a] ∩X)× ([b′, y] ∩ Y ).

Then VE = V ′ ∪ V ′′ satisfies Claim 2. �
�
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Lemma 3.4. The following hold.

(1) min lX ∈ A,
(2) min lY ∈ Ba for every a ∈ lX,
(3) if a ∈ A and 1- cf a = 1, then a1(0) ∈ A,
(4) if a ∈ lX, b ∈ Ba and 1- cf b = 1, then b1(0) ∈ Ba.

Proof. (1) follows from Lemma 3.2 (1) (when min lX /∈ X, consider V
as ∅ in the definition of A). (2) is similar. For (3), take a V witnessing
a ∈ A. It follows from 1- cf a = 1 that a1(0) is the immediate successor
of a in lX. When a1(0) /∈ X, V witnesses a1(0) ∈ A. When a1(0) ∈ X,
by Lemma 3.2 (1) take an interior preserving partial open refinement
V ′ of U with

∪
V ′ ⊃ {a1(0)} × Y . Then V ∪ V ′ witnesses a1(0) ∈ A.

(4) is similar to (3). �
Lemma 3.5. maxA exists.

Proof. Let a = supA. It suffices to see a ∈ A. Note (←, a) ⊂ A.
It follows from (1) and (3) of Lemma 3.4 that we may assume λ0 =
0- cf a ≥ ω. By Lemma 3.2 (2), we may assume a /∈ X. For each α ∈ λ0,
fix an interior preserving partial open refinement Vα of U witnessing
a0(α) ∈ A. When λ0 = ω,

∪
α∈λ0
Vα � ((a0(α− 1), a0(α+ 1)) ∩X)× Y

witnesses a ∈ A. When λ0 > ω and S0 = {α ∈ λ0 : a0(α) ∈ X} is not
stationary in λ0, taking a club set C disjoint from S0,∪

α∈Succ(C)

Vα � ((a0(pC(α)), a0(α)) ∩X)× Y

witnesses a ∈ A. The remaining case (i.e., X is 0-stationary at a)
follows from Lemma 3.3. �
Lemma 3.6. If Y is countably compact, then for each a ∈ lX with
1- cf a ≥ ω, max lY ∈ Ba holds.

Proof. Let a ∈ lX with 1- cf a ≥ ω, and reset λi = i- cf a, ..., etc.

Claim 1. maxBa exists.

Proof. Let b = supBa and again reset µi = i- cf b, ..., etc. Because of
(2) and (4) of Lemma 3.4, we may assume µ0 ≥ ω. For every β ∈ µ0,
fix α(β) ∈ λ1 and an interior preserving partial open refinement Vβ of
U with

∪
Vβ ⊃ ((a, a1(α(β)] ∩X)× ((←, b0(β)] ∩ Y ).

Case 1. a ∈ X and b ∈ Y .

Take α0 ∈ λ0 ∪ {−1}, α1 ∈ λ1, β0 ∈ µ0, β1 ∈ µ1 ∪ {−1} and U0 ∈ U
such that

((a0(α0), a1(α1)) ∩X)× ((b0(β0), b1(β1)) ∩ Y ) ⊂ U0.
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Pick α∗ ∈ λ1 with α∗ > max{α1, α(β0)}. Then α∗ and Vβ0∪V witnesses
b ∈ Ba.

Case 2. a ∈ X and b /∈ Y .

Since Y is (0-)countably compact, Y is 0-stationary at b, see Lemma1.6.
Using Lemma 2.3, take α0 ∈ λ0 ∪ {−1}, α1 ∈ λ1, β0 ∈ µ0 and
an interior preserving partial open refinement V of U with

∪
V =

((a0(α0), a1(α1)) ∩ X) × ((b0(β0), b] ∩ Y ). Pick α∗ ∈ λ1 with α∗ >
max{α1, α(β0)}. Then α∗ and Vβ0 ∪ V witnesses b ∈ Ba.

Case 3. a /∈ X and b ∈ Y .

Similar to Case 2.

Case 4. a /∈ X and b /∈ Y .

Since X is 1-stationary at a and Y is 0-stationary at b, use Lemma
2.6. �

The following completes the proof of Lemma 3.6.

Claim 2. max lY ∈ Ba.

Proof. Let b = maxBa and again reset µi = i- cf b, ..., etc. Assume
b < max lY , then by Lemma 3.4 (4), we have µ1 ≥ ω. Take α∗

1 ∈ λ1

and an interior preserving partial open refinement V of U witnessing
b ∈ Ba.

Case 1. a ∈ X and b ∈ Y .

Take α0 ∈ λ0 ∪ {−1}, α1 ∈ λ1, β0 ∈ µ0 ∪ {−1}, β1 ∈ µ1 and U0 ∈ U
such that

((a0(α0), a1(α1)) ∩X)× ((b0(β0), b1(β1)) ∩ Y ) ⊂ U0.

Pick α∗ ∈ λ1 with α∗ > max{α1, α
∗
1}. Then α∗ and V ∪ {U0} witnesses

b1(β1 + 1) ∈ Ba. This contradicts the maximality of b.

Case 2. a ∈ X and b /∈ Y .

Since Y is countably (1-)compact, Y is 1-stationary at b. Using Lemma
2.3, take α0 ∈ λ0 ∪ {−1}, α1 ∈ λ1, β1 ∈ µ1 and an interior preserving
partial open refinement V ′ of U with

∪
V ′ = ((a0(α0), a1(α1)) ∩ X) ×

([b, b1(β1)) ∩ Y ). Pick α∗ ∈ λ1 with α∗ > max{α∗
1, α1}. Then α∗ and

V ∪ V ′ witnesses b1(β1 + 1) ∈ Ba, a contradiction.

Case 3. a /∈ X and b ∈ Y .

Since X is countably 1-compact, X is 1-stationary at a. Using Lemma
2.3, take α1 ∈ λ1, β0 ∈ µ0 ∪ {−1}, β1 ∈ µ1 and an interior preserv-
ing partial open refinement V ′ of U with

∪
V ′ = ([a, a1(α1)) ∩ X) ×
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((b0(β0), b1(β1)) ∩ Y ). Pick α∗ ∈ λ1 with α∗ > max{α∗
1, α1}. Then α∗

and V ∪ V ′ witnesses b1(β1 + 1) ∈ Ba, a contradiction.

Case 4. a /∈ X and b /∈ Y .

Since X and Y are 1-stationary at a and b respectively, using Lemma
2.6, take α1 ∈ λ1, β1 ∈ µ1 and an interior preserving partial open
refinement V ′ of U with

∪
V ′ = ([a, a1(α1)) ∩ X) × ([b, b1(β1)) ∩ Y ).

The remaining are similar. �
�

The following lemma completes the proof of “only if ” part of the
main theorem.

Lemma 3.7. max lX ∈ A holds.

Proof. Let a = maxA and reset λi = i- cf a, ..., etc. Assume a <
max lX, then λ1 ≥ 1.

Case 1. 1- cf c ≤ 1 for every c ∈ lX.

In this case, it has to be λ1 = 1. Then it follows from Lemma 3.4 (3)
that a1(0) ∈ A, this contradicts the maximality of a.

Case 2. Otherwise.

In this case, by the assumption (2) of the theorem, Y is countably
compact. If λ1 = 1, then the argument of Case 1 works. If λ1 ≥ ω,
then by Lemma 3.6, we have max lY ∈ Ba. Take α1 and V witnessing
max lY ∈ Ba. Also take V ′ witnessing a ∈ A. Then V ∪ V ′ witnesses
a1(α1 + 1) ∈ A, this contradicts the maximality of a. �

4. Proof of “if” part of Theorem 1.7

In this section we prove “if” part of Theorem 1.7. Throughout this
section, we assume that X and Y are GO-spaces satisfying:

(1) X is countably 1-compact,
(2) if there is c ∈ lX with 1- cf c ≥ ω, then Y is countably compact.

Moreover we assume that X × Y is orthocompact and U is a binary
open cover of X×Y . We will find a closed shrinking F of U in X×Y .
Except for some technical differences, the proof of this section is almost
parallel to that of the previous section. So we will give their abstract
proofs.

Definition 4.1. Let

A = {a ∈ lX : there is a closed shrinking F of U in

((←, a] ∩X)× Y . },
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Ba = {b ∈ lY : there are α1 ∈ λ1 ∪ {−1} and

a closed shrinking F of U in

([a, a1(α1)) ∩X)× ((←, b]) ∩ Y ). },
for every a ∈ lX.

Since GO-spaces are normal, we have min lX ∈ A and for every
a ∈ lX, min lY ∈ Ba. Obviously A is an initial segment of lX and for
every a ∈ lX, Ba is an initial segment of lY .

Lemma 4.2. If a ∈ X and (←, a) ⊂ A, then a ∈ A.

Proof. For b, b′ ∈ lY , we define b ∼= b′ by either one of the following:

(1) b = b′

(2) b < b′ and there are α0 ∈ λ0 ∪ {−1} and a closed shrinking F
of U in ((a0(α0), a] ∩X)× ([b, b′] ∩ Y ),

(3) b′ < b and there are α0 ∈ λ0 ∪ {−1} and a closed shrinking F
of U in ((a0(α0), a] ∩X)× ([b′, b] ∩ Y ),

Obviously ∼= is an equivalence relation on lY . Let E = {E ∈ lY/∼= :
E ∩ Y ̸= ∅}.

Claim 1. E ∩ Y is open in Y for every E ∈ E .

Proof. Let b ∈ E ∩ Y , where λi = i- cf a, µi = i- cf b, ..., etc. It follws
from ⟨a, b⟩ ∈ X × Y and Lemma 2.2 that there are α0 ∈ λ0 ∪ {−1},
β0 ∈ µ0 ∪ {−1}, β1 ∈ µ1 ∪ {−1} and a closed shrinking F of U in
((a0(α0), a] ∩X)× ((b0(β0), b1(β1)) ∩ Y ). Let y ∈ (b0(β0), b1(β1)) ∩ Y .
We may assume y ≤ b. Then α0 and F � ((a0(α0), a]∩X)× ([y, b]∩Y )
witnesses b ∼= y. Hence (b0(β0), b1(β1))∩Y is a neighborhood of b in Y
contained in E ∩ Y . �

Claim 2. For every E ∈ E , there is a closed shrinking FE of U in
((←, a] ∩X)× (E ∩ Y ).

Proof. When λ0 = 0 or 1, use normality of Y and (←, a) ⊂ A. So we
may assmue λ0 ≥ ω. For each α ∈ λ0, from a0(α) ∈ A, take a closed
shrinking Hα of U in ((←, a0(α)] ∩ X) × Y . Fix y ∈ E ∩ Y and let
b = suplY (E∩Y ) (as stated above, reset µi = i- cf b, ..., etc). We show:

Subclaim 1. There is a closed shrinking F ′ of U in ((←, a] ∩ X) ×
([y, b] ∩ Y ).
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Proof. First assume b ∈ Y , then by Claim 1, we have b ∼= y. Take
α0 and F0 witnessing b ∼= y, that is, F0 is a closed shrinking of U in
((a0(α0), a] ∩X)× ([y, b] ∩ Y ). Then F ′ = Hα0+1 � ((←, a0(α0 + 1)] ∩
X)× ([y, b]∩ Y )∨F0 � ([a0(α0 +1), a]∩X)× ([y, b]∩ Y ) witnesses the
subclaim.

Next assume b /∈ Y , then µ0 ≥ ω and y < b. Take β∗ ∈ µ0 with
y < b0(β

∗) and for every β ∈ µ0 with β∗ ≤ β, fix α(β) ∈ λ0∪{−1} and
a closed shrinking Fβ of U in ((a0(α(β)), a] ∩X)× ([y, b0(β)] ∩ Y ).

When µ0 = ω,

F ′ =
(
Fβ∗ � ([a0(α(β∗) + 1), a] ∩X)× ([y, b0(β

∗)] ∩ Y )∨

Hα(β∗)+1)) � ((←, a0(α(β
∗) + 1)] ∩X)× ([y, b0(β

∗)] ∩ Y )
)
∨∨

β∗<β∈µ0

(
Fβ � ([a0(α(β) + 1), a] ∩X)× ([b0(β − 1), b0(β)] ∩ Y )∨

Hα(β)+1)) � ((←, a0(α(β) + 1)] ∩X)× ([b0(β − 1), b0(β)] ∩ Y )
)

witnesses the subclaim, because the collection ofX×([b0(β−1), b0(β)]∩
Y )’s are locally finite.

Let T0 = {β ∈ µ0 : b0(β) ∈ Y }. When µ0 > ω and T0 is not
stationary in µ0, take a club set D ⊂ (β∗, µ0) in µ0 disjoint from T0.
Then

F ′ =
(
FminD � ([a0(α(minD) + 1), a] ∩X)× ([y, b0(minD)] ∩ Y )∨

Hα(minD)+1)) � ((←, a0(α(minD) + 1)] ∩X)× ([y, b0(minD)] ∩ Y )
)
∨∨

minD<β∈Succ(D)

(
Fβ � ([a0(α(β) + 1), a] ∩X)× ([b0(pD(β)), b0(β)] ∩ Y )∨

Hα(β)+1)) � ((←, a0(α(β) + 1)] ∩X)× ([b0(pD(β)), b0(β)] ∩ Y )
)

witnesses the subclaim, because the collection ofX×((b0(pD(β)), b0(β))∩
Y )’s are discrete.

When µ0 > ω and T0 is stationary in µ0, by Lemma 2.4, we can
take α0 ∈ λ0, β0 ∈ µ0 and a closed shrinking F∗ of U in ((a0(α0), a] ∩
X) × ((b0(β0), b] ∩ Y ). We may assume β∗ ≤ β0. Take α∗

0 ∈ λ0 with
max{α0, α(β0 + 1)} < α∗

0. Then

F ′ = Fβ0+1 � ([a0(α∗
0), a] ∩X)× ([y, b0(β0 + 1)] ∩ Y )∨

F∗ � ([a0(α∗
0), a] ∩X)× ([b0(β0 + 1), b] ∩ Y )∨

Hα∗
0
� ((←, a0(α

∗
0)] ∩X)× ([y, b] ∩ Y )

witnesses the subclaim. This completes the proof of Subclaim 1. �
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Let b′ = inf lY (E ∩ Y ), then similarly we have:

Subclaim 2. There is a closed shrinking F ′ of U in ((←, a] ∩ X) ×
([b′, y] ∩ Y ).

Then FE = F ′ ∨ F ′′ satisfies Claim 2. �

Finally
∨

E∈E FE is a closed shrinking of U in ((←, a]∩X)×Y , thus
a ∈ A. �

Lemma 4.3. If a ∈ lX \ X, X is 0-stationary at a and (←, a) ⊂ A,
then a ∈ A.

Proof. For b, b′ ∈ lY , define b ∼= b′ as in the previous lemma. Then ∼=
is an equivalence relation on lY . Set E = {E ∈ lY/∼= : E ∩ Y ̸= ∅}.

Using Lemma 2.3 this time, as in the proof of Claim 1 in the lemma
above, we see:

Claim 1. E ∩ Y is open in Y for every E ∈ E .

To see a ∈ A, it suffices to check the following claim. But the proof
is similar to the corresponding one (when µ0 > ω and T0 is stationary
use Lemma 2.7 instead of Lemma 2.4) in the previous lemma.

Claim 2. For every E ∈ E , there is a closed shrinking FE of U in
((←, a] ∩X)× (E ∩ Y ). �

Using normality of GO-spaces, it is easy to see:

Lemma 4.4. The following hold.

(1) if a ∈ A and 1- cf a = 1, then a1(0) ∈ A,
(2) if a ∈ lX, b ∈ Ba and 1- cf b = 1, then b1(0) ∈ Ba.

The remaining arguments including the following lemma are also
similar to the arguments in the previous section, so we leave it to the
reader.

Lemma 4.5. maxA exists.

Lemma 4.6. If Y is countably compact, then for each a ∈ lX with
1- cf a ≥ ω, max lY ∈ Ba holds.

The following lemma completes the proof of “if ” part of the main
theorem.

Lemma 4.7. max lX ∈ A holds.
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5. Proof of of Theorem 1.11

In this section we prove Theorem 1.11. Throughout this section, we
assume that X and Y are GO-spaces satisfying:

(1) X is countably 1-compact,
(2) if there is c ∈ lX with 1- cf c ≥ ω, then Y is countably compact.

Moreover we assume that X × Y is normal and U is a countable open
cover of X × Y . We will find a point finite open refinement V of U .
Definition 5.1. Let

A = {a ∈ lX : there is a point finite partial

open refinement V of U with
∪
V ⊃ ((←, a] ∩X)× Y . },

Ba = {b ∈ lY : there are α1 ∈ λ1 ∪ {−1} and
a point finite partial open refinement V of U with∪

V ⊃ ((a, a1(α1)] ∩X)× ((←, b]) ∩ Y ). },
for every a ∈ lX.

The remaining are similar to the proof of section 3, so we leave it to
the reader.

Finally we ask the following:

Question 5.2. [14, Problem 3.1] Does there exist a pair of GO-spaces
whose product is normal but not orthocompact?

Question 5.3. Does there exist a pair of GO-spaces whose product is
normal but not countably paracompact?

Question 5.4. Are the two questions above equivalent?

The author has not tried yet, but he thinks that the arguments in
the present paper work to see the following question.

Question 5.5. Assuming the same assumption in Theorem 1.7, are
the problem lists of Problem 9.2 in [4] all affirmatively?
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