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THE LEXICOGRAPHIC ORDERED PRODUCTS AND
THE USUAL TYCHONOFF PRODUCTS

NOBUYUKI KEMOTO

Abstract. The usual Tychonoff product space of arbitrary many
compact (ω-bounded) spaces is well-known to be also compact (ω-
bounded). In this paper, we compare the lexicographic ordered
topologies on some products of ordinals with the Tychonoff product
topologies. We see:
• The lexicographic ordered space ωω

1 is ω-bounded.
• The lexicographic ordered space ωω+1

1 is not ω-bounded.
• If α and β are ordinals with β < α, then the lexicographic
ordered space [0, β]ω is a subspace of the lexicographic or-
dered space αω, thus the lexicographic ordered space 2ω is a
subspace of the lexicographic ordered space 3ω.
• The lexicographic ordered space 2ω+1 is not a subspace of the
lexicographic ordered space 3ω+1.
• For all n < ω with 2 ≤ n, the lexicographic ordered space nω

is homeomorphic to the Cantor set.
• The lexicographic ordered space 2ω+1 is not metrizable.
• The lexicographic ordered spaces 2ω+1 and 3ω+1 are not home-
omorphic.
• The lexicographic ordered topology on ω× 2ω coincides with
its usual Tychonoff product topology.
• The lexicographic ordered topology on ωω is strictly weaker
than its usual Tychonoff product topology.
• The lexicographic ordered topology on ω × ω × ω1 is strictly
weaker than its usual Tychonoff product topology.
• The lexicographic ordered topology on ω×2×3×4×(ω1+1)
coincide with its usual Tychonoff product topology.

1. Introduction

All spaces are regular T1 and contain at least 2 elements without
stated. The Greek letters α, β, γ,... denote the ordinal numbers. cfα
denotes the cofinality of α. In particular ω denotes the first infinite
ordinal and ω1 denotes the first uncountable ordinal.
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Let < be a linear order on a set X with |X| ≥ 2. λ(<) denotes the
usual order topology, that is, the topology generated by

{(a,→) : a ∈ X} ∪ {(←, b) : b ∈ X}

as a subbase, where (a,→) = {x ∈ X : a < x}, (a, b) = {x ∈ X : a <
x < b},..., etc. If necessary, we write <X and (a, b)X instead of < and
(a, b) respectively. A LOTS X means the triple ⟨X,<, λ(<)⟩. LOTS is
an abbreviation of “Linearly Ordered Topological Space”. If |X| = 1,
then X is considered as a trivial LOTS.

As usual, we consider an ordinal α as the set of smaller ordinals and
as a LOTS with the order ∈ (we identify it with <). R and I stand for
the usual real line and the unit interval [0, 1] of the real line respectively,
with the usual order <. Then R is a Lindelöf LOTS and I is a compact
LOTS. Similarly a Generalized Ordered space (GO-space) means the
triple ⟨X,<, τ⟩ where τ is a topology on X with λ(<) ⊂ τ which has
a base consisting convex sets, where a subset A is convex if (a, b) ⊂ A
whenever a, b ∈ A with a < b. It is known that the Sorgenfrey line is a
GO-space but not a LOTS. The following are also well-known:

(1) If ⟨L,<L, λ(<L)⟩ is a LOTS andX ⊂ L, then ⟨X,<L�X,λ(<L) �
X⟩ is a GO-space, where <L�X is the restricted order of <L to
X and λ(<L) �X is the subspace topology on X with respect
to the topology λ(<L) on L, that is {U ∩X : U ∈ λ(<L)}. On
the other hand:

(2) If ⟨X,<X , τ⟩ is a GO-space, then there is a LOTS ⟨L,<L, λ(<L

)⟩ with X ⊂ L such that the space ⟨X, τ⟩ is a dense subspace
of ⟨L, λ(<L)⟩ and <X=<L�X. Moreover:

(3) If ⟨X,<X , λ(<X)⟩ is a LOTS, then there is a LOTS ⟨L,<L

, λ(<L)⟩ with X ⊂ L and <X=<L� X such that the space
⟨L, λ(<L)⟩ is compact and contains ⟨X,λ(<X)⟩ as a dense sub-
space. Therefore by (2) and (3), we have:

(4) If ⟨X,<X , τ⟩ is a GO-space, then there is a compact LOTS
⟨L,<L, λ(<L)⟩ with X ⊂ L and <X=<L�X such that the com-
pact space ⟨L, λ(<L)⟩ contains ⟨X, τ⟩ as a dense subspace. We
say this situation as “a GO space ⟨X,<X , τ⟩ has a linearly or-
dered compactification ⟨L,<L, λ(<L)⟩”or more simply “a GO-
space X has a linearly ordered compactification L”. Usually, if
there are no confusion, we do not distinguish the symbols <X

and <L, and simply write <.

Obviously a compact LOTS ⟨L,<L, λ(<L)⟩ has the largest element
maxL and the smallest element minL. Remark that a LOTS ⟨L,<L

, λ(<L)⟩ is compact iff every subset A of L has the least upper bound
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supL A (equivalently, greatest lower bound infL A), where we define
supL ∅ = minL and infL ∅ = maxL, see [1, Problem 3.12.3(a)]. Also
remark that if X is a convex subset of a LOTS ⟨L,<L, λ(<L)⟩, then
the subspace topology λ(<L) � X coincides with the order topology
λ(<�X) on X. For more details, see [3, 4].

Definition 1.1. Let {Xα : α < γ} be a sequence of LOTS Xα’s with
the order <α’s, where γ is an ordinal. The lexicographic order < on the
product X = Πα<γXα is defined by:

x < y⇔ x �α = y �α and x(α) <α y(α) for some α < γ,

for x, y ∈ X, where x � α denotes the restriction ⟨x(β) : β < α⟩ of
x = ⟨x(β) : β < γ⟩. Remark that the lexicographic order is well-
defined, because γ is well-ordered.

We say a LOTS Πα<γXα with the lexicographic order as a lexico-
graphic ordered space. An order topology induced by a lexicographic
order is called a lexicographic ordered topology. When Xα = Y for all
α < γ, we write Πα<γXα as Y γ.

The usual Tychonoff product space of arbitrary many compact (ω-
bounded) spaces is well-known to be also compact (ω-bounded), where
a space is said to be ω-bounded if every countable subset has the com-
pact closure. On the other hand, it is known that there are two count-
ably compact spaces whose usual Tychonoff product is not countably
compact, where a space is said to be countably compact if every count-
able subset has cluster points. Also it is well-known that the lexico-
graphic ordered space I2 is compact [1, Problem 3.12.3(d)].

First we remark:

Lemma 1.2. If X is a non-discrete LOTS, then the lexicographic or-
dered topology λ = λ(<) on X2 does not coincide with the usual Ty-
chonoff product topology τ .

Proof. Let x0 ∈ X be a non-isolated point of the LOTS X. We may
assume x0 ∈ ClX(←, x0)X . Then we have ⟨x0, x0⟩ ∈ Clτ (←, x0)X ×
{x0}, where Clτ denotes the closure with respect to the topology τ .
On the other hand, pick y ∈ X with y < x0. Then (⟨x0, y⟩,→)X2 is a
neighborhood of ⟨x0, x0⟩ which is disjoint from (←, x0)X × {x0}, thus
we have ⟨x0, x0⟩ /∈ Clλ(←, x0)X × {x0}. �

Even if X is a discrete LOTS, in some order on X, the lexicographic
ordered space X2 can be non-discrete.

Lemma 1.3. Let X be a discrete LOTS having the smallest element
x0 but not have a largest element, for instance, ω with the usual order
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is such an example. Then the lexicographic ordered space X2 is not
discrete.

Proof. Since X is a discrete LOTS, x0 has the immediate successor x1

in X. Then ⟨x1, x0⟩ ∈ ClX2(←, ⟨x1, x0⟩)X2 . �
It is easy to verify that if a discrete LOTS X has neither smallest

nor largest elements (for instance, the LOTS Z of all integers is such an
example), then the lexicographic ordered space X2 is discrete. There-
fore in this case, the lexicographic ordered topology coincides with the
usual Tychonoff product topology. Further we remark the following.

Remark 1.4. 2 × R and R × 2 with the lexicographic orders are not
homeomorphic, where 2 = {0, 1}, because 2 × R is homeomorphic to
the toplogical sum R

⊕
R of two R’s, on the other hand R×2 contains

the subspace R×{0} that is homeomorphic to the Sorgenfrey line. 2×I
and I×2 with the lexicographic orders are both compat but by the the
same reason, not homeomorphic. I× 2 is called a Double Arrow space.

Almost all topological properties cannot be preserved for lexico-
graphic ordered products. Lemma 1.3 is such an example, moreover
R is Lindelöf but R2 with the lexicographic order is not Lindelöf, be-
cause R2 contains the uncountable closed discrete subspace R × {0}.
Also see Example 2.2.

Moreover remark that the lexicographic ordered space I2 is not home-
omorphict to the subspace I2 of the lexicographic ordered space R2,
because the lexicographic ordered space I2 is compact, but the sub-
space I2 of the lexicographic ordered space R2 is homeomorphic to the
topological sum

⊕
x∈I{x} × I thus non-compact. Also note that the

subspace (0, 1) × {1} of the lexicographic ordered space I2 is homem-
omorphic to the Sorgenfrey line. But the subspace (0, 1) × {1} of the
lexicographic ordered space R2 is discrete closed.

Consider the usual Tyconoff product space X × Y , then X can be
identified with the closed subspace X × {y} for every y ∈ Y . However
in general, this is not true for the lexicographic ordered spaces. To see
this, consider the lexicographic ordered space ω2

1. Then the subspace
ω1 × {1} is discrete, because ω1 × {1} ∩ (⟨α, 0⟩, ⟨α, 2⟩)ω2

1
= {⟨α, 1⟩}

holds for every α < ω1. Moreover remark that ω1 × {1} is not closed
in ω2

1. But ω1 × {0} is closed in ω2
1 and homeomorphic to ω1.

2. Countable compactness

In this section, we consider countable compactness of lexicographic
ordered spaces. First, we remark the following lemma which says that
compactness is preserved by lexicographic ordered products. But, the
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author does not know whether it is known or not. Since it has impor-
tant roles in the present paper, for reader’s conveniences, we give the
proof here.

Lemma 2.1. Let {Xα : α < γ} be a sequence of compact LOTS Xα’s
with the order <α’s, where γ is an ordinal. Then the lexicographic
ordered space X = Πα<γXα is also compact.

Proof. Let < denote the lexicographic order on X. Put 0α = minXα

and 1α = maxXα for every α < γ. Obviously ⟨0α : α < γ⟩ is the
smallest element of X and ⟨1α : α < γ⟩ is the largest element of X. It
suffices to see that every A ⊂ X has the greatest lower bound infX A in
X. By induction on α < γ, we will define an element u = ⟨u(α) : α < γ⟩
in X and a decreasing sequence {Aα : α < γ} of subsets of A as follows.
First let u(0) = infX0{a(0) : a ∈ A} and A0 = {a ∈ A : a(0) = u(0)}.
Note u(0) = 10 if A = ∅. Let α < γ and assume that u � α and
{Aβ : β < α} are already defined. Set

u(α) = infXα{a(α) : a ∈
∩
β<α

Aβ}

and

Aα = {a ∈
∩
β<α

Aβ : a(α) = u(α)}.

Then {Aα : α < γ} is decreasing sequence of subsets of A. We will see
u = infX A. Let

α0 =

{
min{α < γ :

∩
β<α Aβ = ∅} if exists,

γ otherwise.

Note that for every α < γ with α0 ≤ α, u(α) = infXα ∅ = 1α holds.

Claim 1. u is a lower bound of A.

Proof. Assume indirectly that for some a0 ∈ A, a0 < u holds. Then
there is α < γ such that a0 � α = u � α and a0(α) < u(α). By the
definition of u(0), we have 0 < α and therefore a0(0) = u(0). Thus we
have a0 ∈ A0. Fix β < α and assume that a0 ∈

∩
δ<β Aδ is proved.

Now by β < α, u(β) = a0(β) holds. Then we have a0 ∈ Aβ because
of a0 ∈

∩
δ<β Aδ. Thus by induction on β, we have a0 ∈

∩
β<α Aβ and

therefore u(α) ≤ a0(α), a contradiction. �

Claim 2. u is the greatest lower bound of A.
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Proof. Let u < v ∈ X. It suffices to find a ∈ A with a < v. Take
α < γ with u �α = v �α and u(α) < v(α). By u(α) < v(α) ≤ 1α, we
have α < α0 therefore ∅ ̸=

∩
β<α Aβ. Using the definition of u(α), take

a ∈
∩

β<α Aβ with a(α) < v(α). Note that for every β < α, a(β) = u(β)
holds because of a ∈ Aβ. Therefore we have a �α = u �α = v �α and
a(α) < v(α) thus a < v. �

Now we have u = infX A. �
But countable compactness is not preserved by the lexicograhic or-

dered products.

Example 2.2. There is a countably compact LOTS Z whose square
Z2 with the lexicograhic ordered topology is not countably compact.

To see this, let {xα : 0 < α < ω1} be a set of distinct points which
is disjoint from ω1. Our LOTS is Z = ω1 ∪ {xα : 0 < α < ω1}
with the following order <Z . The order <Z on ω1 coincides with the
usual order on ω1. The order <Z on {xα : 0 < α < ω1} is given
by xα <Z xβ ⇔ β < α. Finally xα <Z 0 <Z β holds for every
α, β ∈ ω1 \ {0}. Then obviously the LOTS Z is countably compact.
Since the lexicograhic ordered space Z2 contains the closed discrete
subspace Z × {0}, Z2 is not countably compact.

Since countable compactness and ω-boundedness of GO-spaces coin-
cide [2, Theorem 3], we remark:

Proposition 2.3. The usual Tychonoff product space of arbitrary many
countably compact GO-spaces is also countably compact.

Theorem 2.4. Let α(n) and γn be ordinals with α(n) < γn for every
n < ω moreover let X = Πn<ωγn be the lexicographic ordered space with
the order < and Y = Πn<ω[0, α(n)], where [0, α(n)] = α(n) + 1. Then:

(1) the restriction <� Y of the order < on Y coincides with the
lexicographic order on Y ,

(2) the lexicographic ordered topology λ(<�Y ) on Y coincides with
the subspace topology τ = λ(<) � Y on Y of the lexicographic
ordered topology λ(<) of X.

Proof. (1) is obvious.
(2): We may assume 2 ≤ |Y |. λ(<�Y ) ⊂ τ is obvious, so for every

x ∈ X, it suffices to see (←, x)X ∩ Y, (x,→)X ∩ Y ∈ λ(<� Y ). Let
x ∈ X. When x ∈ Y , we have (←, x)X ∩ Y = (←, x)Y ∈ λ(<� Y ).
Similarly we have (x,→)X ∩ Y ∈ λ(<�Y ), so we may assume x /∈ Y .
Let

n0 = min{n < ω : x(n) > α(n)}.
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Case 1. x(n) = α(n) for all n < n0.

In this case, since (←, x)X ∩ Y ⊃ Y holds, we have (←, x)X ∩ Y =
Y ∈ λ(<�Y ) and (x,→)X ∩ Y = ∅ ∈ λ(<�Y ).

Case 2. Otherwise.

Set

n1 = max{n < n0 : x(n) < α(n)}.
Define y ∈ Y by for each n < ω,

y(n) =


x(n) if n < n1,

x(n) + 1 if n = n1,

0 if n > n1,

Obviously, x < y holds.

Claim 1. (←, x)X ∩ Y = (←, y)Y .

Proof. “⊂” is obvious because of x < y.
⊃: Let u ∈ (←, y)Y . It follows from u < y that for some n2 < ω,

u � n2 = y � n2 and u(n2) < y(n2) hold. Because of y(n) = 0 for
every n > n1, we have n2 ≤ n1, therefore x � n2 = y � n2 = u � n2.
When n2 < n1, it follows from u(n2) < y(n2) = x(n2) that u < x.
Thus u ∈ (←, x)X ∩ Y . Next we consider the case “n2 = n1”. By
u(n1) = u(n2) < y(n2) = y(n1) = x(n1) + 1, we have u(n1) ≤ x(n1).
The maximality of n1 ensures that

(*) α(n) = x(n) for every n < n0 with n1 < n.

Noting u(n0) ≤ α(n0) < x(n0), in the case “u(n1) < x(n1)”, we evi-
dently have u < x, also in the case “u(n1) = x(n1), we have u < x by
(*). Therefore u ∈ (←, x)X ∩ Y . �

Now let

z(n) =

{
x(n) if n ≤ n1,

α(n) if n > n1.

Then obviously z ∈ Y and z < x.

Claim 2. (x,→)X ∩ Y = (z,→)Y .

Proof. “⊂” is obvious because of z < x.
⊃: Let u ∈ (z,→)Y . It follows from z < u that for some n2 < ω,

z � n2 = u � n2 and z(n2) < u(n2) hold. Because of z(n) = α(n) for
every n > n1 and u ∈ Y , we have n2 ≤ n1, therefore u � n2 = z �
n2 = x �n2. Also by n2 ≤ n1, we have u(n2) > z(n2) = x(n2), we have
x < u. Therefore u ∈ (x,→)X ∩ Y . �
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These claims show (←, x)X ∩ Y, (x,→)X ∩ Y ∈ λ(<�Y ). �
Corollary 2.5. If α and β are ordinals with β < α, then the lex-
icographic ordered space [0, β]ω is a subspace of the the lexicographic
ordered space αω.

Corollary 2.6. Let γn be ordinals with cfγn ̸= ω for each n < ω. Then
the lexicographic ordered space X = Πn<ωγn is countably compact.

Proof. Let {xm : m < ω} ⊂ X. For each n < ω, let α(n) = sup{xm(n) :
m < ω}. Note α(n) < γn by cfγn ̸= ω. Then {xm : m < ω} is a
subset of Y = Πn<ω[0, α(n)]. By Lemma 2.1 and the theorem above,
the subspace Y of X is compact. This argument shows that X is
ω-bounded. �
Corollary 2.7. Both lexicographic ordered spaces ωω

1 and ω2
1 are count-

ably compact.

For ω2
1, set γn = 1 for every n < ω with 2 ≤ n.

The theorem above evidently shows:

Corollary 2.8. The subspace topology on Y = 2ω of the lexicographic
ordered space X = 3ω coincides with the lexicographic ordered topology
of Y = 2ω, where 3 = {0, 1, 2}.

Example 2.9. The subspace topology on Y = 2ω+1 of the lexico-
graphic ordered space X = 3ω+1 does not coincide with the lexico-
graphic ordered topology of Y = 2ω+1.

To see this, define x ∈ Y and z ∈ X by:

x(n) =

{
0 if n < ω,

1 if n = ω,

z(n) =

{
0 if n < ω,

2 if n = ω.

Obviously, z is the immediate successor of x in X therefore (←, z)X ∩
Y = (←, x]Y is open with respect to the subspace topology on Y of the
lexicographic ordered space space X.

On the other hand, x does not have an immediate successor in Y .
To see this, let x < u ∈ Y . Take n0 ≤ ω with x � n0 = u � n0 and
x(n0) < u(n0). It follows from 1 = x(ω) and u(n0) ≤ 1 that n0 < ω.
Let y ∈ Y by:

y(n) =

{
0 if n ≤ n0,

1 if n0 < n ≤ ω.
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Then we have x < y < u. Therefore x does not have an immediate
successor in Y . This shows that (←, x]Y is not open with respect to
the lexicographic ordered topology of Y = 2ω+1.

This argument also shows that the closed subspace (x,→)Y = [z,→
)X ∩Y of Y , where Y is considered as the subspace of the lexicographic
ordered space X, has the open cover {(u,→)Y : x < u ∈ Y } which does
not have a finite subcover. Thus the subspace Y of X is not compact.

Example 2.10. The lexicographic ordered space X = ωω+1
1 is not

countably compact.

To see this, for each m < ω, define xm ∈ X by:

xm(n) =


n if m ̸= n < ω,

n+ 1 if m = n < ω,

0 if n = ω,

for every n ≤ ω. Note that the sequence {xm : m < ω} is strictly
decreasing. It suffices to see that F = {xm : m < ω} is closed discrete
in X. Let x ∈ X. If there is m < ω with xm < x, then (xm,→) is a
neighborhood of x which meets F with at most finite members. So we
may assume that x ≤ xm for all m < ω. In particular, by x ≤ x1, we
have 0 ≤ x(0) ≤ x1(0) = 0 therefore we see x(0) = 0.

Case 1. x(n) < n for some n < ω.

In this case, take such a least n0 < ω. Then x(n) ≥ n for all n < n0.
Assuming x(n) > n for some n < n0, take such a least n1 < ω. Then
n1 > 0 and for all n < n1, x(n) = n. Now we have xn1+1(n) = x(n) = n
for all n < n1 and xn1+1(n1) = n1 < x(n1). Thus xn1+1 < x holds, a
contradiction. Therefore for all n < n0, we have x(n) = n. For each
n ≤ ω, let

b(n) =


n if n < n0,

x(n) + 1 if n = n0,

0 if n0 < n ≤ ω.

Then x < b and b(n0) = x(n0) + 1 ≤ n0. So we have b(n) ≤ n for all
n < ω. To see (←, b) ∩ F = ∅, assume on the contrary that xm < b for
some m < ω. Take n1 < ω with xm �n1 = b �n1 and xm(n1) < b(n1).
We see n1 ≤ n0 because b(n) = 0 whenever n0 < n. Therefore we have
n1 ≤ xm(n1) < b(n1) ≤ n1, a contradiction.

Case 2. x(n) ≥ n for all n < ω.

If there were n < ω with x(n) > n, then take such a least n0. Then
xn0+1 < x holds, a contradiction. Thus we have x(n) = n for all n < ω.
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For each n ≤ ω, let

b(n) =

{
n if n < ω,

x(n) + 1 if n = ω.

Then x < b and (←, b) ∩ F = ∅.
Remark 2.11. The referee of the present paper informed to the author
that there is a simple way to see Example 2.10 as follows.

First we show “If {xn : n ∈ ω} is a strictly decreasing sequence in
a LOTS L, then in the lexicographic ordered space L × ω1, {⟨xn, 0⟩ :
n ∈ ω} is closed discrete”. Now let X = ωω+1

1 and L = ωω
1 , then

X = L× ω1. Define xn ∈ L by

xn(m) =

{
m if m ̸= n,

m+ 1 if m = n.

Then obviously {xn : n ∈ ω} is a strictly decreasing sequence in L.
Apply the above fact.

3. the lexicographic ordered topology versus the usual
product topology

Remark that the lexicographic ordered topology λ onX = (ω+1)×ω
cannot be compared with the usual Tychonoff product topology τ onX,
because of, ⟨1, 0⟩ ∈ Clλ{0}×ω, ⟨1, 0⟩ /∈ Clτ{0}×ω, ⟨ω, 1⟩ /∈ Clλω×{1}
and ⟨ω, 1⟩ ∈ Clτω×{1}. On the other hand, the lexicographic ordered
topology on ω × (ω + 1) coincides with the usual Tychonoff product
topology. In this section, we discuss when these topologies on products
of ordinals are comparable.

At first, we consider the lexicographic ordered products of infinite
length.

Lemma 3.1. Let Xn be a discrete LOTS (having any order) with
|Xn| ≥ 1 for every n < ω. Then the lexicographic ordered topology
λ on X = Πn<ωXn is weaker than the usual Tychonoff product topology
τ on X, that is, λ ⊂ τ .

Proof. We may assume |X| ≥ 2. It suffices to see that (a,→), (←, a) ∈
τ for every a ∈ X. Let a ∈ X and x ∈ (a,→). Fix n0 < ω with a �n0 =
x �n0 and a(n0) < x(n0). Let U = {y ∈ X : ∀n ≤ n0(y(n) = x(n))}.
Then U is τ -open with x ∈ U ⊂ (a,→). Therefore (a,→) is τ -open.
(←, a) ∈ τ is similar. �
Corollary 3.2. A LOTS X is discrete iff the lexicographic ordered
topology on X2 is weaker than the usual Tychonoff product topology on
X2.
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Proof. One direction follows from the lemma above. The other direc-
tion follows from the proof of Lemma 1.2. �
Theorem 3.3. Let γ be an ordinal with γ ≥ ω and for every α < γ let
βα be an ordinal with 2 ≤ βα. Then the lexicographic ordered topology
λ on X = Πα<γβα is weaker than the usual Tychonoff product topology
τ on X iff γ = ω and for every α < γ, βα ≤ ω holds.

Proof. “if” part follows from Lemma 3.1. To see the other direction,
assume λ ⊂ τ .

Claim 1. γ = ω.

Proof. Assume ω < γ. Put

Y = {x ∈ X : ∀α ≤ ω(x(α) ∈ 2), ∀α < γ(ω < α→ x(α) = 0)}.
Let x be the smallest element of X, that is, x(α) = 0 for every α < γ.
Then note x ∈ Y . For every m < ω, define xm ∈ Y by

xm(α) =

{
0 if m ̸= α,

1 if m = α,

for every α < γ. Then obviously x ∈ Clτ{xm : m < ω} holds. On the
other hand, define b ∈ Y by

b(α) =

{
0 if α ̸= ω,

1 if α = ω,

for every α < γ. Then x < b < xm for every m < ω, thus x /∈ Clλ{xm :
m < ω} holds. Therefore λ ̸⊂ τ , a contradiction. �

Claim 2. βn ≤ ω for every n < γ = ω.

Proof. Assume ω < βn0 for some n0 < γ. Define xm, x, a ∈ X, where
m < ω, by:

xm(n) =


0 if n < n0,

m if n = n0,

1 if n0 < n < γ,

x(n) =


0 if n < n0,

ω if n = n0,

1 if n0 < n < γ,

a(n) =


0 if n < n0,

ω if n = n0,

0 if n0 < n < γ,
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for every n < γ = ω. Then obviously x ∈ Clτ{xm : m < ω} holds.
And the element a witnesses x /∈ Clλ{xm : m < ω}. Therefore λ ̸⊂ τ ,
a contradiction. �

�
Theorem 3.4. Let γ be an ordinal with γ ≥ ω and for every α < γ let
βα be an ordinal with 2 ≤ βα. Then the lexicographic ordered topology
λ on X = Πα<γβα coincides with the usual Tychonoff product topology
τ on X iff γ = ω, β0 ≤ ω and for every α < γ with 1 ≤ α, βα < ω
holds.

Proof. “only if” part: It follows from the theorem above that γ = ω
and βn ≤ ω for every n < γ = ω. Assume βn0 = ω for some n0 < ω
with 1 ≤ n0. Define xm, x ∈ X, where m < ω, by:

xm(n) =

{
0 if n ̸= n0,

m if n = n0,

x(n) =

{
0 if n ̸= n0 − 1,

1 if n = n0 − 1,

for every n < γ = ω. Then xm < x holds for every m < ω.
To see x ∈ Clλ{xm : m < ω}, let a < x. Take n1 < ω with

a �n1 = x �n1 and a(n1) < x(n1). By the definition of x, it has to be
n1 = n0 − 1 and a(n1) < x(n1) = x(n0 − 1) = 1. Therefore we have
a(n1) = 0. Take m < ω with a(n0) < m, then a < xm. This argument
shows x ∈ Clλ{xm : m < ω}.

Let U = {y ∈ X : y(n0 − 1) = 1, y(n0) = 0}. Then U is a τ -
neighborhood of x which is disjoint from {xm : m < ω}, thus x /∈
Clτ{xm : m < ω}. Hence τ ̸⊂ λ, a contradiction.

“if” part: Assume that 2 ≤ β0 ≤ ω and for every n < ω with 1 ≤ n,
2 ≤ βn < ω. We shall show that the lexicographic ordered topology λ
on X = Πn<ωβn coincides with the usual Tychonoff topology τ on X.
λ ⊂ τ follows from Lemma 3.1. To see τ ⊂ λ, let n0 < ω, p ∈ Πn<n0βn

and U = {x ∈ X : p = x �n0}. It suffices to see:

Claim. U ∈ λ.

Proof. Since p = ∅ and U = X ∈ λ when n0 = 0, we may assume
n0 > 0. For every n < ω, let 0n and 1n denote min βn and max βn

respectively if exists, that is, 0n = 0 for every n < ω, and 1n = βn − 1
for every n < ω with 1 ≤ n. Moreover, 1n = βn − 1 holds when
n = 0 and βn < ω. In the case “n = 0 and βn = ω”, for notational
convenience, we let 1n = ω.
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Case 1. p(n) = 0n for every n < n0.

Define b ∈ X by

b(n) =


p(n) if n < n0 − 1,

p(n) + 1 if n = n0 − 1,

0n if n > n0 − 1,

for every n < ω. Then it is straightforward to see U = (←, b) ∈ λ.

Case 2. p(n) = 1n for every n < n0.

Define a ∈ X by

a(n) =


p(n) if n < n0 − 1,

p(n)− 1 if n = n0 − 1,

1n if n > n0 − 1,

for every n < ω. Then U = (a,→) ∈ λ holds.

Case 3. Otherwise.

We consider 3 subcases.

Subcase 1. p(n0 − 1) = 0n0−1.

In this case, let n1 = max{n < n0 − 1 : 0n < p(n)}. Define a, b ∈ X by

a(n) =


p(n) if n < n1,

p(n)− 1 if n = n1,

1n if n > n1,

b(n) =


p(n) if n < n0 − 1,

p(n) + 1 if n = n0 − 1,

0n if n > n0 − 1,

for every n < ω.
We shall show U = (a, b) ∈ λ. “U ⊂ (a, b)” is obvious. To see

“(a, b) ⊂ U”, let x ∈ (a, b). By a < x, take n2 < ω with a �n2 = x �n2

and a(n2) < x(n2). By the definition of a, we have n2 ≤ n1. Then we
have n2 = n1, otherwise b < x, a contradiction. Therefore x � n1 =
p � n1. It follows from x(n1) = x(n2) > a(n2) = a(n1) = p(n1) − 1
that x(n1) ≥ p(n1). Now we have x(n1) = p(n1), otherwise b < x,
a contradiction. Moreover we have x(n) = 0n for every n < ω with
n1 < n < n0 − 1, otherwise b < x, a contradiction. Thus we have
x �(n0− 1) = p �(n0− 1) = b �(n0− 1). Finally we have x(n0− 1) = 0,
otherwise x ≥ b, a contradiction. Therefore we have x � n0 = p thus
x ∈ U .
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Subcase 2. p(n0 − 1) = 1n0−1.

In this case, let n1 = max{n < n0 − 1 : p(n) < 1n}. Define a, b ∈ X by

a(n) =


p(n) if n < n0 − 1,

p(n)− 1 if n = n0 − 1,

1n if n > n0 − 1,

b(n) =


p(n) if n < n1,

p(n) + 1 if n = n1,

0n if n > n1,

for every n < ω. Then similarly we have U = (a, b) ∈ λ.

Subcase 3. 0n0−1 < p(n0 − 1) < 1n0−1.

In this case, define a, b ∈ X by

a(n) =


p(n) if n < n0 − 1,

p(n)− 1 if n = n0 − 1,

1n if n > n0 − 1,

b(n) =


p(n) if n < n0 − 1,

p(n) + 1 if n = n0 − 1,

0n if n > n0 − 1,

for every n < ω. Then it is easy to see U = (a, b) ∈ λ. �
�

These theorems imply:

Corollary 3.5. The lexicographic ordered topology on ω×2ω = ω×2×
2×· · · coincides with its usual Tychonoff product topology. The lexico-
graphic ordered topology on ωω strictly weaker than its usual Tychonoff
product topology.

Corollary 3.6. Let βn be an ordinal with 2 ≤ βn < ω for every n < ω.
Then the lexicographic ordered space X = Πn<ωβn is homeomorphic to
the Cantor set C, that is, C = 2ω with the usual Tychonoff product
topology. In particular, the lexicographic ordered spaces 2ω and 3ω are
homeomorphic each other and metrizable.

Proof. It is well-known that every compact zero-dimensional second
countable space without isolated points is homeomorphic to the Cantor
set, for instance see [5, Theorem 1.5.5]. Here a space is said to be
zero-dimensional if it has a base consisting clopen sets. Using this
characterization, we easily show that the usual Tychonoff product space
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X = Πn<ωβn is homeomorphic to the Cantor set. Now apply Theorem
3.4. �

Example 3.7. The lexicographic ordered spaces 2ω+1 and 3ω+1 are not
homeomorphic.

To see this, first note that the lexicographic ordered space 2ω+1 has
only two isolated points, that is, the smallest and the largest elements.
On the other hand, all elements of A = {x ∈ 3ω+1 : x(ω) = 1} are
isolated in the lexicographic ordered space 3ω+1. Because for each
x ∈ A, let x−, x+ ∈ 3ω+1 by

x−(n) =

{
x(n) if n < ω,

0 if n = ω,

x+(n) =

{
x(n) if n < ω,

2 if n = ω,

for every n ≤ ω. then {x} = (x−, x+)3ω+1 for each x ∈ A.

Example 3.8. The lexicographic ordered spaceX = 2ω+1 is not metriz-
able.

To see this, assume that X is metrizable. Since it is compact, it has
a countable base {Bn : n < ω} for X. Let A = {x ∈ X : x(ω) = 0}.
Note |A| = 2ω, here 2ω means the cardinality of 2ω. Remark that every
x ∈ A has the immediate successor x+ in X defined by

x+(n) =

{
x(n) if n < ω,

1 if n = ω,

for every n ≤ ω. Therefore (←, x]X is open in X for every x ∈ A. So
for every x ∈ A, one can fix n(x) < ω with x ∈ Bn(x) ⊂ (←, x]X . By
cf2ω > ω, for some A′ ⊂ A with |A′| = 2ω and n < ω, n(x) = n holds
for every x ∈ A′. Pick any x, y ∈ A′ with x < y. Then x ∈ Bn ⊂ (←
, x]X ̸∋ y, a contradiction. Therefore X is not metrizable.

The situation of products of finite sequences of ordinals is somewhat
different from that of infinite sequences.

Theorem 3.9. Let 2 ≤ n0 < ω and for every n ≤ n0, βn be an
ordinal with 2 ≤ βn. Then the lexicographic ordered topology λ on
X = Πn≤n0βn is weaker than the usual Tychonoff product topology τ on
X iff for every n < n0, βn ≤ ω holds.
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Proof. “only if” part: Assume λ ⊂ τ and βn1 > ω for some n1 < n0.
Define xm, x ∈ X, where m < ω, by:

xm(n) =


0 if n /∈ {n1, n1 + 1},
m if n = n1,

1 if n = n1 + 1,

x(n) =


0 if n /∈ {n1, n1 + 1},
ω if n = n1,

1 if n = n1 + 1,

for every n ≤ n0. Then we have x ∈ Clτ{xm : m < ω}. But a ∈ X
defined by

a(n) =

{
0 if n ̸= n1,

ω if n = n1,

for every n ≤ n0 witnesses x /∈ Clλ{xm : m < ω}, a contradiction.
“if” part: Assume βn ≤ ω for every n < n0. It suffices to see

(a,→), (←, a) ∈ τ for every a ∈ X. Let a ∈ X and x ∈ (a,→).
Take n1 ≤ n0 with a � n1 = x � n1 and a(n1) < x(n1). In the case
“n1 < n0”, let U = {y ∈ X : ∀n ≤ n1(y(n) = x(n))}. Then U is
a τ -neighborhood of x contained in (a,→). In the case “n1 = n0”,
let U = {y ∈ X : ∀n < n1(y(n) = x(n)), a(n0) < y(n0)}. Then U
is a τ -neighborhood of x contained in (a,→). Therefore (a,→) ∈ τ .
(←, a) ∈ τ is similar. �
Theorem 3.10. Let 2 ≤ n0 < ω and for every n ≤ n0, βn be an
ordinal with 2 ≤ βn. Then the lexicographic ordered topology λ on
X = Πn≤n0βn coincides with the usual Tychonoff product topology τ on
X iff β0 ≤ ω, for every n < n0 with 1 ≤ n, βn < ω holds moreover βn0

is a successor ordinal, that is, cfβn0 = 1.

Proof. “only if” part: Assume λ = τ . We have βn ≤ ω for every n < n0

by the previous theorem, in particular β0 ≤ ω.
Assume that for some n1 < n0 with 1 ≤ n, βn1 = ω holds. Define

xm, x ∈ X, where m < ω, by:

xm(n) =

{
0 if n ̸= n1,

m if n = n1,

x(n) =

{
0 if n ̸= n1 − 1,

1 if n = n1 − 1,

for every n ≤ n0. Then as we have seen somewhere above, we have
x ∈ Clλ{xm : m < ω} and x /∈ Clτ{xm : m < ω}, a contradiction.
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Assume that βn0 is limit. Define xα, x ∈ X, where α < βn0 , by:

xα(n) =

{
0 if n ̸= n0,

α if n = n0,

x(n) =

{
0 if n ̸= n0 − 1,

1 if n = n0 − 1,

for every n ≤ n0. Then we have x ∈ Clλ{xα : α < βn0} and x /∈
Clτ{xα : α < βn0}, a contradiction. Therefore βn0 is successor.

“if” part: Assume that β0 ≤ ω, βn < ω (1 ≤ n < n0) and βn0 is
successor.

To see “λ ⊂ τ”, let a ∈ X. It suffices to see (a,→), (←, a) ∈ τ . Let
x ∈ (a,→) and take n1 ≤ n0 with a �n1 = x �n1 and a(n1) < x(n1).
In the case “n1 < n0”, U = {y ∈ X : y � (n1 + 1) = x � (n1 + 1)} is a
τ -neighborhood of x contained in (a,→).

In the case “n1 = n0”, U = {y ∈ X : y �n0 = x �n0, a(n0) < y(n0)}
is a τ -neighborhood of x contained in (a,→). Thus we see (a,→) ∈ τ .
(←, a) ∈ τ is similar.

To see “τ ⊂ λ”, for every p ∈ Πn<n0βn, let Xp = {y ∈ X : y �n0 =
p}. Note that Xp is a convex set with respect to the lexicographic order
< on X, therefore we have λ(<�Xp) = λ(<) �Xp (= λ �Xp). Also
note that Xp is τ -open, because βn is discrete for every n < n0. Since
λ(<�Xp) coincides with τ �Xp, it suffices to see:

Claim. Xp ∈ λ for every p ∈ Πn<n0βn.

But by letting U = Xp, the proof of this claim is very similar to that
of the Claim in Theorem 3.4. So we leave it to the readers. �
Remark 3.11. The referee also gives the following easy proof of the
“if” part of the theorem above.

Assume that β0 ≤ ω, βn < ω (1 ≤ n < n0) and βn0 is successor.
Then it is easy to see that Πn<n0βn is finite or homeomorphic to ω
in both lexicographic and usual Tychonoff product topology. Thus we
may regard Πn≤n0βn as k × βn0 for some k ≤ ω. It is obvious that
whenever k ≤ ω, k × βn0 is homeomorphic to the topological sum of k
many copies of βn0 in both lexicographic and usual Tychonoff product
topology since βn0 is successor.

Remark 3.12. Using the theorems above, for instance, we see the
following, where as above λ and τ denote the lexicographic ordered
topology and the usual Tychonoff topology on X respectively.

• If X is one of ω1 × 2 and ω × ω1 × ω, then λ ̸⊂ τ .
• If X is one of ω × ω × ω1 and ω × ω × (ω1 + 1), then λ ( τ
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• If X is one of ω×(ω+1), ω×(ω1+1) and ω×2×3×4×(ω1+1),
then λ = τ
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