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Abstract. We prove that for non-discrete spaces X and Y ,
(1) If the product space X × Y is suborderable, then both X

and Y are hereditarily paracompact and there is a unique
regular infinite cardinal κ such that for every z ∈ X ∪ Y , the
cofinality from left (right) of z (this notion will be defined
precisely below) is either 0, 1 or κ.

(2) If X and Y are subspaces of an ordinal, then the converse
implication of (1) is also true.

Recently, a kind of orderability of X2 is known to be related to
selection theory, see [5, 3]. In this paper, we see the results in the
abstract.

Spaces mean regular topological spaces. Let < be a linear order on
a set X. λ(<) denotes the usual order topology, that is, the topology
generated by

{(a,→) : a ∈ X} ∪ {(←, b) : b ∈ X}
as a subbase, where (a,→) = {x ∈ X : a < x}, (a, b) = {x ∈ X : a <
x < b},..., etc. If necessary, we write <X and (a, b)X instead of < and
(a, b) respectively. A LOTS X means the triple ⟨X,<, λ(<)⟩. LOTS is
an abbreviation of “Linearly Ordered Topological Space”. As usual, we
consider an ordinal α as the set of smaller ordinals and as a LOTS with
the order ∈ (we identify it with <). Similarly a Generalized Ordered
space (GO-space) means the triple ⟨X,<, τ⟩ where τ is a topology on
X with λ(<) ⊂ τ which has a base consisting convex sets, where a
subset A is convex if (a, b) ⊂ A whenever a, b ∈ A with a < b.

A topological space ⟨X, τ⟩, where τ is a topology on X, is said to be
orderable if τ = λ(<) for some linear order < on X. Also a topological
space ⟨X, τ⟩ is said to be suborderable if it is a subspace of some or-
derable space. It is well-known that orderable spaces are hereditarily
normal. Also it is well-known that:

(1) If ⟨L,<L, λ(<L)⟩ is a LOTS andX ⊂ L, then ⟨X,<L�X,λ(<L)�
X⟩ is a GO-space, where <L�X is the restricted order of <L to
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X and λ(<L)�X is the subspace topology of λ(<L) on X, that
is {U ∩X : U ∈ λ(<L)}. On the other hand:

(2) If ⟨X,<X , τ⟩ is a GO-space, then there is a LOTS ⟨L,<L, λ(<L

)⟩ with X ⊂ L such that the space ⟨X, τ⟩ is a dense subspace
of ⟨L, λ(<L)⟩ and <X=<L�X, therefore ⟨X, τ⟩ is suborderable.
Obviously a suborderable space is a GO-space with some linear
order. Moreover:

(3) If ⟨X,<X , λ(<X)⟩ is a LOTS, then there is a LOTS ⟨L,<L

, λ(<L)⟩ with X ⊂ L and <X=<L� X such that the space
⟨L, λ(<L)⟩ is compact and contains ⟨X,λ(<X)⟩ as a dense sub-
space. Therefore by (2) and (3), we have:

(4) If ⟨X,<X , τ⟩ is a GO-space, then there is a compact LOTS
⟨L,<L, λ(<L)⟩ with X ⊂ L and <X=<L�X such that the com-
pact space ⟨L, λ(<L)⟩ contains ⟨X, τ⟩ as a dense subspace. We
say this situation as “a GO space ⟨X,<X , τ⟩ has a linearly or-
dered compactification ⟨L,<L, λ(<L)⟩”or more simply “a GO-
space X has a linearly ordered compactification L”.

Remark that a compact LOTS ⟨L,<L, λ(<L)⟩ has the largest element
maxL and the smallest element minL. Also remark that if X is a
convex subset of a LOTS ⟨L,<L, λ(<L)⟩, then the subspace topology
λ(<L) �X coincides with the order topology λ(<�X) on X. For more
details, see [10] and [8]. Usually, if there are no confusion, we do not
distinguish the symbols <X and <L, and simply write <.

In general, a GO-space can have many linearly ordered compacti-
fications. But it is known that a GO-space X has a linearly ordered
compactification lX such that for every linearly ordered compactifi-
cation cX of X, there is a continuous function f : cX → lX with
f(x) = x for every x ∈ X, see [9]. Observe that by the definition, lX is
unique up to order isomorphisms. lX is said to be the minimal linearly
ordered compactification of X and it is characterized as follows:

Lemma 1. [9, Lemma 2.1] A linearly ordered compactification cX of
a GO-space X is minimal if and only if (a, b)cX ̸= ∅ for every a, b ∈
cX \X with a < b.

Let {Xα : α ∈ Λ} be a pairwise disjoint collection of spaces Xα’s.⊕
α∈ΛXα denotes the topological sum ofXα’s, that is, the space

∪
α∈Λ Xα

with the topology generated by
∪

α∈Λ τα as a base, where τα is the topol-
ogy on Xα. Remark that the subspace {0} ∪ (1, 2) of the real line is
suborderable but not orderable. This means that the topological sum
of orderable spaces need not be orderable. On the other hand, the
infinite discrete space D(κ) of cardinality κ is orderable, because the
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LOTS κ × Z with the lexicographic order is homeomorphic to D(κ),
where Z is the set of integers.

Let S be a subset of an ordinal α. Limα(S) denotes the set {β ∈ α :
sup(S ∩ β) = β}, that is, the set of all cluster points of S in α. If the
contexts are clear, we simply write as Lim(S). Obviously if S is closed
in α, then Lim(S) ⊂ S. Succ(S) denotes the set S \ Lim(S), that is
the set of all isolated points of S.

A subset S of a regular uncountable cardinal κ is stationary if it
intersects with all closed unbounded (club) set C of κ, where a subset
C of κ is unbounded if for every α < κ, there is β ∈ C with α ≤ β.
Note that if S is unbounded in κ, then Lim(S) is club in κ.

Lemma 2. Let S be a stationary set in a regular uncountable cardinal
κ and X a non-discrete space of cardinality < κ. Then the subspace
X × S of X × κ is not hereditarily normal.

Proof. Let x be a non-isolated point of X and Y = (X \ {x}) × S ∪
{x} × Succ(S). Then it is routine to check that F0 = {x} × Succ(S)
and F1 = (X \ {x})× (S ∩ Lim(S)) are disjoint closed sets in Y which
cannot be separated by disjoint open sets. �
Lemma 3. Let κ and λ be regular infinite cardinals with κ ̸= λ. Then
the subspace (Succ(κ) ∪ {κ})× (Succ(λ) ∪ {λ}) of (κ+ 1)× (λ+ 1) is
not suborderable.

Proof. Let X = Succ(κ) ∪ {κ} and Y = Succ(λ) ∪ {λ} and assume
that X × Y is suborderable. Denote the product topology of X × Y
by τ . Fix a linearly ordered set ⟨L,<L⟩ such that X × Y ⊂ L and
λ(<L) � X × Y = τ , where λ(<L) denotes the order topology on L.
Denote the restricted order <L� X × Y on X × Y by <. We may
assume ω ≤ κ < λ. Let F0 = {κ} × Succ(λ) and F1 = Succ(κ)× {λ}.
Put

F−
0 = {β ∈ Succ(λ) : ⟨κ, β⟩ < ⟨κ, λ⟩},

F+
0 = {β ∈ Succ(λ) : ⟨κ, λ⟩ < ⟨κ, β⟩},

F−
1 = {α ∈ Succ(κ) : ⟨α, λ⟩ < ⟨κ, λ⟩},

F+
1 = {α ∈ Succ(κ) : ⟨κ, λ⟩ < ⟨α, λ⟩}.

Note F0 = {κ} × (F−
0 ∪ F+

0 ) and F1 = (F−
1 ∪ F+

1 )× {λ}.
Claim 1. |F−

1 | < κ or |F+
1 | < κ.

Proof. Assume that both F−
1 and F+

1 have cardinality κ. For every
α ∈ F−

1 , since (←, ⟨κ, λ⟩)L ∩ X × Y is a τ -neighborhood of ⟨α, λ⟩
in X × Y , there is g(α) < λ such that {α} × (g(α), λ] ∩ X × Y ⊂
(←, ⟨κ, λ⟩)L ∩X × Y , where (←, ⟨κ, λ⟩)L denotes the interval in L and
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(g(α), λ] denotes the usual interval in λ+1. Similarly for every α ∈ F+
1 ,

we can find g(α) < λ such that {α} × (g(α), λ] ∩X × Y ⊂ (⟨κ, λ⟩,→
)L ∩X × Y .

Put β0 = sup{g(α) : α ∈ F−
1 ∪ F+

1 }. Then by κ < λ, we have
β0 < λ. Pick β ∈ (β0, λ) ∩ Succ(λ). We may assume β ∈ F−

0 , then
⟨κ, β⟩ <L ⟨κ, λ⟩. On the other hand, by |F+

1 | = κ and F+
1 × {β} ⊂

(⟨κ, λ⟩,→)L, we have ⟨κ, β⟩ ∈ ClτF
+
1 × {β} ⊂ [⟨κ, λ⟩,→)L. Therefore

⟨κ, λ⟩ ≤L ⟨κ, β⟩, a contradiction. �
Now we may assume |F+

1 | < κ, then |F−
1 | = κ and ⟨κ, λ⟩ ∈ ClτF

−
1 ×

{λ} ⊂ (←, ⟨κ, λ⟩]L
Claim 2. |F+

0 | = λ.

Proof. Assume |F+
0 | < λ, then |F−

0 | = λ. Therefore we have ⟨κ, λ⟩ ∈
Clτ{κ} × F−

0 ⊂ (←, ⟨κ, λ⟩]L. For every β ∈ F−
0 , since (⟨κ, β⟩,→)L ∩

X × Y is a τ -neighborhood of ⟨κ, λ⟩ and ⟨κ, λ⟩ ∈ ClτF
−
1 × {λ}, there

is α(β) ∈ F−
1 such that ⟨κ, β⟩ <L ⟨α(β), λ⟩. Since κ < λ, there are

α0 ∈ F−
1 and F ⊂ F−

0 of size λ such that α(β) = α0 for each β ∈
F . Note ⟨α0, λ⟩ <L ⟨κ, λ⟩. Then {κ} × F ⊂ (←, ⟨α0, λ⟩)L, therefore
Clτ{κ}×F ⊂ (←, ⟨α0, λ⟩]L. On the other hand, it follows from |F | = λ
that ⟨κ, λ⟩ ∈ Clτ{κ} × F , thus ⟨κ, λ⟩ ≤L ⟨α0, λ⟩, a contradiction. �

Now for each β ∈ F+
0 , it follows from ⟨κ, λ⟩ <L ⟨κ, β⟩ that there is

f(β) < κ such that

(∗) ((Succ(κ) ∪ {κ} ∩ (f(β), κ])× {β} ⊂ (⟨κ, λ⟩,→)L.

By κ < λ, there are α0 < κ and F ⊂ F+
0 of cardinality λ such that

f(β) = α0 for every β ∈ F .
Since |F−

1 | = κ, one can pick α ∈ F−
1 with α0 < α. Then ⟨α, λ⟩ <L

⟨κ, λ⟩. On the other hand by (∗), we have {α} × F ⊂ (⟨κ, λ⟩,→)L,
therefore ⟨α, λ⟩ ∈ Clτ{α} × F ⊂ [⟨κ, λ⟩,→)L, a contradiction. �
Definition 4. Let κ be a regular infinite cardinal, X = {Xα : α ∈ Λ}
a pairwise disjoint collection of non-empty spaces and x0 a point with
x0 /∈

∪
α∈ΛXα, where Λ ⊂ κ. Put X = (

∪
α∈ΛXα) ∪ {x0} and equip

the topology τ generated by

(
∪
α∈Λ

τα) ∪ {(
∪

α∈Λ∩(γ,κ)

Xα) ∪ {x0} : γ < κ}

as a base, where τα is the topology on Xα. We call this topological
space ⟨X, τ⟩ as 1-point extension of the topological sum

⊕
α∈ΛXα with

the κ-limit point x0 and denoted by X(X , x0).

In the definition above, remark:
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• For every α ∈ Λ, Xα is clopen in X. Thus the topological sum⊕
α∈ΛXα is a subspace of X.

• x0 has a neighborhood base of cardinality ≤ κ.
• Λ is unbounded in κ iff x0 is a non-isolated point of X.

Now let C be a club set in a regular infinite cardinal κ and α < κ.
Let

α−
C = sup(C ∩ α), α+

C = min{β ∈ C : α < β},
where sup ∅ = −1. If contexts are clear, then we usually write simply
α− and α+. Remark that α ∈ Succ(C) iff α− < α and that α < α+ for
every α ∈ C.

Lemma 5. Let κ be a regular infinite cardinal, X = {Xα : α ∈ Λ}
a pairwise disjoint collection of non-empty suborderable spaces with
Λ ⊂ Succ(C) for some club set C of κ and x0 /∈

∪
α∈ΛXα. Then

the 1-point extension X(X , x0) of
⊕

α∈Λ Xα with the κ-limit point x0

is suborderable.

Proof. For every α ∈ Λ, pick a compact LOTS ⟨Lα, <α, λ(<α)⟩ such
that ⟨Lα, λ(<α)⟩ contains ⟨X, τα⟩ as a dense subspace, where τα denotes
the topology on Xα. For every α ∈ C \Λ, let Lα = {lα} be a one point
set with the trivial order <α. By taking isomorphic compact LOTS’, we
may assume that {Lα : α ∈ C} is pairwise disjoint with x0 /∈

∪
α∈C Lα.

Let L = (
∪

α∈C Lα)∪{x0} and define a linear order <L on L as follows:

• for every x ∈
∪

α∈C Lα, x <L x0, that is, x0 = maxL,
• if x, y ∈ Lα for some α ∈ C, then x <L y is defined by x <α y,
• if x ∈ Lα and y ∈ Lα with α, β ∈ C and α ̸= β, then x <L y is
defined by α < β.

Then obviously <L�Lα coincides with <α for every α ∈ C.

Claim 1. For every α ∈ Succ(C), Lα is open in ⟨L, λ(<L)⟩.

Proof. It follows from Lα = (maxLα− ,minLα+)L that Lα is open in
⟨L, λ(<L)⟩. �

Claim 2. For every α ∈ C, ⟨Lα, λ(<α)⟩ is a convex closed subspace of
⟨L, λ(<L)⟩.

Proof. Since Lα is represented as Lα = [minLα,maxLα]L, it is closed
and convex. Therefore λ(<L)�Lα = λ(<L�Lα) = λ(<α). �

Since λ(<α)�Xα = τα for each α ∈ Λ, by the claim above, we have:

Claim 3. For every α ∈ Λ, ⟨Xα, τα⟩ is a subspace of ⟨L, λ(<L)⟩.
To finish the proof, it suffices to see:



6 NOBUYUKI KEMOTO

Claim 4. τ = λ(<L) � X, where τ denotes the topology of X =
X(X , x0).

Proof. First we prove τ ⊂ λ(<L) �X. Let B be the base (
∪

α∈Λ τα) ∪
{(
∪

α∈Λ∩(γ,κ)Xα)∪ {x0} : γ < κ} of τ . It suffices to see B ⊂ λ(<L)�X.
Let U ∈ B.
Case 1. U ∈ τα for some α ∈ Λ.

In this case by Claim 3, there is V ∈ λ(<L) with V ∩ Xα = U . By
Claim 1, we have Xα = X ∩Lα ∈ λ(<L)�X. Therefore U = V ∩Xα =
(V ∩X) ∩Xα ∈ λ(<L)�X holds.

Case 2. U = (
∪

α∈Λ∩(γ,κ) Xα) ∪ {x0} for some γ < κ.

In this case, let α0 = min(Λ∩ (γ, κ)). Then we have α0 ∈ Λ ⊂ Succ(C)
and U = ((

∪
α∈(α−

0 ,κ)∩C Lα) ∪ {x0}) ∩X = (maxLα−
0
, x0]L ∩X ∈ λ(<L

)�X.

Next we show τ ⊃ λ(<L)�X. Let z ∈ L. It suffices to see the following
two facts.

Fact 1. (←, z)L ∩X ∈ τ .

In the case z = x0, (←, z)L ∩ X =
∪

α∈ΛXα ∈ τ holds. So we may
assume z ̸= x0. Take α ∈ C with z ∈ Lα. If α /∈ Λ, then (←, z)L∩X =∪

β∈Λ∩α Xβ ∈ τ . If α ∈ Λ, then by Claim 3, we have (←, z)L ∩ Xα ∈
τα ⊂ τ , therefore (←, z)L ∩X = (

∪
β∈Λ∩α Xβ) ∪ ((←, z)L ∩Xα) ∈ τ .

Fact 2. (z,→)L ∩X ∈ τ .

In the case z = x0, (z,→)L ∩ X = ∅ ∈ τ . So we may assume
z ̸= x0. Take α ∈ C with z ∈ Lα. If α /∈ Λ, then (z,→)L ∩ X =
(
∪

β∈Λ∩(α,κ)Xβ) ∪ {x0} ∈ τ . If α ∈ Λ, then by Claim 3, we have

(z,→)L∩Xα ∈ τα ⊂ τ , therefore (z,→)L∩X = (
∪

β∈Λ∩(α,κ)Xβ)∪((z,→
)L ∩Xα) ∈ τ . �

�
The following corollary is well-known by different approaches.

Corollary 6. If X = {Xα : α ∈ Λ} is a pairwise disjoint collection
of non-empty suborderable spaces, then the topological sum

⊕
α∈Λ Xα

is also suborderable.

Proof. We may assume that all Xα’s are non-empty. Take a suitably
large regular infinite cardinal κ with |Λ| ≤ κ and we may assume
Λ ⊂ Succ(κ). By the lemma above, X(X , x0) is suborderable for some
x0. Therefore the subspace

⊕
α∈Λ Xα of X(X , x0) is suborderable. �
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This corollary shows:

Corollary 7. If X is a suborderable space and Y is a discrete space,
then X × Y is suborderable.

Therefore when we discuss suborderability of X×Y , we may assume
that both X and Y are non-discrete. Additionally remark that, if X is
an orderable space and Y is a discrete space, then X × Y is orderable.

Corollary 8. Let κ be a regular infinite cardinal. Then X = (Succ(κ)∪
{κ})2 is suborderable.

Proof. For every α ∈ Succ(κ). let

Xα = ({α} × [α, κ] ∩X)
⊕

((α, κ]× {α} ∩X),

moreover let
X = {Xα : α ∈ Succ(κ)}.

Then obviously X is a pairwise disjoint collection of suborderable spaces.
One can check that the both topologies of X and X(X , ⟨κ, κ⟩) coincide
by carefully comparing the both neighborhood bases at ⟨κ, κ⟩. The
lemma above shows that X is suborderable. �

In particular, (ω + 1)2 is suborderable ([7]).
Remark:

Lemma 9. [1, Problem 3.12.3(a)] Let ⟨L,<, λ(<)⟩ be a LOTS. Then
the following are equivalent:

(1) The space ⟨L, λ(<)⟩ is compact.
(2) For every subset A of L, A has the least upper bound supL A in
⟨L,<⟩.

(3) For every subset A of L, A has the greatest lower bound infL A
in ⟨L,<⟩.

Note that sup ∅ = minL and inf ∅ = maxL whenever L is a compact
LOTS.

Definition 10. Let L be a compact LOTS and x ∈ L. A subset
A ⊂ (←, x)L is said to be 0-unbounded for x in L if for every y < x,
there is a ∈ A with y ≤ a. Similarly for a subset A ⊂ (x,→)L, “1-
unbounded for x” is defined. Now 0-cofinality 0- cfL x of x in L is
defined by:

0- cfL x = min{|A| : A is 0-unbounded for x in L.}.
Also 1- cfL x is defined. If there are no confusion, we write simply 0- cf x
and 1- cf x. Observe that

• if x is the smallest element of L, then 0- cf x = 0,
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• if x has the immediate predecessor in L, then 0- cf x = 1,
• otherwise, then 0- cf x is a regular infinite cardinal.

Moreover, remark:

• ω ≤ 0- cf x iff supL(←, x)L = x iff x ∈ ClL(←, x)L.

If 0- cf x = κ, then we can define a strictly increasing function c :
κ→ L which is continuous with its range c[κ] 0-unbounded for x. We
call such a function c as a 0-normal function for x in L. The reader
should remark that these methods in compact LOTS’ extend the usual
methods in ordinal numbers.

Observe that in the notation above, for every closed set F of κ, c[F ]
is also closed in (←, x)L. Therefore c is an embedding such that c[κ] is
closed in (←, x) and 0-unbounded for x. Note that there can be many
0-normal functions for x in L.

Also note that if cX and c′X are two linearly ordered compacti-
fications of a GO-space X, then i- cfcX x coincides with i- cfc′X x for
every x ∈ X and i ∈ 2 = {0, 1}. In our discussion, we apply these
methods for L = lX with a GO-space X and consider 0-cf lX x or 1-
cf lX x for x ∈ lX. In particular, if X is a subspace of an ordinal, say
X ⊂ [0, γ], with the usual order, then we can check using Lemma 1
lX = Cl[0,γ]X. Moreover in this case, for every x ∈ lX, obviously 1- cf x
is 0 or 1, furthermore we can easily check that 0- cf x is equal to cf x in
the usual sense whenever x ∈ Lim(X). Let X be a GO-space, x ∈ X,
κ = 0- cf x ≥ ω and fix a 0-normal function c : κ→ lX. Inductively one
can take a strictly increasing sequence {x(α) : α < κ} ⊂ (←, x)lX ∩X
with sup({c(β) : β ≤ α} ∪ {x(β) : β < α}) < x(α). Then obviously
{x(α) : α < κ} ∪ {x} is homeomorphic to Succ(κ) ∪ {κ}. Similarly
whenever X is a subspace of an ordinal and α ∈ X ∩ Lim(X), one can
fix a strictly increasing sequence {α(γ) : γ < κ} ⊂ X which is cofinal
in α such that {α(γ) : γ < κ}∪{α} is homeomorphic to Succ(κ)∪{κ},
where κ = cf α.

Engelking and Lutzer [2] proved that a suborderable space is para-
compact iff it does not have a closed subspace which is homeomorphic
to a stationary set in a regular uncountable cardinal. Therefore:

Lemma 11 ([2]). A suborderable space is hereditarily paracompact iff
it does not have a subspace which is homeomorphic to a stationary set
in a regular uncountable cardinal.

Now we have prepared to find properties implied by suborderabil-
ity of product spaces. Remark that if the product space X × Y is
suborderable, then both X and Y are suborderable. Therfore we may
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assume that X and Y are GO-spaces under the assumption that X×Y
is suborderable.

Theorem 12. Let X and Y be non-discrete GO-spaces. If the product
space X × Y is suborderable, then

(1) X and Y are hereditarily paracompact,
(2) there is a unique regular infinite cardinal κ such that for every

z ∈ X ∪ Y and i ∈ 2, i- cf z is 0, 1 or κ, where i- cf z means
i- cf lX z (i- cf lY z) whenever z ∈ X (z ∈ Y respectively).

(3) X or Y are hereditarily disconnected.

Proof. Assume that X × Y is suborderable. Fix a linearly ordered set
⟨L,<L⟩ such that X × Y is a subspace of ⟨L, λ(<L)⟩.

(1): We will see that Y is hereditarily paracompact (the case for
X is similar). Assume not, then by Lemma 11, there is a subspace
which is homeomorphic to a stationary set S in a regular uncountable
cardinal in κ. Since X is non-discrete, there is i ∈ 2 and x ∈ X with
λ = i- cf lX x ≥ ω. As mentioned above, X has a subspace which is
homeomorphic to Succ(λ) ∪ {λ}.
Case 1. λ < κ.

In this case, by Lemma 2, the hereditarily normal space X × Y has a
non-hereditarily normal subspace, a contradiction.

Case 2. κ ≤ λ.

In this case, since S is stationary, we can take α ∈ S ∩ Lim(S). Set
µ = cf α, then µ < λ. As mentioned above, S has a subspace which
is homeomorphic to Succ(µ) ∪ {µ}. Then the suborderable space X ×
Y contains a subspace which is homeomorphic to (Succ(λ) ∪ {λ}) ×
(Succ(µ) ∪ {µ}). This contradicts Lemma 3.

(2): Assume that (2) does not hold. Since both X and Y are non-
discrete, there are x ∈ X, y ∈ Y and i, j ∈ 2 with i- cf x ≥ ω, j- cf y ≥
ω and i- cf x ̸= j- cf y. Set κ = i- cf x and λ = j- cf y. Then the
suborderable space X×Y contains a subspace which is homeomorphic
to (Succ(κ) ∪ {κ})× (Succ(λ) ∪ {λ}). This contradicts Lemma 3.

(3): Recall that a space is hereditarily disconnected if every non-
empty connected subset is a one-point set. Assume neither X nor Y
is hereditarily disconnected. Then there are connected subsets C and
D of X and Y respectively with 2 ≤ |C| and 2 ≤ |D|. Fix x0, x1 ∈ C
and y0, y1 ∈ D with x0 ̸= x1 and y0 ̸= y1. We may assume ⟨x0, y0⟩ <L

⟨x0, y1⟩ <L ⟨x1, y1⟩, otherwise change the indeces. Then ⟨x1, y0⟩ ∈
C×{y0}∩{x1}×D, moreover both C×{y0} and {x1}×D are connected.
Therefore C×{y0}∪{x1}×D is a connected subset of X×Y \{⟨x0, y1⟩}
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containing the points ⟨x0, y0⟩ and ⟨x1, y1⟩. On the other hand, the
disjoint open sets (←, ⟨x0, y1⟩)L ∩ X × Y and (⟨x0, y1⟩,→)L ∩ X × Y
separate the connected set C × {y0} ∪ {x1} ×D, a contradiction. �

Whenever X and Y are subspaces of an ordinal, then the converse
implication of the theorem above is also true:

Theorem 13. Let X and Y be non-discrete subspaces of an ordinal.
Then the product space X × Y is suborderable, if

(1) X and Y are hereditarily paracompact,
(2) there is a unique regular infinite cardinal κ such that for every

z ∈ X ∪ Y and i ∈ 2, cf z is either 0, 1 or κ, equivalently for
every z ∈ (X ∩ Lim(X)) ∪ (Y ∩ Lim(Y )), cf z = κ.

Proof. Note that every subspace of an ordinal is hereditarily discon-
nected. We may assume X ∪ Y ⊂ [0, γ] for some ordinal γ. It suffices
to see that by induction on α ≤ γ, (X ∩ [0, α]) × Y is suborderable
(because α = γ finishes the proof). Assume that α ≤ γ and for every
α′ < α, (X ∩ [0, α′])× Y is suborderable.

Case 1. α /∈ Lim(X).

In this case, let α′ = sup(X ∩ α). By α′ < α, since (X ∩ [0, α])× Y is
homeomorphic to (X ∩ [0, α′])×Y

⊕
(X ∩{α})×Y , it is suborderable

by the assumption.

Case 2. α ∈ Lim(X).

Set λ = cf α and fix a normal function c : λ → α for α, that is, it is
a strictly increasing continuous cofinal function into α, where c(−1) =
−1. Since λ is homeomorphic to c[λ], by Lemma 11, c−1[X] is non-
stationary in λ whenever λ is uncountable.

Subcase 1. α /∈ X.

When λ = ω, (X ∩ [0, α]) × Y is homeomorphic to
⊕

n∈ω(X ∩ (c(n −
1), c(n)])×Y . When ω < λ, taking a club set C in λ with C∩c−1[X] =
∅, (X ∩ [0, α])× Y is homeomorphic to

⊕
δ∈Succ(C)(X ∩ (c(δ−), c(δ)])×

Y . In either cases, (X ∩ [0, α]) × Y is suborderable by the inductive
assumption.

Subcase 2. α ∈ X.

By the assumption (2), we have λ = κ. We will see by induction
β ≤ γ that (X ∩ [0, α]) × (Y ∩ [0, β]) is suborderable (then β = γ
finishes this subcase). Assume that β ≤ γ and for every β′ < β,
(X ∩ [0, α])× (Y ∩ [0, β′]) is suborderable. It suffices to check the case
β ∈ Y ∩Lim(Y ), because other cases are similar to Case 1 and Subcase
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1 of Case 2. By the assumption (2), we have cf β = κ. Let d : κ → β
be a normal function for β. When κ = ω, let C = ω. When κ > ω, by
Lemma 11, take a club set C of κ with C ∩ (c−1[X]∪ d−1[Y ]) = ∅. For
every δ ∈ Succ(C), let Zδ =

(X∩(c(δ−), α])×(Y ∩(d(δ−), d(δ)])
⊕

(X∩(c(δ−), c(δ)])×(Y ∩(d(δ), β]).

By the inductive assumption, Zδ is suborderable. Put Λ = {δ ∈
Succ(C) : Zδ ̸= ∅} and Z = {Zδ : δ ∈ Λ}. Note that Z is pair-
wise disjoint. It is easy to see that (X ∩ [0, α]) × (Y ∩ [0, β]) =
(
∪

δ∈Λ Zδ)∪{⟨α, β⟩} and whose product topology coincides with topol-
ogy of the 1-point extension of

⊕
δ∈Λ Zδ with the κ-limit point ⟨α, β⟩. It

follows from Lemma 5 that (X∩[0, α])×(Y ∩[0, β]) is suborderable. �

Note that the product of two subspaces of an ordinal is scattered (=
every subspace has an isolated point), and that scattered suborderable
spaces are orderable ([11]). Thus in Theorem 13, “suborderable” is
replaced by “orderable”.

Example 14. The square S2 of the Sorgenfrey line S with the usual
order satisfies (1),(2) and (3) with X = Y = S in Theorem 12. But S2

is not suborderable.
Because, it is well-known that S is hereditarily paracompact and

hereditarily disconnected. Since S2 is not normal, it is not suborder-
able. We check (2). We may assume S = (0, 1) with the usual order
and the topology induced by {(a,→) : a ∈ (0, 1)}∪{(←, b] : b ∈ (0, 1)},
where (0, 1) denotes the unit open interval. Then using Lemma 1 and
9, it is easy to check lS = [0, 1]×{0}∪(0, 1)×{1} with the lexicographic
order identifying S with (0, 1)× {0}. Then for every x ∈ lS and i ∈ 2,
i- cf x is either 0, 1 or ω.

Question 15. For non-discrete suborderable spaces X and Y , charac-
terize suborderability of X × Y .

Concerning monotonical normality, the following are known:

• If X×Y is monotonically normal and if Y contains a countable
set with a limit point, then X is stratifiable ([6]).
• If X2 is monotonically normal, then X is hereditarily paracom-
pact and Xn is monotonically normal for each finite n ([4]).

So we also ask:

Question 16. Characterize suborderable spaces X and Y for which
X × Y is monotonically normal.
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