ORDERABILITY OF PRODUCTS

NOBUYUKI KEMOTO

Abstract. We prove that for non-discrete spaces X and Y,
(1) If the product space $X \times Y$ is suborderable, then both X and Y are hereditarily paracompact and there is a unique regular infinite cardinal κ such that for every $z \in X \cup Y$, the cofinality from left (right) of z (this notion will be defined precisely below) is either 0,1 or κ.
(2) If X and Y are subspaces of an ordinal, then the converse implication of (1) is also true.

Recently, a kind of orderability of X^{2} is known to be related to selection theory, see [5, 3]. In this paper, we see the results in the abstract.

Spaces mean regular topological spaces. Let $<$ be a linear order on a set $X . \lambda(<)$ denotes the usual order topology, that is, the topology generated by

$$
\{(a, \rightarrow): a \in X\} \cup\{(\leftarrow, b): b \in X\}
$$

as a subbase, where $(a, \rightarrow)=\{x \in X: a<x\},(a, b)=\{x \in X: a<$ $x<b\}, \ldots$, etc. If necessary, we write $<_{X}$ and $(a, b)_{X}$ instead of $<$ and (a, b) respectively. A LOTS X means the triple $\langle X,<, \lambda(<)\rangle$. LOTS is an abbreviation of "Linearly Ordered Topological Space". As usual, we consider an ordinal α as the set of smaller ordinals and as a LOTS with the order \in (we identify it with $<$). Similarly a Generalized Ordered space (GO-space) means the triple $\langle X,<, \tau\rangle$ where τ is a topology on X with $\lambda(<) \subset \tau$ which has a base consisting convex sets, where a subset A is convex if $(a, b) \subset A$ whenever $a, b \in A$ with $a<b$.

A topological space $\langle X, \tau\rangle$, where τ is a topology on X, is said to be orderable if $\tau=\lambda(<)$ for some linear order $<$ on X. Also a topological space $\langle X, \tau\rangle$ is said to be suborderable if it is a subspace of some orderable space. It is well-known that orderable spaces are hereditarily normal. Also it is well-known that:
(1) If $\left\langle L,<_{L}, \lambda\left(<_{L}\right)\right\rangle$ is a LOTS and $X \subset L$, then $\left\langle X,<_{L} \backslash X, \lambda\left(<_{L}\right) \upharpoonright\right.$ $X\rangle$ is a GO-space, where ${<_{L}} \backslash X$ is the restricted order of $<_{L}$ to $\overline{2000 \text { Mathematics subject classification. 54F05, 54B10, 54B05, }}$ Keywords and phrases. orderable, suborderable, products, ordinal Date: January 13, 2016.
X and $\lambda\left(<_{L}\right) \upharpoonright X$ is the subspace topology of $\lambda\left(<_{L}\right)$ on X, that is $\left\{U \cap X: U \in \lambda\left(<_{L}\right)\right\}$. On the other hand:
(2) If $\left\langle X,<_{X}, \tau\right\rangle$ is a GO-space, then there is a LOTS $\left\langle L,<_{L}, \lambda\left(<_{L}\right.\right.$)) with $X \subset L$ such that the space $\langle X, \tau\rangle$ is a dense subspace of $\left\langle L, \lambda\left(<_{L}\right)\right\rangle$ and $<_{X}=<_{L} \backslash X$, therefore $\langle X, \tau\rangle$ is suborderable. Obviously a suborderable space is a GO-space with some linear order. Moreover:
(3) If $\left\langle X,<_{X}, \lambda\left(<_{X}\right)\right\rangle$ is a LOTS, then there is a LOTS $\left\langle L,<_{L}\right.$,$\left.\lambda\left(<_{L}\right)\right\rangle$ with $X \subset L$ and $\left.<_{X}=<_{L}\right\rceil X$ such that the space $\left\langle L, \lambda\left(<_{L}\right)\right\rangle$ is compact and contains $\left\langle X, \lambda\left(<_{X}\right)\right\rangle$ as a dense subspace. Therefore by (2) and (3), we have:
(4) If $\left\langle X,<_{X}, \tau\right\rangle$ is a GO-space, then there is a compact LOTS $\left\langle L,<_{L}, \lambda\left(<_{L}\right)\right\rangle$ with $X \subset L$ and $<_{X}=<_{L} \ X$ such that the compact space $\left\langle L, \lambda\left(<_{L}\right)\right\rangle$ contains $\langle X, \tau\rangle$ as a dense subspace. We say this situation as "a GO space $\left\langle X,<_{X}, \tau\right\rangle$ has a linearly ordered compactification $\left\langle L,<_{L}, \lambda\left(<_{L}\right)\right\rangle$ " or more simply "a GOspace X has a linearly ordered compactification L ".
Remark that a compact LOTS $\left\langle L,<_{L}, \lambda\left(<_{L}\right)\right\rangle$ has the largest element $\max L$ and the smallest element min L. Also remark that if X is a convex subset of a LOTS $\left\langle L,<_{L}, \lambda\left(<_{L}\right)\right\rangle$, then the subspace topology $\lambda\left(<_{L}\right) \upharpoonright X$ coincides with the order topology $\lambda(<\upharpoonright X)$ on X. For more details, see [10] and [8]. Usually, if there are no confusion, we do not distinguish the symbols $<_{X}$ and $<_{L}$, and simply write $<$.

In general, a GO-space can have many linearly ordered compactifications. But it is known that a GO-space X has a linearly ordered compactification $l X$ such that for every linearly ordered compactification $c X$ of X, there is a continuous function $f: c X \rightarrow l X$ with $f(x)=x$ for every $x \in X$, see [9]. Observe that by the definition, $l X$ is unique up to order isomorphisms. $l X$ is said to be the minimal linearly ordered compactification of X and it is characterized as follows:

Lemma 1. [9, Lemma 2.1] A linearly ordered compactification $c X$ of a GO-space X is minimal if and only if $(a, b)_{c X} \neq \emptyset$ for every $a, b \in$ $c X \backslash X$ with $a<b$.

Let $\left\{X_{\alpha}: \alpha \in \Lambda\right\}$ be a pairwise disjoint collection of spaces X_{α} 's. $\bigoplus_{\alpha \in \Lambda} X_{\alpha}$ denotes the topological sum of X_{α} 's, that is, the space $\bigcup_{\alpha \in \Lambda} X_{\alpha}$ with the topology generated by $\bigcup_{\alpha \in \Lambda} \tau_{\alpha}$ as a base, where τ_{α} is the topology on X_{α}. Remark that the subspace $\{0\} \cup(1,2)$ of the real line is suborderable but not orderable. This means that the topological sum of orderable spaces need not be orderable. On the other hand, the infinite discrete space $D(\kappa)$ of cardinality κ is orderable, because the

LOTS $\kappa \times \mathbb{Z}$ with the lexicographic order is homeomorphic to $D(\kappa)$, where \mathbb{Z} is the set of integers.

Let S be a subset of an ordinal $\alpha \operatorname{Lim}_{\alpha}(S)$ denotes the set $\{\beta \in \alpha$: $\sup (S \cap \beta)=\beta\}$, that is, the set of all cluster points of S in α. If the contexts are clear, we simply write as $\operatorname{Lim}(S)$. Obviously if S is closed in α, then $\operatorname{Lim}(S) \subset S$. $\operatorname{Succ}(S)$ denotes the set $S \backslash \operatorname{Lim}(S)$, that is the set of all isolated points of S.

A subset S of a regular uncountable cardinal κ is stationary if it intersects with all closed unbounded (club) set C of κ, where a subset C of κ is unbounded if for every $\alpha<\kappa$, there is $\beta \in C$ with $\alpha \leq \beta$. Note that if S is unbounded in κ, then $\operatorname{Lim}(S)$ is club in κ.

Lemma 2. Let S be a stationary set in a regular uncountable cardinal κ and X a non-discrete space of cardinality $<\kappa$. Then the subspace $X \times S$ of $X \times \kappa$ is not hereditarily normal.

Proof. Let x be a non-isolated point of X and $Y=(X \backslash\{x\}) \times S \cup$ $\{x\} \times \operatorname{Succ}(S)$. Then it is routine to check that $F_{0}=\{x\} \times \operatorname{Succ}(S)$ and $F_{1}=(X \backslash\{x\}) \times(S \cap \operatorname{Lim}(S))$ are disjoint closed sets in Y which cannot be separated by disjoint open sets.

Lemma 3. Let κ and λ be regular infinite cardinals with $\kappa \neq \lambda$. Then the subspace $(\operatorname{Succ}(\kappa) \cup\{\kappa\}) \times(\operatorname{Succ}(\lambda) \cup\{\lambda\})$ of $(\kappa+1) \times(\lambda+1)$ is not suborderable.

Proof. Let $X=\operatorname{Succ}(\kappa) \cup\{\kappa\}$ and $Y=\operatorname{Succ}(\lambda) \cup\{\lambda\}$ and assume that $X \times Y$ is suborderable. Denote the product topology of $X \times Y$ by τ. Fix a linearly ordered set $\left\langle L,<_{L}\right\rangle$ such that $X \times Y \subset L$ and $\lambda\left(<_{L}\right) \upharpoonright X \times Y=\tau$, where $\lambda\left(<_{L}\right)$ denotes the order topology on L. Denote the restricted order $<_{L} \downarrow X \times Y$ on $X \times Y$ by $<$. We may assume $\omega \leq \kappa<\lambda$. Let $F_{0}=\{\kappa\} \times \operatorname{Succ}(\lambda)$ and $F_{1}=\operatorname{Succ}(\kappa) \times\{\lambda\}$. Put

$$
\begin{aligned}
& F_{0}^{-}=\{\beta \in \operatorname{Succ}(\lambda):\langle\kappa, \beta\rangle<\langle\kappa, \lambda\rangle\}, \\
& F_{0}^{+}=\{\beta \in \operatorname{Succ}(\lambda):\langle\kappa, \lambda\rangle<\langle\kappa, \beta\rangle\}, \\
& F_{1}^{-}=\{\alpha \in \operatorname{Succ}(\kappa):\langle\alpha, \lambda\rangle<\langle\kappa, \lambda\rangle\}, \\
& F_{1}^{+}=\{\alpha \in \operatorname{Succ}(\kappa):\langle\kappa, \lambda\rangle<\langle\alpha, \lambda\rangle\} .
\end{aligned}
$$

Note $F_{0}=\{\kappa\} \times\left(F_{0}^{-} \cup F_{0}^{+}\right)$and $F_{1}=\left(F_{1}^{-} \cup F_{1}^{+}\right) \times\{\lambda\}$.
Claim 1. $\left|F_{1}^{-}\right|<\kappa$ or $\left|F_{1}^{+}\right|<\kappa$.
Proof. Assume that both F_{1}^{-}and F_{1}^{+}have cardinality κ. For every $\alpha \in F_{1}^{-}$, since $(\leftarrow,\langle\kappa, \lambda\rangle)_{L} \cap X \times Y$ is a τ-neighborhood of $\langle\alpha, \lambda\rangle$ in $X \times Y$, there is $g(\alpha)<\lambda$ such that $\{\alpha\} \times(g(\alpha), \lambda] \cap X \times Y \subset$ $(\leftarrow,\langle\kappa, \lambda\rangle)_{L} \cap X \times Y$, where $(\leftarrow,\langle\kappa, \lambda\rangle)_{L}$ denotes the interval in L and
$(g(\alpha), \lambda]$ denotes the usual interval in $\lambda+1$. Similarly for every $\alpha \in F_{1}^{+}$, we can find $g(\alpha)<\lambda$ such that $\{\alpha\} \times(g(\alpha), \lambda] \cap X \times Y \subset(\langle\kappa, \lambda\rangle, \rightarrow$ $)_{L} \cap X \times Y$.

Put $\beta_{0}=\sup \left\{g(\alpha): \alpha \in F_{1}^{-} \cup F_{1}^{+}\right\}$. Then by $\kappa<\lambda$, we have $\beta_{0}<\lambda$. Pick $\beta \in\left(\beta_{0}, \lambda\right) \cap \operatorname{Succ}(\lambda)$. We may assume $\beta \in F_{0}^{-}$, then $\langle\kappa, \beta\rangle<_{L}\langle\kappa, \lambda\rangle$. On the other hand, by $\left|F_{1}^{+}\right|=\kappa$ and $F_{1}^{+} \times\{\beta\} \subset$ $(\langle\kappa, \lambda\rangle, \rightarrow)_{L}$, we have $\langle\kappa, \beta\rangle \in \mathrm{Cl}_{\tau} F_{1}^{+} \times\{\beta\} \subset[\langle\kappa, \lambda\rangle, \rightarrow)_{L}$. Therefore $\langle\kappa, \lambda\rangle \leq_{L}\langle\kappa, \beta\rangle$, a contradiction.

Now we may assume $\left|F_{1}^{+}\right|<\kappa$, then $\left|F_{1}^{-}\right|=\kappa$ and $\langle\kappa, \lambda\rangle \in \mathrm{Cl}_{\tau} F_{1}^{-} \times$ $\{\lambda\} \subset(\leftarrow,\langle\kappa, \lambda\rangle]_{L}$
Claim 2. $\left|F_{0}^{+}\right|=\lambda$.
Proof. Assume $\left|F_{0}^{+}\right|<\lambda$, then $\left|F_{0}^{-}\right|=\lambda$. Therefore we have $\langle\kappa, \lambda\rangle \in$ $\mathrm{Cl}_{\tau}\{\kappa\} \times F_{0}^{-} \subset(\leftarrow,\langle\kappa, \lambda\rangle]_{L}$. For every $\beta \in F_{0}^{-}$, since $(\langle\kappa, \beta\rangle, \rightarrow)_{L} \cap$ $X \times Y$ is a τ-neighborhood of $\langle\kappa, \lambda\rangle$ and $\langle\kappa, \lambda\rangle \in \mathrm{Cl}_{\tau} F_{1}^{-} \times\{\lambda\}$, there is $\alpha(\beta) \in F_{1}^{-}$such that $\langle\kappa, \beta\rangle<_{L}\langle\alpha(\beta), \lambda\rangle$. Since $\kappa<\lambda$, there are $\alpha_{0} \in F_{1}^{-}$and $F \subset F_{0}^{-}$of size λ such that $\alpha(\beta)=\alpha_{0}$ for each $\beta \in$ F. Note $\left\langle\alpha_{0}, \lambda\right\rangle<_{L}\langle\kappa, \lambda\rangle$. Then $\{\kappa\} \times F \subset\left(\leftarrow,\left\langle\alpha_{0}, \lambda\right\rangle\right)_{L}$, therefore $\mathrm{Cl}_{\tau}\{\kappa\} \times F \subset\left(\leftarrow,\left\langle\alpha_{0}, \lambda\right\rangle\right]_{L}$. On the other hand, it follows from $|F|=\lambda$ that $\langle\kappa, \lambda\rangle \in \mathrm{Cl}_{\tau}\{\kappa\} \times F$, thus $\langle\kappa, \lambda\rangle \leq_{L}\left\langle\alpha_{0}, \lambda\right\rangle$, a contradiction.

Now for each $\beta \in F_{0}^{+}$, it follows from $\langle\kappa, \lambda\rangle<_{L}\langle\kappa, \beta\rangle$ that there is $f(\beta)<\kappa$ such that
$(*)\left((\operatorname{Succ}(\kappa) \cup\{\kappa\} \cap(f(\beta), \kappa]) \times\{\beta\} \subset(\langle\kappa, \lambda\rangle, \rightarrow)_{L}\right.$.
By $\kappa<\lambda$, there are $\alpha_{0}<\kappa$ and $F \subset F_{0}^{+}$of cardinality λ such that $f(\beta)=\alpha_{0}$ for every $\beta \in F$.

Since $\left|F_{1}^{-}\right|=\kappa$, one can pick $\alpha \in F_{1}^{-}$with $\alpha_{0}<\alpha$. Then $\langle\alpha, \lambda\rangle<_{L}$ $\langle\kappa, \lambda\rangle$. On the other hand by $(*)$, we have $\{\alpha\} \times F \subset(\langle\kappa, \lambda\rangle, \rightarrow)_{L}$, therefore $\langle\alpha, \lambda\rangle \in \mathrm{Cl}_{\tau}\{\alpha\} \times F \subset[\langle\kappa, \lambda\rangle, \rightarrow)_{L}$, a contradiction.

Definition 4. Let κ be a regular infinite cardinal, $\mathcal{X}=\left\{X_{\alpha}: \alpha \in \Lambda\right\}$ a pairwise disjoint collection of non-empty spaces and x_{0} a point with $x_{0} \notin \bigcup_{\alpha \in \Lambda} X_{\alpha}$, where $\Lambda \subset \kappa$. Put $X=\left(\bigcup_{\alpha \in \Lambda} X_{\alpha}\right) \cup\left\{x_{0}\right\}$ and equip the topology τ generated by

$$
\left(\bigcup_{\alpha \in \Lambda} \tau_{\alpha}\right) \cup\left\{\left(\bigcup_{\alpha \in \Lambda \cap(\gamma, \kappa)} X_{\alpha}\right) \cup\left\{x_{0}\right\}: \gamma<\kappa\right\}
$$

as a base, where τ_{α} is the topology on X_{α}. We call this topological space $\langle X, \tau\rangle$ as 1-point extension of the topological sum $\bigoplus_{\alpha \in \Lambda} X_{\alpha}$ with the κ-limit point x_{0} and denoted by $X\left(\mathcal{X}, x_{0}\right)$.

In the definition above, remark:

- For every $\alpha \in \Lambda, X_{\alpha}$ is clopen in X. Thus the topological sum $\bigoplus_{\alpha \in \Lambda} X_{\alpha}$ is a subspace of X.
- x_{0} has a neighborhood base of cardinality $\leq \kappa$.
- Λ is unbounded in κ iff x_{0} is a non-isolated point of X.

Now let C be a club set in a regular infinite cardinal κ and $\alpha<\kappa$. Let

$$
\alpha_{C}^{-}=\sup (C \cap \alpha), \alpha_{C}^{+}=\min \{\beta \in C: \alpha<\beta\},
$$

where $\sup \emptyset=-1$. If contexts are clear, then we usually write simply α^{-}and α^{+}. Remark that $\alpha \in \operatorname{Succ}(C)$ iff $\alpha^{-}<\alpha$ and that $\alpha<\alpha^{+}$for every $\alpha \in C$.

Lemma 5. Let κ be a regular infinite cardinal, $\mathcal{X}=\left\{X_{\alpha}: \alpha \in \Lambda\right\}$ a pairwise disjoint collection of non-empty suborderable spaces with $\Lambda \subset \operatorname{Succ}(C)$ for some club set C of κ and $x_{0} \notin \bigcup_{\alpha \in \Lambda} X_{\alpha}$. Then the 1-point extension $X\left(\mathcal{X}, x_{0}\right)$ of $\bigoplus_{\alpha \in \Lambda} X_{\alpha}$ with the κ-limit point x_{0} is suborderable.

Proof. For every $\alpha \in \Lambda$, pick a compact LOTS $\left\langle L_{\alpha},<_{\alpha}, \lambda\left(<_{\alpha}\right)\right\rangle$ such that $\left\langle L_{\alpha}, \lambda\left(<_{\alpha}\right)\right\rangle$ contains $\left\langle X, \tau_{\alpha}\right\rangle$ as a dense subspace, where τ_{α} denotes the topology on X_{α}. For every $\alpha \in C \backslash \Lambda$, let $L_{\alpha}=\left\{l_{\alpha}\right\}$ be a one point set with the trivial order $<_{\alpha}$. By taking isomorphic compact LOTS', we may assume that $\left\{L_{\alpha}: \alpha \in C\right\}$ is pairwise disjoint with $x_{0} \notin \bigcup_{\alpha \in C} L_{\alpha}$. Let $L=\left(\bigcup_{\alpha \in C} L_{\alpha}\right) \cup\left\{x_{0}\right\}$ and define a linear order $<_{L}$ on L as follows:

- for every $x \in \bigcup_{\alpha \in C} L_{\alpha}, x<_{L} x_{0}$, that is, $x_{0}=\max L$,
- if $x, y \in L_{\alpha}$ for some $\alpha \in C$, then $x<_{L} y$ is defined by $x<_{\alpha} y$,
- if $x \in L_{\alpha}$ and $y \in L_{\alpha}$ with $\alpha, \beta \in C$ and $\alpha \neq \beta$, then $x<_{L} y$ is defined by $\alpha<\beta$.
Then obviously $<_{L} \backslash L_{\alpha}$ coincides with $<_{\alpha}$ for every $\alpha \in C$.
Claim 1. For every $\alpha \in \operatorname{Succ}(C), L_{\alpha}$ is open in $\left\langle L, \lambda\left(<_{L}\right)\right\rangle$.
Proof. It follows from $L_{\alpha}=\left(\max L_{\alpha^{-}}, \min L_{\alpha^{+}}\right)_{L}$ that L_{α} is open in $\left\langle L, \lambda\left(<_{L}\right)\right\rangle$.

Claim 2. For every $\alpha \in C,\left\langle L_{\alpha}, \lambda\left(<_{\alpha}\right)\right\rangle$ is a convex closed subspace of $\left\langle L, \lambda\left(<_{L}\right)\right\rangle$.

Proof. Since L_{α} is represented as $L_{\alpha}=\left[\min L_{\alpha}, \max L_{\alpha}\right]_{L}$, it is closed and convex. Therefore $\lambda\left(<_{L}\right) \upharpoonright L_{\alpha}=\lambda\left(<_{L} \mid L_{\alpha}\right)=\lambda\left(<_{\alpha}\right)$.

Since $\lambda\left(<_{\alpha}\right) \upharpoonright X_{\alpha}=\tau_{\alpha}$ for each $\alpha \in \Lambda$, by the claim above, we have:
Claim 3. For every $\alpha \in \Lambda,\left\langle X_{\alpha}, \tau_{\alpha}\right\rangle$ is a subspace of $\left\langle L, \lambda\left(<_{L}\right)\right\rangle$.
To finish the proof, it suffices to see:

Claim 4. $\tau=\lambda\left(<_{L}\right) \upharpoonright X$, where τ denotes the topology of $X=$ $X\left(\mathcal{X}, x_{0}\right)$.

Proof. First we prove $\tau \subset \lambda\left(<_{L}\right) \upharpoonright X$. Let \mathcal{B} be the base $\left(\bigcup_{\alpha \in \Lambda} \tau_{\alpha}\right) \cup$ $\left\{\left(\bigcup_{\alpha \in \Lambda \cap(\gamma, \kappa)} X_{\alpha}\right) \cup\left\{x_{0}\right\}: \gamma<\kappa\right\}$ of τ. It suffices to see $\mathcal{B} \subset \lambda\left(<_{L}\right) \upharpoonright X$. Let $U \in \mathcal{B}$.
Case 1. $U \in \tau_{\alpha}$ for some $\alpha \in \Lambda$.
In this case by Claim 3, there is $V \in \lambda\left(<_{L}\right)$ with $V \cap X_{\alpha}=U$. By Claim 1, we have $X_{\alpha}=X \cap L_{\alpha} \in \lambda\left(<_{L}\right) \upharpoonright X$. Therefore $U=V \cap X_{\alpha}=$ $(V \cap X) \cap X_{\alpha} \in \lambda\left(<_{L}\right) \upharpoonright X$ holds.
Case 2. $U=\left(\bigcup_{\alpha \in \Lambda \cap(\gamma, \kappa)} X_{\alpha}\right) \cup\left\{x_{0}\right\}$ for some $\gamma<\kappa$.
In this case, let $\alpha_{0}=\min (\Lambda \cap(\gamma, \kappa))$. Then we have $\alpha_{0} \in \Lambda \subset \operatorname{Succ}(C)$ and $U=\left(\left(\bigcup_{\alpha \in\left(\alpha_{0}^{-}, \kappa\right) \cap C} L_{\alpha}\right) \cup\left\{x_{0}\right\}\right) \cap X=\left(\max L_{\alpha_{0}^{-}}, x_{0}\right]_{L} \cap X \in \lambda\left(<_{L}\right.$) $\upharpoonright X$.
Next we show $\tau \supset \lambda\left(<_{L}\right) \upharpoonright X$. Let $z \in L$. It suffices to see the following two facts.

Fact 1. $(\leftarrow, z)_{L} \cap X \in \tau$.
In the case $z=x_{0},(\leftarrow, z)_{L} \cap X=\bigcup_{\alpha \in \Lambda} X_{\alpha} \in \tau$ holds. So we may assume $z \neq x_{0}$. Take $\alpha \in C$ with $z \in L_{\alpha}$. If $\alpha \notin \Lambda$, then $(\leftarrow, z)_{L} \cap X=$ $\bigcup_{\beta \in \Lambda \cap \alpha} X_{\beta} \in \tau$. If $\alpha \in \Lambda$, then by Claim 3, we have $(\leftarrow, z)_{L} \cap X_{\alpha} \in$ $\tau_{\alpha} \subset \tau$, therefore $(\leftarrow, z)_{L} \cap X=\left(\bigcup_{\beta \in \Lambda \cap \alpha} X_{\beta}\right) \cup\left((\leftarrow, z)_{L} \cap X_{\alpha}\right) \in \tau$.
Fact 2. $(z, \rightarrow)_{L} \cap X \in \tau$.
In the case $z=x_{0},(z, \rightarrow)_{L} \cap X=\emptyset \in \tau$. So we may assume $z \neq x_{0}$. Take $\alpha \in C$ with $z \in L_{\alpha}$. If $\alpha \notin \Lambda$, then $(z, \rightarrow)_{L} \cap X=$ $\left(\bigcup_{\beta \in \Lambda \cap(\alpha, \kappa)} X_{\beta}\right) \cup\left\{x_{0}\right\} \in \tau$. If $\alpha \in \Lambda$, then by Claim 3, we have $(z, \rightarrow)_{L} \cap X_{\alpha} \in \tau_{\alpha} \subset \tau$, therefore $(z, \rightarrow)_{L} \cap X=\left(\bigcup_{\beta \in \Lambda \cap(\alpha, \kappa)} X_{\beta}\right) \cup((z, \rightarrow$ $\left.)_{L} \cap X_{\alpha}\right) \in \tau$.

The following corollary is well-known by different approaches.
Corollary 6. If $\mathcal{X}=\left\{X_{\alpha}: \alpha \in \Lambda\right\}$ is a pairwise disjoint collection of non-empty suborderable spaces, then the topological sum $\bigoplus_{\alpha \in \Lambda} X_{\alpha}$ is also suborderable.

Proof. We may assume that all X_{α} 's are non-empty. Take a suitably large regular infinite cardinal κ with $|\Lambda| \leq \kappa$ and we may assume $\Lambda \subset \operatorname{Succ}(\kappa)$. By the lemma above, $X\left(\mathcal{X}, x_{0}\right)$ is suborderable for some x_{0}. Therefore the subspace $\bigoplus_{\alpha \in \Lambda} X_{\alpha}$ of $X\left(\mathcal{X}, x_{0}\right)$ is suborderable.

This corollary shows:
Corollary 7. If X is a suborderable space and Y is a discrete space, then $X \times Y$ is suborderable.

Therefore when we discuss suborderability of $X \times Y$, we may assume that both X and Y are non-discrete. Additionally remark that, if X is an orderable space and Y is a discrete space, then $X \times Y$ is orderable.

Corollary 8. Let κ be a regular infinite cardinal. Then $X=(\operatorname{Succ}(\kappa) \cup$ $\{\kappa\})^{2}$ is suborderable.
Proof. For every $\alpha \in \operatorname{Succ}(\kappa)$. let

$$
X_{\alpha}=(\{\alpha\} \times[\alpha, \kappa] \cap X) \bigoplus((\alpha, \kappa] \times\{\alpha\} \cap X)
$$

moreover let

$$
\mathcal{X}=\left\{X_{\alpha}: \alpha \in \operatorname{Succ}(\kappa)\right\} .
$$

Then obviously \mathcal{X} is a pairwise disjoint collection of suborderable spaces. One can check that the both topologies of X and $X(\mathcal{X},\langle\kappa, \kappa\rangle)$ coincide by carefully comparing the both neighborhood bases at $\langle\kappa, \kappa\rangle$. The lemma above shows that X is suborderable.

In particular, $(\omega+1)^{2}$ is suborderable ([7]).
Remark:
Lemma 9. [1, Problem 3.12.3(a)] Let $\langle L,<, \lambda(<)\rangle$ be a LOTS. Then the following are equivalent:
(1) The space $\langle L, \lambda(<)\rangle$ is compact.
(2) For every subset A of L, A has the least upper bound $\sup _{L} A$ in $\langle L,<\rangle$.
(3) For every subset A of L, A has the greatest lower bound $\inf _{L} A$ in $\langle L,<\rangle$.
Note that $\sup \emptyset=\min L$ and $\inf \emptyset=\max L$ whenever L is a compact LOTS.

Definition 10. Let L be a compact LOTS and $x \in L$. A subset $A \subset(\leftarrow, x)_{L}$ is said to be 0-unbounded for x in L if for every $y<x$, there is $a \in A$ with $y \leq a$. Similarly for a subset $A \subset(x, \rightarrow)_{L}$, "1unbounded for x " is defined. Now 0 -cofinality $0-\mathrm{cf}_{L} x$ of x in L is defined by:

$$
0-\operatorname{cf}_{L} x=\min \{|A|: A \text { is } 0 \text {-unbounded for } x \text { in } L .\} .
$$

Also $1-\mathrm{cf}_{L} x$ is defined. If there are no confusion, we write simply 0 - cf x and 1 - cf x. Observe that

- if x is the smallest element of L, then $0-\operatorname{cf} x=0$,
- if x has the immediate predecessor in L, then 0 - $\operatorname{cf} x=1$,
- otherwise, then $0-\operatorname{cf} x$ is a regular infinite cardinal.

Moreover, remark:

- $\omega \leq 0$ - cf x iff $\sup _{L}(\leftarrow, x)_{L}=x$ iff $x \in \mathrm{Cl}_{L}(\leftarrow, x)_{L}$.

If $0-c f x=\kappa$, then we can define a strictly increasing function c : $\kappa \rightarrow L$ which is continuous with its range $c[\kappa] 0$-unbounded for x. We call such a function c as a 0 -normal function for x in L. The reader should remark that these methods in compact LOTS' extend the usual methods in ordinal numbers.

Observe that in the notation above, for every closed set F of $\kappa, c[F]$ is also closed in $(\leftarrow, x)_{L}$. Therefore c is an embedding such that $c[\kappa]$ is closed in (\leftarrow, x) and 0 -unbounded for x. Note that there can be many 0 -normal functions for x in L.

Also note that if $c X$ and $c^{\prime} X$ are two linearly ordered compactifications of a GO-space X, then $i-\mathrm{cf}_{c X} x$ coincides with $i-\mathrm{cf}_{c^{\prime} X} x$ for every $x \in X$ and $i \in 2=\{0,1\}$. In our discussion, we apply these methods for $L=l X$ with a GO-space X and consider $0-\mathrm{cf}_{l X} x$ or 1$\mathrm{cf}_{l X} x$ for $x \in l X$. In particular, if X is a subspace of an ordinal, say $X \subset[0, \gamma]$, with the usual order, then we can check using Lemma 1 $l X=\mathrm{Cl}_{[0, \gamma]} X$. Moreover in this case, for every $x \in l X$, obviously 1- cf x is 0 or 1 , furthermore we can easily check that 0 - $\operatorname{cf} x$ is equal to $\mathrm{cf} x$ in the usual sense whenever $x \in \operatorname{Lim}(X)$. Let X be a GO-space, $x \in X$, $\kappa=0$ - $\operatorname{cf} x \geq \omega$ and fix a 0 -normal function $c: \kappa \rightarrow l X$. Inductively one can take a strictly increasing sequence $\{x(\alpha): \alpha<\kappa\} \subset(\leftarrow, x)_{l X} \cap X$ with $\sup (\{c(\beta): \beta \leq \alpha\} \cup\{x(\beta): \beta<\alpha\})<x(\alpha)$. Then obviously $\{x(\alpha): \alpha<\kappa\} \cup\{x\}$ is homeomorphic to $\operatorname{Succ}(\kappa) \cup\{\kappa\}$. Similarly whenever X is a subspace of an ordinal and $\alpha \in X \cap \operatorname{Lim}(X)$, one can fix a strictly increasing sequence $\{\alpha(\gamma): \gamma<\kappa\} \subset X$ which is cofinal in α such that $\{\alpha(\gamma): \gamma<\kappa\} \cup\{\alpha\}$ is homeomorphic to $\operatorname{Succ}(\kappa) \cup\{\kappa\}$, where $\kappa=\operatorname{cf} \alpha$.

Engelking and Lutzer [2] proved that a suborderable space is paracompact iff it does not have a closed subspace which is homeomorphic to a stationary set in a regular uncountable cardinal. Therefore:

Lemma 11 ([2]). A suborderable space is hereditarily paracompact iff it does not have a subspace which is homeomorphic to a stationary set in a regular uncountable cardinal.

Now we have prepared to find properties implied by suborderability of product spaces. Remark that if the product space $X \times Y$ is suborderable, then both X and Y are suborderable. Therfore we may
assume that X and Y are GO-spaces under the assumption that $X \times Y$ is suborderable.

Theorem 12. Let X and Y be non-discrete GO-spaces. If the product space $X \times Y$ is suborderable, then
(1) X and Y are hereditarily paracompact,
(2) there is a unique regular infinite cardinal κ such that for every $z \in X \cup Y$ and $i \in 2$, i-cf z is 0,1 or κ, where i - cf z means $i-\mathrm{cf}_{l X} z\left(i-\mathrm{cf}_{l Y} z\right)$ whenever $z \in X(z \in Y$ respectively $)$.
(3) X or Y are hereditarily disconnected.

Proof. Assume that $X \times Y$ is suborderable. Fix a linearly ordered set $\left\langle L,<_{L}\right\rangle$ such that $X \times Y$ is a subspace of $\left\langle L, \lambda\left(<_{L}\right)\right\rangle$.
(1): We will see that Y is hereditarily paracompact (the case for X is similar). Assume not, then by Lemma 11, there is a subspace which is homeomorphic to a stationary set S in a regular uncountable cardinal in κ. Since X is non-discrete, there is $i \in 2$ and $x \in X$ with $\lambda=i$ - $\operatorname{cf}_{l X} x \geq \omega$. As mentioned above, X has a subspace which is homeomorphic to $\operatorname{Succ}(\lambda) \cup\{\lambda\}$.
Case 1. $\lambda<\kappa$.
In this case, by Lemma 2, the hereditarily normal space $X \times Y$ has a non-hereditarily normal subspace, a contradiction.
Case 2. $\kappa \leq \lambda$.
In this case, since S is stationary, we can take $\alpha \in S \cap \operatorname{Lim}(S)$. Set $\mu=\operatorname{cf} \alpha$, then $\mu<\lambda$. As mentioned above, S has a subspace which is homeomorphic to $\operatorname{Succ}(\mu) \cup\{\mu\}$. Then the suborderable space $X \times$ Y contains a subspace which is homeomorphic to $(\operatorname{Succ}(\lambda) \cup\{\lambda\}) \times$ $(\operatorname{Succ}(\mu) \cup\{\mu\})$. This contradicts Lemma 3.
(2): Assume that (2) does not hold. Since both X and Y are nondiscrete, there are $x \in X, y \in Y$ and $i, j \in 2$ with i - $\operatorname{cf} x \geq \omega, j$ - cf $y \geq$ ω and i - cf $x \neq j$-cf y. Set $\kappa=i$ - cf x and $\lambda=j$-cf y. Then the suborderable space $X \times Y$ contains a subspace which is homeomorphic to $(\operatorname{Succ}(\kappa) \cup\{\kappa\}) \times(\operatorname{Succ}(\lambda) \cup\{\lambda\})$. This contradicts Lemma 3 .
(3): Recall that a space is hereditarily disconnected if every nonempty connected subset is a one-point set. Assume neither X nor Y is hereditarily disconnected. Then there are connected subsets C and D of X and Y respectively with $2 \leq|C|$ and $2 \leq|D|$. Fix $x_{0}, x_{1} \in C$ and $y_{0}, y_{1} \in D$ with $x_{0} \neq x_{1}$ and $y_{0} \neq y_{1}$. We may assume $\left\langle x_{0}, y_{0}\right\rangle<_{L}$ $\left\langle x_{0}, y_{1}\right\rangle<_{L}\left\langle x_{1}, y_{1}\right\rangle$, otherwise change the indeces. Then $\left\langle x_{1}, y_{0}\right\rangle \in$ $C \times\left\{y_{0}\right\} \cap\left\{x_{1}\right\} \times D$, moreover both $C \times\left\{y_{0}\right\}$ and $\left\{x_{1}\right\} \times D$ are connected. Therefore $C \times\left\{y_{0}\right\} \cup\left\{x_{1}\right\} \times D$ is a connected subset of $X \times Y \backslash\left\{\left\langle x_{0}, y_{1}\right\rangle\right\}$
containing the points $\left\langle x_{0}, y_{0}\right\rangle$ and $\left\langle x_{1}, y_{1}\right\rangle$. On the other hand, the disjoint open sets $\left(\leftarrow,\left\langle x_{0}, y_{1}\right\rangle\right)_{L} \cap X \times Y$ and $\left(\left\langle x_{0}, y_{1}\right\rangle, \rightarrow\right)_{L} \cap X \times Y$ separate the connected set $C \times\left\{y_{0}\right\} \cup\left\{x_{1}\right\} \times D$, a contradiction.

Whenever X and Y are subspaces of an ordinal, then the converse implication of the theorem above is also true:

Theorem 13. Let X and Y be non-discrete subspaces of an ordinal. Then the product space $X \times Y$ is suborderable, if
(1) X and Y are hereditarily paracompact,
(2) there is a unique regular infinite cardinal κ such that for every $z \in X \cup Y$ and $i \in 2$, cf z is either 0,1 or κ, equivalently for every $z \in(X \cap \operatorname{Lim}(X)) \cup(Y \cap \operatorname{Lim}(Y))$, cf $z=\kappa$.

Proof. Note that every subspace of an ordinal is hereditarily disconnected. We may assume $X \cup Y \subset[0, \gamma]$ for some ordinal γ. It suffices to see that by induction on $\alpha \leq \gamma,(X \cap[0, \alpha]) \times Y$ is suborderable (because $\alpha=\gamma$ finishes the proof). Assume that $\alpha \leq \gamma$ and for every $\alpha^{\prime}<\alpha,\left(X \cap\left[0, \alpha^{\prime}\right]\right) \times Y$ is suborderable.
Case 1. $\alpha \notin \operatorname{Lim}(X)$.
In this case, let $\alpha^{\prime}=\sup (X \cap \alpha)$. By $\alpha^{\prime}<\alpha$, since $(X \cap[0, \alpha]) \times Y$ is homeomorphic to $\left(X \cap\left[0, \alpha^{\prime}\right]\right) \times Y \bigoplus(X \cap\{\alpha\}) \times Y$, it is suborderable by the assumption.
Case 2. $\alpha \in \operatorname{Lim}(X)$.
Set $\lambda=\operatorname{cf} \alpha$ and fix a normal function $c: \lambda \rightarrow \alpha$ for α, that is, it is a strictly increasing continuous cofinal function into α, where $c(-1)=$ -1 . Since λ is homeomorphic to $c[\lambda]$, by Lemma $11, c^{-1}[X]$ is nonstationary in λ whenever λ is uncountable.
Subcase 1. $\alpha \notin X$.
When $\lambda=\omega,(X \cap[0, \alpha]) \times Y$ is homeomorphic to $\bigoplus_{n \in \omega}(X \cap(c(n-$ 1), $c(n)]) \times Y$. When $\omega<\lambda$, taking a club set C in λ with $C \cap c^{-1}[X]=$ $\emptyset,(X \cap[0, \alpha]) \times Y$ is homeomorphic to $\bigoplus_{\delta \in \operatorname{Succ}(C)}\left(X \cap\left(c\left(\delta^{-}\right), c(\delta)\right]\right) \times$ Y. In either cases, $(X \cap[0, \alpha]) \times Y$ is suborderable by the inductive assumption.
Subcase 2. $\alpha \in X$.
By the assumption (2), we have $\lambda=\kappa$. We will see by induction $\beta \leq \gamma$ that $(X \cap[0, \alpha]) \times(Y \cap[0, \beta])$ is suborderable (then $\beta=\gamma$ finishes this subcase). Assume that $\beta \leq \gamma$ and for every $\beta^{\prime}<\beta$, $(X \cap[0, \alpha]) \times\left(Y \cap\left[0, \beta^{\prime}\right]\right)$ is suborderable. It suffices to check the case $\beta \in Y \cap \operatorname{Lim}(Y)$, because other cases are similar to Case 1 and Subcase

1 of Case 2. By the assumption (2), we have $\operatorname{cf} \beta=\kappa$. Let $d: \kappa \rightarrow \beta$ be a normal function for β. When $\kappa=\omega$, let $C=\omega$. When $\kappa>\omega$, by Lemma 11, take a club set C of κ with $C \cap\left(c^{-1}[X] \cup d^{-1}[Y]\right)=\emptyset$. For every $\delta \in \operatorname{Succ}(C)$, let $Z_{\delta}=$
$\left(X \cap\left(c\left(\delta^{-}\right), \alpha\right]\right) \times\left(Y \cap\left(d\left(\delta^{-}\right), d(\delta)\right]\right) \bigoplus\left(X \cap\left(c\left(\delta^{-}\right), c(\delta)\right]\right) \times(Y \cap(d(\delta), \beta])$.
By the inductive assumption, Z_{δ} is suborderable. Put $\Lambda=\{\delta \in$ $\left.\operatorname{Succ}(C): Z_{\delta} \neq \emptyset\right\}$ and $\mathcal{Z}=\left\{Z_{\delta}: \delta \in \Lambda\right\}$. Note that \mathcal{Z} is pairwise disjoint. It is easy to see that $(X \cap[0, \alpha]) \times(Y \cap[0, \beta])=$ $\left(\bigcup_{\delta \in \Lambda} Z_{\delta}\right) \cup\{\langle\alpha, \beta\rangle\}$ and whose product topology coincides with topology of the 1-point extension of $\bigoplus_{\delta \in \Lambda} Z_{\delta}$ with the κ-limit point $\langle\alpha, \beta\rangle$. It follows from Lemma 5 that $(X \cap[0, \alpha]) \times(Y \cap[0, \beta])$ is suborderable.

Note that the product of two subspaces of an ordinal is scattered (= every subspace has an isolated point), and that scattered suborderable spaces are orderable ([11]). Thus in Theorem 13, "suborderable" is replaced by "orderable".

Example 14. The square \mathbb{S}^{2} of the Sorgenfrey line \mathbb{S} with the usual order satisfies (1),(2) and (3) with $X=Y=\mathbb{S}$ in Theorem 12. But \mathbb{S}^{2} is not suborderable.

Because, it is well-known that \mathbb{S} is hereditarily paracompact and hereditarily disconnected. Since \mathbb{S}^{2} is not normal, it is not suborderable. We check (2). We may assume $\mathbb{S}=(0,1)$ with the usual order and the topology induced by $\{(a, \rightarrow): a \in(0,1)\} \cup\{(\leftarrow, b]: b \in(0,1)\}$, where $(0,1)$ denotes the unit open interval. Then using Lemma 1 and 9 , it is easy to check $l \mathbb{S}=[0,1] \times\{0\} \cup(0,1) \times\{1\}$ with the lexicographic order identifying \mathbb{S} with $(0,1) \times\{0\}$. Then for every $x \in \mathbb{S}$ and $i \in 2$, i - $\operatorname{cf} x$ is either 0,1 or ω.

Question 15. For non-discrete suborderable spaces X and Y, characterize suborderability of $X \times Y$.

Concerning monotonical normality, the following are known:

- If $X \times Y$ is monotonically normal and if Y contains a countable set with a limit point, then X is stratifiable ([6]).
- If X^{2} is monotonically normal, then X is hereditarily paracompact and X^{n} is monotonically normal for each finite $n([4])$.
So we also ask:
Question 16. Characterize suborderable spaces X and Y for which $X \times Y$ is monotonically normal.

References

[1] R. Engelking, General Topology. Herdermann Verlag, Berlin (1989).
[2] R. Engelking and D. Lutzer, Paracompactness in ordered spaces Fund. Math., 94 (1977), 49-58.
[3] S. Garcia-Ferreira, K. Miyazaki and T. Nogura, Continuous weak selections for products , Top. Appl., 160 (2013), 2465-2472.
[4] P. Gartside, Monotone normality in products , Top. Appl., 191 (1999), 621640.
[5] V.Gutev and T. Nogura, Weak orderability of topological spaces, Top. Appl., 157 (2010), 1249-1274.
[6] R. Heath, D. Lutzer, P. Zenor, Monotonically normal spaces, Trans. Amer. Math. Soc., 178 (1973), 481-493.
[7] H. Herrich, Ordnungsfähigkeit topologischer Räume, Inaugural-Dissertation zur Erlangung der Doktorwürde der Mathematisch-Naturwissenschaftlichen Fakultät der Freien Universität Berlin (1962), 72 pp.
[8] R. Kaufman, Ordered sets and compact spaces, Colloq. Math., 17 (1967), 3539.
[9] N. Kemoto, Normality of products of GO-spaces and cardinals, Topology Proc., 18 (1993), 133-142.
[10] D.J. Lutzer, On generalized ordered spaces, Dissertationes Math. Rozprawy Mat., 89 (1971).
[11] S. Purisch, Scattered compactifications and the orderability of scattered spaces, Proc. Amer. Math. Soc., 95 (1985), 636-640.

Faculty of Education, Oita University, Dannoharu, Oita, 870-1192, Japan

E-mail addresses:

nkemoto@cc.oita-u.ac.jp

