ORDERABILITY OF PRODUCTS

NOBUYUKI KEMOTO

ABSTRACT. We prove that for non-discrete spaces X and Y,

- (1) If the product space $X \times Y$ is suborderable, then both X and Y are hereditarily paracompact and there is a unique regular infinite cardinal κ such that for every $z \in X \cup Y$, the cofinality from left (right) of z (this notion will be defined precisely below) is either 0, 1 or κ .
- (2) If X and Y are subspaces of an ordinal, then the converse implication of (1) is also true.

Recently, a kind of orderability of X^2 is known to be related to selection theory, see [5, 3]. In this paper, we see the results in the abstract.

Spaces mean regular topological spaces. Let < be a linear order on a set X. $\lambda(<)$ denotes the usual order topology, that is, the topology generated by

$$\{(a, \rightarrow) : a \in X\} \cup \{(\leftarrow, b) : b \in X\}$$

as a subbase, where $(a, \rightarrow) = \{x \in X : a < x\}, (a, b) = \{x \in X : a < x < b\},..., etc.$ If necessary, we write $<_X$ and $(a, b)_X$ instead of < and (a, b) respectively. A LOTS X means the triple $\langle X, <, \lambda(<) \rangle$. LOTS is an abbreviation of "Linearly Ordered Topological Space". As usual, we consider an ordinal α as the set of smaller ordinals and as a LOTS with the order \in (we identify it with <). Similarly a *Generalized Ordered space* (GO-space) means the triple $\langle X, <, \tau \rangle$ where τ is a topology on X with $\lambda(<) \subset \tau$ which has a base consisting convex sets, where a subset A is convex if $(a, b) \subset A$ whenever $a, b \in A$ with a < b.

A topological space $\langle X, \tau \rangle$, where τ is a topology on X, is said to be *orderable* if $\tau = \lambda(<)$ for some linear order < on X. Also a topological space $\langle X, \tau \rangle$ is said to be *suborderable* if it is a subspace of some orderable space. It is well-known that orderable spaces are hereditarily normal. Also it is well-known that:

(1) If $\langle L, <_L, \lambda(<_L) \rangle$ is a LOTS and $X \subset L$, then $\langle X, <_L \upharpoonright X, \lambda(<_L) \upharpoonright X \rangle$ is a GO-space, where $<_L \upharpoonright X$ is the restricted order of $<_L$ to

2000 Mathematics subject classification. 54F05, 54B10, 54B05,

Keywords and phrases. orderable, suborderable, products, ordinal

Date: January 13, 2016.

X and $\lambda(<_L) \upharpoonright X$ is the subspace topology of $\lambda(<_L)$ on X, that is $\{U \cap X : U \in \lambda(<_L)\}$. On the other hand:

- (2) If $\langle X, \langle X, \tau \rangle$ is a GO-space, then there is a LOTS $\langle L, \langle L, \lambda(\langle L, \rangle) \rangle$ with $X \subset L$ such that the space $\langle X, \tau \rangle$ is a dense subspace of $\langle L, \lambda(\langle L) \rangle$ and $\langle X = \langle L \upharpoonright X$, therefore $\langle X, \tau \rangle$ is suborderable. Obviously a suborderable space is a GO-space with some linear order. Moreover:
- (3) If $\langle X, <_X, \lambda(<_X) \rangle$ is a LOTS, then there is a LOTS $\langle L, <_L, \lambda(<_L) \rangle$ with $X \subset L$ and $\langle X = <_L \upharpoonright X$ such that the space $\langle L, \lambda(<_L) \rangle$ is compact and contains $\langle X, \lambda(<_X) \rangle$ as a dense subspace. Therefore by (2) and (3), we have:
- (4) If $\langle X, \langle X, \tau \rangle$ is a GO-space, then there is a compact LOTS $\langle L, \langle L, \lambda(\langle L) \rangle$ with $X \subset L$ and $\langle X = \langle L \rangle X$ such that the compact space $\langle L, \lambda(\langle L) \rangle$ contains $\langle X, \tau \rangle$ as a dense subspace. We say this situation as "a GO space $\langle X, \langle X, \tau \rangle$ has a linearly ordered compactification $\langle L, \langle L, \lambda(\langle L) \rangle$ " or more simply "a GO-space X has a linearly ordered compactification L".

Remark that a compact LOTS $\langle L, <_L, \lambda(<_L) \rangle$ has the largest element max L and the smallest element min L. Also remark that if X is a convex subset of a LOTS $\langle L, <_L, \lambda(<_L) \rangle$, then the subspace topology $\lambda(<_L) \upharpoonright X$ coincides with the order topology $\lambda(< \upharpoonright X)$ on X. For more details, see [10] and [8]. Usually, if there are no confusion, we do not distinguish the symbols $<_X$ and $<_L$, and simply write <.

In general, a GO-space can have many linearly ordered compactifications. But it is known that a GO-space X has a linearly ordered compactification lX such that for every linearly ordered compactification cX of X, there is a continuous function $f : cX \to lX$ with f(x) = x for every $x \in X$, see [9]. Observe that by the definition, lX is unique up to order isomorphisms. lX is said to be the minimal linearly ordered compactification of X and it is characterized as follows:

Lemma 1. [9, Lemma 2.1] A linearly ordered compactification cX of a GO-space X is minimal if and only if $(a,b)_{cX} \neq \emptyset$ for every $a, b \in cX \setminus X$ with a < b.

Let $\{X_{\alpha} : \alpha \in \Lambda\}$ be a pairwise disjoint collection of spaces X_{α} 's. $\bigoplus_{\alpha \in \Lambda} X_{\alpha}$ denotes the topological sum of X_{α} 's, that is, the space $\bigcup_{\alpha \in \Lambda} X_{\alpha}$ with the topology generated by $\bigcup_{\alpha \in \Lambda} \tau_{\alpha}$ as a base, where τ_{α} is the topology on X_{α} . Remark that the subspace $\{0\} \cup (1, 2)$ of the real line is suborderable but not orderable. This means that the topological sum of orderable spaces need not be orderable. On the other hand, the infinite discrete space $D(\kappa)$ of cardinality κ is orderable, because the LOTS $\kappa \times \mathbb{Z}$ with the lexicographic order is homeomorphic to $D(\kappa)$, where \mathbb{Z} is the set of integers.

Let S be a subset of an ordinal α . $\operatorname{Lim}_{\alpha}(S)$ denotes the set $\{\beta \in \alpha : \sup(S \cap \beta) = \beta\}$, that is, the set of all cluster points of S in α . If the contexts are clear, we simply write as $\operatorname{Lim}(S)$. Obviously if S is closed in α , then $\operatorname{Lim}(S) \subset S$. $\operatorname{Succ}(S)$ denotes the set $S \setminus \operatorname{Lim}(S)$, that is the set of all isolated points of S.

A subset S of a regular uncountable cardinal κ is stationary if it intersects with all closed unbounded (club) set C of κ , where a subset C of κ is unbounded if for every $\alpha < \kappa$, there is $\beta \in C$ with $\alpha \leq \beta$. Note that if S is unbounded in κ , then Lim(S) is club in κ .

Lemma 2. Let S be a stationary set in a regular uncountable cardinal κ and X a non-discrete space of cardinality $< \kappa$. Then the subspace $X \times S$ of $X \times \kappa$ is not hereditarily normal.

Proof. Let x be a non-isolated point of X and $Y = (X \setminus \{x\}) \times S \cup \{x\} \times \operatorname{Succ}(S)$. Then it is routine to check that $F_0 = \{x\} \times \operatorname{Succ}(S)$ and $F_1 = (X \setminus \{x\}) \times (S \cap \operatorname{Lim}(S))$ are disjoint closed sets in Y which cannot be separated by disjoint open sets.

Lemma 3. Let κ and λ be regular infinite cardinals with $\kappa \neq \lambda$. Then the subspace $(\operatorname{Succ}(\kappa) \cup \{\kappa\}) \times (\operatorname{Succ}(\lambda) \cup \{\lambda\})$ of $(\kappa + 1) \times (\lambda + 1)$ is not suborderable.

Proof. Let $X = \operatorname{Succ}(\kappa) \cup \{\kappa\}$ and $Y = \operatorname{Succ}(\lambda) \cup \{\lambda\}$ and assume that $X \times Y$ is suborderable. Denote the product topology of $X \times Y$ by τ . Fix a linearly ordered set $\langle L, <_L \rangle$ such that $X \times Y \subset L$ and $\lambda(<_L) \upharpoonright X \times Y = \tau$, where $\lambda(<_L)$ denotes the order topology on L. Denote the restricted order $<_L \upharpoonright X \times Y$ on $X \times Y$ by <. We may assume $\omega \leq \kappa < \lambda$. Let $F_0 = \{\kappa\} \times \operatorname{Succ}(\lambda)$ and $F_1 = \operatorname{Succ}(\kappa) \times \{\lambda\}$. Put

$$F_0^- = \{\beta \in \operatorname{Succ}(\lambda) : \langle \kappa, \beta \rangle < \langle \kappa, \lambda \rangle \},\$$

$$F_0^+ = \{\beta \in \operatorname{Succ}(\lambda) : \langle \kappa, \lambda \rangle < \langle \kappa, \beta \rangle \},\$$

$$F_1^- = \{\alpha \in \operatorname{Succ}(\kappa) : \langle \alpha, \lambda \rangle < \langle \kappa, \lambda \rangle \},\$$

$$F_1^+ = \{\alpha \in \operatorname{Succ}(\kappa) : \langle \kappa, \lambda \rangle < \langle \alpha, \lambda \rangle \}.\$$

Note $F_0 = \{\kappa\} \times (F_0^- \cup F_0^+)$ and $F_1 = (F_1^- \cup F_1^+) \times \{\lambda\}$. Claim 1. $|F_1^-| < \kappa$ or $|F_1^+| < \kappa$.

Proof. Assume that both F_1^- and F_1^+ have cardinality κ . For every $\alpha \in F_1^-$, since $(\leftarrow, \langle \kappa, \lambda \rangle)_L \cap X \times Y$ is a τ -neighborhood of $\langle \alpha, \lambda \rangle$ in $X \times Y$, there is $g(\alpha) < \lambda$ such that $\{\alpha\} \times (g(\alpha), \lambda] \cap X \times Y \subset (\leftarrow, \langle \kappa, \lambda \rangle)_L \cap X \times Y$, where $(\leftarrow, \langle \kappa, \lambda \rangle)_L$ denotes the interval in L and

 $(g(\alpha), \lambda]$ denotes the usual interval in $\lambda+1$. Similarly for every $\alpha \in F_1^+$, we can find $g(\alpha) < \lambda$ such that $\{\alpha\} \times (g(\alpha), \lambda] \cap X \times Y \subset (\langle \kappa, \lambda \rangle, \rightarrow)_L \cap X \times Y$.

Put $\beta_0 = \sup\{g(\alpha) : \alpha \in F_1^- \cup F_1^+\}$. Then by $\kappa < \lambda$, we have $\beta_0 < \lambda$. Pick $\beta \in (\beta_0, \lambda) \cap \operatorname{Succ}(\lambda)$. We may assume $\beta \in F_0^-$, then $\langle \kappa, \beta \rangle <_L \langle \kappa, \lambda \rangle$. On the other hand, by $|F_1^+| = \kappa$ and $F_1^+ \times \{\beta\} \subset (\langle \kappa, \lambda \rangle, \rightarrow)_L$, we have $\langle \kappa, \beta \rangle \in \operatorname{Cl}_{\tau} F_1^+ \times \{\beta\} \subset [\langle \kappa, \lambda \rangle, \rightarrow)_L$. Therefore $\langle \kappa, \lambda \rangle \leq_L \langle \kappa, \beta \rangle$, a contradiction.

Now we may assume $|F_1^+| < \kappa$, then $|F_1^-| = \kappa$ and $\langle \kappa, \lambda \rangle \in \operatorname{Cl}_{\tau} F_1^- \times \{\lambda\} \subset (\leftarrow, \langle \kappa, \lambda \rangle]_L$

Claim 2.
$$|F_0^+| = \lambda$$
.

Proof. Assume $|F_0^+| < \lambda$, then $|F_0^-| = \lambda$. Therefore we have $\langle \kappa, \lambda \rangle \in \operatorname{Cl}_{\tau}\{\kappa\} \times F_0^- \subset (\leftarrow, \langle \kappa, \lambda \rangle]_L$. For every $\beta \in F_0^-$, since $(\langle \kappa, \beta \rangle, \rightarrow)_L \cap X \times Y$ is a τ -neighborhood of $\langle \kappa, \lambda \rangle$ and $\langle \kappa, \lambda \rangle \in \operatorname{Cl}_{\tau}F_1^- \times \{\lambda\}$, there is $\alpha(\beta) \in F_1^-$ such that $\langle \kappa, \beta \rangle <_L \langle \alpha(\beta), \lambda \rangle$. Since $\kappa < \lambda$, there are $\alpha_0 \in F_1^-$ and $F \subset F_0^-$ of size λ such that $\alpha(\beta) = \alpha_0$ for each $\beta \in F$. Note $\langle \alpha_0, \lambda \rangle <_L \langle \kappa, \lambda \rangle$. Then $\{\kappa\} \times F \subset (\leftarrow, \langle \alpha_0, \lambda \rangle)_L$, therefore $\operatorname{Cl}_{\tau}\{\kappa\} \times F \subset (\leftarrow, \langle \alpha_0, \lambda \rangle]_L$. On the other hand, it follows from $|F| = \lambda$ that $\langle \kappa, \lambda \rangle \in \operatorname{Cl}_{\tau}\{\kappa\} \times F$, thus $\langle \kappa, \lambda \rangle \leq_L \langle \alpha_0, \lambda \rangle$, a contradiction. \Box

Now for each $\beta \in F_0^+$, it follows from $\langle \kappa, \lambda \rangle <_L \langle \kappa, \beta \rangle$ that there is $f(\beta) < \kappa$ such that

(*)
$$((\operatorname{Succ}(\kappa) \cup \{\kappa\} \cap (f(\beta), \kappa]) \times \{\beta\} \subset (\langle \kappa, \lambda \rangle, \rightarrow)_L.$$

By $\kappa < \lambda$, there are $\alpha_0 < \kappa$ and $F \subset F_0^+$ of cardinality λ such that $f(\beta) = \alpha_0$ for every $\beta \in F$.

Since $|F_1^-| = \kappa$, one can pick $\alpha \in F_1^-$ with $\alpha_0 < \alpha$. Then $\langle \alpha, \lambda \rangle <_L \langle \kappa, \lambda \rangle$. On the other hand by (*), we have $\{\alpha\} \times F \subset (\langle \kappa, \lambda \rangle, \rightarrow)_L$, therefore $\langle \alpha, \lambda \rangle \in \operatorname{Cl}_\tau\{\alpha\} \times F \subset [\langle \kappa, \lambda \rangle, \rightarrow)_L$, a contradiction. \Box

Definition 4. Let κ be a regular infinite cardinal, $\mathcal{X} = \{X_{\alpha} : \alpha \in \Lambda\}$ a pairwise disjoint collection of non-empty spaces and x_0 a point with $x_0 \notin \bigcup_{\alpha \in \Lambda} X_{\alpha}$, where $\Lambda \subset \kappa$. Put $X = (\bigcup_{\alpha \in \Lambda} X_{\alpha}) \cup \{x_0\}$ and equip the topology τ generated by

$$\left(\bigcup_{\alpha\in\Lambda}\tau_{\alpha}\right)\cup\left\{\left(\bigcup_{\alpha\in\Lambda\cap(\gamma,\kappa)}X_{\alpha}\right)\cup\left\{x_{0}\right\}:\gamma<\kappa\right\}$$

as a base, where τ_{α} is the topology on X_{α} . We call this topological space $\langle X, \tau \rangle$ as 1-point extension of the topological sum $\bigoplus_{\alpha \in \Lambda} X_{\alpha}$ with the κ -limit point x_0 and denoted by $X(\mathcal{X}, x_0)$.

In the definition above, remark:

4

- For every $\alpha \in \Lambda$, X_{α} is clopen in X. Thus the topological sum $\bigoplus_{\alpha \in \Lambda} X_{\alpha}$ is a subspace of X.
- x_0 has a neighborhood base of cardinality $\leq \kappa$.
- Λ is unbounded in κ iff x_0 is a non-isolated point of X.

Now let C be a club set in a regular infinite cardinal κ and $\alpha < \kappa$. Let

 $\alpha_C^- = \sup(C \cap \alpha), \ \alpha_C^+ = \min\{\beta \in C : \alpha < \beta\},\$

where $\sup \emptyset = -1$. If contexts are clear, then we usually write simply α^- and α^+ . Remark that $\alpha \in \operatorname{Succ}(C)$ iff $\alpha^- < \alpha$ and that $\alpha < \alpha^+$ for every $\alpha \in C$.

Lemma 5. Let κ be a regular infinite cardinal, $\mathcal{X} = \{X_{\alpha} : \alpha \in \Lambda\}$ a pairwise disjoint collection of non-empty suborderable spaces with $\Lambda \subset \operatorname{Succ}(C)$ for some club set C of κ and $x_0 \notin \bigcup_{\alpha \in \Lambda} X_{\alpha}$. Then the 1-point extension $X(\mathcal{X}, x_0)$ of $\bigoplus_{\alpha \in \Lambda} X_{\alpha}$ with the κ -limit point x_0 is suborderable.

Proof. For every $\alpha \in \Lambda$, pick a compact LOTS $\langle L_{\alpha}, <_{\alpha}, \lambda(<_{\alpha}) \rangle$ such that $\langle L_{\alpha}, \lambda(<_{\alpha}) \rangle$ contains $\langle X, \tau_{\alpha} \rangle$ as a dense subspace, where τ_{α} denotes the topology on X_{α} . For every $\alpha \in C \setminus \Lambda$, let $L_{\alpha} = \{l_{\alpha}\}$ be a one point set with the trivial order $<_{\alpha}$. By taking isomorphic compact LOTS', we may assume that $\{L_{\alpha} : \alpha \in C\}$ is pairwise disjoint with $x_0 \notin \bigcup_{\alpha \in C} L_{\alpha}$. Let $L = (\bigcup_{\alpha \in C} L_{\alpha}) \cup \{x_0\}$ and define a linear order $<_L$ on L as follows:

- for every $x \in \bigcup_{\alpha \in C} L_{\alpha}$, $x <_L x_0$, that is, $x_0 = \max L$,
- if $x, y \in L_{\alpha}$ for some $\alpha \in C$, then $x <_L y$ is defined by $x <_{\alpha} y$,
- if $x \in L_{\alpha}$ and $y \in L_{\alpha}$ with $\alpha, \beta \in C$ and $\alpha \neq \beta$, then $x <_L y$ is defined by $\alpha < \beta$.

Then obviously $<_L \upharpoonright L_\alpha$ coincides with $<_\alpha$ for every $\alpha \in C$.

Claim 1. For every $\alpha \in \text{Succ}(C)$, L_{α} is open in $\langle L, \lambda(<_L) \rangle$.

Proof. It follows from $L_{\alpha} = (\max L_{\alpha^{-}}, \min L_{\alpha^{+}})_{L}$ that L_{α} is open in $\langle L, \lambda(<_{L}) \rangle$.

Claim 2. For every $\alpha \in C$, $\langle L_{\alpha}, \lambda(<_{\alpha}) \rangle$ is a convex closed subspace of $\langle L, \lambda(<_{L}) \rangle$.

Proof. Since L_{α} is represented as $L_{\alpha} = [\min L_{\alpha}, \max L_{\alpha}]_{L}$, it is closed and convex. Therefore $\lambda(<_{L}) \upharpoonright L_{\alpha} = \lambda(<_{L} \upharpoonright L_{\alpha}) = \lambda(<_{\alpha})$.

Since $\lambda(<_{\alpha}) \upharpoonright X_{\alpha} = \tau_{\alpha}$ for each $\alpha \in \Lambda$, by the claim above, we have:

Claim 3. For every $\alpha \in \Lambda$, $\langle X_{\alpha}, \tau_{\alpha} \rangle$ is a subspace of $\langle L, \lambda(<_L) \rangle$.

To finish the proof, it suffices to see:

Claim 4. $\tau = \lambda(<_L) \upharpoonright X$, where τ denotes the topology of $X = X(\mathcal{X}, x_0)$.

Proof. First we prove $\tau \subset \lambda(<_L) \upharpoonright X$. Let \mathcal{B} be the base $(\bigcup_{\alpha \in \Lambda} \tau_\alpha) \cup \{(\bigcup_{\alpha \in \Lambda \cap (\gamma, \kappa)} X_\alpha) \cup \{x_0\} : \gamma < \kappa\}$ of τ . It suffices to see $\mathcal{B} \subset \lambda(<_L) \upharpoonright X$. Let $U \in \mathcal{B}$.

Case 1. $U \in \tau_{\alpha}$ for some $\alpha \in \Lambda$.

In this case by Claim 3, there is $V \in \lambda(<_L)$ with $V \cap X_{\alpha} = U$. By Claim 1, we have $X_{\alpha} = X \cap L_{\alpha} \in \lambda(<_L) \upharpoonright X$. Therefore $U = V \cap X_{\alpha} = (V \cap X) \cap X_{\alpha} \in \lambda(<_L) \upharpoonright X$ holds.

Case 2. $U = (\bigcup_{\alpha \in \Lambda \cap (\gamma, \kappa)} X_{\alpha}) \cup \{x_0\}$ for some $\gamma < \kappa$.

In this case, let $\alpha_0 = \min(\Lambda \cap (\gamma, \kappa))$. Then we have $\alpha_0 \in \Lambda \subset \operatorname{Succ}(C)$ and $U = ((\bigcup_{\alpha \in (\alpha_0^-, \kappa) \cap C} L_\alpha) \cup \{x_0\}) \cap X = (\max L_{\alpha_0^-}, x_0]_L \cap X \in \lambda(<_L) \upharpoonright X.$

Next we show $\tau \supset \lambda(<_L) \upharpoonright X$. Let $z \in L$. It suffices to see the following two facts.

Fact 1. $(\leftarrow, z)_L \cap X \in \tau$.

In the case $z = x_0$, $(\leftarrow, z)_L \cap X = \bigcup_{\alpha \in \Lambda} X_\alpha \in \tau$ holds. So we may assume $z \neq x_0$. Take $\alpha \in C$ with $z \in L_\alpha$. If $\alpha \notin \Lambda$, then $(\leftarrow, z)_L \cap X = \bigcup_{\beta \in \Lambda \cap \alpha} X_\beta \in \tau$. If $\alpha \in \Lambda$, then by Claim 3, we have $(\leftarrow, z)_L \cap X_\alpha \in \tau_\alpha \subset \tau$, therefore $(\leftarrow, z)_L \cap X = (\bigcup_{\beta \in \Lambda \cap \alpha} X_\beta) \cup ((\leftarrow, z)_L \cap X_\alpha) \in \tau$.

Fact 2. $(z, \rightarrow)_L \cap X \in \tau$.

In the case $z = x_0$, $(z, \to)_L \cap X = \emptyset \in \tau$. So we may assume $z \neq x_0$. Take $\alpha \in C$ with $z \in L_{\alpha}$. If $\alpha \notin \Lambda$, then $(z, \to)_L \cap X = (\bigcup_{\beta \in \Lambda \cap (\alpha, \kappa)} X_{\beta}) \cup \{x_0\} \in \tau$. If $\alpha \in \Lambda$, then by Claim 3, we have $(z, \to)_L \cap X_\alpha \in \tau_\alpha \subset \tau$, therefore $(z, \to)_L \cap X = (\bigcup_{\beta \in \Lambda \cap (\alpha, \kappa)} X_\beta) \cup ((z, \to)_L \cap X_\alpha) \in \tau$.

The following corollary is well-known by different approaches.

Corollary 6. If $\mathcal{X} = \{X_{\alpha} : \alpha \in \Lambda\}$ is a pairwise disjoint collection of non-empty suborderable spaces, then the topological sum $\bigoplus_{\alpha \in \Lambda} X_{\alpha}$ is also suborderable.

Proof. We may assume that all X_{α} 's are non-empty. Take a suitably large regular infinite cardinal κ with $|\Lambda| \leq \kappa$ and we may assume $\Lambda \subset \operatorname{Succ}(\kappa)$. By the lemma above, $X(\mathcal{X}, x_0)$ is suborderable for some x_0 . Therefore the subspace $\bigoplus_{\alpha \in \Lambda} X_{\alpha}$ of $X(\mathcal{X}, x_0)$ is suborderable. \Box

6

This corollary shows:

Corollary 7. If X is a suborderable space and Y is a discrete space, then $X \times Y$ is suborderable.

Therefore when we discuss suborderability of $X \times Y$, we may assume that both X and Y are non-discrete. Additionally remark that, if X is an orderable space and Y is a discrete space, then $X \times Y$ is orderable.

Corollary 8. Let κ be a regular infinite cardinal. Then $X = (Succ(\kappa) \cup \{\kappa\})^2$ is suborderable.

Proof. For every $\alpha \in \text{Succ}(\kappa)$. let

$$X_{\alpha} = (\{\alpha\} \times [\alpha, \kappa] \cap X) \bigoplus ((\alpha, \kappa] \times \{\alpha\} \cap X),$$

moreover let

$$\mathcal{X} = \{X_{\alpha} : \alpha \in \operatorname{Succ}(\kappa)\}$$

Then obviously \mathcal{X} is a pairwise disjoint collection of suborderable spaces. One can check that the both topologies of X and $X(\mathcal{X}, \langle \kappa, \kappa \rangle)$ coincide by carefully comparing the both neighborhood bases at $\langle \kappa, \kappa \rangle$. The lemma above shows that X is suborderable.

In particular, $(\omega + 1)^2$ is suborderable ([7]). Remark:

Lemma 9. [1, Problem 3.12.3(a)] Let $\langle L, <, \lambda(<) \rangle$ be a LOTS. Then the following are equivalent:

- (1) The space $\langle L, \lambda(\langle \rangle) \rangle$ is compact.
- (2) For every subset A of L, A has the least upper bound $\sup_L A$ in $\langle L, < \rangle$.
- (3) For every subset A of L, A has the greatest lower bound $\inf_L A$ in $\langle L, < \rangle$.

Note that $\sup \emptyset = \min L$ and $\inf \emptyset = \max L$ whenever L is a compact LOTS.

Definition 10. Let *L* be a compact LOTS and $x \in L$. A subset $A \subset (\leftarrow, x)_L$ is said to be 0-unbounded for *x* in *L* if for every y < x, there is $a \in A$ with $y \leq a$. Similarly for a subset $A \subset (x, \rightarrow)_L$, "1-unbounded for *x*" is defined. Now 0-cofinality 0-cf_L *x* of *x* in *L* is defined by:

 $0-\operatorname{cf}_L x = \min\{|A| : A \text{ is } 0-\text{unbounded for } x \text{ in } L.\}.$

Also $1 - \operatorname{cf}_L x$ is defined. If there are no confusion, we write simply $0 - \operatorname{cf} x$ and $1 - \operatorname{cf} x$. Observe that

• if x is the smallest element of L, then 0- $\operatorname{cf} x = 0$,

• if x has the immediate predecessor in L, then 0- cf x = 1,

• otherwise, then 0 - cf x is a regular infinite cardinal.

Moreover, remark:

• $\omega \leq 0$ - cf x iff sup_L(\leftarrow, x)_L = x iff $x \in Cl_L(\leftarrow, x)_L$.

If 0- cf $x = \kappa$, then we can define a strictly increasing function $c : \kappa \to L$ which is continuous with its range $c[\kappa]$ 0-unbounded for x. We call such a function c as a 0-normal function for x in L. The reader should remark that these methods in compact LOTS' extend the usual methods in ordinal numbers.

Observe that in the notation above, for every closed set F of κ , c[F] is also closed in $(\leftarrow, x)_L$. Therefore c is an embedding such that $c[\kappa]$ is closed in (\leftarrow, x) and 0-unbounded for x. Note that there can be many 0-normal functions for x in L.

Also note that if cX and c'X are two linearly ordered compactifications of a GO-space X, then $i - \operatorname{cf}_{cX} x$ coincides with $i - \operatorname{cf}_{c'X} x$ for every $x \in X$ and $i \in 2 = \{0, 1\}$. In our discussion, we apply these methods for L = lX with a GO-space X and consider $0-cf_{lX}x$ or 1 $cf_{lX} x$ for $x \in lX$. In particular, if X is a subspace of an ordinal, say $X \subset [0,\gamma]$, with the usual order, then we can check using Lemma 1 $lX = \operatorname{Cl}_{[0,\gamma]}X$. Moreover in this case, for every $x \in lX$, obviously 1- cf x is 0 or 1, furthermore we can easily check that 0- cf x is equal to cf x in the usual sense whenever $x \in \text{Lim}(X)$. Let X be a GO-space, $x \in X$, $\kappa = 0$ - cf $x \ge \omega$ and fix a 0-normal function $c : \kappa \to lX$. Inductively one can take a strictly increasing sequence $\{x(\alpha) : \alpha < \kappa\} \subset (\leftarrow, x)_{lX} \cap X$ with $\sup\{c(\beta) : \beta \leq \alpha\} \cup \{x(\beta) : \beta < \alpha\} < x(\alpha)$. Then obviously $\{x(\alpha) : \alpha < \kappa\} \cup \{x\}$ is homeomorphic to $\operatorname{Succ}(\kappa) \cup \{\kappa\}$. Similarly whenever X is a subspace of an ordinal and $\alpha \in X \cap \text{Lim}(X)$, one can fix a strictly increasing sequence $\{\alpha(\gamma) : \gamma < \kappa\} \subset X$ which is cofinal in α such that $\{\alpha(\gamma) : \gamma < \kappa\} \cup \{\alpha\}$ is homeomorphic to $\operatorname{Succ}(\kappa) \cup \{\kappa\}$, where $\kappa = \operatorname{cf} \alpha$.

Engelking and Lutzer [2] proved that a suborderable space is paracompact iff it does not have a closed subspace which is homeomorphic to a stationary set in a regular uncountable cardinal. Therefore:

Lemma 11 ([2]). A suborderable space is hereditarily paracompact iff it does not have a subspace which is homeomorphic to a stationary set in a regular uncountable cardinal.

Now we have prepared to find properties implied by suborderability of product spaces. Remark that if the product space $X \times Y$ is suborderable, then both X and Y are suborderable. Therfore we may assume that X and Y are GO-spaces under the assumption that $X \times Y$ is suborderable.

Theorem 12. Let X and Y be non-discrete GO-spaces. If the product space $X \times Y$ is suborderable, then

- (1) X and Y are hereditarily paracompact,
- (2) there is a unique regular infinite cardinal κ such that for every $z \in X \cup Y$ and $i \in 2$, *i*-cf z is 0, 1 or κ , where *i*-cf z means *i*-cf_{*l*X} z (*i*-cf_{*l*Y} z) whenever $z \in X$ ($z \in Y$ respectively).
- (3) X or Y are hereditarily disconnected.

Proof. Assume that $X \times Y$ is suborderable. Fix a linearly ordered set $\langle L, <_L \rangle$ such that $X \times Y$ is a subspace of $\langle L, \lambda(<_L) \rangle$.

(1): We will see that Y is hereditarily paracompact (the case for X is similar). Assume not, then by Lemma 11, there is a subspace which is homeomorphic to a stationary set S in a regular uncountable cardinal in κ . Since X is non-discrete, there is $i \in 2$ and $x \in X$ with $\lambda = i - \operatorname{cf}_{lX} x \geq \omega$. As mentioned above, X has a subspace which is homeomorphic to $\operatorname{Succ}(\lambda) \cup \{\lambda\}$.

Case 1. $\lambda < \kappa$.

In this case, by Lemma 2, the hereditarily normal space $X \times Y$ has a non-hereditarily normal subspace, a contradiction.

Case 2. $\kappa \leq \lambda$.

In this case, since S is stationary, we can take $\alpha \in S \cap \text{Lim}(S)$. Set $\mu = \text{cf } \alpha$, then $\mu < \lambda$. As mentioned above, S has a subspace which is homeomorphic to $\text{Succ}(\mu) \cup \{\mu\}$. Then the suborderable space $X \times Y$ contains a subspace which is homeomorphic to $(\text{Succ}(\lambda) \cup \{\lambda\}) \times (\text{Succ}(\mu) \cup \{\mu\})$. This contradicts Lemma 3.

(2): Assume that (2) does not hold. Since both X and Y are nondiscrete, there are $x \in X$, $y \in Y$ and $i, j \in 2$ with i- cf $x \ge \omega$, j- cf $y \ge \omega$ and i- cf $x \ne j$ - cf y. Set $\kappa = i$ - cf x and $\lambda = j$ - cf y. Then the suborderable space $X \times Y$ contains a subspace which is homeomorphic to $(\operatorname{Succ}(\kappa) \cup \{\kappa\}) \times (\operatorname{Succ}(\lambda) \cup \{\lambda\})$. This contradicts Lemma 3.

(3): Recall that a space is *hereditarily disconnected* if every nonempty connected subset is a one-point set. Assume neither X nor Y is hereditarily disconnected. Then there are connected subsets C and D of X and Y respectively with $2 \leq |C|$ and $2 \leq |D|$. Fix $x_0, x_1 \in C$ and $y_0, y_1 \in D$ with $x_0 \neq x_1$ and $y_0 \neq y_1$. We may assume $\langle x_0, y_0 \rangle <_L$ $\langle x_0, y_1 \rangle <_L \langle x_1, y_1 \rangle$, otherwise change the indeces. Then $\langle x_1, y_0 \rangle \in$ $C \times \{y_0\} \cap \{x_1\} \times D$, moreover both $C \times \{y_0\}$ and $\{x_1\} \times D$ are connected. Therefore $C \times \{y_0\} \cup \{x_1\} \times D$ is a connected subset of $X \times Y \setminus \{\langle x_0, y_1 \rangle\}$

containing the points $\langle x_0, y_0 \rangle$ and $\langle x_1, y_1 \rangle$. On the other hand, the disjoint open sets $(\leftarrow, \langle x_0, y_1 \rangle)_L \cap X \times Y$ and $(\langle x_0, y_1 \rangle, \rightarrow)_L \cap X \times Y$ separate the connected set $C \times \{y_0\} \cup \{x_1\} \times D$, a contradiction. \Box

Whenever X and Y are subspaces of an ordinal, then the converse implication of the theorem above is also true:

Theorem 13. Let X and Y be non-discrete subspaces of an ordinal. Then the product space $X \times Y$ is suborderable, if

- (1) X and Y are hereditarily paracompact,
- (2) there is a unique regular infinite cardinal κ such that for every $z \in X \cup Y$ and $i \in 2$, cf z is either 0, 1 or κ , equivalently for every $z \in (X \cap \text{Lim}(X)) \cup (Y \cap \text{Lim}(Y))$, cf $z = \kappa$.

Proof. Note that every subspace of an ordinal is hereditarily disconnected. We may assume $X \cup Y \subset [0, \gamma]$ for some ordinal γ . It suffices to see that by induction on $\alpha \leq \gamma$, $(X \cap [0, \alpha]) \times Y$ is suborderable (because $\alpha = \gamma$ finishes the proof). Assume that $\alpha \leq \gamma$ and for every $\alpha' < \alpha$, $(X \cap [0, \alpha']) \times Y$ is suborderable.

Case 1. $\alpha \notin \text{Lim}(X)$.

In this case, let $\alpha' = \sup(X \cap \alpha)$. By $\alpha' < \alpha$, since $(X \cap [0, \alpha]) \times Y$ is homeomorphic to $(X \cap [0, \alpha']) \times Y \bigoplus (X \cap \{\alpha\}) \times Y$, it is suborderable by the assumption.

Case 2. $\alpha \in \text{Lim}(X)$.

Set $\lambda = \operatorname{cf} \alpha$ and fix a normal function $c : \lambda \to \alpha$ for α , that is, it is a strictly increasing continuous cofinal function into α , where c(-1) =-1. Since λ is homeomorphic to $c[\lambda]$, by Lemma 11, $c^{-1}[X]$ is nonstationary in λ whenever λ is uncountable.

Subcase 1. $\alpha \notin X$.

When $\lambda = \omega$, $(X \cap [0, \alpha]) \times Y$ is homeomorphic to $\bigoplus_{n \in \omega} (X \cap (c(n - 1), c(n)]) \times Y$. When $\omega < \lambda$, taking a club set C in λ with $C \cap c^{-1}[X] = \emptyset$, $(X \cap [0, \alpha]) \times Y$ is homeomorphic to $\bigoplus_{\delta \in \operatorname{Succ}(C)} (X \cap (c(\delta^{-}), c(\delta)]) \times Y$. In either cases, $(X \cap [0, \alpha]) \times Y$ is suborderable by the inductive assumption.

Subcase 2. $\alpha \in X$.

By the assumption (2), we have $\lambda = \kappa$. We will see by induction $\beta \leq \gamma$ that $(X \cap [0, \alpha]) \times (Y \cap [0, \beta])$ is suborderable (then $\beta = \gamma$ finishes this subcase). Assume that $\beta \leq \gamma$ and for every $\beta' < \beta$, $(X \cap [0, \alpha]) \times (Y \cap [0, \beta'])$ is suborderable. It suffices to check the case $\beta \in Y \cap \text{Lim}(Y)$, because other cases are similar to Case 1 and Subcase

10

1 of Case 2. By the assumption (2), we have $\operatorname{cf} \beta = \kappa$. Let $d : \kappa \to \beta$ be a normal function for β . When $\kappa = \omega$, let $C = \omega$. When $\kappa > \omega$, by Lemma 11, take a club set C of κ with $C \cap (c^{-1}[X] \cup d^{-1}[Y]) = \emptyset$. For every $\delta \in \operatorname{Succ}(C)$, let $Z_{\delta} =$

$$(X \cap (c(\delta^{-}), \alpha]) \times (Y \cap (d(\delta^{-}), d(\delta)]) \bigoplus (X \cap (c(\delta^{-}), c(\delta)]) \times (Y \cap (d(\delta), \beta]).$$

By the inductive assumption, Z_{δ} is suborderable. Put $\Lambda = \{\delta \in Succ(C) : Z_{\delta} \neq \emptyset\}$ and $\mathcal{Z} = \{Z_{\delta} : \delta \in \Lambda\}$. Note that \mathcal{Z} is pairwise disjoint. It is easy to see that $(X \cap [0, \alpha]) \times (Y \cap [0, \beta]) = (\bigcup_{\delta \in \Lambda} Z_{\delta}) \cup \{\langle \alpha, \beta \rangle\}$ and whose product topology coincides with topology of the 1-point extension of $\bigoplus_{\delta \in \Lambda} Z_{\delta}$ with the κ -limit point $\langle \alpha, \beta \rangle$. It follows from Lemma 5 that $(X \cap [0, \alpha]) \times (Y \cap [0, \beta])$ is suborderable. \Box

Note that the product of two subspaces of an ordinal is scattered (= every subspace has an isolated point), and that scattered suborderable spaces are orderable ([11]). Thus in Theorem 13, "suborderable" is replaced by "orderable".

Example 14. The square \mathbb{S}^2 of the Sorgenfrey line \mathbb{S} with the usual order satisfies (1),(2) and (3) with $X = Y = \mathbb{S}$ in Theorem 12. But \mathbb{S}^2 is not suborderable.

Because, it is well-known that \mathbb{S} is hereditarily paracompact and hereditarily disconnected. Since \mathbb{S}^2 is not normal, it is not suborderable. We check (2). We may assume $\mathbb{S} = (0, 1)$ with the usual order and the topology induced by $\{(a, \rightarrow) : a \in (0, 1)\} \cup \{(\leftarrow, b] : b \in (0, 1)\}$, where (0, 1) denotes the unit open interval. Then using Lemma 1 and 9, it is easy to check $l\mathbb{S} = [0, 1] \times \{0\} \cup (0, 1) \times \{1\}$ with the lexicographic order identifying \mathbb{S} with $(0, 1) \times \{0\}$. Then for every $x \in l\mathbb{S}$ and $i \in 2$, i- cf x is either 0, 1 or ω .

Question 15. For non-discrete suborderable spaces X and Y, characterize suborderability of $X \times Y$.

Concerning monotonical normality, the following are known:

- If $X \times Y$ is monotonically normal and if Y contains a countable set with a limit point, then X is stratifiable ([6]).
- If X^2 is monotonically normal, then X is hereditarily paracompact and X^n is monotonically normal for each finite n ([4]).

So we also ask:

Question 16. Characterize suborderable spaces X and Y for which $X \times Y$ is monotonically normal.

References

- [1] R. Engelking, General Topology. Herdermann Verlag, Berlin (1989).
- [2] R. Engelking and D. Lutzer, *Paracompactness in ordered spaces* Fund. Math., 94 (1977), 49–58.
- [3] S. Garcia-Ferreira, K. Miyazaki and T. Nogura, Continuous weak selections for products, Top. Appl., 160 (2013), 2465–2472.
- [4] P. Gartside, Monotone normality in products, Top. Appl., 191 (1999), 621– 640.
- [5] V.Gutev and T. Nogura, Weak orderability of topological spaces, Top. Appl., 157 (2010), 1249–1274.
- [6] R. Heath, D. Lutzer, P. Zenor, Monotonically normal spaces, Trans. Amer. Math. Soc., 178 (1973), 481–493.
- [7] H. Herrich, Ordnungsfähigkeit topologischer Räume, Inaugural-Dissertation zur Erlangung der Doktorwürde der Mathematisch-Naturwissenschaftlichen Fakultät der Freien Universität Berlin (1962), 72 pp.
- [8] R. Kaufman, Ordered sets and compact spaces, Colloq. Math., 17 (1967), 35– 39.
- [9] N. Kemoto, Normality of products of GO-spaces and cardinals, Topology Proc., 18 (1993), 133–142.
- [10] D.J. Lutzer, On generalized ordered spaces, Dissertationes Math. Rozprawy Mat., 89 (1971).
- S. Purisch, Scattered compactifications and the orderability of scattered spaces, Proc. Amer. Math. Soc., 95 (1985), 636–640.

FACULTY OF EDUCATION, OITA UNIVERSITY, DANNOHARU, OITA, 870-1192, JAPAN

E-mail addresses:

nkemoto@cc.oita-u.ac.jp