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Abstract. For a regular space X, 2X denotes the collection of all non-empty

closed sets of X with the Vietoris topology and K(X) denotes the collection
of all non-empty compact sets of X with the subspace topology of 2X . In this
paper, we will prove:

• K(γ) is orthocompact iff either cfγ ≤ ω or γ is a regular uncountable
cardinal, as a corollary normality and orthocompactness of K(γ) are
equivalent for every non-zero ordinal γ.

We present its two proofs, one proof uses the elementary submodel techniques

and another does not. This also answers Question C of [4]. Moreover we
discuss the natural question whether 2ω is orthocompact or not. We prove
that

• 2ω is orthocompact iff it is countably metacompact,

• The hyperspace K(S) of the Sorgenfrey line S is orthocompact therefore
so is the Sorgenfrey plane S2.

1. Introduction

Throughout spaces are assumed to be regular. α, β, γ, ... stand for ordinals, while
i, j, k, ... for natural numbers. For the notational convenience, we consider −1 as
the immediate predecessor of the ordinal 0. Ordinals are considered as spaces with
the usual order topology. For an ordinal γ, cfγ denotes the cofinality of γ and
Lim(γ) denotes the set of all limit ordinals in γ. R, Q and Z denote the set of all
reals, rationals and integers respectively.

For a space X, we let 2X , or K(X) denote the collection of all non-empty closed
sets, or of all non-empty compact sets, respectively, of X.

We consider 2X with the so-called Vietoris topology τV , and K(X) its subspace.
X is called the base space, and 2X and K(X) the hyperspaces or the exponential
spaces of X.

To describe τV , we need some notation. For every finite collection V of open
subsets of X, let

⟨V⟩2X =
{
F ∈ 2X : F ⊂

∪
V, ∀V ∈ V(V ∩ F ̸= ∅)

}
,

⟨V⟩K(X) =
{
F ∈ K(X) : F ⊂

∪
V, ∀V ∈ V(V ∩ F ̸= ∅)

}
.

Observe that ⟨V⟩2X ∩K(X) = ⟨V⟩K(X). Then the collection of all subsets of 2X of
the form ⟨V⟩2X is a base for τV . Obviously, K(X) has the base of the form ⟨V⟩K(X).
For the simplicity’s sake, we will often write ⟨V⟩ instead of ⟨V⟩2X or ⟨V⟩K(X), if the
context is clear. E. Michael [6] established basic properties of hyperspaces.
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Observe that whenever B is a base for a space X, {⟨V⟩K(X) : V ∈ [B]<ω} forms
a base for K(X), where [B]<ω denotes the set of all finite subsets of B. So we call
such a ⟨V⟩K(X) basic open if V ∈ [B]<ω. We always fix the base B = {(α, β] : −1 ≤
α < β < γ} for an ordinal γ. Therefore open sets of form ⟨{(αi, βi] : i < n}⟩K(γ),
where 1 ≤ n ∈ ω and −1 ≤ αi < βi < γ, are basic open in K(γ). In particular,
when δ < γ, basic open sets of form ⟨{(αi, βi] : i < n}⟩K(γ) is said to be < δ-basic
open if βi < δ for each i < n. ≤ δ-basic open sets are similarly defined. Observe
that even if B is a base for a space X, {⟨V⟩2X : V ∈ [B]<ω} need not be a base for
2X in general, e.g., X = ω and B = {{n} : n ∈ ω} is such an example.

For an open subset U of X, let

U− = {F ∈ K(X) : F ∩ U ̸= ∅}, U+ = {F ∈ K(X) : F ⊂ U}.
Then obviously, these sets form a subbase for K(X). Observe that ⟨V⟩K(X) =

(
∩

V ∈V V −) ∩ (
∪

V)+ whenever V is a finite collection of open sets, and that U−

and U+ are clopen in K(X) if U is clopen in X.
It is well-known that there are deep relations between normality and countable

paracompactness in the product theory. The most famous one due to [1] is:

(1) for every space X, X × I is normal iff X is normal and countably paracompact,
where I denotes the unit interval [0, 1] ⊂ R.
It is also known that orthocompactness (see the definition below) versus countable
metacompactness behaves like normality versus countable paracompactness in the
product theory, e.g.,

(2) for every space X, X × I is orthocompact iff X is countably metacompact [7].

In comparing with (1) and (2), orthocompactness seems to be weaker than nor-
mality in the product theory. However it has been known in some part of the
product theory, the opposite can be occur, e.g.,

(3) for every paracompact space X and every regular uncountable cardinal κ, if
X × κ is orthocompact, then it is normal but not vice versa [5].

We list related topological properties on hyperspaces. One of powerful results is:

(4) for every space X, 2X is normal iff X is compact [9].

This shows that for every ordinal γ ̸= 0, 2γ is normal iff cfγ = 1, in particular that
the hyperspace 2ω is not normal. The following is also worth noting:

(5) the hyperspace 2ω contains the Sorgenfrey line S as a closed subspace [8].

Since ω can be decomposed into two infinite sets N0 and N1, 2
N0 ×2N1 is embed

into 2ω as a closed subspace. Therefore 2ω has a closed copy of the Sorgenfrey plane
S2. This also shows that 2ω is neither normal nor countably paracompact, while
the problem whether 2ω is countably metacompact remains open [4, Question A].

Moreover on hyperspaces of ordinals, the following are also known in [4], for
every ordinal γ ̸= 0,

(6) 2γ is countably paracompact iff cfγ ̸= ω,

(7) K(γ) is countably paracompact.

(8) K(γ) is normal iff either cfγ ≤ ω or γ is a regular uncountable cardinal.

In this paper, we will prove:
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• K(γ) is orthocompact (shrinking, collectionwise normal) iff either cfγ ≤ ω
or γ is a regular uncountable cardinal, therefore normality and orthocom-
pactness of K(γ) are equivalent for every non-zero ordinal γ.

We present two proofs, one proof uses the elementary submodel techniques and
another does not. This also answers Question C of [4]. Moreover we discuss the
natural question whether 2ω is orthocompact or not. We prove that

• 2ω is (countably) orthocompact iff it is countably metacompact,
• K(S) is orthocompact therefore so is the Sorgenfrey plane.

2. Covering properties

In this section, we give definitions and facts about topological properties. In
particular, we present an auxiliary covering property so called property (P ) for
later use.

Let U be an open cover of a space X. A collection W of subsets of X is a partial
refinement (partial regular refinement) of U if for every W ∈ W, there is U ∈ U
such that W ⊂ U (ClXW ⊂ U , respectively), where ClXW denotes the closure
of W in X. In particular, simply we call W a refinement (regular refinement) of
U if W covers X. A refinement W of an open cover of U is a shrinking if W is
represented as {W (U) : U ∈ U} with ClXW (U) ⊂ U for every U ∈ U . An open
(closed) refinement is a refinement whose elements are open (closed), similarly an
open (closed) shrinking is defined.

Recall that a space is normal if every pair of disjoint closed sets are separated
by disjoint open sets, equivalently every binary open cover has a closed shrinking.
We are concerned with two generalizations of normality. One is collectionwise
normality, where a space X is collectionwise normal if for every discrete collection
F of closed sets of X, there is a pairwise disjoint collection {W (F ) : F ∈ F} of open
sets with F ⊂ W (F ) for every F ∈ F . Another one is the shrinking property, where
a space X is shrinking if every open cover has a closed shrinking. Also recall that a
space X is countably paracompact (countably metacompact) if every countable open
cover has a locally finite (point finite, respectively) open refinement.

A collection W of open sets in a space X is interior preserving if for every
subcollection W ′ ⊂ W,

∩
W ′ is open, where we put

∩
W ′ = X whenever W ′ = ∅.

Obviously point finite collections of open sets are interior preserving. Observe that
a collection W of open sets is interior preserving iff for every x ∈ X,

∩
(W)x is

a neighborhood of x, where (W)x = {W ∈ W : x ∈ W}. Moreover observe
that if Wλ is an interior preserving collection of open sets for every λ ∈ Λ and
{
∪

Wλ : λ ∈ Λ} is point finite, then
∪

λ∈Λ Wλ is also interior preserving. Therefore
in a countably metacompact space, every σ-interior preserving open cover (i.e.,
an open cover which is the countable sum of interior preserving open collections)
has an interior preserving open refinement. A space is (countably) orthocompact
if every (countable) open cover has an interior preserving open refinement. Note
that (countably) paracompact spaces are (countably) metacompact and (countably)
metacompact spaces are (countably) orthocompact. A collection W of subsets is
well-monotone if W is represented as W = {W (α) : α ∈ A} for some well-ordered
set A with the order < so that W (α′) ⊂ W (α) whenever α′, α ∈ A with α′ < α. In
this definition, we may assume that A is an ordinal with the usual order. It is easy
to see that every well-monotone collection of open sets is interior preserving.

We consider the following property:
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(P ): Every open cover U has an open regular refinement W represented as W =∪
j∈J Wj such that

(1) {
∪
Wj : j ∈ J} is locally finite and has a closed shrinking,

(2) Wj is well-monotone for every j ∈ J .

In this definition, by taking cofinal subsequences, we may assume for each j ∈ J ,
Wj = {Wj(α) : α < δj} for some ordinal δj , where δj = 1 or δj is an infinite regular
cardinal. Obviously compact spaces have property (P ), more generally we have:

Lemma 2.1. Paracompact spaces have property (P ).

Proof. Let U be an open cover of a paracompact space X. By regularity of X, one
can find a locally finite open regular refinement W of U . Put for each W ∈ W,
WW = {W}, then this is obviously well-monotone. Since X is normal and W is
point finite, by [2, 1.5.18] it has a closed shrinking. �
Lemma 2.2. Ordinals have property (P ).

Proof. Let γ be an ordinal. If cfγ ≤ ω, then γ is Lindelöf so apply the lemma above.
Assume cfγ > ω and fix a normal (= strictly increasing continuous cofinal) sequence
{γ(β) : β < cfγ} in γ. Let U be an open cover of γ. For every β ∈ Lim(cfγ), fix
f(β) < β and Uβ ∈ U with (γ(f(β)), γ(β)] ⊂ Uβ . By the Pressing Down Lemma, we
can find β0 < cfγ and a stationary set S ⊂ Lim(cfγ) such that f(β) = β0 for each
β ∈ S. Then the collection {(γ(β0), γ(β)] : β0 < β ∈ S} is a well-monotone partial
refinement of U whose union is (γ(β0), γ). Since [0, γ(β0)] is a compact clopen
subset of γ, one can easily construct an open regular refinement of U satisfying
property (P ). �
Lemma 2.3. Spaces having property (P ) are orthocompact, shrinking and collec-
tionwise normal.

Proof. Orthocompactness is trivial.
To see shrinking, let U be an open cover of a space X. Take an open regular

refinementW =
∪

j∈J Wj with (1) and (2) in property (P ), and let F = {Fj : j ∈ J}
be a closed shrinking of {

∪
Wj : j ∈ J}. We may assume, for every j ∈ J ,

Wj = {Wj(α) : α < δj} for some ordinal δj , where δj = 1 or δj is an infinite
regular cardinal. It suffices to find a closed shrinking Fj = {Fj(U) : U ∈ U} of
{U ∩ Fj : U ∈ U} in Fj for each j ∈ J , because by the local finiteness of F ,
{
∪

j∈J Fj(U) : U ∈ U} is a closed shrinking of U . If δj = 1, then take U0 ∈ U with

ClXWj(0) ⊂ U0. Set for each U ∈ U ,

Fj(U) =

{
Fj if U = U0,

∅ otherwise.

Then Fj = {Fj(U) : U ∈ U} is a closed shrinking of {U ∩ Fj : U ∈ U} in Fj .
Assume that δj is an infinite regular cardinal. For each U ∈ U , let K(U) = {α <

δj : ClXWj(α) ⊂ U}. If there is U0 ∈ U such that K(U0) is cofinal in δj , then set
for each U ∈ U ,

Fj(U) =

{
Fj if U = U0,

∅ otherwise.

Then Fj = {Fj(U) : U ∈ U} is a closed shrinking of {U ∩ Fj : U ∈ U} in Fj . If
K(U) is bounded in δj for each U ∈ U , then we define a strictly increasing cofinal
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sequence {α(β) : β < δj} in δj and {Uβ : β < δj} ⊂ U as follows. First let α(0) = 0
and pick U0 ∈ U with ClXWj(α(0)) ⊂ U0. Assume that {α(γ) : γ < β} and
{Uγ : γ < β} have been defined for some β < δj . Pick α(β) < δj and Uβ ∈ U
with sup(

∪
{K(Uγ) : γ < β} ∪ {α(γ) : γ < β}) < α(β) and ClXWj(α(β)) ⊂ Uβ .

Obviously Uγ ̸= Uβ holds for every γ < β. Now let for each U ∈ U ,

Fj(U) =

{
Fj ∩ ClXWj(α(β)) if U = Uβ for some β < δj ,

∅ otherwise.

Then Fj = {Fj(U) : U ∈ U} is a closed shrinking of {U ∩ Fj : U ∈ U} in Fj . Now
the space is normal.

To see collectionwise normality of X, let F be a discrete collection of closed sets
and U(F ) = X \

∪
(F \ {F}) for each F ∈ F . Take an open regular refinement

W =
∪

j∈J Wj of the open cover U = {U(F ) : F ∈ F} satisfying (1) and (2) in

property (P ). Note that for each j ∈ J , (
∪
Wj) ∩ F ̸= ∅ holds for at most one

member F ∈ F . For each F ∈ F , let W (F ) =
∪
{
∪
Wj : F ∩ (

∪
Wj) ̸= ∅}. Then

{W (F ) : F ∈ F} is locally finite and F ⊂ W (F ) ⊂ X \
∪
(F \ {F}) holds for each

F ∈ F . Since X is normal, take an open set V (F ) in X such that F ⊂ V (F ) ⊂
ClXV (F ) ⊂ W (F ) for each F ∈ F . Then {V (F ) \

∪
H∈F\{F} ClXV (H) : F ∈ F}

separates F . �

3. Orthocompactness and normality in K(γ)

According to the result (7) in the Introduction, we know that K(γ) is countably
orthocompact for every ordinal γ. In this section, we will see that K(γ) is ortho-
compact (shrinking, collectionwise normal) iff cfγ = γ whenever cfγ is uncountable,
also answers Question C of [4].

For every δ < γ, define pδ : γ → [0, δ] by pδ(α) = min{δ, α} for every α < γ, also
we can define p̃δ : K(γ) → K([0, δ]) = 2[0,δ] by p̃δ(K) = pδ[K] for every K ∈ K(γ).
It is easy to see that both functions pδ and p̃δ are continuous.

The following is a main result of this section.

Lemma 3.1. Let κ be a regular uncountable cardinal and U a basic open cover of
K(κ), that is, an open cover by basic open sets. Then there is δ < κ such that for
every U ∈ U,

{[0, α]+ ∩ p̃−1
δ [U ∩ [0, δ]+] : α < κ}

is a partial refinement of U.

First, we give a proof using elementary submodels.

Proof. Let M be an elementary submodel of H(θ), where θ is large enough, such
that U, κ ∈ M , |M | < κ and κ ∩ M is an ordinal, see the beginning of the proof
of Theorem 8 in [4]. We will show that δ = κ ∩ M is as desired. Let U ∈ U, say
U = ⟨{(αi, βi] : i < n}⟩K(κ) where 1 ≤ n ∈ ω and −1 ≤ αi < βi < κ. We may

assume U ∩ [0, δ]+ ̸= ∅ (otherwise obvious), then we have αi < δ for every i < n.
Note αi < pδ(βi) for each i < n.

Claim 1. U ∩ [0, δ]+ = ⟨{(αi, pδ(βi)] : i < n}⟩ holds.

Proof. By pδ(βi) ≤ βi and pδ(βi) ≤ δ, “⊃” is almost obvious. For “⊂”, let K ∈
U ∩ [0, δ]+. First to see K ⊂

∪
i<n(αi, pδ(βi)], let γ ∈ K. Since γ ≤ δ and for

some i < n, γ ∈ (αi, βi] holds, we have γ ∈ (αi, pδ(βi)]. Next let i < n. It
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follows from K ∈ U that γ ∈ K ∩ (αi, βi] for some γ. Then as above we have
γ ∈ K ∩ (αi, pδ(βi)]. �

Now let for each i < n,

Wi =

{
(αi, βi] if βi < δ,

(αi, κ) if βi ≥ δ.

Then we have (αi, pδ(βi)] ⊂ (αi, βi] ⊂ Wi for each i < n. It follows from {αi :
i < n} ∪ {κ} ⊂ M and βi ∈ M for βi < δ that Wi belongs to M and is clopen
in κ for each i < n. Therefore the finite set {Wi : i < n} belongs to M and
W(U) = ⟨{Wi : i < n}⟩K(κ) also belongs to M and clopen in K(κ). The following
two claims can be similarly shown as in Claim 1.

Claim 2. U ∩ [0, δ]+ = W(U) ∩ [0, δ]+ holds.

Claim 3. p̃−1
δ [U ∩ [0, δ]+] = W(U) holds.

The function f = {[0, α]+ : α < κ} : κ → K(κ) is definable from κ ∈ H(θ) and
θ was taken large enough so that f ∈ H(θ). Therefore we may consider that the
definable function f from κ ∈ M also belongs to M . Now the function U(U) =
{[0, α]+ ∩ W(U) : α < κ} : κ → P(K(κ)), which is definable from f,W(U) ∈ M ,
also belongs to M . By Claim 3, the following claim completes the proof of the
lemma.

Claim 4. U(U) is a partial refinement of U.

Proof. By U(U),U ∈ M , it suffices to see:

M |= U(U) is a partial refinement of U,

that is,

M |= ∀α < κ∃V ∈ U(U(U)(α) ⊂ V),
where U(U)(α) = [0, α]+ ∩ W(U). Therefore it suffices to see that for every α ∈
κ ∩M = δ,

(∗) ∃V ∈ U
(
[0, α]+ ∩W(U) ⊂ V

)
.

Because by α < δ and Claim 2, we have

[0, α]+ ∩W(U) = [0, α]+ ∩ U ⊂ U ,
so V = U witnesses (∗). �

�

Next we give a proof of the lemma without using elementary submodels.

Proof. For each ξ < κ, let

A(ξ) = {⟨W, s⟩ : W is a finite collection of < ξ-basic intervals, s ∈ [ξ]<ω},

A0(ξ) = {⟨W, s⟩ ∈ A(ξ) : {W̃(s, α) : α < κ} is not a partial refinement of U},
where W̃(s, α) = ⟨W ∪ {(γ, α] : γ ∈ s}⟩K(κ), and

α(W, s) = min{α < κ : W̃(s, α) ̸⊂ U for any U ∈ U}
for each ⟨W, s⟩ ∈ A0(ξ). Note that |A(ξ)| < κ holds for every ξ < κ. Take a strictly
increasing sequence {δn : n < ω} of ordinals < κ such that α(W, s) < δn+1 holds
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for each n ∈ ω and ⟨W, s⟩ ∈ A0(δn). And let δ = sup{δn : n < ω}. Then we have
δ < κ and A0(δ) =

∪
n<ω A0(δn). So α(W, s) < δ holds for each ⟨W, s⟩ ∈ A0(δ).

We will show that this δ is as desired. Let U = ⟨{(αi, βi] : i < n}⟩K(κ) ∈ U. The
proof is parallel to the above proof except for Claim 4, so we only give the proof of
it.

Claim 4. U(U) is a partial refinement of U.

Proof. Let A = {i < n : βi < δ}. Then s = {αi : i ∈ n \ A} belongs to [δ]<ω and
W = {(αi, βi] : i ∈ A} is a finite collection of <δ-basic intervals. So ⟨W, s⟩ ∈ A(δ).
As in the proof of Claim 1, we can show W̃(s, α) = [0, α]+∩W(U) for each α < κ. If

U(U) = {W̃(s, α) : α < κ} were not a partial refinement of U, then ⟨W, s⟩ ∈ A0(δ),

so by putting α0 = α(W, s) < δ, we have W̃(s, α0) ̸⊂ U . On the other hand by
Claim 2, we have

W̃(s, α0) = [0, α0]
+ ∩W(U) = [0, α0]

+ ∩ U ⊂ U ,
a contradiction. �

�
Now we consider the following property (P0) which is stronger than (P ):

(P0): Every open cover U has a clopen refinement W represented as W =
∪

j∈J Wj

such that

(1) J is finite and {
∪
Wj : j ∈ J} is pairwise disjoint,

(2) Wj is well-monotone for every j ∈ J .

Lemma 3.2. Let κ be a regular uncountable cardinal. Then K(κ) has property
(P0), therefore it is orthocompact, shrinking and collectionwise normal.

Proof. Let U be an open cover of K(κ). By taking a refinement, we may assume
that U is a basic open cover. By Lemma 3.1, there is δ < κ such that for every
U ∈ U, {[0, α]+ ∩ p̃−1

δ [U ∩ [0, δ]+] : α < κ} is a well-monotone partial refinement of
U. Note that the ordinal space [0, δ] is compact and zero-dimensional, therefore its
hyperspace 2[0,δ] = K([0, δ]) = [0, δ]+ is also compact and zero-dimensional. Since U
covers [0, δ]+, there is a pairwise disjoint finite partial clopen refinement {Vj : j ∈ J}
of U with [0, δ]+ =

∪
j∈J Vj . Set for each j ∈ J , Wj = {[0, α]+ ∩ p̃−1

δ [Vj ] : α < κ}.
Then W =

∪
j∈J Wj is as desired. �

Lemma 3.3. If γ is an ordinal with cfγ ≤ ω, then K(γ) is Lindelöf therefore it is
orthocompact, shrinking and collectionwise normal.

Proof. Whenever cfγ = 1, K(γ) is compact. Assume cfγ = ω. Take a cofinal subset
{γn : n ∈ ω} of γ such that cf γn = 1 for every n ∈ ω. Then K(γn) is compact for
every n < ω. Since K(γ) =

∪
n<ω K(γn) is a countable union of compact subspaces,

it is Lindelöf. �
Remark that according to the result (7) in Introduction, K(γ) is countably ortho-

compact for every ordinal γ. We now characterize the orthocompactness of K(γ).
Although the equivalence (4) ↔ (5) in the next theorem is shown in [4], for the
readers’ convenience, we prove it simultaneously.

Lemma 3.4. For every non-zero ordinal γ, the following are equivalent:

(1) K(γ) is orthocompact,
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(2) K(γ) is shrinking,
(3) K(γ) is collectionwise normal,
(4) K(γ) is normal,
(5) either cfγ ≤ ω or γ is a regular uncountable cardinal.

Proof. (2) → (4) and (3) → (4) are obvious.
(1) → (5) and (4) → (5) can be proved simultaneously as in Lemma 9 of [4].

To see this, assume ω < cfγ < γ and let κ = cfγ. By fixing a normal sequence
{γ(α) : α < κ} in γ with κ < γ(0), (κ + 1) × κ can be embedded into K(γ) as a
closed subspace with the map ⟨α, β⟩ → {α, γ(β)}. Note that whenever ξ and η are
ordinals, normality of ξ × η is equivalent to its orthocompactness, see [7, Theorem
3.3]. Since κ is regular uncountable, (κ + 1) × κ is not normal. Therefore K(γ) is
neither normal nor orthocompact.

(5) → (1), (5) → (2) and (5) → (3): The case cfγ ≤ ω follows from Lemma 3.3.
The other case follows from Lemma 3.2. �

4. Orthocompactness of 2ω

As noted in Introduction, the Sorgenfrey plane S2 is neither normal nor countably
paracompact and can be embedded in 2ω as a closed subspace. Also observe that
Sω is perfect (= closed sets are Gδ) [3], therefore it is countably metacompact. It
is natural to ask:

Question 4.1. Is 2ω orthocompact?

The second author also asked in [4, Question A] whether 2ω is countably meta-
compact. Although we know the answers of neither, in this section, we discuss
these questions. First we prove that these questions are equivalent.

Like the proof of the fact that every σ-interior preserving open cover of a count-
ably metacompact space has an interior preserving open refinement, the following
lemma can be similarly proved.

Lemma 4.2. Countably metacompact spaces having a σ-interior preserving base
are orthocompact, where a σ-interior preserving base is a base which is represented
as the countable sum of interior preserving collections of open sets.

The proofs of the following are routine or well-known.

Lemma 4.3. The following hold.

(1) If a space has a σ-interior preserving base, then so does every subspace.
(2) If Xn has a σ-interior preserving base for every n ∈ ω, then so does X =∏

n∈ω Xn.
(3) If a space is perfect, then so is every subspace.
(4) If every finite subproduct of X =

∏
n∈ω Xn is perfect, then so is X =∏

n∈ω Xn.

Lemma 4.4. If a countably orthocompact space X has an open Fσ dense countably
metacompact subspace Y , then X is countably metacompact.

Proof. Let U = {Un : n ∈ ω} be a well-monotone open cover of X. It suffices to
find its point finite open refinement. Let {Wn : n ∈ ω} be a decreasing sequence of
open sets with X \ Y =

∩
n∈ω Wn. Set Vn = Un ∩Wn for each n ∈ ω. Then {Vn :

n ∈ ω} ∪ {Y } is a countable open cover of X. By the countable orthocompactness
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of X, one can take an interior preserving open cover {V ′
n : n ∈ ω} ∪ {Y ′} of X

with V ′
n ⊂ Vn for each n ∈ ω and Y ′ ⊂ Y . Since Y is countably metacompact,

it suffices to see V ′ = {V ′
n : n ∈ ω} is point finite. To see this, let x ∈ X.

If x ∈ Y , then there is n ∈ ω with x /∈ Wn. Then for every m ∈ ω with n ≤ m,
x /∈ Wn ⊃ Wm ⊃ Vm ⊃ V ′

m, thus V ′ is point finite at x. Now assume that x ∈ X \Y
and M = {n ∈ ω : x ∈ V ′

n} is infinite. Since V ′ is interior preserving, there is a
neighborhood U of x with U ⊂

∩
n∈M V ′

n ⊂
∩

n∈M Vn ⊂
∩

n∈M Wn = X \ Y , this
contradicts that Y is dense in X. �

Lemma 4.5. 2ω has a σ-interior preserving base.

Proof. For each s ∈ [ω]<ω and C ∈ 2ω with s ⊂ C, let

Bs(C) = {D ∈ 2ω : s ⊂ D ⊂ C}.
Then {Bs(C) : s ∈ [C]<ω} is a neighborhood base at C in 2ω. Now for each
s ∈ [ω]<ω, set

Bs = {Bs(C) : s ⊂ C ∈ 2ω}.
For every pair s ∈ [ω]<ω and D ∈ 2ω, Bs(D) ⊂ Bs(C) holds whenever D ∈ Bs(C).
Therefore we have Bs(D) ⊂

∩
{Bs(C) : D ∈ Bs(C)}, this shows that Bs is interior

preserving. Then obviously B =
∪

s∈[ω]<ω Bs is the desired base. �

Although the question whether 2ω is orthocompact remains open, we have:

Proposition 4.6. The following are equivalent.

(1) 2ω is orthocompact.
(2) 2ω is countably orthocompact.
(3) 2ω is countably metacompact.

Proof. (1) → (2) is obvious and (3) → (1) follows from Lemma 4.2 and Proposition
4.5.

(2) → (3): Assume that 2ω is countably orthocompact. Since [ω]<ω \ {∅} is a
countable dense subset of 2ω consisting of isolated points, by Lemma 4.4, 2ω is
countably metacompact. �

Finally improving the proof of [3], we will show that K(S) is orthocompact.
Recall that the Sorgenfrey line S is the space whose underlying set is R and whose
topology is generated by the collection {(a, b] : a, b ∈ R, a < b}, where (a, b] denotes
the usual interval in R. For the notational convenience, (a,∞] denotes the interval
{x ∈ S : a < x}.

Theorem 4.7. K(S) is perfect and has a σ-interior preserving base, therefore it is
orthocompact.

Proof. The following two claims are easy to prove.

Claim 1. Every K ∈ K(S) has the minimal element minK and the maximal
element maxK.

Claim 2. {(a, p] : a ∈ Q, a < p} is a neighborhood base at p ∈ S.

For each n ∈ ω with 1 ≤ n, let

An = {a ∈ Qn : a(0) < a(1) < · · · < a(n− 1)}.
For each a ∈ A =

∪
1≤n∈ω An, the length lh(a) of a denotes the n such that a ∈ An.
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Let a ∈ A. Put

Ba = ⟨{(a(i), a(i+ 1)] : i < lh(a)}⟩K(S) ,

Qa =
∪

r⊆lh(a)

∏
i∈r

(
(a(i), a(i+ 1)] ∩Q

)
,

where a(lh(a)) = ∞. Note that |A| = ω, ∅ ∈ Qa and |
∪

a∈A Qa| = ω hold. Now let
q = ⟨q(i) : i ∈ dom(q)⟩ ∈ Qa. Set

Ba(q) = ⟨{(a(i), q(i)] : i ∈ dom(q)} ∪ {(a(i), a(i+ 1)] : i ∈ lh(a) \ dom(q)}⟩K(S) ,

Pa(q) =
∏

i∈lh(a)\dom(q)

(a(i), a(i+ 1)].

Moreover for each K ∈ Ba(q), define pa,q,K ∈ Pa(q) by

pa,q,K(i) = max
(
K ∩ (a(i), a(i+ 1)]

)
for each i ∈ lh(a) \ dom(q). Define binary relations ≼ and ≺ on Pa(q) by

p ≼ p′ ⇔ p(i) ≤ p′(i) for every i ∈ lh(a) \ dom(q),

p ≺ p′ ⇔ p ≼ p′ and p ̸= p′.

For each p ∈ Pa(q), let

Ba(q, p) = ⟨{(a(i), q(i)] : i ∈ dom(q)} ∪ {(a(i), p(i)] : i ∈ lh(a) \ dom(q)}⟩K(S),

B∗
a(q, p) = Ba(q, p) \

∪
{Ba(q, p

′) : p′ ∈ Pa(q), p
′ ≺ p}.

And let

Ba(q) = {Ba(q, p) : p ∈ Pa(q)}.

Claim 3. For each a ∈ A and q ∈ Qa, the following hold:

(1) Ba and Ba(q) are clopen sets of K(S) with Ba(q) ⊂ Ba, moreover for each
p ∈ Pa(q), Ba(q, p) is a clopen subset of Ba(q).

(2) Ba(q, p) ⊆ Ba(q, p
′) holds for every p, p′ ∈ Pa(q) with p ≼ p′.

(3) For each K ∈ Ba(q) and p ∈ Pa(q), K ∈ Ba(q, p) holds iff pa,q,K ≼ p.
(4) Ba(q) is an interior preserving collection of clopen sets of K(S).
(5) For each p ∈ Pa(q), B∗

a(q, p) = {K ∈ Ba(q, p) : pa,q,K = p} holds.
(6) If p ∈ Pa(q), K ∈ Ba(q, p) \B∗

a(q, p), then there are q′ ∈ Qa and p′ ∈ Pa(q
′)

such that q ( q′ and K ∈ Ba(q
′, p′) ⊆ Ba(q, p).

Proof. (1), (2), (3) and (5) are obvious.
(4): Let K ∈ K(S) and set P ′ = {p ∈ Pa(q) : K ∈ Ba(q, p)}. If p ∈ P ′, then by (3)
we have pa,q,K ≼ p therefore Ba(q, pa,q,K) ⊂ Ba(q, p). This shows Ba(q, pa,q,K) ⊂∩
{Ba(q, p) : p ∈ P ′} =

∩
(Ba(q))K .

(6): Let s = {i ∈ lh(a) \ dom(q) : pa,q,K(i) < p(i)}. Then s ̸= ∅. Define q′ with
dom(q′) = dom(q) ∪ s as follows: for each i ∈ s, fix q′(i) ∈ Q with pa,q,K(i) <
q′(i) < p(i) and for each i ∈ dom(q), let q′(i) = q(i). Moreover define p′ ∈ Pa(q

′)
by p′(i) = p(i) for each i ∈ lh(a) \ dom(q′). Then q′ and p′ are as desired. �

Claim 4. B =
∪

a∈A Ba(∅) is a σ-interior preserving base of K(S) by clopen sets.

Proof. By Claim 3 (4), it suffices to show that B is a base for K(S), i.e. each
K ∈ K(S) satisfies that
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(∗K) : for each finite family V of open sets of S with K ∈ ⟨V⟩, there are a ∈ A and
p ∈ Pa(∅) such that K ∈ Ba(∅, p) ⊂ ⟨V⟩.

Let K ∈ K(S). Then K is well-ordered by the usual order <. Actually, if there
is a strictly decreasing sequence {x(j) : j < ω} of elements of K, then by letting
x(ω) = inf{x(j) : j ∈ ω}, we obtain an open cover

{(x(j + 1), x(j)] : j ∈ ω} ∪ {(−∞, x(ω)], (x(0),∞)}
of S which does not have a finite subfamily covering K. This contradicts that K is
compact.

For each c ∈ S, let Kc = {x ∈ K : x ≤ c} and K<c = {x ∈ K : x < c}. We will
show (∗Ku) by induction on u ∈ K. After finishing induction, we see that (∗K)
holds since Kũ = K for ũ = maxK.

Let u ∈ K and assume that (∗Ku′) holds for every u′ ∈ K with u′ < u. And let
V be a finite family of open sets of S with Ku ∈ ⟨V⟩. We would like to find a ∈ A
and p ∈ Pa(∅) such that K ∈ Ba(∅, p) ⊂ ⟨V⟩. Put V ′ = {V ∈ V : V ∩K<u ̸= ∅}.
Take c ∈ Q with c < u such that (c, u] ⊂

∩
(V)u, and V ′ ∩ Kc ̸= ∅ for every

V ′ ∈ V ′. In case u is a minimal element of K, we have Ku = {u} and u ∈ V
holds for every V ∈ V, so by taking a ∈ A1 and p ∈ Pa(∅) such that a(0) = c
and p(0) = u, we have Ku ∈ ⟨{(c, u]}⟩ = Ba(∅, p) ⊂ ⟨V⟩. In case u is not a
minimal element of K, we have V ′ ̸= ∅, so Kc ̸= ∅. Let u′ = maxKc. Then
u′ ∈ K, u′ ≤ c < u, and Ku′ = Kc ∈ ⟨V ′⟩ hold. By inductive hypothesis, there
are a′ ∈ A and p′ ∈ Pa′(∅) such that Ku′ ∈ Ba′(∅, p′) ⊂ ⟨V ′⟩. We may assume
p′(lh(a′) − 1) ≤ u′ ≤ c. Define a ∈ A and p ∈ Pa(∅) by lh(a) = lh(a′) + 1,
a(i) = a′(i) and p(i) = p′(i) for each i < lh(a′), a(lh(a′)) = c, and p(lh(a′)) = u.
Then Ku = Ku′ ∪ (K ∩ (c, u]) ∈ Ba(∅, p) ⊂ ⟨V⟩. �

To see that K(S) is perfect, let U be an open set. For each a ∈ A and q ∈ Qa,
put

P ′
a(q) = {p ∈ Pa(q) : Ba(q, p) ⊆ U},

P ∗
a (q) = {p ∈ P ′

a(q) : ¬∃p̃ ∈ P ′
a(q) (p ≺ p̃)},

B∗
a(q) =

∪
{B∗

a(q, p) : p ∈ P ∗
a (q)}.

If p ∈ P ∗
a (q), then by p ∈ P ′

a(q), B∗
a(q, p) ⊆ Ba(q, p) ⊆ U ∩ Ba(q) holds. Therefore

B∗
a(q) is a subset of U ∩ Ba(q).

Claim 5. B∗
a(q) is a closed set of K(S).

Proof. Let K /∈ B∗
a(q). It suffices to find a neighborhood V of K in K(S) which

is disjoint from B∗
a(q). Since Ba(q) is clopen and contains B∗

a(q), we may assume
K ∈ Ba(q) \ B∗

a(q). Put

r(p) = {i ∈ lh(a) \ dom(q) : p(i) < pa,q,K(i)} for each p ∈ P ∗
a (q) with p ≼ pa,q,K ,

R = {r(p) : p ∈ P ∗
a (q), p ≼ pa,q,K}.

Then R is finite.
Since K ∈ B∗

a(q, pa,q,K) \ B∗
a(q), we have pa,q,K /∈ P ∗

a (q) therefore ∅ /∈ R. For
each r ∈ R, fix pr ∈ P ∗

a (q) with pr ≼ pa,q,K and r(pr) = r. Let

V = {K ′ ∈ Ba(q, pa,q,K) : ∀r ∈ R∀i ∈ r(K ′ ∩ (pr(i), pa,q,K(i)] ̸= ∅)}.
Then V = Ba(q, pa,q,K)∩

∩
r∈R,i∈r(pr(i), pa,q,K(i)]− is a neighborhood ofK in K(S).

We show V ∩ B∗
a(q) = ∅. To the contrary, assume that there is K ′ ∈ V ∩ B∗

a(q).
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Then K ′ ∈ B∗
a(q, p) for some p ∈ P ∗

a (q). By Claim 3 (5) and K ′ ∈ Ba(q, pa,q,K),
we have p = pa,q,K′ ≼ pa,q,K . Therefore r = r(p) ∈ R and pr ∈ P ∗

a (q) are
defined. Let i ∈ lh(a) \ dom(q). Whenever i /∈ r = r(p) = r(pr), we have pr(i) =
p(i) = pa,q,K(i). Whenever i ∈ r = r(p) = r(pr), by K ′ ∈ (pr(i), pa,q,K(i)]−,
we have pr(i) < pa,q,K′(i) = p(i). Therefore we have pr ≺ p. This contradicts
pr ∈ P ∗

a (q). �

The following claim completes the proof of the theorem.

Claim 6. U =
∪

a∈A,q∈Qa
B∗
a(q).

Proof. “⊃” is evident. To see “⊂”, let K ∈ U . Since B is a base for K(S), there are
a ∈ A and p ∈ Pa(∅) with K ∈ Ba(∅, p) ⊂ U . Then note p ∈ P ′

a(∅). Take such an
a ∈ A. Then q = ∅ witnesses the sentence that there are q ∈ Qa and p ∈ P ′

a(q) with
K ∈ Ba(q, p). Take a maximal element q ∈ Qa with respect to the inclusion “⊂”
such that there is p ∈ P ′

a(q) with K ∈ Ba(q, p). Moreover fix such a p ∈ P ′
a(q) with

K ∈ Ba(q, p), then note pa,q,K ≼ p. It suffices to see K ∈ B∗
a(q), that is, p ∈ P ∗

a (q)
and K ∈ B∗

a(q, p).
First assume p /∈ P ∗

a (q), then by the definition, there is p̃ ∈ P ′
a(q) with p ≺ p̃.

It follows from K ∈ Ba(q, p) ⊆ Ba(q, p̃) and p ≺ p̃ that K ∈ Ba(q, p̃) \ B∗
a(q, p̃). By

Claim 3 (6), there are q′ ∈ Qa and p′ ∈ Pa(q
′) such that q ( q′ and K ∈ Ba(q

′, p′) ⊆
Ba(q, p̃) ⊆ U , this contradicts the maximality of q. Therefore we have p ∈ P ∗

a (q).
Next assumeK /∈ B∗

a(q, p). ByK ∈ Ba(q, p), similarly applying Claim 3(6), there
are q′ ∈ Qa and p′ ∈ Pa(q

′) such that q ( q′ and K ∈ Ba(q
′, p′) ⊆ Ba(q, p) ⊆ U ,

also we have a contradiction. We see K ∈ B∗
a(q, p). �

�

Corollary 4.8. The product Sω of countably many copies of the Sorgenfrey line S is
perfect and has a σ-interior preserving base, therefore Sω and S2 are orthocompact.

Proof. Remark that S is homeomorphic to its subspace (0, 1]. Because, let

Im = (m,m+ 1] for every m ∈ Z,

Jn =
( 1

n+ 2
,

1

n+ 1

]
for every n ∈ ω.

Then obviously Im and Jn are homeomorphic, therefore S =
⊕

m∈Z Im and (0, 1] =⊕
n∈ω Jn are homeomorphic.
Now let n ∈ ω, then

∏
0≤m<n Im can be embedded into K(S) as a closed subspace

with the map x = ⟨x(m) : 0 ≤ m < n⟩ → {x(m) : 0 ≤ m < n}. Since Sn is
homeomorphic to

∏
0≤m<n Im, it can be embedded into K(S) as a closed subspace.

Therefore Sn is perfect and has a σ-interior preserving base for every n ∈ ω. By
applying Lemma 4.3, we see that Sω is perfect and has a σ-interior preserving base,
therefore it is orthocompact. �
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