(1) Tel: +81-97-554-7569 (2) Fax: +81-97-554-7514

(3) e-mail: nkemoto@cc.oita-u.ac.jp

ERRATUM TO: " NORMALITY AND COUNTABLE PARACOMPACTNESS OF HYPERSPACES OF ORDINALS", TOPOLOGY AND ITS APPLICATIONS 154 (2007) 358-362

NOBUYUKI KEMOTO

ABSTRACT. We correct the proof of Theorem 8 in " Normality and countable paracompactness of hyperspaces of ordinals", Topology and its Applications 154 (2007) 358-362.

Prof. Y. Hirata kindly informed to the author that there is a gap in the proof of Theorem 8 in [2], moreover he gave suggestions to correct it. Although Theorem 8 itself remains true, we now improve its proof. All other results and proofs are true.

Theorem 8. If κ is a regular uncountable cardinal, then $\mathcal{K}(\kappa)$ is normal.

Proof. Let \mathcal{F} and \mathcal{H} be disjoint closed sets in $\mathcal{K}(\kappa)$. Let M_0 be an elementary submodel of $H(\theta)$, where θ is large enough, such that $\mathcal{F}, \mathcal{H}, \kappa \in M_0$ and $|M_0| < 0$ κ . For elementary submodels, the readers should refer to [1, 3]. Assume that elementary submodels $M_0, ..., M_{n-1}$ of $H(\theta)$ with $M_0 \subset ... \subset M_{n-1}$ and $|M_{n-1}| <$ κ are defined. Let M_n be an elementary submodel of $H(\theta)$ satisfying $M_{n-1} \cup$ $\bigcup (M_{n-1} \cap \kappa) \subset M_n$ and $|M_n| < \kappa$. Then the union $M = \bigcup_{n \in \omega} M_n$ is also an elementary submodel of $H(\theta)$ and satisfies $\mathcal{F}, \mathcal{H}, \kappa \in M, |M| < \kappa$ and $\kappa \cap M$ is an ordinal. Let $\gamma = \kappa \cap M < \kappa$.

Claim 1. If $F \in \mathcal{K}(\kappa) \cap M$, then max $F < \gamma$.

Proof. Since F is a compact subset of κ , max F exists and is an element of κ . On the other hand max F is determined by F and $F \in M$, by elementarity, we have max $F \in M$. Therefore max $F \in \kappa \cap M = \gamma$.

Observe that by Claim 1, $\mathcal{F} \cap M$ and $\mathcal{H} \cap M$ are subsets of the compact space $\mathcal{K}([0,\gamma]) = 2^{[0,\gamma]} \subset \mathcal{K}(\kappa). \text{ Let } \mathcal{F}_M = \operatorname{Cl}_{\mathcal{K}([0,\gamma])}(\mathcal{F} \cap M) \text{ and } \mathcal{H}_M = \operatorname{Cl}_{\mathcal{K}([0,\gamma])}(\mathcal{H} \cap M).$ Then $\mathcal{F}_M \cap \mathcal{H}_M \subset \mathcal{F} \cap \mathcal{H} = \emptyset$. Since $\mathcal{K}([0,\gamma])$ is normal in fact compact T_2 , there are disjoint open sets $U_{\mathcal{F}}$ and $U_{\mathcal{H}}$ separating \mathcal{F}_M and \mathcal{H}_M respectively. For each $K \in \mathcal{F}_M \cup \mathcal{H}_M$, fix a finite collection \mathcal{V}_K of open sets in $[0, \gamma]$ such that

- if K ∈ F_M, then K ∈ ⟨V_K⟩ ⊂ U_F,
 if K ∈ H_M, then K ∈ ⟨V_K⟩ ⊂ U_H,

Applying Lemma 7 in [2] to $\gamma + 1 = [0, \gamma]$, for each $K \in \mathcal{F}_M \cup \mathcal{H}_M$, by $K \in \langle \mathcal{V}_K \rangle$ we can find two decreasing sequences $\{\alpha_i^K : i \leq n_K\}$ and $\{\beta_i^K : i < n_K\}$ in $[0, \gamma]$ satisfying

 $\begin{array}{ll} (1) \ \ \alpha_0^K = \max K, \ \{\alpha_i^K : i < n_K\} \subset K. \\ (2) \ \ \alpha_{i+1}^K \leq \beta_i^K < \alpha_i^K \ \text{for each} \ i < n_K, \ \text{where} \ \ \alpha_{n_K}^K = -1. \end{array}$

¹⁹⁹¹ Mathematics Subject Classification. 54B20, 54D15.

Key words and phrases. nomral, coutably paracompact, hyperspace, ordinal, elementary submodel.

(3) $K \in \langle \{ (\beta_i^K, \alpha_i^K] : i < n_K \} \rangle \subset \langle \mathcal{V}_K \rangle.$

We may assume $\mathcal{V}_K = \{(\beta_i^K, \alpha_i^K] : i < n_K\}$ for each $K \in \mathcal{F}_M \cup \mathcal{H}_M$.

Since $\mathcal{K}([0, \gamma])$ is compact, one can find two finite sets \mathcal{F}' and \mathcal{H}' of \mathcal{F}_M and \mathcal{H}_M respectively such that $\mathcal{F}_M \subset \bigcup_{K \in \mathcal{F}'} \langle \mathcal{V}_K \rangle$ and $\mathcal{H}_M \subset \bigcup_{K \in \mathcal{H}'} \langle \mathcal{V}_K \rangle$. Remark that by (2), all α_i^{K} 's $(1 \leq i \leq n_K)$ and β_i^{K} 's $(0 \leq i < n_K)$ belong to M and that α_0^K belongs to M iff $\alpha_0^K < \gamma$.

Now for each $K \in \mathcal{F}' \cup \mathcal{H}'$ and $i < n_K$, let

$$W_i^K = \begin{cases} (\beta_i^K, \kappa) & \text{if } i = 0 \text{ and } \alpha_i^K = \gamma, \\ (\beta_i^K, \alpha_i^K] & \text{otherwise.} \end{cases}$$

Then by the remark above and $\kappa \in M$, for each $K \in \mathcal{F}' \cup \mathcal{H}'$ and $i < n_K$, we have $W_i^K \in M$ therefore $\mathcal{W}_K = \{W_i^K : i < n_K\}$ is a pairwise disjoint collection of intervals in κ that belongs to M. Now we consider the open sets $W_{\mathcal{F}} = \bigcup_{K \in \mathcal{F}'} \langle \mathcal{W}_K \rangle$ and $W_{\mathcal{H}} = \bigcup_{K \in \mathcal{H}'} \langle \mathcal{W}_K \rangle$ in $\mathcal{K}(\kappa)$. Since $W_{\mathcal{F}}$ and $W_{\mathcal{H}}$ are definable from \mathcal{W}_K 's moreover \mathcal{F}' and \mathcal{H}' are finite, we have $W_{\mathcal{F}}, W_{\mathcal{H}} \in M$. It suffices to see the following two claims.

Claim 2. $W_{\mathcal{F}} \cap W_{\mathcal{H}} = \emptyset$

Proof. Assume $W_{\mathcal{F}} \cap W_{\mathcal{H}} \neq \emptyset$, then there are $K(\mathcal{F}) \in \mathcal{F}'$ and $K(\mathcal{H}) \in \mathcal{H}'$ such that $\langle \mathcal{W}_{K(\mathcal{F})} \rangle \cap \langle \mathcal{W}_{K(\mathcal{H})} \rangle \neq \emptyset$. By $\mathcal{W}_{K(\mathcal{F})}, \mathcal{W}_{K(\mathcal{H})} \in M$ and elementarity, we have $M \models \langle \mathcal{W}_{K(\mathcal{F})} \rangle \cap \langle \mathcal{W}_{K(\mathcal{H})} \rangle \neq \emptyset$, thus there is $L \in \langle \mathcal{W}_{K(\mathcal{F})} \rangle \cap \langle \mathcal{W}_{K(\mathcal{H})} \rangle \cap M$. Note by Claim 1 that max $L < \gamma$ holds therefore we have $L \in \mathcal{K}([0, \gamma])$.

Now using the definition of W_i^K 's, it is straightforward to see that in $\mathcal{K}([0,\gamma])$, $L \in \langle \mathcal{V}_{K(\mathcal{F})} \rangle \cap \langle \mathcal{V}_{K(\mathcal{H})} \rangle \subset U_{\mathcal{F}} \cap U_{\mathcal{H}}$ holds, a contradiction.

Claim 3. $\mathcal{F} \subset W_{\mathcal{F}}$ and $\mathcal{H} \subset W_{\mathcal{H}}$.

Proof. Assume $\mathcal{F} \setminus W_{\mathcal{F}} \neq \emptyset$. By elementarity and $\mathcal{F}, W_{\mathcal{F}} \in M$, there is $L \in (\mathcal{F} \setminus W_{\mathcal{F}}) \cap M$. It follows from $L \in \mathcal{F} \cap M \subset \bigcup_{K \in \mathcal{F}'} \langle \mathcal{V}_K \rangle$ that $L \in \langle \mathcal{V}_K \rangle$ for some $K \in \mathcal{F}'$.

Now by the definition of W_i^K 's, we have $L \in \langle \mathcal{W}_K \rangle \subset W_{\mathcal{F}}$ in $\mathcal{K}(\kappa)$, a contradiction. We see $\mathcal{F} \subset W_{\mathcal{F}}$, the rest is similar.

Acknowledgement. The author thanks Prof. Y. Hirata for his valuable comments.

References

- A. Dow, An introduction to applications of elementary submodels to topology, Topology Proc. 13 (1988), 17–72.
- N. Kemoto, Normality and countable paracompactness of hyperspaces of ordinals, Topology and its Applications, 154 (2007) 358–362.
- [3] K. Kunen, Set theory. An introduction to independence proofs, Studies in Logic and the Foundations of Mathematics, 102 (1980), North-Holland Publishing Co., Amsterdam.

DEPARTMENT OF MATHEMATICS, FACULTY OF EDUCATION, OITA UNIVERSITY, DANNOHARU, OITA, 870-1192, JAPAN