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STRONG ZERO-DIMENSIONALITY OF HYPERSPACES

NOBUYUKI KEMOTO AND JUN TERASAWA

Abstract. For a space X, 2X denotes the collection of all non-empty closed

sets of X with the Vietoris topology, and K(X) denotes the collection of all
non-empty compact sets of X with the subspace topology of 2X . The following
are known:

• 2ω is not normal, where ω denotes the discrete space of countably infinite
cardinality.

• For every non-zero ordinal γ with the usual order topology, K(γ) is nor-
mal iff cfγ = γ whenever cfγ is uncountable.

In this paper, we will prove:
(1) 2ω is strongly zero-dimensional.
(2) K(γ) is strongly zero-dimensional, for every non-zero ordinal γ.

In (2), we use the technique of elementary submodels.

Throughout, spaces are Tychonoff spaces. And α, β, γ, ... stand for ordinals,
while k, l,m, ... for natural numbers. For the notational convenience, we consider
−1 as the immediate predecessor of the ordinal 0. Ordinals are considered as spaces
with the usual order topology.

For a space X, we let 2X , resp. K(X), denote the collection of all non-empty
closed, resp. compact, subsets of X.

We consider 2X with the so-called Vietoris topology τV , and K(X) its subspace.
X is called the base space, and 2X and K(X) the hyperspaces or the exponential
spaces of X.

To describe τV , we need some notation. For every finite family V of open subsets
of X, let

⟨V⟩2X =
{
F ∈ 2X : F ⊂

∪
V, ∀V ∈ V(V ∩ F ̸= ∅)

}
,

⟨V⟩K(X) =
{
F ∈ K(X) : F ⊂

∪
V, ∀V ∈ V(V ∩ F ̸= ∅)

}
.

Observe that ⟨V⟩2X ∩K(X) = ⟨V⟩K(X). Then the collection of all subsets of 2X of
the form ⟨V⟩2X is a base for τV . Obvioulsy, K(X) has the base of the form ⟨V⟩K(X)

For the simplicity’s sake, we will often write ⟨V⟩ instead of ⟨V⟩2X or ⟨V⟩K(X), if the
context is clear.

For an open subset U of X, let

U− = {F ∈ 2X : F ∩ U ̸= ∅}, U+ = {F ∈ 2X : F ⊂ U}.

Then obviously, these sets form a subbase for τV .
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In the pioneering work [7], E.Michael established basic properties of the hyper-
spaces. In particular, 2X is Tychonoff iff X is normal, and K(X) is Tychonoff iff
X is Tychonoff. Hence, 2γ and K(γ) are Tychonoff for a non-zero ordinal γ.

It is known that 2ω is not normal [3, 4]. Previously [5], the first author showed
that, for every non-zero ordinal γ, K(γ) is normal iff cfγ = γ whenever cfγ is
uncountable.

We recall that a space X is zero-dimensional if it has a base consisting of clopen
sets (that is, simultaneously-closed-and-open sets), and strongly zero-dimensional
if its Stone-Čech compactification βX is zero-dimensional. It is well-known that X
is strongly zero-dimensional iff its disjoint zero-sets are separated by a clopen set
([2, 6.2.4 and 6.2.12]). Obviously, every strongly zero-dimensional space is zero-
dimensional, but not vice versa even for metrizable spaces. For Lindelöf spaces, it
is known that zero-dimensionality implies strong zero-dimensionality ([2, 6.2.7])

In the literature it is often investigated whether disjoint closed sets of a certain
space X are separated by clopen sets. This property is equivalent to “normality
plus strong zero-dimensionality”.

Therefore we need to investigate strong zero-dimensionality itself.
We note that 2X is zero-dimensional ifX is normal and strongly zero-dimensional

[5, the comment after Lemma 6], and that K(X) is zero-dimensional if X is zero-
dimensional [7, Proposition 4.13].

In this paper we will prove the following two theorems.

Theorem 1. 2ω is strongly zero-dimensional.

Theorem 2. K(γ) is strongly zero-dimensional for every non-zero ordinal γ.

For the proof of the latter, we will use a countable elementary submodel of H(θ)
for some suitably large regular cardinal θ.

1. Proof of Theorem 1

The following lemma was first shown by the second author [8] (see also [2,
6.2.C(b)]), and is useful for our purpose. Here a cozero set is the complement
of a zero set.

Lemma 1. A space is strongly zero-dimensional iff every cozero set can be repre-
sented as the union of countably many clopen sets.

For the proof of Theorem 1, first, for every pair F ∈ 2ω and n ∈ ω, let

Sn(F ) = {F ′ ∈ 2ω : F ′ ∩ n = F ∩ n, F ′ ⊂ F}.
Observe that Sn(F ) =

∩
i∈F∩n{i}−∩F+ and hence, {Sn(F ) : n ∈ ω} is a decreasing

neighborhood base at F in 2ω. The following two claims are easy to prove.

Claim 1. If F ′ ∈ Sn(F ), then Sn(F
′) ⊂ Sn(F ).

Claim 2. If n ≤ k, H ∈ Sn(F ), K ∈ Sk(F ) and H ∩ k ̸= ∅, then H ∩ k ∈ Sn(K).

Let U be a cozero set in 2ω. We may assume U = f−1[(0, 1]] for a continuous
map f on 2ω into the unit interval [0, 1]. Now let for each n ∈ ω,

An =

{
F ∈ 2ω : f [Sn(F )] ⊂

[
1

n
, 1

]}
.

Claim 3. U =
∪

n∈ω An.
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Proof of Claim 3. U ⊃
∪

n∈ω An is obvious. Let F ∈ U and take n0 ∈ ω with

f(F ) > 1
n0

. By the continuity of f one can take n1 ∈ ω with f [Sn1(F )] ⊂
(

1
n0

, 1
]
.

Letting n = max{n0, n1}, we have

f [Sn(F )] ⊂ f [Sn1(F )] ⊂
(

1

n0
, 1

]
⊂

(
1

n
, 1

]
⊂

[
1

n
, 1

]
,

thus F ∈ An. This shows U ⊂
∪

n∈ω An. �

Now let n ∈ ω.

Claim 4. An is open in 2ω.

Proof of Claim 4. Let F ∈ An and F ′ ∈ Sn(F ). By Claim 1, Sn(F
′) ⊂ Sn(F )

holds. Now we have

f [Sn(F
′)] ⊂ f [Sn(F )] ⊂

[
1

n
, 1

]
.

This shows Sn(F ) ⊂ An, consequently An is open in 2ω. �

Claim 5. An is closed in 2ω.

Proof of Claim 5. Let F ∈ Cl2ωAn. We will show F ∈ An, that is f [Sn(F )] ⊂
[ 1n , 1]. Let H ∈ Sn(F ). For each k ≥ n, since Sk(F ) is a neighborhood of F , we
can take Hk ∈ Sk(F )∩An. Then by Claim 2, H ∩k ∈ Sn(Hk) holds for each k ≥ n
with H ∩ k ̸= ∅. For such a k, by Hk ∈ An, we have f(H ∩ k) ≥ 1

n . Then since
H = {H ∩ k : k ≥ n,H ∩ k ̸= ∅} converges to H (i.e., every neighborhood of H
contains all but finitely many members of H), we have f(H) ≥ 1

n . �

The last two claims complete the proof of Theorem 1.

2. Proof of Theorem 2

We use the following basic lemma about K(γ).

Lemma 2. [5] Let γ be a non-zero ordinal, F ∈ K(γ) and V a finite collection
of open sets in γ with F ∈ ⟨V⟩. Then there are n ∈ ω and decreasing sequences
{αi : i < n} and {βi : i < n} of ordinals in γ such that

(1) α0 = maxF , {αi : i < n} ⊂ F .
(2) αi+1 ≤ βi < αi for each i < n, where αn = −1.
(3) F ∈ ⟨{(βi, αi] : i < n}⟩ ⊂ ⟨V⟩.

In this section, we use a countable elementary submodel of H(θ) for some large
enough regular cardinal θ. Note that this approach is somewhat different from
the use of elementary submodels in Theorem 8 of [5], where the cardinality of the
elementary submodels are larger (in general not countable).

The proof of Theorem 2 is divided into six claims.
If γ is a successor ordinal, then it follows from the zero-dimensionality of γ and

Proposition 4.13.1 and Theorem 4.2 in [7] that 2γ = K(γ) is zero-dimensional and
compact therefore strongly zero-dimensional.

So we may assume that γ is a limit ordinal. To see that X = K(γ) is strongly
zero-dimensional, let f : X → [0, 1] be a continuous map. We will show that the
zero sets f−1[{0}] and f−1[{1}] are separated by a clopen set.
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Let M be a countable elementary submodel of H(θ), where θ is large enough,
such that γ, f ∈ M , see [1, 6] for basic facts about elementary submodels. For each
β < γ, let

u(β) = min([β, γ] ∩M).

Obviously we have:

(a) for each β < γ, β ≤ u(β) ∈ M ,
(b) for each β < γ, β ∈ M iff u(β) = β,
(c) if β′ < β < γ, then u(β′) ≤ u(β).

Moreover let

Z = {u(β) : β < γ}.
Then Z ⊂ [0, γ] ∩ M and u can be considered as a function on γ onto Z, i.e.,
u : γ → Z.

Claim 1. We have the following:

(1) If cfγ ≥ ω1, then Z = [0, γ] ∩M , γ ∈ Z and [0, γ) ∩M is bounded in γ.
(2) If cfγ = ω, then Z = [0, γ) ∩M , γ /∈ Z and Z = [0, γ) ∩M is unbounded

in γ.

Proof of Claim 1. It follows from (b) that [0, γ) ∩M ⊂ Z.
(1): Let cfγ ≥ ω1. SinceM is countable, we can take β < γ with sup(γ∩M) < β.

Then by γ ∈ M , we have γ = u(β) ∈ Z. Other properties are almost obvious.
(2): Let cfγ = ω. There is a strictly increasing cofinal sequence {γn : n ∈ ω} in γ.

By elementarity and γ ∈ M , we may assume {γn : n ∈ ω} ∈ M . Since {γn : n ∈ ω}
is countable and belongs to M , it is a subset of M , that is, {γn : n ∈ ω} ⊂ M , see
Theorem 1.6 of [1]. Therefore we see that [0, γ) ∩M is unbounded in γ. Now let
β < γ and take n ∈ ω with β < γn. It follows from γn ∈ M and the definition of
u(β) that u(β) ≤ γn. This shows γ /∈ Z and Z = [0, γ) ∩M . �

Now we give Z the order topology. Note that this topology on Z is weaker than
the subspace topology on Z of the ordinal γ +1 = [0, γ]. Since Z is countable, it is
homeomorphic to a countable ordinal. In particular by Claim 1, Z is homeomorphic
to a successor ordinal < ω1 if cfγ ≥ ω1, and to a limit ordinal < ω1 if cfγ = ω.

We consider the hyperspace Y = K(Z). Since Z is second countable, by Propo-
sition 4.5.2 of [7], Y = K(Z) is also second countable.

Now we investigate the relationship between X = K(γ) and Y = K(Z).
For each α ∈ Z, let

d(α) = sup{δ + 1 : δ ∈ α ∩ Z}.

By Claim 1, d(α) = sup{δ + 1 : δ ∈ α ∩ M} holds and d can be considered as a
function on Z into γ, that is, d : Z → γ. Obviously we have:

(d) for each α ∈ Z, d(α) ≤ α,
(e) if α′, α ∈ Z with α′ < α, then d(α′) ≤ d(α).

Claim 2. u : γ → Z and d : Z → γ are both continuous.

Proof of Claim 2. For u: Let β < γ and V be a neighborhood of u(β) in Z. By the
definition of the topology of Z, we can find α ∈ Z with α < u(β) and (α, u(β)]∩Z ⊂
V . By α ∈ Z ⊂ M , we have α < β and u[(α, β]] ⊂ (α, u(β)] ∩ Z ⊂ V . We see that
u is continuous.
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For d: Let α ∈ Z and β < d(α). By the definition of d(α), we can find β′ ∈ α∩M
with β < β′ + 1. Then β ≤ β′ ∈ M and (β′, α] ∩ Z is a neighborhood of α in Z.
Now we have d[(β′, α] ∩ Z] ⊂ (β′, d(α)] ⊂ (β, d(α)], so d is continuous. �
Claim 3. The functions u and d have the following properties:

(1) For every β < γ, d(u(β)) = sup{δ + 1 : δ ∈ β ∩M} ≤ β.
(2) For every α ∈ Z, u(d(α)) = α holds, that is, the composition u ◦ d is the

identity map on Z.
(3) For every β < γ and α ∈ Z, if β < d(α), then u(β) < d(α) ≤ α.
(4) If β′ < β < γ, α ∈ Z and d(α) ∈ (β′, β], then α ∈ (u(β′), u(β)].

Proof of Claim 3. (1): Let β < γ. When β ∈ M , by u(β) = β we have d(u(β)) =
d(β) = sup{δ + 1 : δ ∈ β ∩ M}. When β /∈ M , by [β, u(β)) ∩ M = ∅ we have
β ∩M = u(β) ∩M . Therefore d(u(β)) = sup{δ + 1 : δ ∈ β ∩M} ≤ β.

(2): Let α ∈ Z. Then by d(α) ≤ α ∈ Z ⊂ M , clearly u(d(α)) ≤ α holds.
Assume u(d(α)) < α. It follows from u(d(α)) ∈ α ∩M and the definition of d(α)
that u(d(α)) + 1 ≤ d(α). Then d(α) ≤ u(d(α)) < d(α), a contradiction.

(3): Let β < γ, α ∈ Z and β < d(α). Then by the definition of d(α), there is
δ ∈ α ∩M with β < δ + 1. Then we have β ≤ δ < δ + 1 ≤ d(α). It follows from
δ ∈ M that u(β) ≤ δ < d(α) ≤ α.

(4) easily follows from (2). �

Define ũ : X → Y and d̃ : Y → X by

ũ(F ) = u[F ], d̃(H) = d[H] for F ∈ X and H ∈ Y.

Then by the following general result, ũ and d̃ are continuous.

Claim 4. For each continuous map h : S → T , define h̃ : K(S) → K(T ) by h̃(F ) =

h[F ] for each F ∈ K(S). Then h̃ is continuous.

Claim 5. ũ : X → Y is quotient.

Proof of Claim 5. Let U ⊂ Y such that ũ−1[U ] is open in X. To see that U is

open in Y , let H ∈ U . By Claim 3(2) and ũ(d̃(H)) = u[d[H]] = H ∈ U , we have

d̃(H) ∈ ũ−1[U ]. Since ũ−1[U ] is open in X, there is a finite collection V of open

sets in γ such that d̃(H) ∈ ⟨V⟩ ⊂ ũ−1[U ]. By Lemma 2, we may assume that
V = {(βi, αi] : i < n}, where n ∈ ω, {αi : i < n} and {βi : i < n} are decreasing
sequences in γ such that

(1) α0 = max d̃(H), {αi : i < n} ⊂ d̃(H).
(2) αi+1 ≤ βi < αi for each i < n, where αn = −1.

Subclaim 1. u(βi) < u(αi) for each i < n.

Proof of Subclaim 1. Let i < n. It follows from αi ∈ d̃(H) = d[H] that there is
δ ∈ H with d(δ) = αi. By Claim 3(2), we have δ = u(d(δ)) = u(αi). Moreover
by βi < αi = d(δ) and Claim 3(3), u(βi) < d(δ) ≤ δ holds. Therefore we have
u(βi) < u(αi). �
Subclaim 2. H ∈ ⟨{(u(βi), u(αi)] ∩ Z : i < n}⟩.

Proof of Subclaim 2. First let δ ∈ H. By d(δ) ∈ d[H] = d̃(H) ∈ ⟨V⟩, there is i < n
such that d(δ) ∈ (βi, αi]. It follows from Claim 3(4) that δ ∈ (u(βi), u(αi)] ∩ Z.
This shows H ⊂

∪
i<n((u(βi), u(αi)] ∩ Z).
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Next let i < n. Then by d̃(H) ∈ ⟨V⟩, we have ∅ ̸= d̃(H)∩(βi, αi] = d[H]∩(βi, αi].
Therefore we can take δ ∈ H with d(δ) ∈ (βi, αi]. Then as in the first paragraph
above, we get δ ∈ H ∩ ((u(βi), u(αi)] ∩ Z). Thus H ∩ ((u(βi), u(αi)] ∩ Z) ̸= ∅. �
Subclaim 3. ⟨{(u(βi), u(αi)] ∩ Z : i < n}⟩ ⊂ U .
Proof of Subclaim 3. Let K ∈ ⟨{(u(βi), u(αi)] ∩ Z : i < n}⟩. It suffices to see
d[K] ∈ ⟨V⟩, because this shows K = u[d[K]] = ũ(d[K]) ∈ ũ[⟨V⟩] ⊂ U .

To see d[K] ⊂
∪

i<n(βi, αi], let δ ∈ K. Then there is an i < n with δ ∈
(u(βi), u(αi)] ∩ Z. If αi < d(δ) were true, then by Claim 3(3) we have u(αi) <
d(δ) ≤ δ, a contradiction. Therefore d(δ) ≤ αi holds. Next if d(δ) ≤ βi were true,
then δ = u(d(δ)) ≤ u(βi) holds, a contradiction. Therefore βi < d(δ) holds and we
have d(δ) ∈ (βi, αi].

To see d[K] ∩ (βi, αi] ̸= ∅ for each i < n, let i < n. Then there is δ ∈ K with
δ ∈ (u(βi), u(αi)] ∩ Z by K ∈ ⟨{(u(βi), u(αi)] ∩ Z : i < n}⟩. By a similar argument
above, we have d[K] ∩ (βi, αi] ̸= ∅. �

Obviously these Subclaims complete the proof of Claim 5. �
Claim 6. For every F ∈ X, f(F ) = f(d̃(ũ(F ))).

Proof of Claim 6. Let K = d̃(ũ(F )) = d[u[F ]] and assume f(F ) ̸= f(K). Let us
consider the case f(F ) < f(K). (The proof for the case f(F ) > f(K) is quite
similar.) Fix r ∈ Q ∩ [0, 1] with f(F ) < r < f(K), where Q denotes the set of
all rationals. By Lemma 2 and the continuity of f , we can find n ∈ ω and two
decreasing sequences {αi : i < n} and {βi : i < n} of ordinals in γ such that

(1) α0 = maxK, {αi : i < n} ⊂ K,
(2) αi+1 ≤ βi < αi for each i < n, where αn = −1,
(3) K ∈ ⟨V⟩, where V = {(βi, αi] : i < n},
(4) f [⟨V⟩] ⊂ (r, 1].

Note that ω, Q and R (the set of all reals) are definable in H(θ). Therefore
they are elements of the countable elementary submodel M . Since ω and Q are
countable, we have ω ⊂ M and Q ⊂ M . On the other hand, R ̸⊂ M holds because
M is countable but not R. Moreover the unit interval [0, 1] belongs to M because
it is definable from 0, 1 ∈ Q ⊂ M . Similarly we have (r, 1] ∈ M whenever r ∈ Q.

Note that u(βi) < u(αi) for every i < n (use the same argument in Subclaim 1
of Claim 5). Now let for each i < n,

Wi =

{
(u(βi), u(αi)) if αi < u(αi), i.e., αi /∈ M ,

(u(βi), u(αi)] if αi = u(αi), i.e., αi ∈ M .

Then obviously W = {Wi : i < n} is a pairwise disjoint collection of open sets in
γ. Since (u(βi), u(αi)) and (u(βi), u(αi)] are definable from u(βi), u(αi) ∈ M , Wi’s
are elements of M . Moreover, since W is finite, it also belongs to M .

Subclaim 1. For every L ∈ ⟨W⟩X ∩M , f(L) > r holds.

Proof of Subclaim 1. Let L ∈ ⟨W⟩ ∩M , it suffices to see L ∈ ⟨V⟩. For each i < n,
set Li = L ∩ Wi. Note that by L ∈ ⟨W⟩, each Li is non-empty. Since W is a
pairwise disjoint open cover of the compact set L, each Li is compact. Since each
Li is determined by L,Wi ∈ M , it also belongs to M . By the compactness of Li,
the maximal element maxLi of Li exists. Moreover by Li ∈ M , both maxLi and
minLi are elements of M .
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Let i < n, now we will show Li ⊂ (βi, αi]. It follows from Li ⊂ Wi that
βi ≤ u(βi) < minLi. When αi < u(αi), it follows from maxLi < u(αi) and
maxLi ∈ M that maxLi + 1 ≤ d(u(αi)) ≤ αi. When αi = u(αi), we have
maxLi ≤ u(αi) = αi. In either cases, Li ⊂ (βi, αi] holds.

Therefore we have L =
∪

i<n Li ∈ ⟨V⟩. �

Subclaim 1 says that

M |= “For every L ∈ ⟨W⟩X , f(L) > r holds.”

Then by elementarity and W, f, r, γ ∈ M ,

(∗) “For every L ∈ ⟨W⟩X , f(L) > r holds.”

Subclaim 2. F ∈ ClX⟨W⟩.

Proof of Subclaim 2. For each i < n, let

W ′
i =

{
(u(βi), u(αi)) if u(αi) = γ,

(u(βi), u(αi)] otherwise.

Moreover let W ′ = {W ′
i : i < n}. Note that if u(αi) = γ, then i = 0 should hold

because · · · < u(α1) ≤ u(β0) < u(α0).
Further note that if αi < u(αi), then u(αi) is a limit ordinal. Otherwise, u(αi) =

β+1 for some ordinal β. Then β is the immediate predecessor of u(αi) ∈ M (i.e., β is
definable from u(αi) ∈ M ), so by elementarity, we have β ∈ M and αi ≤ β < u(αi),
which contradicts the definition of u(αi).

Now by the definitions of Wi and W ′
i , we have ClγWi = W ′

i for each i < n. By
a similar argument as in Proposition 2.3.2 of [7], we have

ClX⟨W⟩ = ⟨{ClγWi : i < n}⟩ = ⟨{W ′
i : i < n}⟩ = ⟨W ′⟩.

It suffices to see F ∈ ⟨W ′⟩.
First let δ ∈ F . It follows from K = d[u[F ]] ∈ ⟨V⟩ that d(u(δ)) ∈ (βi, αi] for

some i < n. By βi < d(u(δ)) and Claim 3(3) we have u(βi) < d(u(δ)) ≤ δ. On
the other hand, by d(u(δ)) ≤ αi and Claim 3(2), δ ≤ u(δ) = u(d(u(δ))) ≤ u(αi)
holds. In particular, when u(αi) = γ (then i = 0 as above), by δ ∈ F ⊂ γ = u(αi),
we have δ < u(αi). These arguments show δ ∈ W ′

i therefore F ⊂
∪

i<n W
′
i . Next

let i < n. Because of K = d[u[F ]] ∈ ⟨V⟩, we have K ∩ (βi, αi] ̸= ∅. Take δ ∈ F
with d(u(δ)) ∈ (βi, αi]. By a similar argument as above, we have δ ∈ W ′

i thus
F ∩W ′

i ̸= ∅. So we have F ∈ ⟨W ′⟩. �

Now (∗) and Subclaim 2 imply f(F ) ≥ r, which contradicts f(F ) < r. Claim 6
is now established. �

Finally let us return to the proof of Theorem 2.
Let us define g : Y = K(Z) → [0, 1] as follows:

g(H) = f(F ), where ũ(F ) = H.

Note that ũ is onto, by Claim 3(2).

To see that g is well-defined, let ũ(F ) = ũ(F ′) = H. Then by d̃(ũ(F )) = d̃(ũ(F ′))
and Claim 6 we have f(F ) = f(F ′). Therefore the value g(H) does not depend on
the choice of F ∈ X with ũ(F ) = H.
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Since ũ is quotient, f is continuous and f = g ◦ ũ, we see g is continuous. Since
Z is homeomorphic to a countable ordinal, Z is zero-dimensional and second count-
able. Then by Propositions 4.5.2 and 4.13.1 of [7], Y is also zero-dimensional and
second countable. Moreover by Theorem 6.2.7 of [2], Y is strongly zero-dimensional.
Therefore g−1[{0}] and g−1[{1}] are separated by a clopen set in Y . Since ũ is con-
tinuous, f−1[{0}] = ũ−1[g−1[{0}]] and f−1[{1}] = ũ−1[g−1[{1}]] are separated by
a clopen set. Therefore X is strongly zero-dimensional.

Thus the proof of Theorem 2 is complete.

3. Remarks

The authors do not know the answer to the following two questions, where D(ω1)
is the discrete space of cardinality ω1:

Question A. Is 2D(ω1) strongly zero-dimensional?

Question B. Is 2ω1 strongly zero-dimensional?

Moreover we would like to ask:

Question C. Give a direct proof of Theorem 2 without using elementary submod-
els.
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