- (1) Tel: +81-97-554-7569 (2) Fax: +81-97-554-7569
- (3) e-mail: nkemoto@cc.oita-u.ac.jp

STRONG ZERO-DIMENSIONALITY OF HYPERSPACES

NOBUYUKI KEMOTO AND JUN TERASAWA

ABSTRACT. For a space X, 2^X denotes the collection of all non-empty closed sets of X with the Vietoris topology, and $\mathcal{K}(X)$ denotes the collection of all non-empty compact sets of X with the subspace topology of 2^X . The following are known:

- 2^ω is not normal, where ω denotes the discrete space of countably infinite cardinality.
- For every non-zero ordinal γ with the usual order topology, $\mathcal{K}(\gamma)$ is normal iff $cf\gamma = \gamma$ whenever $cf\gamma$ is uncountable.
- In this paper, we will prove:
- (1) 2^{ω} is strongly zero-dimensional.
- (2) $\mathcal{K}(\gamma)$ is strongly zero-dimensional, for every non-zero ordinal γ .
- In (2), we use the technique of elementary submodels.

Throughout, spaces are Tychonoff spaces. And $\alpha, \beta, \gamma, \dots$ stand for ordinals, while k, l, m, \dots for natural numbers. For the notational convenience, we consider -1 as the immediate predecessor of the ordinal 0. Ordinals are considered as spaces with the usual order topology.

For a space X, we let 2^X , resp. $\mathcal{K}(X)$, denote the collection of all non-empty closed, resp. compact, subsets of X.

We consider 2^X with the so-called Vietoris topology τ_V , and $\mathcal{K}(X)$ its subspace. X is called the base space, and 2^X and $\mathcal{K}(X)$ the hyperspaces or the exponential spaces of X.

To describe τ_V , we need some notation. For every finite family \mathcal{V} of open subsets of X, let

$$\langle \mathcal{V} \rangle_{2^X} = \left\{ F \in 2^X : F \subset \bigcup \mathcal{V}, \forall V \in \mathcal{V}(V \cap F \neq \emptyset) \right\}, \\ \langle \mathcal{V} \rangle_{\mathcal{K}(X)} = \left\{ F \in \mathcal{K}(X) : F \subset \bigcup \mathcal{V}, \forall V \in \mathcal{V}(V \cap F \neq \emptyset) \right\}.$$

Observe that $\langle \mathcal{V} \rangle_{2^X} \cap \mathcal{K}(X) = \langle \mathcal{V} \rangle_{\mathcal{K}(X)}$. Then the collection of all subsets of 2^X of the form $\langle \mathcal{V} \rangle_{2^X}$ is a base for τ_V . Obvioulsy, $\mathcal{K}(X)$ has the base of the form $\langle \mathcal{V} \rangle_{\mathcal{K}(X)}$. For the simplicity's sake, we will often write $\langle \mathcal{V} \rangle$ instead of $\langle \mathcal{V} \rangle_{2^X}$ or $\langle \mathcal{V} \rangle_{\mathcal{K}(X)}$, if the context is clear.

For an open subset U of X, let

$$U^{-} = \{ F \in 2^{X} : F \cap U \neq \emptyset \}, \quad U^{+} = \{ F \in 2^{X} : F \subset U \}.$$

Then obviously, these sets form a subbase for τ_V .

²⁰⁰⁰ Mathematics subject classification. 54B20, 54D15,

Keywords and phrases. strongly zero-dimensional, normal, hyperspace, ordinal, elementary submodel

Date: July 12, 2010.

In the pioneering work [7], E.Michael established basic properties of the hyperspaces. In particular, 2^X is Tychonoff iff X is normal, and $\mathcal{K}(X)$ is Tychonoff iff X is Tychonoff. Hence, 2^{γ} and $\mathcal{K}(\gamma)$ are Tychonoff for a non-zero ordinal γ .

It is known that 2^{ω} is not normal [3, 4]. Previously [5], the first author showed that, for every non-zero ordinal γ , $\mathcal{K}(\gamma)$ is normal iff $\mathrm{cf}\gamma = \gamma$ whenever $\mathrm{cf}\gamma$ is uncountable.

We recall that a space X is zero-dimensional if it has a base consisting of clopen sets (that is, simultaneously-closed-and-open sets), and strongly zero-dimensional if its Stone-Čech compactification βX is zero-dimensional. It is well-known that X is strongly zero-dimensional iff its disjoint zero-sets are separated by a clopen set ([2, 6.2.4 and 6.2.12]). Obviously, every strongly zero-dimensional space is zerodimensional, but not vice versa even for metrizable spaces. For Lindelöf spaces, it is known that zero-dimensionality implies strong zero-dimensionality ([2, 6.2.7])

In the literature it is often investigated whether disjoint closed sets of a certain space X are separated by clopen sets. This property is equivalent to "normality plus strong zero-dimensionality".

Therefore we need to investigate strong zero-dimensionality itself.

We note that 2^X is zero-dimensional if X is normal and strongly zero-dimensional [5, the comment after Lemma 6], and that $\mathcal{K}(X)$ is zero-dimensional if X is zero-dimensional [7, Proposition 4.13].

In this paper we will prove the following two theorems.

Theorem 1. 2^{ω} is strongly zero-dimensional.

Theorem 2. $\mathcal{K}(\gamma)$ is strongly zero-dimensional for every non-zero ordinal γ .

For the proof of the latter, we will use a countable elementary submodel of $H(\theta)$ for some suitably large regular cardinal θ .

1. Proof of Theorem 1

The following lemma was first shown by the second author [8] (see also [2, 6.2.C(b)]), and is useful for our purpose. Here a cozero set is the complement of a zero set.

Lemma 1. A space is strongly zero-dimensional iff every cozero set can be represented as the union of countably many clopen sets.

For the proof of Theorem 1, first, for every pair $F \in 2^{\omega}$ and $n \in \omega$, let

$$\mathcal{S}_n(F) = \{ F' \in 2^\omega : F' \cap n = F \cap n, F' \subset F \}.$$

Observe that $S_n(F) = \bigcap_{i \in F \cap n} \{i\}^- \cap F^+$ and hence, $\{S_n(F) : n \in \omega\}$ is a decreasing neighborhood base at F in 2^{ω} . The following two claims are easy to prove.

Claim 1. If $F' \in \mathcal{S}_n(F)$, then $\mathcal{S}_n(F') \subset \mathcal{S}_n(F)$.

Claim 2. If $n \leq k, H \in \mathcal{S}_n(F), K \in \mathcal{S}_k(F)$ and $H \cap k \neq \emptyset$, then $H \cap k \in \mathcal{S}_n(K)$.

Let \mathcal{U} be a cozero set in 2^{ω} . We may assume $\mathcal{U} = f^{-1}[(0,1]]$ for a continuous map f on 2^{ω} into the unit interval [0,1]. Now let for each $n \in \omega$,

$$\mathcal{A}_n = \left\{ F \in 2^{\omega} : f[\mathcal{S}_n(F)] \subset \left[\frac{1}{n}, 1\right] \right\}.$$

Claim 3. $\mathcal{U} = \bigcup_{n \in \omega} \mathcal{A}_n$.

Proof of Claim 3. $\mathcal{U} \supset \bigcup_{n \in \omega} \mathcal{A}_n$ is obvious. Let $F \in \mathcal{U}$ and take $n_0 \in \omega$ with $f(F) > \frac{1}{n_0}$. By the continuity of f one can take $n_1 \in \omega$ with $f[\mathcal{S}_{n_1}(F)] \subset \left(\frac{1}{n_0}, 1\right]$. Letting $n = \max\{n_0, n_1\}$, we have

$$f[\mathcal{S}_n(F)] \subset f[\mathcal{S}_{n_1}(F)] \subset \left(\frac{1}{n_0}, 1\right] \subset \left(\frac{1}{n}, 1\right] \subset \left(\frac{1}{n}, 1\right],$$

thus $F \in \mathcal{A}_n$. This shows $\mathcal{U} \subset \bigcup_{n \in \omega} \mathcal{A}_n$.

Now let $n \in \omega$.

Claim 4. \mathcal{A}_n is open in 2^{ω} .

Proof of Claim 4. Let $F \in \mathcal{A}_n$ and $F' \in \mathcal{S}_n(F)$. By Claim 1, $\mathcal{S}_n(F') \subset \mathcal{S}_n(F)$ holds. Now we have

$$f[\mathcal{S}_n(F')] \subset f[\mathcal{S}_n(F)] \subset \left[\frac{1}{n}, 1\right].$$

This shows $\mathcal{S}_n(F) \subset \mathcal{A}_n$, consequently \mathcal{A}_n is open in 2^{ω} .

Claim 5. \mathcal{A}_n is closed in 2^{ω} .

Proof of Claim 5. Let $F \in \operatorname{Cl}_{2\omega}\mathcal{A}_n$. We will show $F \in \mathcal{A}_n$, that is $f[\mathcal{S}_n(F)] \subset [\frac{1}{n}, 1]$. Let $H \in \mathcal{S}_n(F)$. For each $k \geq n$, since $\mathcal{S}_k(F)$ is a neighborhood of F, we can take $H_k \in \mathcal{S}_k(F) \cap \mathcal{A}_n$. Then by Claim 2, $H \cap k \in \mathcal{S}_n(H_k)$ holds for each $k \geq n$ with $H \cap k \neq \emptyset$. For such a k, by $H_k \in \mathcal{A}_n$, we have $f(H \cap k) \geq \frac{1}{n}$. Then since $\mathcal{H} = \{H \cap k : k \geq n, H \cap k \neq \emptyset\}$ converges to H (i.e., every neighborhood of H contains all but finitely many members of \mathcal{H}), we have $f(H) \geq \frac{1}{n}$.

The last two claims complete the proof of Theorem 1.

2. Proof of Theorem 2

We use the following basic lemma about $\mathcal{K}(\gamma)$.

Lemma 2. [5] Let γ be a non-zero ordinal, $F \in \mathcal{K}(\gamma)$ and \mathcal{V} a finite collection of open sets in γ with $F \in \langle \mathcal{V} \rangle$. Then there are $n \in \omega$ and decreasing sequences $\{\alpha_i : i < n\}$ and $\{\beta_i : i < n\}$ of ordinals in γ such that

- (1) $\alpha_0 = \max F, \{\alpha_i : i < n\} \subset F.$
- (2) $\alpha_{i+1} \leq \beta_i < \alpha_i$ for each i < n, where $\alpha_n = -1$.
- (3) $F \in \langle \{ (\beta_i, \alpha_i] : i < n \} \rangle \subset \langle \mathcal{V} \rangle.$

In this section, we use a *countable* elementary submodel of $H(\theta)$ for some large enough regular cardinal θ . Note that this approach is somewhat different from the use of elementary submodels in Theorem 8 of [5], where the cardinality of the elementary submodels are larger (in general not countable).

The proof of Theorem 2 is divided into six claims.

If γ is a successor ordinal, then it follows from the zero-dimensionality of γ and Proposition 4.13.1 and Theorem 4.2 in [7] that $2^{\gamma} = \mathcal{K}(\gamma)$ is zero-dimensional and compact therefore strongly zero-dimensional.

So we may assume that γ is a limit ordinal. To see that $X = \mathcal{K}(\gamma)$ is strongly zero-dimensional, let $f: X \to [0,1]$ be a continuous map. We will show that the zero sets $f^{-1}[\{0\}]$ and $f^{-1}[\{1\}]$ are separated by a clopen set.

Let M be a countable elementary submodel of $H(\theta)$, where θ is large enough, such that $\gamma, f \in M$, see [1, 6] for basic facts about elementary submodels. For each $\beta < \gamma$, let

$$u(\beta) = \min([\beta, \gamma] \cap M).$$

Obviously we have:

- (a) for each $\beta < \gamma, \beta \le u(\beta) \in M$,
- (b) for each $\beta < \gamma, \beta \in M$ iff $u(\beta) = \beta$,
- (c) if $\beta' < \beta < \gamma$, then $u(\beta') \le u(\beta)$.

Moreover let

$$Z = \{u(\beta) : \beta < \gamma\}.$$

Then $Z \subset [0, \gamma] \cap M$ and u can be considered as a function on γ onto Z, i.e., $u : \gamma \to Z$.

Claim 1. We have the following:

- (1) If $cf\gamma \ge \omega_1$, then $Z = [0, \gamma] \cap M$, $\gamma \in Z$ and $[0, \gamma) \cap M$ is bounded in γ .
- (2) If $cf\gamma = \omega$, then $Z = [0, \gamma) \cap M$, $\gamma \notin Z$ and $Z = [0, \gamma) \cap M$ is unbounded in γ .

Proof of Claim 1. It follows from (b) that $[0, \gamma) \cap M \subset Z$.

(1): Let $\operatorname{cf} \gamma \geq \omega_1$. Since *M* is countable, we can take $\beta < \gamma$ with $\sup(\gamma \cap M) < \beta$. Then by $\gamma \in M$, we have $\gamma = u(\beta) \in Z$. Other properties are almost obvious.

(2): Let $\mathrm{cf}\gamma = \omega$. There is a strictly increasing cofinal sequence $\{\gamma_n : n \in \omega\}$ in γ . By elementarity and $\gamma \in M$, we may assume $\{\gamma_n : n \in \omega\} \in M$. Since $\{\gamma_n : n \in \omega\}$ is countable and belongs to M, it is a subset of M, that is, $\{\gamma_n : n \in \omega\} \subset M$, see Theorem 1.6 of [1]. Therefore we see that $[0, \gamma) \cap M$ is unbounded in γ . Now let $\beta < \gamma$ and take $n \in \omega$ with $\beta < \gamma_n$. It follows from $\gamma_n \in M$ and the definition of $u(\beta)$ that $u(\beta) \leq \gamma_n$. This shows $\gamma \notin Z$ and $Z = [0, \gamma) \cap M$.

Now we give Z the order topology. Note that this topology on Z is weaker than the subspace topology on Z of the ordinal $\gamma + 1 = [0, \gamma]$. Since Z is countable, it is homeomorphic to a countable ordinal. In particular by Claim 1, Z is homeomorphic to a successor ordinal $\langle \omega_1 | \text{if } cf \gamma \geq \omega_1$, and to a limit ordinal $\langle \omega_1 | \text{if } cf \gamma = \omega$.

We consider the hyperspace $Y = \mathcal{K}(Z)$. Since Z is second countable, by Proposition 4.5.2 of [7], $Y = \mathcal{K}(Z)$ is also second countable.

Now we investigate the relationship between $X = \mathcal{K}(\gamma)$ and $Y = \mathcal{K}(Z)$. For each $\alpha \in Z$, let

$$d(\alpha) = \sup\{\delta + 1 : \delta \in \alpha \cap Z\}.$$

By Claim 1, $d(\alpha) = \sup\{\delta + 1 : \delta \in \alpha \cap M\}$ holds and d can be considered as a function on Z into γ , that is, $d: Z \to \gamma$. Obviously we have:

- (d) for each $\alpha \in Z$, $d(\alpha) \leq \alpha$,
- (e) if $\alpha', \alpha \in Z$ with $\alpha' < \alpha$, then $d(\alpha') \le d(\alpha)$.

Claim 2. $u: \gamma \to Z$ and $d: Z \to \gamma$ are both continuous.

Proof of Claim 2. For u: Let $\beta < \gamma$ and V be a neighborhood of $u(\beta)$ in Z. By the definition of the topology of Z, we can find $\alpha \in Z$ with $\alpha < u(\beta)$ and $(\alpha, u(\beta)] \cap Z \subset V$. By $\alpha \in Z \subset M$, we have $\alpha < \beta$ and $u[(\alpha, \beta]] \subset (\alpha, u(\beta)] \cap Z \subset V$. We see that u is continuous.

For d: Let $\alpha \in Z$ and $\beta < d(\alpha)$. By the definition of $d(\alpha)$, we can find $\beta' \in \alpha \cap M$ with $\beta < \beta' + 1$. Then $\beta \leq \beta' \in M$ and $(\beta', \alpha] \cap Z$ is a neighborhood of α in Z. Now we have $d[(\beta', \alpha] \cap Z] \subset (\beta', d(\alpha)] \subset (\beta, d(\alpha)]$, so d is continuous.

Claim 3. The functions u and d have the following properties:

- (1) For every $\beta < \gamma$, $d(u(\beta)) = \sup\{\delta + 1 : \delta \in \beta \cap M\} \le \beta$.
- (2) For every $\alpha \in Z$, $u(d(\alpha)) = \alpha$ holds, that is, the composition $u \circ d$ is the identity map on Z.
- (3) For every $\beta < \gamma$ and $\alpha \in Z$, if $\beta < d(\alpha)$, then $u(\beta) < d(\alpha) \le \alpha$.
- (4) If $\beta' < \beta < \gamma$, $\alpha \in Z$ and $d(\alpha) \in (\beta', \beta]$, then $\alpha \in (u(\beta'), u(\beta)]$.

Proof of Claim 3. (1): Let $\beta < \gamma$. When $\beta \in M$, by $u(\beta) = \beta$ we have $d(u(\beta)) = d(\beta) = \sup\{\delta + 1 : \delta \in \beta \cap M\}$. When $\beta \notin M$, by $[\beta, u(\beta)) \cap M = \emptyset$ we have $\beta \cap M = u(\beta) \cap M$. Therefore $d(u(\beta)) = \sup\{\delta + 1 : \delta \in \beta \cap M\} \le \beta$.

(2): Let $\alpha \in Z$. Then by $d(\alpha) \leq \alpha \in Z \subset M$, clearly $u(d(\alpha)) \leq \alpha$ holds. Assume $u(d(\alpha)) < \alpha$. It follows from $u(d(\alpha)) \in \alpha \cap M$ and the definition of $d(\alpha)$ that $u(d(\alpha)) + 1 \leq d(\alpha)$. Then $d(\alpha) \leq u(d(\alpha)) < d(\alpha)$, a contradiction.

(3): Let $\beta < \gamma$, $\alpha \in Z$ and $\beta < d(\alpha)$. Then by the definition of $d(\alpha)$, there is $\delta \in \alpha \cap M$ with $\beta < \delta + 1$. Then we have $\beta \leq \delta < \delta + 1 \leq d(\alpha)$. It follows from $\delta \in M$ that $u(\beta) \leq \delta < d(\alpha) \leq \alpha$.

(4) easily follows from (2).

Define $\tilde{u}: X \to Y$ and $\tilde{d}: Y \to X$ by

$$\tilde{u}(F) = u[F], \quad d(H) = d[H] \text{ for } F \in X \text{ and } H \in Y.$$

Then by the following general result, \tilde{u} and \tilde{d} are continuous.

Claim 4. For each continuous map $h: S \to T$, define $\tilde{h}: \mathcal{K}(S) \to \mathcal{K}(T)$ by $\tilde{h}(F) = h[F]$ for each $F \in \mathcal{K}(S)$. Then \tilde{h} is continuous.

Claim 5. $\tilde{u}: X \to Y$ is quotient.

Proof of Claim 5. Let $\mathcal{U} \subset Y$ such that $\tilde{u}^{-1}[\mathcal{U}]$ is open in X. To see that \mathcal{U} is open in Y, let $H \in \mathcal{U}$. By Claim 3(2) and $\tilde{u}(\tilde{d}(H)) = u[d[H]] = H \in \mathcal{U}$, we have $\tilde{d}(H) \in \tilde{u}^{-1}[\mathcal{U}]$. Since $\tilde{u}^{-1}[\mathcal{U}]$ is open in X, there is a finite collection \mathcal{V} of open sets in γ such that $\tilde{d}(H) \in \langle \mathcal{V} \rangle \subset \tilde{u}^{-1}[\mathcal{U}]$. By Lemma 2, we may assume that $\mathcal{V} = \{(\beta_i, \alpha_i] : i < n\}$, where $n \in \omega$, $\{\alpha_i : i < n\}$ and $\{\beta_i : i < n\}$ are decreasing sequences in γ such that

- (1) $\alpha_0 = \max \tilde{d}(H), \{\alpha_i : i < n\} \subset \tilde{d}(H).$
- (2) $\alpha_{i+1} \leq \beta_i < \alpha_i$ for each i < n, where $\alpha_n = -1$.

Subclaim 1. $u(\beta_i) < u(\alpha_i)$ for each i < n.

Proof of Subclaim 1. Let i < n. It follows from $\alpha_i \in \tilde{d}(H) = d[H]$ that there is $\delta \in H$ with $d(\delta) = \alpha_i$. By Claim 3(2), we have $\delta = u(d(\delta)) = u(\alpha_i)$. Moreover by $\beta_i < \alpha_i = d(\delta)$ and Claim 3(3), $u(\beta_i) < d(\delta) \leq \delta$ holds. Therefore we have $u(\beta_i) < u(\alpha_i)$.

Subclaim 2. $H \in \langle \{(u(\beta_i), u(\alpha_i)] \cap Z : i < n\} \rangle.$

Proof of Subclaim 2. First let $\delta \in H$. By $d(\delta) \in d[H] = d(H) \in \langle \mathcal{V} \rangle$, there is i < n such that $d(\delta) \in (\beta_i, \alpha_i]$. It follows from Claim 3(4) that $\delta \in (u(\beta_i), u(\alpha_i)] \cap Z$. This shows $H \subset \bigcup_{i < n} ((u(\beta_i), u(\alpha_i)] \cap Z)$.

Next let i < n. Then by $d(H) \in \langle \mathcal{V} \rangle$, we have $\emptyset \neq d(H) \cap (\beta_i, \alpha_i] = d[H] \cap (\beta_i, \alpha_i]$. Therefore we can take $\delta \in H$ with $d(\delta) \in (\beta_i, \alpha_i]$. Then as in the first paragraph above, we get $\delta \in H \cap ((u(\beta_i), u(\alpha_i)] \cap Z)$. Thus $H \cap ((u(\beta_i), u(\alpha_i)] \cap Z) \neq \emptyset$. \Box

Subclaim 3. $\langle \{(u(\beta_i), u(\alpha_i)] \cap Z : i < n\} \rangle \subset \mathcal{U}.$

Proof of Subclaim 3. Let $K \in \langle \{(u(\beta_i), u(\alpha_i)] \cap Z : i < n\} \rangle$. It suffices to see $d[K] \in \langle \mathcal{V} \rangle$, because this shows $K = u[d[K]] = \tilde{u}(d[K]) \in \tilde{u}[\langle \mathcal{V} \rangle] \subset \mathcal{U}$.

To see $d[K] \subset \bigcup_{i < n} (\beta_i, \alpha_i]$, let $\delta \in K$. Then there is an i < n with $\delta \in (u(\beta_i), u(\alpha_i)] \cap Z$. If $\alpha_i < d(\delta)$ were true, then by Claim 3(3) we have $u(\alpha_i) < d(\delta) \le \delta$, a contradiction. Therefore $d(\delta) \le \alpha_i$ holds. Next if $d(\delta) \le \beta_i$ were true, then $\delta = u(d(\delta)) \le u(\beta_i)$ holds, a contradiction. Therefore $\beta_i < d(\delta)$ holds and we have $d(\delta) \in (\beta_i, \alpha_i]$.

To see $d[K] \cap (\beta_i, \alpha_i] \neq \emptyset$ for each i < n, let i < n. Then there is $\delta \in K$ with $\delta \in (u(\beta_i), u(\alpha_i)] \cap Z$ by $K \in \langle \{(u(\beta_i), u(\alpha_i)] \cap Z : i < n\} \rangle$. By a similar argument above, we have $d[K] \cap (\beta_i, \alpha_i] \neq \emptyset$.

Obviously these Subclaims complete the proof of Claim 5.

Claim 6. For every
$$F \in X$$
, $f(F) = f(d(\tilde{u}(F)))$.

Proof of Claim 6. Let $K = \tilde{d}(\tilde{u}(F)) = d[u[F]]$ and assume $f(F) \neq f(K)$. Let us consider the case f(F) < f(K). (The proof for the case f(F) > f(K) is quite similar.) Fix $r \in \mathbb{Q} \cap [0,1]$ with f(F) < r < f(K), where \mathbb{Q} denotes the set of all rationals. By Lemma 2 and the continuity of f, we can find $n \in \omega$ and two decreasing sequences $\{\alpha_i : i < n\}$ and $\{\beta_i : i < n\}$ of ordinals in γ such that

- (1) $\alpha_0 = \max K, \{\alpha_i : i < n\} \subset K,$
- (2) $\alpha_{i+1} \leq \beta_i < \alpha_i$ for each i < n, where $\alpha_n = -1$,
- (3) $K \in \langle \mathcal{V} \rangle$, where $\mathcal{V} = \{ (\beta_i, \alpha_i] : i < n \}$,
- (4) $f[\langle \mathcal{V} \rangle] \subset (r, 1].$

Note that ω , \mathbb{Q} and \mathbb{R} (the set of all reals) are definable in $H(\theta)$. Therefore they are elements of the countable elementary submodel M. Since ω and \mathbb{Q} are countable, we have $\omega \subset M$ and $\mathbb{Q} \subset M$. On the other hand, $\mathbb{R} \not\subset M$ holds because M is countable but not \mathbb{R} . Moreover the unit interval [0,1] belongs to M because it is definable from $0, 1 \in \mathbb{Q} \subset M$. Similarly we have $(r, 1] \in M$ whenever $r \in \mathbb{Q}$.

Note that $u(\beta_i) < u(\alpha_i)$ for every i < n (use the same argument in Subclaim 1 of Claim 5). Now let for each i < n,

$$W_i = \begin{cases} (u(\beta_i), u(\alpha_i)) & \text{if } \alpha_i < u(\alpha_i), \text{ i.e., } \alpha_i \notin M, \\ (u(\beta_i), u(\alpha_i)] & \text{if } \alpha_i = u(\alpha_i), \text{ i.e., } \alpha_i \in M. \end{cases}$$

Then obviously $\mathcal{W} = \{W_i : i < n\}$ is a pairwise disjoint collection of open sets in γ . Since $(u(\beta_i), u(\alpha_i))$ and $(u(\beta_i), u(\alpha_i)]$ are definable from $u(\beta_i), u(\alpha_i) \in M$, W_i 's are elements of M. Moreover, since \mathcal{W} is finite, it also belongs to M.

Subclaim 1. For every $L \in \langle \mathcal{W} \rangle_X \cap M$, f(L) > r holds.

Proof of Subclaim 1. Let $L \in \langle \mathcal{W} \rangle \cap M$, it suffices to see $L \in \langle \mathcal{V} \rangle$. For each i < n, set $L_i = L \cap W_i$. Note that by $L \in \langle \mathcal{W} \rangle$, each L_i is non-empty. Since \mathcal{W} is a pairwise disjoint open cover of the compact set L, each L_i is compact. Since each L_i is determined by $L, W_i \in M$, it also belongs to M. By the compactness of L_i , the maximal element max L_i of L_i exists. Moreover by $L_i \in M$, both max L_i and min L_i are elements of M.

Let i < n, now we will show $L_i \subset (\beta_i, \alpha_i]$. It follows from $L_i \subset W_i$ that $\beta_i \leq u(\beta_i) < \min L_i$. When $\alpha_i < u(\alpha_i)$, it follows from $\max L_i < u(\alpha_i)$ and $\max L_i \in M$ that $\max L_i + 1 \leq d(u(\alpha_i)) \leq \alpha_i$. When $\alpha_i = u(\alpha_i)$, we have $\max L_i \leq u(\alpha_i) = \alpha_i$. In either cases, $L_i \subset (\beta_i, \alpha_i]$ holds.

Therefore we have $L = \bigcup_{i \leq n} L_i \in \langle \mathcal{V} \rangle$.

Subclaim 1 says that

$$M \models$$
 "For every $L \in \langle \mathcal{W} \rangle_X, f(L) > r$ holds."

Then by elementarity and $\mathcal{W}, f, r, \gamma \in M$,

(*) "For every
$$L \in \langle \mathcal{W} \rangle_X$$
, $f(L) > r$ holds."

Subclaim 2. $F \in \operatorname{Cl}_X \langle \mathcal{W} \rangle$.

Proof of Subclaim 2. For each i < n, let

$$W'_{i} = \begin{cases} (u(\beta_{i}), u(\alpha_{i})) & \text{if } u(\alpha_{i}) = \gamma, \\ (u(\beta_{i}), u(\alpha_{i})] & \text{otherwise.} \end{cases}$$

Moreover let $\mathcal{W}' = \{W'_i : i < n\}$. Note that if $u(\alpha_i) = \gamma$, then i = 0 should hold because $\cdots < u(\alpha_1) \le u(\beta_0) < u(\alpha_0)$.

Further note that if $\alpha_i < u(\alpha_i)$, then $u(\alpha_i)$ is a limit ordinal. Otherwise, $u(\alpha_i) =$ $\beta+1$ for some ordinal β . Then β is the immediate predecessor of $u(\alpha_i) \in M$ (i.e., β is definable from $u(\alpha_i) \in M$), so by elementarity, we have $\beta \in M$ and $\alpha_i \leq \beta < u(\alpha_i)$, which contradicts the definition of $u(\alpha_i)$.

Now by the definitions of W_i and W'_i , we have $\operatorname{Cl}_{\gamma} W_i = W'_i$ for each i < n. By a similar argument as in Proposition 2.3.2 of [7], we have

$$\operatorname{Cl}_X \langle \mathcal{W} \rangle = \langle \{ \operatorname{Cl}_\gamma W_i : i < n \} \rangle = \langle \{ W'_i : i < n \} \rangle = \langle \mathcal{W}' \rangle.$$

It suffices to see $F \in \langle \mathcal{W}' \rangle$.

First let $\delta \in F$. It follows from $K = d[u[F]] \in \langle \mathcal{V} \rangle$ that $d(u(\delta)) \in (\beta_i, \alpha_i]$ for some i < n. By $\beta_i < d(u(\delta))$ and Claim 3(3) we have $u(\beta_i) < d(u(\delta)) \le \delta$. On the other hand, by $d(u(\delta)) \leq \alpha_i$ and Claim 3(2), $\delta \leq u(\delta) = u(d(u(\delta))) \leq u(\alpha_i)$ holds. In particular, when $u(\alpha_i) = \gamma$ (then i = 0 as above), by $\delta \in F \subset \gamma = u(\alpha_i)$, we have $\delta < u(\alpha_i)$. These arguments show $\delta \in W'_i$ therefore $F \subset \bigcup_{i < n} W'_i$. Next let i < n. Because of $K = d[u[F]] \in \langle \mathcal{V} \rangle$, we have $K \cap (\beta_i, \alpha_i] \neq \emptyset$. Take $\delta \in F$ with $d(u(\delta)) \in (\beta_i, \alpha_i]$. By a similar argument as above, we have $\delta \in W'_i$ thus $F \cap W'_i \neq \emptyset$. So we have $F \in \langle \mathcal{W}' \rangle$. \square

Now (*) and Subclaim 2 imply $f(F) \ge r$, which contradicts f(F) < r. Claim 6 is now established. \square

Finally let us return to the proof of Theorem 2. Let us define $g: Y = \mathcal{K}(Z) \to [0, 1]$ as follows:

$$g(H) = f(F)$$
, where $\tilde{u}(F) = H$.

Note that \tilde{u} is onto, by Claim 3(2).

To see that g is well-defined, let $\tilde{u}(F) = \tilde{u}(F') = H$. Then by $d(\tilde{u}(F)) = d(\tilde{u}(F'))$ and Claim 6 we have f(F) = f(F'). Therefore the value g(H) does not depend on the choice of $F \in X$ with $\tilde{u}(F) = H$.

Since \tilde{u} is quotient, f is continuous and $f = g \circ \tilde{u}$, we see g is continuous. Since Z is homeomorphic to a countable ordinal, Z is zero-dimensional and second countable. Then by Propositions 4.5.2 and 4.13.1 of [7], Y is also zero-dimensional and second countable. Moreover by Theorem 6.2.7 of [2], Y is strongly zero-dimensional. Therefore $g^{-1}[\{0\}]$ and $g^{-1}[\{1\}]$ are separated by a clopen set in Y. Since \tilde{u} is continuous, $f^{-1}[\{0\}] = \tilde{u}^{-1}[g^{-1}[\{0\}]]$ and $f^{-1}[\{1\}] = \tilde{u}^{-1}[g^{-1}[\{1\}]]$ are separated by a clopen set. Therefore X is strongly zero-dimensional.

Thus the proof of Theorem 2 is complete.

3. Remarks

The authors do not know the answer to the following two questions, where $D(\omega_1)$ is the discrete space of cardinality ω_1 :

Question A. Is $2^{D(\omega_1)}$ strongly zero-dimensional?

Question B. Is 2^{ω_1} strongly zero-dimensional?

Moreover we would like to ask:

Question C. Give a direct proof of Theorem 2 without using elementary submodels.

References

- A. Dow, An introduction to applications of elementary submodels to topology, Topology Proc. 13 (1988), 17–72.
- [2] R. Engelking, General Topology (Revised and completed edition), Heldermann Verlag, 1989.
- [3] V. M. Ivanova, On the theory of spaces of subsets (Russian), Dokl. Akad. Nauk SSSR (N.S.), 101 (1955) 601–603.
- [4] J. Keesling, Normality and properties related to compactness in hyperspaces, Proc. Amer. Math. Soc., 24 (1970) 760–766.
- [5] N. Kemoto, Normality and countable paracompactness of hyperspaces of ordinals, Top. Appl., 24 (2007) 358–363.
- [6] K. Kunen, Set theory. An introduction to independence proofs, Studies in Logic and the Foundations of Mathematics, 102 (1980), North-Holland Publishing Co., Amsterdam.
- [7] E. Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc., 71 (1951) 152–182.
- [8] J. Terasawa, On the zero-dimensionality of some non-normal product spaces, Science Reports of the Tokyo Kyouiku Daigaku, Section A, 11 (1972), 167–174.
- [9] N. V. Velichko, On the space of closed subsets; English translation, Siberian Math. Journ., 16 (1975) 484–486.

DEPARTMENT OF MATHEMATICS, FACULTY OF EDUCATION, OITA UNIVERSITY, DANNOHARU, OITA, 870-1192, JAPAN

DEPARTMENT OF MATHEMATICS, THE NATIONAL DEFENSE ACADEMY, YOKO-SUKA 239-8686, JAPAN

E-mail addresses:

nkemoto@cc.oita-u.ac.jp jun.trswa@member.ams.org