ORDERABILITY OF SUBSPACES OF WELL-ORDERABLE TOPOLOGICAL SPACES

YASUSHI HIRATA AND NOBUYUKI KEMOTO

ABSTRACT. We will show that all subspaces of well-ordered spaces are orderable, and we will characterize the well-orderability of subspaces of well-ordered spaces.

1. INTRODUCTION

Let $\langle X, \langle \rangle$ be a linear ordered set, that is, a linear order \langle is defined on X. For $a, b \in X$, set

- $\begin{array}{l} \bullet \ (a, \rightarrow)_{\langle X, < \rangle} = \{ x \in X : a < x \}, \\ \bullet \ (\leftarrow, b)_{\langle X, < \rangle} = \{ x \in X : x < b \}, \\ \bullet \ (a, b)_{\langle X, < \rangle} = \{ x \in X : a < x < b \}. \end{array}$

Similarly one can define $[a, \rightarrow)_{\langle X, < \rangle}$, $(\leftarrow, a]_{\langle X, < \rangle}$, $[a, b]_{\langle X, < \rangle}$, $(a, b]_{\langle X, < \rangle}$, ...etc.. If contexts are clear, we often omit the suffix " $\langle X, < \rangle$ " of the intervals, for instance $(a,b)_{\langle X,<\rangle}$ is written simply as (a,b). $\lambda(X,<)$ denotes the order topology on X generated by the collection $\{(a, \rightarrow)_{\langle X, < \rangle} : a \in X\} \cup \{(\leftarrow, a)_{\langle X, < \rangle} : a \in X\}$ as a subbase. Then the triple $\langle X, \langle X, \langle \rangle \rangle$ is called an ordered space, and in this case, we simply say "X is an ordered space". Note that if \prec is the reverse order of <, then $\lambda(X, <)$ and $\lambda(X, \prec)$ are the same topology. It is well-known that a non-empty ordered space X is compact iff every subset of X has a supremum (equivalently, an infimum), see [1, 3.12.3].

A linear order < on a set X is said to be a *well-order* if every non-empty subset of X has a <-minimal element. It is well known that every well-ordered set $\langle X, < \rangle$ is order isomorphic to a unique ordinal with the usual order <, that is, the order \in , see [3, I, Theorem 7.6]. We call such a unique ordinal as the order type of $\langle X, \langle \rangle$ and it is denoted by $\operatorname{otp}(X, <)$.

A topological space $\langle X, \tau \rangle$ is said to be *orderable* (*well-orderable*) if there is a linear order (well-order) < on X with $\lambda(X, <) = \tau$. Therefore every well-orderable space is identified with an ordinal having the order topology. A topological space $\langle X, \tau \rangle$ is said to be *sub-orderable* if there is a linearly ordered set $\langle Y, \langle \rangle$ such that $X \subseteq Y$ and $\lambda(Y, <) \upharpoonright X = \tau$, here $\lambda(Y, <) \upharpoonright X$ means the subspace topology $\{U \cap X : U \in \lambda(Y, <)\}$ on X of the order topology on Y. Observe that if a linearly ordered set $\langle Y, < \rangle$ is given and $X \subseteq Y$, then $\lambda(X, < \upharpoonright X) \subseteq \lambda(Y, <) \upharpoonright X$ always holds, where $\lambda(X, < \uparrow X)$ denotes the order topology on X induced by the restricted order < X on X of <. We usually write "< X" simply by "<" if it is clear in the contexts on where the order < is restricted.

Date: November 16, 2008.

²⁰⁰⁰ Mathematics subject classification. 54F05, 03E04,

Keywords and phrases. linear order, well-order, orderable, sub-orderable, ordinal

By the definition, subspaces of ordinals are sub-orderable. On the other hand, the Sorgenfley line and the Michael line are known to be sub-orderable but not orderable, see [2]. Even the subspace $(0, 1) \cup \{2\}$ of the real line is not orderable, see [4]. In this line, the second author has conjectured that every stationary set X of ω_1 such that $\omega_1 \setminus X$ is also stationary is not orderable. In this paper, we will show that this conjecture is false. Also we will characterize the well-orderability of subspaces of ordinals.

For set theoretical and topological notions, the reader should refer [3] and [1], respectively. **Ord** denotes the class of all ordinals. While **Ord** is a proper class (= a class which is not a set), the order \in is considered as a linear order on **Ord**, usually this order \in is written as <. Note that for every subset Z of **Ord**, the supremum sup Z exists. For notational conveniences, -1 is considered as the immediate predecessor of the minimal ordinal $0 = \emptyset$ and we consider as $\sup \emptyset = -1$. Throughout the paper, each ordinal μ is identified with the set { $\alpha \in$ **Ord** : $\alpha < \mu$ } and assumed to have the order topology induced by the usual order <, in other words, for every $\alpha \in \mu$, the collection { $(\beta, \alpha] : -1 \le \beta < \alpha$ } is a neighborhood base at α . The cofinality of an ordinal α is denoted by cf α . ω and ω_1 denote the least infinite ordinal and the least uncountable ordinal respectively. For a set Z of ordinals, Lim(Z) denotes the set of all cluster points of Z in **Ord**, i.e.

$$\operatorname{Lim}(Z) = \{ \alpha \in \operatorname{\mathbf{Ord}} \setminus \{0\} : Z \cap (\gamma, \alpha) \neq \emptyset \text{ for every } \gamma \in \alpha \}.$$

In this paper, we use notations $\sup Z$ and $\operatorname{Lim}(Z)$ only for a set $Z \subseteq \operatorname{Ord}$ with the usual order < on Ord .

2. Decomposition

In this section, we show some basic facts. And for an arbitrary subspace X of an ordinal, we give a decomposition \mathcal{I} into well-orderable closed convex subsets of X. It is routine to check that the lemma below holds.

Lemma 2.1. Let $\langle be a linear order on a set X, and <math>Z \subseteq X$. Assume that for every $c \in X \setminus Z$ with $Z \cap (\leftarrow, c) \neq \emptyset$ and $Z \cap (c, \rightarrow) \neq \emptyset$, $Z \cap (\leftarrow, c)$ has a maximal element if and only if $Z \cap (c, \rightarrow)$ has a minimal element. Then the subspace topology $\lambda(X, \langle \rangle) \upharpoonright Z$ coincides with the order topology $\lambda(Z, \langle \rangle)$.

Let < be a linear order on a set X. We call a subset Z of X convex in $\langle X, < \rangle$ iff $(a,b) \subseteq Z$ for every $a, b \in Z$ with a < b. If Z is convex in $\langle X, < \rangle$ and c is a point in X with $Z \cap (\leftarrow, c) \neq \emptyset$ and $Z \cap (c, \rightarrow) \neq \emptyset$, then we have $c \in Z$. Therefore the following well-known lemma is easily seen from Lemma 2.1.

Lemma 2.2. Let < be a linear order on a set X, and Z a convex set of $\langle X, < \rangle$. Then $\lambda(X, <) \upharpoonright Z$ coincides with $\lambda(Z, <)$.

Lemma 2.3. Let < be the usual order on an ordinal μ , and $Z \subseteq \mu$. Assume that $\text{Lim}(Z) \setminus Z \subseteq \{\sup Z\}$. Then $\lambda(\mu, <) \upharpoonright Z$ coincides with $\lambda(Z, <)$.

Proof. Assume $c \in \mu \setminus Z$, $Z \cap (\leftarrow, c) \neq \emptyset$, and $Z \cap (c, \rightarrow) \neq \emptyset$. Since $Z \cap (c, \rightarrow)$ has a minimal element, by Lemma 2.1, it suffices to show that $Z \cap (\leftarrow, c)$ has a maximal element. Assume that $Z \cap (\leftarrow, c)$ does not have a maximal element. Put $\alpha = \sup(Z \cap (\leftarrow, c))$, then we have $\alpha \in \operatorname{Lim}(Z)$, $\alpha \notin Z \cap (\leftarrow, c)$ and $\alpha \leq c$. It follows from $\alpha \notin Z \cap (\leftarrow, c)$ and $\alpha \leq c \notin Z$ that $\alpha \notin Z$. Hence, $\sup Z > c \geq \alpha \in \operatorname{Lim}(Z) \setminus Z$, a contradiction.

Lemma 2.4. Let < be the usual order on **Ord**, μ an ordinal and $X \subseteq \mu$, moreover τ denote the subspace topology $\lambda(\mu, <) \upharpoonright X$. Define

$$G = \operatorname{Lim}(X) \setminus X,$$

$$S = \begin{cases} (G \setminus \operatorname{Lim}(G)) \cup \{\mu\} & \text{if } X \text{ has } a < -maximal \text{ element } \max X, \\ G \setminus \operatorname{Lim}(G) & \text{otherwise,} \end{cases}$$

$$\mathcal{I} = \langle I(\xi) \mid \xi \in S \rangle,$$

where for each $\xi \in S$, $I(\xi) = X \cap [\sup(G \cap \xi), \xi)$ and $<_{\xi}$ denotes the restriction of < on $I(\xi)$. Then the following hold:

- (1) If $\xi \in S \setminus G$, then $\xi = \mu$, X has a <-maximal element, $G \cap \mu = G$, $I(\mu) = X \cap [\sup G, \max X]$, μ is a <-maximal element of S and $\max X$ is also the $<_{\mu}$ -maximal element of $I(\mu)$. In particular, cf $otp\langle I(\mu), <_{\mu} \rangle = 1$.
- (2) If $\xi \in G \setminus \text{Lim}(G)$, then $I(\xi)$ is a non-empty subset of X with no $<_{\xi}$ -maximal element, also $I(\xi) = X \cap [\sup(G \cap \xi), \xi]$ and $\xi = \sup I(\xi)$ hold. In particular, cf $\operatorname{otp}\langle I(\xi), <_{\xi} \rangle = \operatorname{cf} \xi \ge \omega$ holds.
- (3) \mathcal{I} is a pairwise disjoint closed cover of the space $\langle X, \tau \rangle$ consisting of nonempty convex subsets of $\langle X, \langle \rangle$.
- (4) For each $\xi \in S$, $<_{\xi}$ is a well-order on $I(\xi)$, $I(\xi) \setminus \operatorname{int}_{\langle X, \tau \rangle}(I(\xi)) \subseteq \{ \sup(G \cap \xi) \}$ holds, moreover the subspace topology $\tau \upharpoonright I(\xi) \ (= \lambda(\mu, <) \upharpoonright I(\xi))$ coincides with $\lambda(I(\xi), <_{\xi})$.
- (5) $\operatorname{Lim}(S) = \operatorname{Lim}(G)$ holds.

Proof. Observe that G and S are subsets of $\mu + 1 = [0, \mu]$. (1) is trivial.

(2) Let $\xi \in G \setminus \text{Lim}(G)$. It follows from $\xi \in G \subseteq \text{Lim}(X)$ and $\xi \notin \text{Lim}(G)$ that $\sup(X \cap \xi) = \xi$ and $\sup(G \cap \xi) < \xi$ respectively. Since $\xi \notin X$, all properties in (2) are easily verified.

(3) By (1) and (2), each member of \mathcal{I} is non-empty convex in $\langle X, \langle \rangle$ and closed in $\langle X, \tau \rangle$.

To see that \mathcal{I} is pairwise disjoint, let $\zeta, \xi \in S$ with $\zeta < \xi$. Then $\zeta \in G \setminus \text{Lim}(G)$, and we have $\zeta \leq \sup(G \cap \xi)$. If $\alpha \in I(\zeta)$ and $\beta \in I(\xi)$, then $\alpha < \zeta \leq \sup(G \cap \xi) \leq \beta$ holds. Therefore we see $I(\zeta) \cap I(\xi) = \emptyset$.

To see that \mathcal{I} covers X, let $\alpha \in X$. First assume that there is $\xi \in G$ with $\alpha < \xi$. Pick the such least ξ , then $\sup(G \cap \xi) \leq \alpha < \xi$. Thus we have $\xi \in G \setminus \operatorname{Lim}(G) \subseteq S$ and $\alpha \in I(\xi)$. Next assume that there is no $\xi \in G$ with $\alpha < \xi$. In this case, X has a <-maximal element, for otherwise, $\alpha < \sup X \in G$, a contradiction. Therefore we have $\sup G \leq \alpha \leq \max X$, so we see $\alpha \in I(\mu)$ with $\mu \in S$.

(4) Let $\xi \in S$. Obviously, $<_{\xi}$ is a well-order. It follows from $X \cap (\sup(G \cap \xi), \xi) \subseteq I(\xi)$ that $I(\xi) \setminus \operatorname{int}_{\langle X, \tau \rangle}(I(\xi)) \subseteq \{\sup(G \cap \xi)\}.$

We show the remaining property. By Lemma 2.3, it suffices to show $\operatorname{Lim}(I(\xi)) \setminus I(\xi) \subseteq \{\sup I(\xi)\}$. Let $\alpha \in \operatorname{Lim}(I(\xi)) \cap \xi$. By the definitions of $I(\xi)$ and $\operatorname{Lim}(I(\xi))$, we have $\alpha \in (\sup(G \cap \xi), \xi)$ therefore $\alpha \notin G$ holds. It follows from $\alpha \in \operatorname{Lim}(X) \setminus G \subseteq X$ that $\alpha \in X \cap [\sup(G \cap \xi), \xi) = I(\xi)$. This shows $\operatorname{Lim}(I(\xi)) \setminus I(\xi) \subseteq \{\xi\}$.

If $\xi \in G \setminus \text{Lim}(G)$, then by (2), we have $\text{Lim}(I(\xi)) \setminus I(\xi) \subseteq \{\xi\} = \{\sup I(\xi)\}$. If $\xi \in S \setminus G$, then by (1), X has a <-maximal element and $\xi = \mu > \max X$, so we have $\xi \notin \text{Lim}(X) \supseteq \text{Lim}(I(\xi))$. Therefore $\text{Lim}(I(\xi)) \setminus I(\xi) = \emptyset \subseteq \{\sup I(\xi)\}$.

(5) It follows from $S \subseteq G \cup \{\mu\}$ that $\operatorname{Lim}(S) \subseteq \operatorname{Lim}(G \cup \{\mu\}) = \operatorname{Lim}(G)$. To see $\operatorname{Lim}(G) \subseteq \operatorname{Lim}(S)$, assume $\alpha \in \operatorname{Lim}(G) \setminus \operatorname{Lim}(S)$. Then $\sup(S \cap \alpha) < \alpha$ holds.

Now pick the <-minimal element β of G with $\sup(S \cap \alpha) < \beta < \alpha$. Then we have $\beta \in G \setminus \operatorname{Lim}(G) \subseteq S$, so $\beta \leq \sup(S \cap \alpha)$, a contradiction.

3. Orderability

This section is devoted to prove:

Theorem 3.1. Subspaces of ordinals are orderable.

Before proving the theorem, we show some lemmas. Let $\langle \langle I(\xi), \prec_{\xi} \rangle | \xi \in S \rangle$ be a pairwise disjoint collection of non-empty linearly ordered sets, and \prec_S a linear order on the index set S. Let $X = \bigcup_{\xi \in S} I(\xi)$ and for each $\alpha \in X$, let $\xi(\alpha)$ denotes the unique ξ with $\alpha \in I(\xi)$. For each $\alpha, \beta \in X$ define

$$\alpha \prec \beta \text{ by } \begin{cases} \xi(\alpha) \prec_S \xi(\beta) & \text{ if } \xi(\alpha) \neq \xi(\beta), \\ \alpha \prec_{\xi(\alpha)} \beta & \text{ if } \xi(\alpha) = \xi(\beta). \end{cases}$$

Then \prec is a linear order on X. This linearly ordered set $\langle X, \prec \rangle$ is said to be the order sum of $\langle \langle I(\xi), \prec_{\xi} \rangle \mid \xi \in S \rangle$ with respect to \prec_S . Note that for each $\xi \in S$, $I(\xi)$ is a convex set in $\langle X, \prec \rangle$ and the whole order \prec extends \prec_{ξ} .

Lemma 3.2. Let $\langle \langle I(\xi), \prec_{\xi} \rangle | \xi \in S \rangle$ be a pairwise disjoint collection of non-empty linearly ordered sets and \prec_S a well-order on S such that

(*) $I(\zeta)$ has a \prec_{ζ} -maximal element iff $I(\xi)$ has a \prec_{ξ} -minimal element for every pair $\zeta, \xi \in S$ with $\zeta \prec_S \xi$ and $(\zeta, \xi)_{\langle S, \prec_S \rangle} = \emptyset$.

Moreover, let $\langle X, \prec \rangle$ be the order sum of $\langle \langle I(\xi), \prec_{\xi} \rangle \mid \xi \in S \rangle$ with respect to \prec_S and τ' the order topology $\lambda(X, \prec)$. Then for each $\xi \in S$, the following hold.

- (1) The subspace topology $\tau' \upharpoonright I(\xi)$ coincides with the order topology $\lambda(I(\xi), \prec_{\xi})$.
- (2) For each $\alpha \in I(\xi)$, $\alpha \notin \operatorname{int}_{\langle X, \tau' \rangle}(I(\xi))$ holds if and only if the following three conditions hold:
 - (2-1) ξ is not a \prec_S -minimal element,
 - (2-2) $(\leftarrow, \xi)_{\langle S, \prec_S \rangle}$ does not have a \prec_S -maximal element,
- (2-3) α is a \prec_{ξ} -minimal element of $I(\xi)$.
- (3) Assume that \prec_{ξ} is a well-order on $I(\xi)$ and $\alpha \in I(\xi) \setminus \operatorname{int}_{\langle X, \tau' \rangle}(I(\xi))$. Then $V \subseteq X$ is a neighbourhood of α in $\langle X, \tau' \rangle$ if and only if $\{\alpha\} \cup \bigcup \{I(\eta) : \eta \in (\zeta, \xi)_{\langle S, \prec_S \rangle}\} \subseteq V$ for some $\zeta \in (\leftarrow, \xi)_{\langle S, \prec_S \rangle}$.

Proof. Let $\xi \in S$. (1) follows from Lemma 2.2.

(2) Let us call $V \subseteq X$ an upper neighbourhood of $\alpha \in X$ if $[\alpha, \to)_{\langle X, \prec \rangle} \subseteq V$ or $[\alpha, \beta)_{\langle X, \prec \rangle} \subseteq V$ for some $\beta \in X$ with $\alpha \prec \beta$. And let us call V a lower neighbourhood of α if $(\leftarrow, \alpha]_{\langle X, \prec \rangle} \subseteq V$ or $(\gamma, \alpha]_{\langle X, \prec \rangle} \subseteq V$ for some $\gamma \in X$ with $\gamma \prec \alpha$. Obviously, $\alpha \in \operatorname{int}_{\langle X, \tau' \rangle}(V)$ iff V is a neighbourhood of α in $\langle X, \tau' \rangle$ iff V is both an upper neighbourhood and a lower neighbourhood of α .

Let $\alpha \in I(\xi)$. First we prove:

Claim 1. $I(\xi)$ is an upper neighbourhood of α .

Proof. In the case that ξ is a \prec_S -maximal element of S, $[\alpha, \rightarrow)_{\langle X, \prec \rangle} \subseteq I(\xi)$ holds. In the case that α is not a \prec_{ξ} -maximal element of $I(\xi)$, pick $\beta \in I(\xi)$ with $\alpha \prec_{\xi} \beta$, then $\alpha \prec \beta$ and $[\alpha, \beta)_{\langle X, \prec \rangle} \subseteq I(\xi)$ hold. The rest case is that α is a \prec_{ξ} -maximal element of $I(\xi)$ and ξ is not a \prec_S -maximal element of S. In this case, by the wellorderability of \prec_S , we can find $\zeta \in S$ with $\xi \prec_S \zeta$ and $(\xi, \zeta)_{\langle S, \prec_S \rangle} = \emptyset$. By (*), $I(\zeta)$ has a \prec_{ζ} -minimal element β . Then we have $[\alpha, \beta)_{\langle X, \prec \rangle} = \{\alpha\} \subseteq I(\xi)$ with $\alpha \prec \beta$.

The "if" part of (2) is obvious. To see the "only if" part, we show $\alpha \in \operatorname{int}_{\langle X, \tau' \rangle}(I(\xi))$ by assuming that at least one of the conditions (2-1), (2-2), and (2-3) fails. By Claim 1, it suffices to show:

Claim 2. $I(\xi)$ is a lower neighbourhood of α .

Proof. As in the proof of Claim 1, we can see that $I(\xi)$ is a lower neighbourhood of α in case (2-1) or (2-3) fails. So we may assume that (2-1) and (2-3) hold but (2-2) fails, i.e. α is a \prec_{ξ} -minimal element of $I(\xi)$ and $(\leftarrow, \xi)_{\langle S, \prec_S \rangle}$ has a \prec_S maximal element ζ . Then by (*), $I(\zeta)$ has a \prec_{ζ} -maximal element γ . And we have $(\gamma, \alpha]_{\langle X, \prec_{\zeta} \rangle} = \{\alpha\} \subseteq I(\xi)$ with $\gamma \prec \alpha$.

(3) Assume that \prec_{ξ} is a well-order on $I(\xi)$ and $\alpha \in I(\xi) \setminus \operatorname{int}_{\langle X, \tau' \rangle}(I(\xi))$. Then by (2), α is a \prec_{ξ} -minimal element of $I(\xi)$, $(\leftarrow, \xi)_{\langle S, \prec_S \rangle} \neq \emptyset$ and $(\leftarrow, \xi)_{\langle S, \prec_S \rangle}$ does not have a \prec_S -maximal element. Therefore the "only if" part is obvious. To see the "if" part, assume that $\{\alpha\} \cup \bigcup \{I(\eta) : \eta \in (\zeta, \xi)_{\langle S, \prec_S \rangle}\} \subseteq V$ for some $\zeta \in (\leftarrow, \xi)_{\langle S, \prec_S \rangle}$. Pick $\eta \in (\zeta, \xi)_{\langle S, \prec_S \rangle}$ and $\gamma \in I(\eta)$, then we have $(\gamma, \alpha]_{\langle X, \prec \rangle} \subseteq V$ with $\gamma \prec \alpha$, so V is a lower neighbourhood of α . Moreover since \prec_{ξ} is a well-order, we can take $\beta \in X$ with $\alpha \prec \beta$ such that $[\alpha, \beta)_{\langle X, \prec \rangle} = \{\alpha\}$ (use the assumption (*) when α is a \prec_{ξ} -maximal element of $I(\xi)$ and $(\xi, \rightarrow)_{\langle S, \prec_S \rangle} \neq \emptyset$). Therefore V is also an upper neighbourhood of α .

Lemma 3.3. Let τ and τ' be topologies on a set X. Then the following properties hold.

- (1) If $I \subseteq X$, $\tau \upharpoonright I = \tau' \upharpoonright I$ and $\alpha \in int_{\langle X, \tau \rangle}(I) \cap int_{\langle X, \tau' \rangle}(I)$, then for every subset V of X, V is a neighbourhood at α in $\langle X, \tau \rangle$ iff so is in $\langle X, \tau' \rangle$.
- (2) If there is a cover $\langle I(\xi) | \xi \in S \rangle$ of X such that for each $\xi \in S$,
 - $\tau \upharpoonright I(\xi) = \tau' \upharpoonright I(\xi),$
 - $\operatorname{int}_{\langle X,\tau\rangle}(I(\xi)) = \operatorname{int}_{\langle X,\tau'\rangle}(I(\xi)),$
 - for every α ∈ I(ξ) \ int_{⟨X,τ⟩}(I(ξ)) and for every subset V of X, V is a neighbourhood at α in ⟨X,τ⟩ iff so is in ⟨X,τ'⟩, then τ = τ'.

Proof. (1) Assume that V is a neighbourhood of α in $\langle X, \tau \rangle$. Let $I' = \operatorname{int}_{\langle X, \tau' \rangle}(I)$, then $\alpha \in I' \subseteq I$ and $V \cap I'$ is a neighbourhood of α in $\tau \upharpoonright I'$. Since $\tau \upharpoonright I' = (\tau \upharpoonright I) \upharpoonright$ $I' = (\tau' \upharpoonright I) \upharpoonright I' = \tau' \upharpoonright I'$ holds and I' is open in $\langle X, \tau' \rangle, V \cap I'$ is a neighbourhood of α in $\langle X, \tau' \rangle$. The proof of the reverse implication is similar.

(2) To see $\tau \subseteq \tau'$, let $\alpha \in V \in \tau$. Pick $\xi \in S$ with $\alpha \in I(\xi)$. By the first and the second assumptions and (1), we may assume $\alpha \in I(\xi) \setminus \operatorname{int}_{\langle X, \tau \rangle}(I(\xi))$. Then by the third condition, V is a neighbourhood of α in $\langle X, \tau' \rangle$. Similarly we have $\tau' \subseteq \tau$. \Box

Lemma 3.4. Let $\langle X, \tau \rangle$ be a space having a pairwise disjoint cover $\langle I(\xi) | \xi \in S \rangle$, where S is well-ordered by \prec_S , such that for each ξ , $I(\xi)$ is not empty and there is a well-order $<_{\xi}$ on $I(\xi)$ with $\tau \upharpoonright I(\xi) = \lambda(I(\xi), <_{\xi})$ satisfying

- (i) if $I(\xi)$ has a \langle_{ξ} -maximal element and is open in $\langle X, \tau \rangle$, then ξ is a \prec_{S} minimal element of S,
- (ii) if $I(\xi)$ has a \langle_{ξ} -maximal element and is not open in $\langle X, \tau \rangle$, then ξ is a \prec_{S} -maximal element of S,
- (iii) if $\alpha \in I(\xi) \setminus \operatorname{int}_{\langle X, \tau \rangle}(I(\xi))$, then

- ξ is not a \prec_S -minimal element of S,
- $(\leftarrow, \xi)_{\langle S, \prec_S \rangle}$ does not have a \prec_S -maximal element,
- α is a $<_{\xi}$ -minimal element of $I(\xi)$,
- $V \subseteq X$ is a neighbourhood of α in $\langle X, \tau \rangle$ if and only if $\{\alpha\} \cup \bigcup \{I(\eta) : \eta \in (\zeta, \xi)_{\langle S, \prec_S \rangle}\} \subseteq V$ for some $\zeta \in (\leftarrow, \xi)_{\langle S, \prec_S \rangle}$.

Then, $\langle X, \tau \rangle$ is orderable.

Proof. By \prec_S -induction on S, define a function $d: S \to 2 = \{0, 1\}$ as follows. Let $\xi \in S$ and assume that $d(\zeta) \in 2$ is defined for every $\zeta \in S$ with $\zeta \prec_S \xi$. Put

$$d(\xi) = \begin{cases} 0 & \text{if } (\leftarrow, \xi)_{\langle S, \prec_S \rangle} \text{ does not have a } \prec_S\text{-maximal element,} \\ & \text{and } I(\xi) \text{ is not open in } \langle X, \tau \rangle, \\ 1 & \text{if } (\leftarrow, \xi)_{\langle S, \prec_S \rangle} \text{ does not have a } \prec_S\text{-maximal element,} \\ & \text{and } I(\xi) \text{ is open in } \langle X, \tau \rangle, \\ 1 - d(\zeta) & \text{if } (\leftarrow, \xi)_{\langle S, \prec_S \rangle} \text{ has a } \prec_S\text{-maximal element } \zeta. \end{cases}$$

In particular, $d(\min S) = 1$ iff $I(\min S)$ is open in $\langle X, \tau \rangle$ where $\min S$ is a \prec_{S} -minimal element of S.

For each $\xi \in S$, we define another linear order \prec_{ξ} on $I(\xi)$ as follows. In case $d(\xi) = 0$, let \prec_{ξ} be the same order with $<_{\xi}$. In case $d(\xi) = 1$, let \prec_{ξ} be the reverse order of $<_{\xi}$. More precisely, for each pair $\alpha, \beta \in I(\xi)$, define

$$\alpha \prec_{\xi} \beta \text{ by } \begin{cases} \alpha <_{\xi} \beta & \text{if } d(\xi) = 0, \\ \alpha >_{\xi} \beta & \text{if } d(\xi) = 1, \end{cases}$$

Claim 1. $\langle I(\xi) | \xi \in S \rangle$ satisfies the property (*) in Lemma 3.2.

Proof. Let $\zeta, \xi \in S, \zeta \prec_S \xi$, and $(\zeta, \xi)_{\langle S, \prec_S \rangle} = \emptyset$. Then $d(\xi) = d(\zeta) - 1$.

First assume that $I(\zeta)$ has a \prec_{ζ} -maximal element. If $I(\zeta)$ does not have a $<_{\zeta}$ -maximal element, then \prec_{ζ} is different from $<_{\zeta}$, hence $d(\zeta) = 1$. If $I(\zeta)$ has a $<_{\zeta}$ -maximal element, then it follows from the assumption (ii) that $I(\zeta)$ is open in $\langle X, \tau \rangle$ since ζ is not a \prec_{S} -maximal element. By the assumption (i), ζ is a \prec_{S} -minimal element of S. So $d(\zeta) = 1$ holds by the definition of d. We have $d(\zeta) = 1$ in both cases. So $d(\xi) = 0$ holds, therefore the order \prec_{ξ} is the same as the well-order $<_{\xi}$, hence $I(\xi)$ has a \prec_{ξ} -minimal element.

Next assume that $I(\xi)$ has a \prec_{ξ} -minimal element. The assumption (iii) implies that $I(\xi)$ is open since $(\leftarrow, \xi)_{\langle S, \prec_S \rangle}$ has a \prec_S -maximal element ζ . By the assumption (i), we see that $I(\xi)$ does not have a $<_{\xi}$ -maximal element since ξ is not a \prec_S -minimal element. Hence \prec_{ξ} is different from the reverse order of $<_{\xi}$. So we have $d(\xi) = 0$ and $d(\zeta) = 1$. Therefore \prec_{ζ} is the reverse order of the well-order $<_{\zeta}$, hence $I(\zeta)$ has a \prec_{ζ} -maximal element.

Let $\langle X, \prec \rangle$ be the order sum of $\langle \langle I(\xi), \prec_{\xi} \rangle | \xi \in S \rangle$ with respect to the well order \prec_S and τ' its order topology $\lambda(X, \prec)$. By Lemma 3.2 (1), we see that $I(\xi)$ is a convex set of $\langle X, \prec \rangle$, and

$$\tau \upharpoonright I(\xi) = \lambda(I(\xi), <_{\xi}) = \lambda(I(\xi), \prec_{\xi}) = \tau' \upharpoonright I(\xi)$$

holds for every $\xi \in S$. Obviously, $\langle X, \tau' \rangle$ is orderable. The goal of the proof of the lemma is to see that $\tau = \tau'$. By Lemma 3.3 (2), it suffices to show the claim below.

Claim 2. For every $\xi \in S$, the following hold.

- $\operatorname{int}_{\langle X,\tau\rangle}(I(\xi)) = \operatorname{int}_{\langle X,\tau'\rangle}(I(\xi)),$
- for every $\alpha \in I(\xi) \setminus \operatorname{int}_{\langle X, \tau \rangle}(I(\xi))$ and for every subset V of X, V is a neighbourhood at α in $\langle X, \tau \rangle$ iff so is in $\langle X, \tau' \rangle$.

Proof. Assume that $\alpha \in I(\xi) \setminus \operatorname{int}_{\langle X, \tau \rangle}(I(\xi))$. Then by the assumption (iii), we have:

- ξ is not a \prec_S -minimal element of S,
- $(\leftarrow, \xi)_{\langle S, \prec_S \rangle}$ does not have a \prec_S -maximal element,
- α is a $<_{\xi}$ -minimal element of $I(\xi)$.

Since $I(\xi)$ is not open in $\langle X, \tau \rangle$, we have $d(\xi) = 0$ and so \prec_{ξ} coincides with the original order $<_{\xi}$. In particular, α is a \prec_{ξ} -minimal element of $I(\xi)$, and \prec_{ξ} is a well-order. By Claim 1 and Lemma 3.2, we have $\alpha \in I(\xi) \setminus \operatorname{int}_{\langle X, \tau' \rangle}(I(\xi))$. Moreover, the last condition of the assumption (iii) implies that for every subset V of X, V is a neighbourhood at α in $\langle X, \tau \rangle$ iff so is in $\langle X, \tau' \rangle$.

On the other hand, assume that $\alpha' \in I(\xi) \setminus \operatorname{int}_{\langle X, \tau' \rangle}(I(\xi))$. By Lemma 3.2 (2), we have:

- ξ is not a \prec_S -minimal element of S,
- $(\leftarrow, \xi)_{\langle S, \prec_S \rangle}$ does not have a \prec_S -maximal element,
- α' is a \prec_{ξ} -minimal element of $I(\xi)$.

If $I(\xi)$ does not have a $<_{\xi}$ -maximal element, then \prec_{ξ} is different from the reverse order of $<_{\xi}$, so $d(\xi) = 0$ thus $I(\xi)$ is not open in $\langle X, \tau \rangle$. If $I(\xi)$ has a $<_{\xi}$ -maximal element, then it follows from the assumption (i) that $I(\xi)$ is not open in $\langle X, \tau \rangle$, thus $d(\xi) = 0$. In any case, we have $d(\xi) = 0$ and $I(\xi)$ is not open in $\langle X, \tau \rangle$. Therefore $\alpha \in I(\xi) \setminus \operatorname{int}_{\langle X, \tau \rangle}(I(\xi))$ exists. By the assumption (iii), α is a $<_{\xi}$ -minimal element of $I(\xi)$. We have $\alpha' = \alpha \in I(\xi) \setminus \operatorname{int}_{\langle X, \tau \rangle}(I(\xi))$ since \prec_{ξ} is the same order with $<_{\xi}$.

$$\square$$

We prove Theorem 3.1.

Proof. Let < be the usual order on **Ord**, μ an ordinal, $X \subseteq \mu$ and τ denote the subspace topology $\lambda(\mu, <) \upharpoonright X$. Let G, S be subsets of $\mu + 1$ and $\langle \langle I(\xi), <_{\xi} \rangle \mid \xi \in S \rangle$ a sequence described in Lemma 2.4. And let $<_{\xi}$ be the restriction of the order < on $I(\xi)$. We define another well-order \prec_S on S satisfying (i), (ii) and (iii) of Lemma 3.4. If X has a <-maximal element and $I(\mu)$ is open in X, then for each $\xi, \zeta \in S \setminus \{\mu\}$, let $\mu \prec_S \xi$ and let $\zeta \prec_S \xi$ iff $\zeta < \xi$. Otherwise, let $\prec_S = < \upharpoonright S$. Obviously, \prec_S is a well-order on S. If $\xi \in S$ and $I(\xi)$ has a $<_{\xi}$ -maximal element, then by Lemma 2.4 (1) and (2), X has a <-maximal element and $\xi = \mu$ is a <-maximal element of S. Hence, \prec_S satisfies (i) and (ii) of Lemma 3.4. To see (iii), let $\xi \in S$ and $\alpha \in I(\xi) \setminus \operatorname{int}_{\langle X, \tau \rangle}(I(\xi))$. In case $\prec_S = < \upharpoonright S$, it is trivial that $(\leftarrow, \xi)_{\langle S, \prec_S \rangle} = S \cap \xi$. In case $\prec_S \neq < \upharpoonright S$, we have $\xi \neq \mu$ since $I(\mu)$ is open and $I(\xi)$ is not open in $\langle X, \tau \rangle$, and μ is a \prec_S -minimal element of S, so $(\leftarrow, \xi)_{\langle S, \prec_S \rangle} = \{\mu\} \cup (S \cap \xi)$ holds.

Claim 1. α is a $<_{\xi}$ -minimal element of $I(\xi)$.

Proof. By Lemma 2.4 (4), we have $\alpha = \sup(G \cap \xi)$. By the definition, $I(\xi) = X \cap [\sup(G \cap \xi), \xi)$ holds, so α is a $<_{\xi}$ -minimal element of $I(\xi)$. (We have to distinguish intervals with respect to the order $\langle \mathbf{Ord}, < \rangle$ and intervals with respect to the order $\langle S, \prec_S \rangle$. We omit the suffix only for the former. For instance, $[\sup(G \cap \xi), \xi)$ above is intended to mean an interval of $\langle \mathbf{Ord}, < \rangle$.)

Claim 2. ξ is not a \prec_S -minimal element of S, and $(\leftarrow, \xi)_{\langle S, \prec_S \rangle}$ does not have a \prec_S -maximal element.

Proof. To see the claim, it suffices to show that $S \cap \xi$ is non-empty and does not have a <-maximal element. If $G \cap \xi = \emptyset$, then $\sup(G \cap \xi) = \sup \emptyset = -1 \notin X$. If $G \cap \xi$ has a <-maximal element, then $\sup(G \cap \xi) = \max(G \cap \xi) \in G = \operatorname{Lim}(X) \setminus X$. But either case does not happen since $\sup(G \cap \xi) = \alpha \in I(\xi) \subseteq X$. Hence, $G \cap \xi$ is non-empty and does not have a <-maximal element. So we have $\alpha = \sup(G \cap \xi) \in$ $\operatorname{Lim}(G) = \operatorname{Lim}(S)$ by Lemma 2.4 (5). Therefore, $S \cap \alpha$ is non-empty and does not have a <-maximal element. Obviously, $(\sup(G \cap \xi), \xi)$ is disjoint from G, so $[\alpha, \xi)$ is disjoint from $S \cap \xi \subseteq G \setminus \operatorname{Lim}(G)$ since $\alpha = \sup(G \cap \xi) \in \operatorname{Lim}(G)$. We have $S \cap \xi = S \cap \alpha$. Hence, $S \cap \xi$ is non-empty and does not have a <-maximal element. \Box

Claim 3. $V \subseteq X$ is a neighbourhood of α in $\langle X, \tau \rangle$ if and only if $\{\alpha\} \cup \bigcup \{I(\eta) : \eta \in (\zeta, \xi)_{\langle S, \prec_S \rangle}\} \subseteq V$ for some $\zeta \in (\leftarrow, \xi)_{\langle S, \prec_S \rangle}$.

Proof. By $S \cap \xi = S \cap \alpha$, $(\leftarrow, \xi)_{\langle S, \prec_S \rangle}$ coincides either $S \cap \alpha$ or $\{\mu\} \cup (S \cap \alpha)$ with \prec_S -minimal element μ . Hence, $\{\alpha\} \cup \bigcup \{I(\eta) : \eta \in (\zeta, \xi)_{\langle S, \prec_S \rangle}\} \subseteq V$ for some $\zeta \in (\leftarrow, \xi)_{\langle S, \prec_S \rangle}$ iff $\{\alpha\} \cup \bigcup \{I(\eta) : \eta \in (\zeta, \xi)_{\langle S, \prec_S \rangle}\} \subseteq V$ for some $\zeta \in S \cap \alpha$. And $(\zeta, \xi)_{\langle S, \prec_S \rangle} = S \cap (\zeta, \xi) = S \cap (\zeta, \alpha)$ holds for every $\zeta \in S \cap \alpha$. Therefore, $\{\alpha\} \cup \bigcup \{I(\eta) : \eta \in (\zeta, \xi)_{\langle S, \prec_S \rangle}\} \subseteq V$ for some $\zeta \in (\leftarrow, \xi)_{\langle S, \prec_S \rangle}$ iff $\{\alpha\} \cup \bigcup \{I(\eta) : \eta \in S \cap (\zeta, \alpha)\} \subseteq V$ for some $\zeta \in S \cap \alpha$.

First assume that $V \subseteq X$ is a neighbourhood of α in $\langle X, \tau \rangle$. Then there is $\gamma < \alpha$ such that $X \cap (\gamma, \alpha] \subseteq V$. By $\alpha \in \text{Lim}(S)$, there is $\zeta \in S \cap \alpha \subseteq G$ such that $\gamma < \zeta$. If $\eta \in S \cap (\zeta, \alpha)$, then $\zeta \in G \cap \eta$ and so $\gamma < \zeta \leq \sup(G \cap \eta)$, thus $I(\eta) =$ $X \cap [\sup(G \cap \eta), \eta) \subseteq X \cap (\gamma, \alpha] \subseteq V$. Hence, $\{\alpha\} \cup \bigcup \{I(\eta) : \eta \in S \cap (\zeta, \alpha)\} \subseteq V$ for some $\zeta \in S \cap \alpha$.

Conversely, let $\{\alpha\} \cup \bigcup \{I(\eta) : \eta \in S \cap (\zeta, \alpha)\} \subseteq V$ for some $\zeta \in S \cap \alpha$. To see V being a neighbourhood of α in $\langle X, \tau \rangle$, we show that $X \cap (\zeta, \alpha] \subseteq V$. By the assumption, $\alpha \in V$ holds, so it suffices to show that $X \cap (\zeta, \alpha) \subseteq V$. Let $\beta \in X \cap (\zeta, \alpha)$. Since $\alpha \in \text{Lim}(G)$, there is $\eta \in G \cap (\beta, \alpha)$. Pick the least such η . Then we have $\eta \in (G \setminus \text{Lim}(G)) \cap (\beta, \alpha) \subseteq S \cap (\zeta, \alpha)$ and $\beta \in X \cap [\sup(G \cap \eta), \eta) =$ $I(\eta) \subseteq V$.

By Claim 1-Claim 3, \prec_S satisfies the condition (iii) in Lemma 3.4. Hence, $\langle X, \tau \rangle$ is orderable.

4. Well-orderability

In this section, we characterize the well-orderability of subspaces of ordinals. Throughout this section, < denotes the usual order on the class **Ord** of all ordinals.

Theorem 4.1. Let X be a subspace of an ordinal, and $G = \text{Lim}(X) \setminus X$. Then X is well-orderable iff either (i) or (ii) below holds:

- (i) $X \cap \text{Lim}(G) = \emptyset$ and $\text{cf } \xi = \omega$ for every $\xi \in G$.
- (ii) $|G| \le 1$.

We first characterize the well-orderability of spaces having a pairwise disjoint open cover by well-orderable subspaces. **Proposition 4.2.** Assume that X has a pairwise disjoint open cover $\langle I(\xi) | \xi \in S \rangle$ such that $I(\xi)$ is homeomorphic to a non-zero ordinal α_{ξ} for every $\xi \in S$. Then X is well-orderable if and only if either (I) or (II) below holds.

- (I) $|S| \leq \omega$ and cf $\alpha_{\xi} \leq \omega$ for every $\xi \in S$.
- (II) $|S| < \omega$ and $|\{\xi \in S : \operatorname{cf} \alpha_{\xi} \neq 1\}| \le 1$.

Before proving the proposition, we show some lemmas.

Lemma 4.3. Assume that X has a pairwise disjoint open cover $\langle I(\xi) | \xi \in S \rangle$ such that $I(\xi)$ is homeomorphic to a non-zero ordinal α_{ξ} for every $\xi \in S$.

- (1) If $|S| < \omega$, cf $\alpha_{\xi_0} = \kappa$ for some $\xi_0 \in S$, and cf $\alpha_{\xi} = 1$ for every $\xi \in S \setminus \{\xi_0\}$, then X is homeomorphic to an ordinal of cofinality κ .
- (2) If $|S| = \omega$ and cf $\alpha_{\xi} = 1$ for every $\xi \in S$, then X is homeomorphic to an ordinal of cofinality ω .

Proof. For (1), fix a well-order \prec_S on S such that ξ_0 is a \prec_S -maximal element of S. For (2), put $\kappa = \omega$ and fix a well-order \prec_S on S such that $\operatorname{otp}\langle S, \prec_S \rangle = \omega$. Pick a well-order \prec_{ξ} on $I(\xi)$ for each $\xi \in S$ such that:

- the order topology $\lambda(I(\xi), \prec_{\xi})$ coincides with the subspace topology of the original topology of X,
- $\operatorname{otp}\langle I(\xi), \prec_{\xi} \rangle = \alpha_{\xi}.$

Let $\langle X, \prec \rangle$ be the order sum of $\langle \langle I(\xi), \prec_{\xi} \rangle \mid \xi \in S \rangle$ with respect to \prec_S . Obviously in either cases, \prec is a well-order on X and cf $\operatorname{otp}(X, \prec) = \kappa$. The original topology on X coincides with $\langle X, \lambda(X, \prec) \rangle$, thus X is homeomorphic to an ordinal of cofinality κ .

Remark that for a non-zero ordinal β , cf $\beta = 1$ (cf $\beta = \omega$, cf $\beta > \omega$) iff β is compact (non-compact Lindelöf, non-compact countably compact, respectively).

Lemma 4.4. A topological space is homeomorphic to an ordinal of cofinality ω if and only if it can be represented as the free union of countably infinite many subspaces which are homeomorphic to successor ordinals, that is, it has a pairwise disjoint infinite countable open cover $\langle I(j) | j < \omega \rangle$ such that I(j) is homeomorphic to a successor ordinal for each $j < \omega$.

Proof. The 'if' part is immediately obtained from 4.3 (2). Conversely, let β be an ordinal with cf $\beta = \omega$, and fix a strictly increasing sequence $\langle \beta_j \mid j < \omega \rangle$ of ordinals in β that is cofinal in β . Let $I(j) = (\beta_{j-1}, \beta_j]$ for each $j < \omega$, where $\beta_{-1} = -1$. Then $\langle I(j) \mid j < \omega \rangle$ is as desired.

Lemma 4.5. Let β be an ordinal.

- (1) β is covered by cf β -many compact clopen subsets but not covered by < cf β -many compact subsets. In particular, β is locally compact.
- If cf β > ω, then there is not a disjoint pair of non-compact closed subsets of β.
- (3) Assume that β has a pairwise disjoint open cover (I(ξ) | ξ ∈ S) where each I(ξ) is non-empty. Then, |S| < ω holds in case cf β ≠ ω, and |S| ≤ ω holds in case cf β = ω.

Proof. (1) is obvious. (2) is obtained from the well-known fact that closed unbounded sets generates a filter on β .

(3) We may assume $\operatorname{cf} \beta > \omega$. If S were infinite, then decompose S into infinite subsets S_0 and S_1 . Then $\bigcup_{\xi \in S_0} I(\xi)$ and $\bigcup_{\xi \in S_1} I(\xi)$ are disjoint non-compact closed subsets, this contradicts (2).

Lemma 4.6. Assume that X has a pairwise disjoint open cover $\langle I(\xi) | \xi \in S \rangle$ such that $I(\xi)$ is homeomorphic to a non-zero ordinal α_{ξ} for every $\xi \in S$. Then the following hold.

- (1) X is homeomorphic to 0 if and only if $S = \emptyset$.
- (2) X is homeomorphic to a successor ordinal if and only if $0 < |S| < \omega$ and cf $\alpha_{\xi} = 1$ for every $\xi \in S$.
- (3) X is homeomorphic to an ordinal of cofinality ω if and only if

$$\max(\{\operatorname{cf} \alpha_{\xi} : \xi \in S\} \cup \{|S|\}) = \omega.$$

(4) X is homeomorphic to an ordinal of uncountable cofinality κ if and only if $|S| < \omega$, cf $\alpha_{\xi_0} = \kappa$ for some $\xi_0 \in S$, and cf $\alpha_{\xi} = 1$ for every $\xi \in S \setminus \{\xi_0\}$.

Proof. (1) is trivial. (2) follows from Lemma 4.3 (1) and Lemma 4.5 (3).

(3) Assume that $\max(\{\operatorname{cf} \alpha_{\xi} : \xi \in S\} \cup \{|S|\}) = \omega$. For each $\xi \in S$, $\operatorname{cf} \alpha_{\xi} \leq \omega$ holds and by Lemma 4.4, we see that $I(\xi)$ can be represented as the free union of at most countably many subspaces which are homeomorphic to successor ordinals. By the assumption, X is also represented as the free union of countably infinite many subspaces which are homeomorphic to successor ordinals. By using Lemma 4.4 again, we see that X is homeomorphic to an ordinal of cofinality ω .

Conversely, assume that X is homeomorphic to an ordinal of cofinality ω . By (1) and (2), either $|S| \geq \omega$ or cf $\alpha_{\xi} \geq \omega$ holds for some $\xi \in S$. By (3) of Lemma 4.5, we have $|S| \leq \omega$. Moreover since X is Lindelöf, we have cf $\alpha_{\xi} \leq \omega$ for every $\xi \in S$. Therefore we have $\max(\{\operatorname{cf} \alpha_{\xi} : \xi \in S\} \cup \{|S|\}) = \omega$.

(4) The "if" part follows from Lemma 4.3 (1). Assume that X is homeomorphic to an ordinal of uncountable cofinality κ . By Lemma 4.5 (3), we have $|S| < \omega$. Since X is not Lindelöf, there is $\xi_0 \in S$ such that cf $\alpha_{\xi_0} > \omega$. By Lemma 4.5 (2), ξ_0 is unique and cf $\alpha_{\xi} = 1$ for every $\xi \in S \setminus {\xi_0}$. By Lemma 4.3 (1), we have cf $\alpha_{\xi_0} = \kappa$.

Now we prove Proposition 4.2.

Proof. Assume that X is well-orderable. If X is homeomorphic to an ordinal of cofinality $\leq \omega$ (> ω), then by Lemma 4.6, (I) ((II), respectively) holds. Conversely, if (I) or (II) is true, then by Lemma 4.6 again, it is straightforward to see that X is well-orderable.

Before proving Theorem 4.1, we show a lemma.

Lemma 4.7. Let X be a subspace of an ordinal μ , and define G, S, and $\mathcal{I} = \langle I(\xi) | \xi \in S \rangle$ as in Lemma 2.4. Then the following conditions are equivalent.

- (a) X is locally compact.
- (b) $X \cap \text{Lim}(G) = \emptyset$.
- (c) $I(\xi)$ is open for every $\xi \in S$.
- (d) X is represented as the free union of well-orderable subspaces.

Proof. (a) \rightarrow (b): Assume that $X \cap \text{Lim}(G)$ has an element α . Let V be an arbitrary neighbourhood of α in X. Then there is $\gamma \in \alpha$ such that $X \cap (\gamma, \alpha] \subseteq V$. By $\alpha \in \text{Lim}(G)$, we can pick $\xi_0, \xi_1 \in G$ such that $\gamma < \xi_0 < \xi_1 < \alpha$. Moreover, we may

assume that $\xi_1 = \min(G \cap (\xi_0, \alpha))$. Then $\xi_1 \in G \setminus \text{Lim}(G) \subseteq S$. By Lemma 2.4 (2), $I(\xi_1)$ is a closed subspace of X which is not compact. V is not compact since $I(\xi_1) = X \cap [\sup(G \cap \xi_1), \xi_1) = X \cap [\xi_0, \xi_1) \subseteq X \cap (\gamma, \alpha] \subseteq V$.

(b) \rightarrow (c): Assume that $X \cap \text{Lim}(G) = \emptyset$. It follows from $G \cap X = \emptyset$ that $\sup(G \cap \xi) \notin X$ holds for every $\xi \in S$. Thus $I(\xi) = X \cap [\sup(G \cap \xi), \xi) = X \cap (\sup(G \cap \xi), \xi)]$ and it is open in X for every $\xi \in S$.

(c) \rightarrow (d): Use Lemma 2.4 (4).

(d) \rightarrow (a): Since an ordinal is locally compact, so is the free union of well-orderable subspaces.

Now we prove Theorem 4.1.

Proof. Let X be a subspace of an ordinal μ , and define G, S, and $\mathcal{I} = \langle I(\xi) | \xi \in S \rangle$ as in Lemma 2.4. Put $\alpha_{\xi} = \operatorname{otp} \langle I(\xi), <_{\xi} \rangle$ for each $\xi \in S$, where $<_{\xi}$ is the restriction of < on $I(\xi)$. By Lemma 2.4 (4), $I(\xi)$ is homeomorphic to α_{ξ} . By Lemma 2.4 (1) and (2), cf $\alpha_{\xi} = 1$ holds in case $\xi \in S \setminus G$, and cf $\alpha_{\xi} = \operatorname{cf} \xi \geq \omega$ holds in case $\xi \in G \setminus \operatorname{Lim}(G)$. Therefore we have $G \setminus \operatorname{Lim}(G) = \{\xi \in S : \operatorname{cf} \alpha_{\xi} \neq 1\}$.

Assume that X is well-orderable. Then X is locally compact, and by Lemma 4.7, we have $X \cap \text{Lim}(G) = \emptyset$. Moreover, either the condition (I) or (II) in Proposition 4.2 holds. First assume that (II) holds. It follows from $|G \setminus \text{Lim}(G)| = |\{\xi \in S : \text{cf } \alpha_{\xi} \neq 1\}| \leq 1$ and $\text{Lim}(G) = \text{Lim}(S) = \emptyset$ that $|G| \leq 1$, so the condition (ii) in the theorem is true. Next assume that (I) holds. Let $\xi \in G$. If $\xi \notin \text{Lim}(G)$, then it follows from $\xi \in G \setminus \text{Lim}(G) \subseteq S$ that $\text{cf } \xi = \text{cf } \alpha_{\xi} \leq \omega$. If $\xi \in \text{Lim}(G)$, then $G \cap \xi$ is a cofinal subset of ξ , and $G \setminus \{\sup G\} \ni \zeta \mapsto \min\{\eta \in G : \zeta < \eta\} \in G \setminus \text{Lim}(G)$ is a 1-1 function. So we have $\text{cf } \xi \leq |G \cap \xi| \leq |G| \leq \max(|G \setminus \text{Lim}(G)|, \omega) \leq \max(|S|, \omega) = \omega$. We obtain $\text{cf } \xi \leq \omega$ for every $\xi \in G$ in either cases. Therefore the condition (i) in the theorem holds.

Conversely, assume that the condition (i) in the theorem holds. Obviously, cf $\alpha_{\xi} \leq \omega$ holds for every $\xi \in S$. Since $X \cap \text{Lim}(G) = \emptyset$, we see that each $I(\xi)$ is open in X by Lemma 4.7. We show that $|G| \leq \omega$. For otherwise, there is a strictly increasing sequence $\langle \xi_j \mid j < \omega_1 \rangle$ of elements of G. Put $\xi = \sup\{\xi_j : j < \omega_1\}$. Then $\text{cf } \xi = \omega_1$ and $\xi \in \text{Lim}(G) \subseteq \text{Lim}(X)$. It follows from $X \cap \text{Lim}(G) = \emptyset$ that $\xi \in$ $\text{Lim}(X) \setminus X \subseteq G$. This contradicts the condition in (i). Thus $|S| \leq |G \cup \{\mu\}| \leq \omega$. Hence, the condition (I) in Proposition 4.2 holds, and so X is well-orderable.

Next assume that (ii) in the theorem holds. Then $X \cap \text{Lim}(G) \subseteq \text{Lim}(G) = \emptyset$. By Lemma 4.7, each $I(\xi)$ is open in X. Obviously, $|S| \leq |G \cup \{\mu\}| \leq 2 < \omega$ and $|\{\xi \in S : \text{cf } \alpha_{\xi} \neq 1\}| = |G \setminus \text{Lim}(G)| \leq |G| \leq 1$ hold. Hence, the condition (II) in Proposition 4.2 holds, and so X is well-orderable.

The corollary below is obtained from Lemma 2.3.

Corollary 4.8. If X is a closed subspace of an ordinal μ , then X is well-orderable.

By applying Theorem 4.1, we obtain the corollary below.

Corollary 4.9. Let $X \subseteq \omega_1$ and $G = \text{Lim}(X) \setminus X$. Then X is well-orderable iff either (i') or (ii') holds:

- (i') $X \cap \text{Lim}(G) = \emptyset$ and X is not cofinal in ω_1 .
- (ii') X is closed in ω_1 .

Proof. If the condition (i') above holds, then $\sup G \leq \sup X < \omega_1$. So the condition (i) in Theorem 4.1 holds, thus X is well-orderable. If (ii') holds, then by Corollary 4.8, X is well-orderable.

Conversely, assume that X is well-orderable. By Theorem 4.1, $X \cap \text{Lim}(G) = \emptyset$ holds. If the condition (i') above fails, then X is cofinal in ω_1 , so $\omega_1 \in G$. Hence, the condition (ii) in Theorem 4.1 holds. Therefore $G = \{\omega_1\}$ and so the condition (ii') holds.

Remark that if X is a subspace of ω_1 such that both X and $\omega_1 \setminus X$ are stationary, then X is cofinal but not closed in ω_1 , so X is not well-orderable by Corollary 4.9.

Corollary 4.10. If X is a subspace of $\omega \cdot \omega$, then X is well-orderable.

Proof. See [3, I, 7.19] for multiplication of ordinals and note $\omega \cdot \omega < \omega_1$. Let X be a subspace of $\omega \cdot \omega$. We verify the conditions (i') of Corollary 4.9.

It follows from $G \subseteq \text{Lim}(X) \subseteq \{\omega \cdot n : n < \omega\} \cup \{\omega \cdot \omega\}$ that $\text{Lim}(G) \subseteq \{\omega \cdot \omega\}$. By $\omega \cdot \omega \notin X$, we have $X \cap \text{Lim}(G) = \emptyset$.

On the other hand, using Corollary 4.9, we see that $X = [0, \omega \cdot \omega] \setminus \{\omega \cdot n : n \in \omega\}$ is a subspace of $\omega \cdot \omega + 1$ which is not well-orderable.

References

- [1] R. Engelking, General Topology (Revised and completed edition), Heldermann Verlag, 1989.
- [2] D. J. Lutzer, On generalized ordered spaces, Dissertationes Math. Rozprawy Mat. 89, 1971.
- [3] K. Kunen, Set theory, North-Holland, Amsterdam, 1980.
- S. Purisch, The orderability and suborderability of metrizable spaces, Trans. Amer. Math. Soc. 226 (1977), 59–76.

GRADUATE SCHOOL OF MATHEMATICS, UNIVERSITY OF TSUKUBA, IBARAKI 305-8571, JAPAN

DEPARTMENT OF MATHEMATICS, FACULTY OF EDUCATION, OITA UNIVERSITY, DANNOHARU, OITA, 870-1192, JAPAN

E-mail addresses:

yhira@jb3.so-net.ne.jp nkemoto@cc.oita-u.ac.jp

12