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Abstract. We will show that all subspaces of well-ordered spaces are order-
able, and we will characterize the well-orderability of subspaces of well-ordered
spaces.

1. Introduction

Let ⟨X,<⟩ be a linear ordered set, that is, a linear order < is defined on X. For
a, b ∈ X, set

• (a,→)⟨X,<⟩ = {x ∈ X : a < x},
• (←, b)⟨X,<⟩ = {x ∈ X : x < b},
• (a, b)⟨X,<⟩ = {x ∈ X : a < x < b}.

Similarly one can define [a,→)⟨X,<⟩, (←, a]⟨X,<⟩, [a, b]⟨X,<⟩, (a, b]⟨X,<⟩, ...etc.. If
contexts are clear, we often omit the suffix “⟨X,<⟩” of the intervals, for instance
(a, b)⟨X,<⟩ is written simply as (a, b). λ(X,<) denotes the order topology on X
generated by the collection {(a,→)⟨X,<⟩ : a ∈ X} ∪ {(←, a)⟨X,<⟩ : a ∈ X} as a
subbase. Then the triple ⟨X,<, λ(X,<)⟩ is called an ordered space, and in this
case, we simply say “X is an ordered space”. Note that if ≺ is the reverse order
of <, then λ(X,<) and λ(X,≺) are the same topology. It is well-known that
a non-empty ordered space X is compact iff every subset of X has a supremum
(equivalently, an infimum), see [1, 3.12.3].

A linear order < on a set X is said to be a well-order if every non-empty subset
of X has a <-minimal element. It is well known that every well-ordered set ⟨X,<⟩
is order isomorphic to a unique ordinal with the usual order <, that is, the order
∈, see [3, I, Theorem 7.6]. We call such a unique ordinal as the order type of ⟨X,<⟩
and it is denoted by otp⟨X,<⟩.

A topological space ⟨X, τ⟩ is said to be orderable (well-orderable) if there is a
linear order (well-order) < on X with λ(X,<) = τ . Therefore every well-orderable
space is identified with an ordinal having the order topology. A topological space
⟨X, τ⟩ is said to be sub-orderable if there is a linearly ordered set ⟨Y,<⟩ such that
X ⊆ Y and λ(Y,<) ¹ X = τ , here λ(Y,<) ¹ X means the subspace topology
{U ∩X : U ∈ λ(Y,<)} on X of the order topology on Y . Observe that if a linearly
ordered set ⟨Y,<⟩ is given and X ⊆ Y , then λ(X,<¹ X) ⊆ λ(Y,<) ¹ X always
holds, where λ(X,<¹ X) denotes the order topology on X induced by the restricted
order <¹ X on X of <. We usually write “<¹ X” simply by “<” if it is clear in the
contexts on where the order < is restricted.
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By the definition, subspaces of ordinals are sub-orderable. On the other hand,
the Sorgenfley line and the Michael line are known to be sub-orderable but not
orderable, see [2]. Even the subspace (0, 1) ∪ {2} of the real line is not orderable,
see [4]. In this line, the second author has conjectured that every stationary set X
of ω1 such that ω1 \ X is also stationary is not orderable. In this paper, we will
show that this conjecture is false. Also we will characterize the well-orderability of
subspaces of ordinals.

For set theoretical and topological notions, the reader should refer [3] and [1],
respectively. Ord denotes the class of all ordinals. While Ord is a proper class
(= a class which is not a set), the order ∈ is considered as a linear order on
Ord, usually this order ∈ is written as <. Note that for every subset Z of Ord,
the supremum supZ exists. For notational conveniences, −1 is considered as the
immediate predecessor of the minimal ordinal 0 = ∅ and we consider as sup ∅ = −1.
Throughout the paper, each ordinal µ is identified with the set {α ∈ Ord : α < µ}
and assumed to have the order topology induced by the usual order <, in other
words, for every α ∈ µ, the collection {(β, α] : −1 ≤ β < α} is a neighborhood
base at α. The cofinality of an ordinal α is denoted by cf α. ω and ω1 denote the
least infinite ordinal and the least uncountable ordinal respectively. For a set Z of
ordinals, Lim(Z) denotes the set of all cluster points of Z in Ord, i.e.

Lim(Z) = {α ∈ Ord \{0} : Z ∩ (γ, α) ̸= ∅ for every γ ∈ α}.
In this paper, we use notations sup Z and Lim(Z) only for a set Z ⊆ Ord with the
usual order < on Ord.

2. Decomposition

In this section, we show some basic facts. And for an arbitrary subspace X of
an ordinal, we give a decomposition I into well-orderable closed convex subsets of
X. It is routine to check that the lemma below holds.

Lemma 2.1. Let < be a linear order on a set X, and Z ⊆ X. Assume that for
every c ∈ X \Z with Z ∩ (←, c) ̸= ∅ and Z ∩ (c,→) ̸= ∅, Z ∩ (←, c) has a maximal
element if and only if Z∩(c,→) has a minimal element. Then the subspace topology
λ(X,<) ¹ Z coincides with the order topology λ(Z,<).

Let < be a linear order on a set X. We call a subset Z of X convex in ⟨X,<⟩
iff (a, b) ⊆ Z for every a, b ∈ Z with a < b. If Z is convex in ⟨X,<⟩ and c is a point
in X with Z ∩ (←, c) ̸= ∅ and Z ∩ (c,→) ̸= ∅, then we have c ∈ Z. Therefore the
following well-known lemma is easily seen from Lemma 2.1.

Lemma 2.2. Let < be a linear order on a set X, and Z a convex set of ⟨X,<⟩.
Then λ(X,<) ¹ Z coincides with λ(Z,<).

Lemma 2.3. Let < be the usual order on an ordinal µ, and Z ⊆ µ. Assume that
Lim(Z) \ Z ⊆ {supZ}. Then λ(µ,<) ¹ Z coincides with λ(Z,<).

Proof. Assume c ∈ µ \ Z, Z ∩ (←, c) ̸= ∅, and Z ∩ (c,→) ̸= ∅. Since Z ∩ (c,→)
has a minimal element, by Lemma 2.1, it suffices to show that Z ∩ (←, c) has a
maximal element. Assume that Z ∩ (←, c) does not have a maximal element. Put
α = sup(Z∩(←, c)), then we have α ∈ Lim(Z), α /∈ Z∩(←, c) and α ≤ c. It follows
from α /∈ Z∩(←, c) and α ≤ c /∈ Z that α /∈ Z. Hence, sup Z > c ≥ α ∈ Lim(Z)\Z,
a contradiction. ¤
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Lemma 2.4. Let < be the usual order on Ord, µ an ordinal and X ⊆ µ, moreover
τ denote the subspace topology λ(µ,<) ¹ X. Define

G = Lim(X) \ X,

S =
{

(G \ Lim(G)) ∪ {µ} if X has a <-maximal element max X,
G \ Lim(G) otherwise,

I = ⟨I(ξ) | ξ ∈ S⟩,

where for each ξ ∈ S, I(ξ) = X ∩ [sup(G ∩ ξ), ξ) and <ξ denotes the restriction of
< on I(ξ). Then the following hold:

(1) If ξ ∈ S \ G, then ξ = µ, X has a <-maximal element, G ∩ µ = G,
I(µ) = X ∩ [supG, maxX], µ is a <-maximal element of S and maxX is
also the <µ-maximal element of I(µ). In particular, cf otp⟨I(µ), <µ⟩ = 1.

(2) If ξ ∈ G \ Lim(G), then I(ξ) is a non-empty subset of X with no <ξ-
maximal element, also I(ξ) = X ∩ [sup(G∩ ξ), ξ] and ξ = sup I(ξ) hold. In
particular, cf otp⟨I(ξ), <ξ⟩ = cf ξ ≥ ω holds.

(3) I is a pairwise disjoint closed cover of the space ⟨X, τ⟩ consisting of non-
empty convex subsets of ⟨X,<⟩.

(4) For each ξ ∈ S, <ξ is a well-order on I(ξ), I(ξ)\ int⟨X,τ⟩(I(ξ)) ⊆ {sup(G∩
ξ)} holds, moreover the subspace topology τ ¹ I(ξ) (= λ(µ,<) ¹ I(ξ)) coin-
cides with λ(I(ξ), <ξ).

(5) Lim(S) = Lim(G) holds.

Proof. Observe that G and S are subsets of µ + 1 = [0, µ]. (1) is trivial.

(2) Let ξ ∈ G \ Lim(G). It follows from ξ ∈ G ⊆ Lim(X) and ξ /∈ Lim(G) that
sup(X ∩ ξ) = ξ and sup(G ∩ ξ) < ξ respectively. Since ξ /∈ X, all properties in (2)
are easily verified.

(3) By (1) and (2), each member of I is non-empty convex in ⟨X,<⟩ and closed
in ⟨X, τ⟩.

To see that I is pairwise disjoint, let ζ, ξ ∈ S with ζ < ξ. Then ζ ∈ G \ Lim(G),
and we have ζ ≤ sup(G∩ξ). If α ∈ I(ζ) and β ∈ I(ξ), then α < ζ ≤ sup(G∩ξ) ≤ β
holds. Therefore we see I(ζ) ∩ I(ξ) = ∅.

To see that I covers X, let α ∈ X. First assume that there is ξ ∈ G with α < ξ.
Pick the such least ξ, then sup(G ∩ ξ) ≤ α < ξ. Thus we have ξ ∈ G \ Lim(G) ⊆ S
and α ∈ I(ξ). Next assume that there is no ξ ∈ G with α < ξ. In this case, X has
a <-maximal element, for otherwise, α < supX ∈ G, a contradiction. Therefore
we have supG ≤ α ≤ maxX, so we see α ∈ I(µ) with µ ∈ S.

(4) Let ξ ∈ S. Obviously, <ξ is a well-order. It follows from X∩(sup(G∩ξ), ξ) ⊆
I(ξ) that I(ξ) \ int⟨X,τ⟩(I(ξ)) ⊆ {sup(G ∩ ξ)}.

We show the remaining property. By Lemma 2.3, it suffices to show Lim(I(ξ)) \
I(ξ) ⊆ {sup I(ξ)}. Let α ∈ Lim(I(ξ))∩ ξ. By the definitions of I(ξ) and Lim(I(ξ)),
we have α ∈ (sup(G∩ξ), ξ) therefore α /∈ G holds. It follows from α ∈ Lim(X)\G ⊆
X that α ∈ X ∩ [sup(G ∩ ξ), ξ) = I(ξ). This shows Lim(I(ξ)) \ I(ξ) ⊆ {ξ}.

If ξ ∈ G \ Lim(G), then by (2), we have Lim(I(ξ)) \ I(ξ) ⊆ {ξ} = {sup I(ξ)}. If
ξ ∈ S \ G, then by (1), X has a <-maximal element and ξ = µ > maxX, so we
have ξ /∈ Lim(X) ⊇ Lim(I(ξ)). Therefore Lim(I(ξ)) \ I(ξ) = ∅ ⊆ {sup I(ξ)}.

(5) It follows from S ⊆ G ∪ {µ} that Lim(S) ⊆ Lim(G ∪ {µ}) = Lim(G). To
see Lim(G) ⊆ Lim(S), assume α ∈ Lim(G) \ Lim(S). Then sup(S ∩ α) < α holds.
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Now pick the <-minimal element β of G with sup(S ∩ α) < β < α. Then we have
β ∈ G \ Lim(G) ⊆ S, so β ≤ sup(S ∩ α), a contradiction. ¤

3. Orderability

This section is devoted to prove:

Theorem 3.1. Subspaces of ordinals are orderable.

Before proving the theorem, we show some lemmas. Let ⟨⟨I(ξ),≺ξ⟩ | ξ ∈ S⟩ be
a pairwise disjoint collection of non-empty linearly ordered sets, and ≺S a linear
order on the index set S. Let X =

∪
ξ∈S I(ξ) and for each α ∈ X, let ξ(α) denotes

the unique ξ with α ∈ I(ξ). For each α, β ∈ X define

α ≺ β by

{
ξ(α) ≺S ξ(β) if ξ(α) ̸= ξ(β),
α ≺ξ(α) β if ξ(α) = ξ(β).

Then ≺ is a linear order on X. This linearly ordered set ⟨X,≺⟩ is said to be the
order sum of ⟨⟨I(ξ),≺ξ⟩ | ξ ∈ S⟩ with respect to ≺S . Note that for each ξ ∈ S,
I(ξ) is a convex set in ⟨X,≺⟩ and the whole order ≺ extends ≺ξ.

Lemma 3.2. Let ⟨⟨I(ξ),≺ξ⟩ | ξ ∈ S⟩ be a pairwise disjoint collection of non-empty
linearly ordered sets and ≺S a well-order on S such that

(*) I(ζ) has a ≺ζ-maximal element iff I(ξ) has a ≺ξ-minimal element for every
pair ζ, ξ ∈ S with ζ ≺S ξ and (ζ, ξ)⟨S,≺S⟩ = ∅.
Moreover, let ⟨X,≺⟩ be the order sum of ⟨⟨I(ξ),≺ξ⟩ | ξ ∈ S⟩ with respect to ≺S

and τ ′ the order topology λ(X,≺). Then for each ξ ∈ S, the following hold.
(1) The subspace topology τ ′ ¹ I(ξ) coincides with the order topology λ(I(ξ),≺ξ

).
(2) For each α ∈ I(ξ), α /∈ int⟨X,τ ′⟩(I(ξ)) holds if and only if the following

three conditions hold:
(2-1) ξ is not a ≺S-minimal element,
(2-2) (←, ξ)⟨S,≺S⟩ does not have a ≺S-maximal element,
(2-3) α is a ≺ξ-minimal element of I(ξ).

(3) Assume that ≺ξ is a well-order on I(ξ) and α ∈ I(ξ)\ int⟨X,τ ′⟩(I(ξ)). Then
V ⊆ X is a neighbourhood of α in ⟨X, τ ′⟩ if and only if {α} ∪

∪
{I(η) : η ∈

(ζ, ξ)⟨S,≺S⟩} ⊆ V for some ζ ∈ (←, ξ)⟨S,≺S⟩.

Proof. Let ξ ∈ S. (1) follows from Lemma 2.2.
(2) Let us call V ⊆ X an upper neighbourhood of α ∈ X if [α,→)⟨X,≺⟩ ⊆ V

or [α, β)⟨X,≺⟩ ⊆ V for some β ∈ X with α ≺ β. And let us call V a lower
neighbourhood of α if (←, α]⟨X,≺⟩ ⊆ V or (γ, α]⟨X,≺⟩ ⊆ V for some γ ∈ X with
γ ≺ α. Obviously, α ∈ int⟨X,τ ′⟩(V ) iff V is a neighbourhood of α in ⟨X, τ ′⟩ iff V is
both an upper neighbourhood and a lower neighbourhood of α.

Let α ∈ I(ξ). First we prove:

Claim 1. I(ξ) is an upper neighbourhood of α.

Proof. In the case that ξ is a ≺S-maximal element of S, [α,→)⟨X,≺⟩ ⊆ I(ξ) holds.
In the case that α is not a ≺ξ-maximal element of I(ξ), pick β ∈ I(ξ) with α ≺ξ β,
then α ≺ β and [α, β)⟨X,≺⟩ ⊆ I(ξ) hold. The rest case is that α is a ≺ξ-maximal
element of I(ξ) and ξ is not a ≺S-maximal element of S. In this case, by the well-
orderability of ≺S , we can find ζ ∈ S with ξ ≺S ζ and (ξ, ζ)⟨S,≺S⟩ = ∅. By (*),
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I(ζ) has a ≺ζ-minimal element β. Then we have [α, β)⟨X,≺⟩ = {α} ⊆ I(ξ) with
α ≺ β. ¤
The “if” part of (2) is obvious. To see the “only if” part, we show α ∈ int⟨X,τ ′⟩(I(ξ))
by assuming that at least one of the conditions (2-1), (2-2), and (2-3) fails. By Claim
1, it suffices to show:

Claim 2. I(ξ) is a lower neighbourhood of α.

Proof. As in the proof of Claim 1, we can see that I(ξ) is a lower neighbourhood
of α in case (2-1) or (2-3) fails. So we may assume that (2-1) and (2-3) hold
but (2-2) fails, i.e. α is a ≺ξ-minimal element of I(ξ) and (←, ξ)⟨S,≺S⟩ has a ≺S-
maximal element ζ. Then by (*), I(ζ) has a ≺ζ-maximal element γ. And we have
(γ, α]⟨X,≺⟩ = {α} ⊆ I(ξ) with γ ≺ α. ¤

(3) Assume that ≺ξ is a well-order on I(ξ) and α ∈ I(ξ)\int⟨X,τ ′⟩(I(ξ)). Then by
(2), α is a ≺ξ-minimal element of I(ξ), (←, ξ)⟨S,≺S⟩ ̸= ∅ and (←, ξ)⟨S,≺S⟩ does not
have a ≺S-maximal element. Therefore the “only if” part is obvious. To see the “if”
part, assume that {α} ∪

∪
{I(η) : η ∈ (ζ, ξ)⟨S,≺S⟩} ⊆ V for some ζ ∈ (←, ξ)⟨S,≺S⟩.

Pick η ∈ (ζ, ξ)⟨S,≺S⟩ and γ ∈ I(η), then we have (γ, α]⟨X,≺⟩ ⊆ V with γ ≺ α, so
V is a lower neighbourhood of α. Moreover since ≺ξ is a well-order, we can take
β ∈ X with α ≺ β such that [α, β)⟨X,≺⟩ = {α} (use the assumption (*) when α is a
≺ξ-maximal element of I(ξ) and (ξ,→)⟨S,≺S⟩ ̸= ∅ ). Therefore V is also an upper
neighbourhood of α. ¤

Lemma 3.3. Let τ and τ ′ be topologies on a set X. Then the following properties
hold.

(1) If I ⊆ X, τ ¹ I = τ ′ ¹ I and α ∈ int⟨X,τ⟩(I) ∩ int⟨X,τ ′⟩(I), then for every
subset V of X, V is a neighbourhood at α in ⟨X, τ⟩ iff so is in ⟨X, τ ′⟩.

(2) If there is a cover ⟨I(ξ) | ξ ∈ S⟩ of X such that for each ξ ∈ S,
• τ ¹ I(ξ) = τ ′ ¹ I(ξ),
• int⟨X,τ⟩(I(ξ)) = int⟨X,τ ′⟩(I(ξ)),
• for every α ∈ I(ξ) \ int⟨X,τ⟩(I(ξ)) and for every subset V of X, V is a

neighbourhood at α in ⟨X, τ⟩ iff so is in ⟨X, τ ′⟩,
then τ = τ ′.

Proof. (1) Assume that V is a neighbourhood of α in ⟨X, τ⟩. Let I ′ = int⟨X,τ ′⟩(I),
then α ∈ I ′ ⊆ I and V ∩I ′ is a neighbourhood of α in τ ¹ I ′. Since τ ¹ I ′ = (τ ¹ I) ¹
I ′ = (τ ′ ¹ I) ¹ I ′ = τ ′ ¹ I ′ holds and I ′ is open in ⟨X, τ ′⟩, V ∩ I ′ is a neighbourhood
of α in ⟨X, τ ′⟩. The proof of the reverse implication is similar.

(2) To see τ ⊆ τ ′, let α ∈ V ∈ τ . Pick ξ ∈ S with α ∈ I(ξ). By the first and the
second assumptions and (1), we may assume α ∈ I(ξ) \ int⟨X,τ⟩(I(ξ)). Then by the
third condition, V is a neighbourhood of α in ⟨X, τ ′⟩. Similarly we have τ ′ ⊆ τ . ¤

Lemma 3.4. Let ⟨X, τ⟩ be a space having a pairwise disjoint cover ⟨I(ξ) | ξ ∈ S⟩,
where S is well-ordered by ≺S, such that for each ξ, I(ξ) is not empty and there is
a well-order <ξ on I(ξ) with τ ¹ I(ξ) = λ(I(ξ), <ξ) satisfying

(i) if I(ξ) has a <ξ-maximal element and is open in ⟨X, τ⟩, then ξ is a ≺S-
minimal element of S,

(ii) if I(ξ) has a <ξ-maximal element and is not open in ⟨X, τ⟩, then ξ is a
≺S-maximal element of S,

(iii) if α ∈ I(ξ) \ int⟨X,τ⟩(I(ξ)), then
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• ξ is not a ≺S-minimal element of S,
• (←, ξ)⟨S,≺S⟩ does not have a ≺S-maximal element,
• α is a <ξ-minimal element of I(ξ),
• V ⊆ X is a neighbourhood of α in ⟨X, τ⟩ if and only if {α} ∪

∪
{I(η) :

η ∈ (ζ, ξ)⟨S,≺S⟩} ⊆ V for some ζ ∈ (←, ξ)⟨S,≺S⟩.
Then, ⟨X, τ⟩ is orderable.

Proof. By ≺S-induction on S, define a function d : S → 2 = {0, 1} as follows. Let
ξ ∈ S and assume that d(ζ) ∈ 2 is defined for every ζ ∈ S with ζ ≺S ξ. Put

d(ξ) =



0 if (←, ξ)⟨S,≺S⟩ does not have a ≺S-maximal element,
and I(ξ) is not open in ⟨X, τ⟩,

1 if (←, ξ)⟨S,≺S⟩ does not have a ≺S-maximal element,
and I(ξ) is open in ⟨X, τ⟩,

1 − d(ζ) if (←, ξ)⟨S,≺S⟩ has a ≺S-maximal element ζ.

In particular, d(minS) = 1 iff I(minS) is open in ⟨X, τ⟩ where min S is a ≺S-
minimal element of S.

For each ξ ∈ S, we define another linear order ≺ξ on I(ξ) as follows. In case
d(ξ) = 0, let ≺ξ be the same order with <ξ. In case d(ξ) = 1, let ≺ξ be the reverse
order of <ξ. More precisely, for each pair α, β ∈ I(ξ), define

α ≺ξ β by

{
α <ξ β if d(ξ) = 0,

α >ξ β if d(ξ) = 1,

Claim 1. ⟨I(ξ) | ξ ∈ S⟩ satisfies the property (*) in Lemma 3.2.

Proof. Let ζ, ξ ∈ S, ζ ≺S ξ, and (ζ, ξ)⟨S,≺S⟩ = ∅. Then d(ξ) = d(ζ) − 1.
First assume that I(ζ) has a ≺ζ-maximal element. If I(ζ) does not have a <ζ-

maximal element, then ≺ζ is different from <ζ , hence d(ζ) = 1. If I(ζ) has a
<ζ-maximal element, then it follows from the assumption (ii) that I(ζ) is open
in ⟨X, τ⟩ since ζ is not a ≺S-maximal element. By the assumption (i), ζ is a ≺S-
minimal element of S. So d(ζ) = 1 holds by the definition of d. We have d(ζ) = 1 in
both cases. So d(ξ) = 0 holds, therefore the order ≺ξ is the same as the well-order
<ξ, hence I(ξ) has a ≺ξ-minimal element.

Next assume that I(ξ) has a ≺ξ-minimal element. The assumption (iii) implies
that I(ξ) is open since (←, ξ)⟨S,≺S⟩ has a ≺S-maximal element ζ. By the assumption
(i), we see that I(ξ) does not have a <ξ-maximal element since ξ is not a ≺S-minimal
element. Hence ≺ξ is different from the reverse order of <ξ. So we have d(ξ) = 0
and d(ζ) = 1. Therefore ≺ζ is the reverse order of the well-order <ζ , hence I(ζ)
has a ≺ζ-maximal element. ¤

Let ⟨X,≺⟩ be the order sum of ⟨⟨I(ξ),≺ξ⟩ | ξ ∈ S⟩ with respect to the well order
≺S and τ ′ its order topology λ(X,≺). By Lemma 3.2 (1), we see that I(ξ) is a
convex set of ⟨X,≺⟩, and

τ ¹ I(ξ) = λ(I(ξ), <ξ) = λ(I(ξ),≺ξ) = τ ′ ¹ I(ξ)

holds for every ξ ∈ S. Obviously, ⟨X, τ ′⟩ is orderable. The goal of the proof of the
lemma is to see that τ = τ ′. By Lemma 3.3 (2), it suffices to show the claim below.

Claim 2. For every ξ ∈ S, the following hold.
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• int⟨X,τ⟩(I(ξ)) = int⟨X,τ ′⟩(I(ξ)),
• for every α ∈ I(ξ) \ int⟨X,τ⟩(I(ξ)) and for every subset V of X, V is a

neighbourhood at α in ⟨X, τ⟩ iff so is in ⟨X, τ ′⟩.

Proof. Assume that α ∈ I(ξ) \ int⟨X,τ⟩(I(ξ)). Then by the assumption (iii), we
have:

• ξ is not a ≺S-minimal element of S,
• (←, ξ)⟨S,≺S⟩ does not have a ≺S-maximal element,
• α is a <ξ-minimal element of I(ξ).

Since I(ξ) is not open in ⟨X, τ⟩, we have d(ξ) = 0 and so ≺ξ coincides with the
original order <ξ. In particular, α is a ≺ξ-minimal element of I(ξ), and ≺ξ is a well-
order. By Claim 1 and Lemma 3.2, we have α ∈ I(ξ) \ int⟨X,τ ′⟩(I(ξ)). Moreover,
the last condition of the assumption (iii) implies that for every subset V of X, V
is a neighbourhood at α in ⟨X, τ⟩ iff so is in ⟨X, τ ′⟩.

On the other hand, assume that α′ ∈ I(ξ) \ int⟨X,τ ′⟩(I(ξ)). By Lemma 3.2 (2),
we have:

• ξ is not a ≺S-minimal element of S,
• (←, ξ)⟨S,≺S⟩ does not have a ≺S-maximal element,
• α′ is a ≺ξ-minimal element of I(ξ).

If I(ξ) does not have a <ξ-maximal element, then ≺ξ is different from the reverse
order of <ξ, so d(ξ) = 0 thus I(ξ) is not open in ⟨X, τ⟩. If I(ξ) has a <ξ-maximal
element, then it follows from the assumption (i) that I(ξ) is not open in ⟨X, τ⟩, thus
d(ξ) = 0. In any case, we have d(ξ) = 0 and I(ξ) is not open in ⟨X, τ⟩. Therefore
α ∈ I(ξ) \ int⟨X,τ⟩(I(ξ)) exists. By the assumption (iii), α is a <ξ-minimal element
of I(ξ). We have α′ = α ∈ I(ξ) \ int⟨X,τ⟩(I(ξ)) since ≺ξ is the same order with
<ξ. ¤

¤
We prove Theorem 3.1.

Proof. Let < be the usual order on Ord, µ an ordinal, X ⊆ µ and τ denote the
subspace topology λ(µ,<) ¹ X. Let G,S be subsets of µ+1 and ⟨⟨I(ξ), <ξ⟩ | ξ ∈ S⟩
a sequence described in Lemma 2.4. And let <ξ be the restriction of the order < on
I(ξ). We define another well-order ≺S on S satisfying (i), (ii) and (iii) of Lemma 3.4.
If X has a <-maximal element and I(µ) is open in X, then for each ξ, ζ ∈ S \ {µ},
let µ ≺S ξ and let ζ ≺S ξ iff ζ < ξ. Otherwise, let ≺S=<¹ S. Obviously, ≺S is
a well-order on S. If ξ ∈ S and I(ξ) has a <ξ-maximal element, then by Lemma
2.4 (1) and (2), X has a <-maximal element and ξ = µ is a <-maximal element
of S. Hence, ≺S satisfies (i) and (ii) of Lemma 3.4. To see (iii), let ξ ∈ S and
α ∈ I(ξ) \ int⟨X,τ⟩(I(ξ)). In case ≺S=<¹ S, it is trivial that (←, ξ)⟨S,≺S⟩ = S ∩ ξ.
In case ≺S ̸=<¹ S, we have ξ ̸= µ since I(µ) is open and I(ξ) is not open in ⟨X, τ⟩,
and µ is a ≺S-minimal element of S, so (←, ξ)⟨S,≺S⟩ = {µ} ∪ (S ∩ ξ) holds.

Claim 1. α is a <ξ-minimal element of I(ξ).

Proof. By Lemma 2.4 (4), we have α = sup(G ∩ ξ). By the definition, I(ξ) = X ∩
[sup(G∩ ξ), ξ) holds, so α is a <ξ-minimal element of I(ξ). (We have to distinguish
intervals with respect to the order ⟨Ord, <⟩ and intervals with respect to the order
⟨S,≺S⟩. We omit the suffix only for the former. For instance, [sup(G∩ ξ), ξ) above
is intended to mean an interval of ⟨Ord, <⟩.) ¤
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Claim 2. ξ is not a ≺S-minimal element of S, and (←, ξ)⟨S,≺S⟩ does not have a
≺S-maximal element.

Proof. To see the claim, it suffices to show that S ∩ ξ is non-empty and does not
have a <-maximal element. If G ∩ ξ = ∅, then sup(G ∩ ξ) = sup ∅ = −1 /∈ X. If
G∩ ξ has a <-maximal element, then sup(G∩ ξ) = max(G∩ ξ) ∈ G = Lim(X) \X.
But either case does not happen since sup(G ∩ ξ) = α ∈ I(ξ) ⊆ X. Hence, G∩ ξ is
non-empty and does not have a <-maximal element. So we have α = sup(G ∩ ξ) ∈
Lim(G) = Lim(S) by Lemma 2.4 (5). Therefore, S ∩ α is non-empty and does
not have a <-maximal element. Obviously, (sup(G ∩ ξ), ξ) is disjoint from G, so
[α, ξ) is disjoint from S ∩ ξ ⊆ G \ Lim(G) since α = sup(G ∩ ξ) ∈ Lim(G). We
have S ∩ ξ = S ∩ α. Hence, S ∩ ξ is non-empty and does not have a <-maximal
element. ¤

Claim 3. V ⊆ X is a neighbourhood of α in ⟨X, τ⟩ if and only if {α} ∪
∪
{I(η) :

η ∈ (ζ, ξ)⟨S,≺S⟩} ⊆ V for some ζ ∈ (←, ξ)⟨S,≺S⟩.

Proof. By S ∩ ξ = S ∩ α, (←, ξ)⟨S,≺S⟩ coincides either S ∩ α or {µ} ∪ (S ∩ α) with
≺S-minimal element µ. Hence, {α} ∪

∪
{I(η) : η ∈ (ζ, ξ)⟨S,≺S⟩} ⊆ V for some

ζ ∈ (←, ξ)⟨S,≺S⟩ iff {α} ∪
∪
{I(η) : η ∈ (ζ, ξ)⟨S,≺S⟩} ⊆ V for some ζ ∈ S ∩ α.

And (ζ, ξ)⟨S,≺S⟩ = S ∩ (ζ, ξ) = S ∩ (ζ, α) holds for every ζ ∈ S ∩ α. Therefore,
{α} ∪

∪
{I(η) : η ∈ (ζ, ξ)⟨S,≺S⟩} ⊆ V for some ζ ∈ (←, ξ)⟨S,≺S⟩ iff {α} ∪

∪
{I(η) :

η ∈ S ∩ (ζ, α)} ⊆ V for some ζ ∈ S ∩ α.
First assume that V ⊆ X is a neighbourhood of α in ⟨X, τ⟩. Then there is γ < α

such that X ∩ (γ, α] ⊆ V . By α ∈ Lim(S), there is ζ ∈ S ∩ α ⊆ G such that
γ < ζ. If η ∈ S ∩ (ζ, α), then ζ ∈ G ∩ η and so γ < ζ ≤ sup(G ∩ η), thus I(η) =
X ∩ [sup(G ∩ η), η) ⊆ X ∩ (γ, α] ⊆ V . Hence, {α} ∪

∪
{I(η) : η ∈ S ∩ (ζ, α)} ⊆ V

for some ζ ∈ S ∩ α.
Conversely, let {α} ∪

∪
{I(η) : η ∈ S ∩ (ζ, α)} ⊆ V for some ζ ∈ S ∩ α. To

see V being a neighbourhood of α in ⟨X, τ⟩, we show that X ∩ (ζ, α] ⊆ V . By
the assumption, α ∈ V holds, so it suffices to show that X ∩ (ζ, α) ⊆ V . Let
β ∈ X ∩ (ζ, α). Since α ∈ Lim(G), there is η ∈ G ∩ (β, α). Pick the least such η.
Then we have η ∈ (G \Lim(G))∩ (β, α) ⊆ S ∩ (ζ, α) and β ∈ X ∩ [sup(G∩ η), η) =
I(η) ⊆ V . ¤

By Claim 1-Claim 3, ≺S satisfies the condition (iii) in Lemma 3.4. Hence, ⟨X, τ⟩
is orderable. ¤

4. Well-orderability

In this section, we characterize the well-orderability of subspaces of ordinals.
Throughout this section, < denotes the usual order on the class Ord of all ordinals.

Theorem 4.1. Let X be a subspace of an ordinal, and G = Lim(X) \X. Then X
is well-orderable iff either (i) or (ii) below holds:

(i) X ∩ Lim(G) = ∅ and cf ξ = ω for every ξ ∈ G.
(ii) |G| ≤ 1.

We first characterize the well-orderability of spaces having a pairwise disjoint
open cover by well-orderable subspaces.
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Proposition 4.2. Assume that X has a pairwise disjoint open cover ⟨I(ξ) | ξ ∈ S⟩
such that I(ξ) is homeomorphic to a non-zero ordinal αξ for every ξ ∈ S. Then X
is well-orderable if and only if either (I) or (II) below holds.

(I) |S| ≤ ω and cf αξ ≤ ω for every ξ ∈ S.
(II) |S| < ω and |{ξ ∈ S : cf αξ ̸= 1}| ≤ 1.

Before proving the proposition, we show some lemmas.

Lemma 4.3. Assume that X has a pairwise disjoint open cover ⟨I(ξ) | ξ ∈ S⟩ such
that I(ξ) is homeomorphic to a non-zero ordinal αξ for every ξ ∈ S.

(1) If |S| < ω, cf αξ0 = κ for some ξ0 ∈ S, and cf αξ = 1 for every ξ ∈ S \{ξ0},
then X is homeomorphic to an ordinal of cofinality κ.

(2) If |S| = ω and cf αξ = 1 for every ξ ∈ S, then X is homeomorphic to an
ordinal of cofinality ω.

Proof. For (1), fix a well-order ≺S on S such that ξ0 is a ≺S-maximal element of
S. For (2), put κ = ω and fix a well-order ≺S on S such that otp⟨S,≺S⟩ = ω. Pick
a well-order ≺ξ on I(ξ) for each ξ ∈ S such that:

• the order topology λ(I(ξ),≺ξ) coincides with the subspace topology of the
original topology of X,

• otp⟨I(ξ),≺ξ⟩ = αξ.
Let ⟨X,≺⟩ be the order sum of ⟨⟨I(ξ),≺ξ⟩ | ξ ∈ S⟩ with respect to ≺S . Obviously in
either cases, ≺ is a well-order on X and cf otp⟨X,≺⟩ = κ. The original topology on
X coincides with ⟨X,λ(X,≺)⟩, thus X is homeomorphic to an ordinal of cofinality
κ. ¤

Remark that for a non-zero ordinal β, cf β = 1 (cf β = ω, cf β > ω) iff β is
compact (non-compact Lindelöf, non-compact countably compact, respectively).

Lemma 4.4. A topological space is homeomorphic to an ordinal of cofinality ω
if and only if it can be represented as the free union of countably infinite many
subspaces which are homeomorphic to successor ordinals, that is, it has a pairwise
disjoint infinite countable open cover ⟨I(j) | j < ω⟩ such that I(j) is homeomorphic
to a successor ordinal for each j < ω.

Proof. The ‘if’ part is immediately obtained from 4.3 (2). Conversely, let β be an
ordinal with cf β = ω, and fix a strictly increasing sequence ⟨βj | j < ω⟩ of ordinals
in β that is cofinal in β. Let I(j) = (βj−1, βj ] for each j < ω, where β−1 = −1.
Then ⟨I(j) | j < ω⟩ is as desired. ¤

Lemma 4.5. Let β be an ordinal.
(1) β is covered by cf β-many compact clopen subsets but not covered by < cf β-

many compact subsets. In particular, β is locally compact.
(2) If cf β > ω, then there is not a disjoint pair of non-compact closed subsets

of β.
(3) Assume that β has a pairwise disjoint open cover ⟨I(ξ) | ξ ∈ S⟩ where each

I(ξ) is non-empty. Then, |S| < ω holds in case cf β ̸= ω, and |S| ≤ ω holds
in case cf β = ω.

Proof. (1) is obvious. (2) is obtained from the well-known fact that closed un-
bounded sets generates a filter on β.
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(3) We may assume cf β > ω. If S were infinite, then decompose S into infinite
subsets S0 and S1. Then

∪
ξ∈S0

I(ξ) and
∪

ξ∈S1
I(ξ) are disjoint non-compact closed

subsets, this contradicts (2). ¤

Lemma 4.6. Assume that X has a pairwise disjoint open cover ⟨I(ξ) | ξ ∈ S⟩
such that I(ξ) is homeomorphic to a non-zero ordinal αξ for every ξ ∈ S. Then the
following hold.

(1) X is homeomorphic to 0 if and only if S = ∅.
(2) X is homeomorphic to a successor ordinal if and only if 0 < |S| < ω and

cf αξ = 1 for every ξ ∈ S.
(3) X is homeomorphic to an ordinal of cofinality ω if and only if

max({cf αξ : ξ ∈ S} ∪ {|S|}) = ω.

(4) X is homeomorphic to an ordinal of uncountable cofinality κ if and only if
|S| < ω, cf αξ0 = κ for some ξ0 ∈ S, and cf αξ = 1 for every ξ ∈ S \ {ξ0}.

Proof. (1) is trivial. (2) follows from Lemma 4.3 (1) and Lemma 4.5 (3).
(3) Assume that max({cf αξ : ξ ∈ S} ∪ {|S|}) = ω. For each ξ ∈ S, cf αξ ≤ ω

holds and by Lemma 4.4, we see that I(ξ) can be represented as the free union of
at most countably many subspaces which are homeomorphic to successor ordinals.
By the assumption, X is also represented as the free union of countably infinite
many subspaces which are homeomorphic to successor ordinals. By using Lemma
4.4 again, we see that X is homeomorphic to an ordinal of cofinality ω.

Conversely, assume that X is homeomorphic to an ordinal of cofinality ω. By
(1) and (2), either |S| ≥ ω or cf αξ ≥ ω holds for some ξ ∈ S. By (3) of Lemma
4.5, we have |S| ≤ ω. Moreover since X is Lindelöf, we have cf αξ ≤ ω for every
ξ ∈ S. Therefore we have max({cf αξ : ξ ∈ S} ∪ {|S|}) = ω.

(4) The “if” part follows from Lemma 4.3 (1). Assume that X is homeomorphic
to an ordinal of uncountable cofinality κ. By Lemma 4.5 (3), we have |S| < ω.
Since X is not Lindelöf, there is ξ0 ∈ S such that cf αξ0 > ω. By Lemma 4.5 (2),
ξ0 is unique and cf αξ = 1 for every ξ ∈ S \ {ξ0}. By Lemma 4.3 (1), we have
cf αξ0 = κ. ¤

Now we prove Proposition 4.2.

Proof. Assume that X is well-orderable. If X is homeomorphic to an ordinal of
cofinality ≤ ω (> ω), then by Lemma 4.6, (I) ((II), respectively) holds. Conversely,
if (I) or (II) is true, then by Lemma 4.6 again, it is straightforward to see that X
is well-orderable. ¤

Before proving Theorem 4.1, we show a lemma.

Lemma 4.7. Let X be a subspace of an ordinal µ, and define G,S, and I = ⟨I(ξ) |
ξ ∈ S⟩ as in Lemma 2.4. Then the following conditions are equivalent.

(a) X is locally compact.
(b) X ∩ Lim(G) = ∅.
(c) I(ξ) is open for every ξ ∈ S.
(d) X is represented as the free union of well-orderable subspaces.

Proof. (a)→(b): Assume that X∩Lim(G) has an element α. Let V be an arbitrary
neighbourhood of α in X. Then there is γ ∈ α such that X ∩ (γ, α] ⊆ V . By
α ∈ Lim(G), we can pick ξ0, ξ1 ∈ G such that γ < ξ0 < ξ1 < α. Moreover, we may
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assume that ξ1 = min(G ∩ (ξ0, α)). Then ξ1 ∈ G \ Lim(G) ⊆ S. By Lemma 2.4
(2), I(ξ1) is a closed subspace of X which is not compact. V is not compact since
I(ξ1) = X ∩ [sup(G ∩ ξ1), ξ1) = X ∩ [ξ0, ξ1) ⊆ X ∩ (γ, α] ⊆ V .

(b)→(c): Assume that X ∩Lim(G) = ∅. It follows from G∩X = ∅ that sup(G∩
ξ) /∈ X holds for every ξ ∈ S. Thus I(ξ) = X ∩ [sup(G∩ ξ), ξ) = X ∩ (sup(G∩ ξ), ξ)
and it is open in X for every ξ ∈ S.

(c)→(d): Use Lemma 2.4 (4).
(d)→(a): Since an ordinal is locally compact, so is the free union of well-orderable

subspaces. ¤

Now we prove Theorem 4.1.

Proof. Let X be a subspace of an ordinal µ, and define G,S, and I = ⟨I(ξ) | ξ ∈ S⟩
as in Lemma 2.4. Put αξ = otp⟨I(ξ), <ξ⟩ for each ξ ∈ S, where <ξ is the restriction
of < on I(ξ). By Lemma 2.4 (4), I(ξ) is homeomorphic to αξ. By Lemma 2.4 (1)
and (2), cf αξ = 1 holds in case ξ ∈ S \ G, and cf αξ = cf ξ ≥ ω holds in case
ξ ∈ G \ Lim(G). Therefore we have G \ Lim(G) = {ξ ∈ S : cf αξ ̸= 1}.

Assume that X is well-orderable. Then X is locally compact, and by Lemma 4.7,
we have X ∩ Lim(G) = ∅. Moreover, either the condition (I) or (II) in Proposition
4.2 holds. First assume that (II) holds. It follows from |G \ Lim(G)| = |{ξ ∈ S :
cf αξ ̸= 1}| ≤ 1 and Lim(G) = Lim(S) = ∅ that |G| ≤ 1, so the condition (ii) in
the theorem is true. Next assume that (I) holds. Let ξ ∈ G. If ξ /∈ Lim(G), then it
follows from ξ ∈ G\Lim(G) ⊆ S that cf ξ = cf αξ ≤ ω. If ξ ∈ Lim(G), then G∩ξ is a
cofinal subset of ξ, and G\{supG} ∋ ζ 7→ min{η ∈ G : ζ < η} ∈ G\Lim(G) is a 1-1
function. So we have cf ξ ≤ |G∩ξ| ≤ |G| ≤ max(|G\Lim(G)|, ω) ≤ max(|S|, ω) = ω.
We obtain cf ξ ≤ ω for every ξ ∈ G in either cases. Therefore the condition (i) in
the theorem holds.

Conversely, assume that the condition (i) in the theorem holds. Obviously,
cf αξ ≤ ω holds for every ξ ∈ S. Since X ∩ Lim(G) = ∅, we see that each I(ξ) is
open in X by Lemma 4.7. We show that |G| ≤ ω. For otherwise, there is a strictly
increasing sequence ⟨ξj | j < ω1⟩ of elements of G. Put ξ = sup{ξj : j < ω1}. Then
cf ξ = ω1 and ξ ∈ Lim(G) ⊆ Lim(X). It follows from X ∩ Lim(G) = ∅ that ξ ∈
Lim(X) \ X ⊆ G. This contradicts the condition in (i). Thus |S| ≤ |G ∪ {µ}| ≤ ω.
Hence, the condition (I) in Proposition 4.2 holds, and so X is well-orderable.

Next assume that (ii) in the theorem holds. Then X ∩ Lim(G) ⊆ Lim(G) = ∅.
By Lemma 4.7, each I(ξ) is open in X. Obviously, |S| ≤ |G ∪ {µ}| ≤ 2 < ω and
|{ξ ∈ S : cf αξ ̸= 1}| = |G \ Lim(G)| ≤ |G| ≤ 1 hold. Hence, the condition (II) in
Proposition 4.2 holds, and so X is well-orderable. ¤

The corollary below is obtained from Lemma 2.3.

Corollary 4.8. If X is a closed subspace of an ordinal µ, then X is well-orderable.

By applying Theorem 4.1, we obtain the corollary below.

Corollary 4.9. Let X ⊆ ω1 and G = Lim(X) \ X. Then X is well-orderable iff
either (i’) or (ii’) holds:

(i’) X ∩ Lim(G) = ∅ and X is not cofinal in ω1.
(ii’) X is closed in ω1.
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Proof. If the condition (i’) above holds, then supG ≤ supX < ω1. So the condition
(i) in Theorem 4.1 holds, thus X is well-orderable. If (ii’) holds, then by Corollary
4.8, X is well-orderable.

Conversely, assume that X is well-orderable. By Theorem 4.1, X ∩ Lim(G) = ∅
holds. If the condition (i’) above fails, then X is cofinal in ω1, so ω1 ∈ G. Hence,
the condition (ii) in Theorem 4.1 holds. Therefore G = {ω1} and so the condition
(ii’) holds. ¤

Remark that if X is a subspace of ω1 such that both X and ω1\X are stationary,
then X is cofinal but not closed in ω1, so X is not well-orderable by Corollary 4.9.

Corollary 4.10. If X is a subspace of ω · ω, then X is well-orderable.

Proof. See [3, I, 7.19] for multiplication of ordinals and note ω · ω < ω1. Let X be
a subspace of ω · ω. We verify the conditions (i’) of Corollary 4.9.

It follows from G ⊆ Lim(X) ⊆ {ω · n : n < ω} ∪ {ω · ω} that Lim(G) ⊆ {ω · ω}.
By ω · ω /∈ X, we have X ∩ Lim(G) = ∅. ¤

On the other hand, using Corollary 4.9, we see that X = [0, ω ·ω]\{ω ·n : n ∈ ω}
is a subspace of ω · ω + 1 which is not well-orderable.
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