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NORMALITY AND COUNTABLE PARACOMPACTNESS OF
HYPERSPACES OF ORDINALS
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Abstract. For an ordinal α, 2α denotes the collection of all nonempty closed
sets of α with the Vietoris topology and K(α) denotes the collection of all

nonempty compact sets of α with the subspace topology of 2α. It is well-
known that 2α is normal iff cfα = 1. In this paper, we will prove that for
every nonzero-ordinal α:
(1) 2α is countably paracompact iff cfα ̸= ω.

(2) K(α) is countably paracompact.
(3) K(α) is normal iff, if cfα is uncountable, then cfα = α.

In (3), we use elementary submodel techniques.

Throughout the paper, spaces mean nonempty topological spaces and generally
α, β, γ, ...(κ, λ, µ, ..., k, l,m, ...) stand for ordinals (infinite cardinals, natural num-
bers). ω (ω1) is the first infinite ordinal (the first uncountable ordinal, respectively)
and cfα denotes the cofinality of α. For notational convenience, we consider −1
as the immediate predeccesor of the ordinal 0. Ordinals are considered as spaces
with the usual order topology, so cfα = 1 iff α is compact whenever α is a nonzero-
ordinal.

For a space X, 2X (K(X)) denotes the collection of all nonempty closed (com-
pact, respectively) subsets of X. For n ∈ ω, [X]≤n denotes the collection of all
nonempty subsets of X of cardinality ≤ n and let [X]<ω =

∪
n∈ω[X]≤n. Equip 2X

with the Vietoris topology τV and K(X) with its subspace topology. To describe
τV , we need some notation. For every finite family V of subsets of X, let

⟨V⟩ = {F ∈ 2X : F ⊂
∪

V,∀V ∈ V(V ∩ F ̸= ∅)}.

Then the collection of all subsets of 2X of the form ⟨V⟩, where V is a finite family
of open sets of X, is a base for τV . For a subset U of X, let

U− = {F ∈ 2X : F ∩ U ̸= ∅}, U+ = {F ∈ 2X : F ⊂ U}.

Then it is well-known that τV has as a subbase all subsets of the form U− and V +,
where U and V are open in X. Observe that [X]≤n is closed in 2X and [X]<ω is
dense in 2X and contained in K(X).

The relations of separation axioms between the base space X and its hyperspace
are interesting. For example, the following are shown in [5].

• If X is T1 then 2X is T1.
• For a T1-space X, X is normal iff 2X is regular.
• For a T1-space X, X is regular iff K(X) is regular.
• For a T1-space X, X is compact iff 2X is compact.
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One of the strong results proved by [7] is:
• For a T1-space X, X is compact iff 2X is normal.

Since an ordinal α is normal T1, 2α and K(α) are at least regular T1. Moreover by
the results above, we have cfα = 1 iff 2α is normal. An ordinal α is also known to be
countably paracompact, that is, every countable open cover has a locally finite open
refinement. In this paper, we characterize, as is listed in the abstract, normality
and countable paracompactness of 2α and K(α) using the cofinality function cfα.
From now on, spaces are assumed to be regular T1.

It is well known that 2ω is not normal [2, 3]. First we check the following:

Proposition 1. 2ω is not countably paracompact.

Proof. Decompose ω into two infinite subsets X0 and X1. Fix a 1-1 onto function
fi : ω → Xi for each i ∈ 2 = {0, 1} and for every subset A ⊂ ω, define F (A) =
f0(A) ∪ f1(ω \ A). Keesling [3] proved that F = {F (A) : A ⊂ ω} is closed discrete
in 2ω. Since [ω]<ω is dense in 2ω, the following claim completes the proof. The
author beleives the following claim have been already proved by someone, but the
author could not find a reference for the following claim, so it is proved here for
completeness.

Claim. In a separable countably paracompact space X, there does not exist a closed
discrete subspace of cardinality c, here c denotes the cardinality of the set of all
subsets of ω.

Proof. Let D be a countable dense subset of X. Assume that there is a discrete
closed subset F of X with cardinality c. We may assume F ∩ D = ∅ and identify
F = c. Observe that the size of the collection of all countable sequences of subsets
of D is at most cω = c. So we can list all locally finite countable sequences as
{⟨Dα

n : n ∈ ω⟩ : α < c}, where some of these sequences can be repeated for different
α’s, if needed. For β < c, define fβ : c → ω by for each α < c,

fβ(α) =

{
max{n ∈ ω : α ∈ ClXDβ

n} if α ∈
∪

n∈ω ClXDβ
n,

0 otherwise.
Moreover define g : c → ω by

g(α) = fα(α) + 1

for each α < c. Since {g−1(n) : n ∈ ω} is a discrete collection of closed sets in the
countably paracompact space X, we can find a locally finite collection {Gn : n ∈ ω}
of open sets in X with g−1(n) = Gn ∩ F . Take a β < c satisfying ⟨Dβ

n : n ∈ ω⟩ =
⟨Gn ∩ D : n ∈ ω⟩. Then for each n ∈ ω, g−1(n) ⊂ Gn ⊂ ClXGn = ClX(Gn ∩ D) =
ClXDβ

n. So for each α < c, if g(α) = n, then α ∈ ClXDβ
n thus fβ(α) ≥ n = g(α).

Therefore we have fβ(β) ≥ g(β) = fβ(β) + 1, a contradiction. ¤

Remark. The referee of the present paper gave the following another proof of
Proposition 1 : First note that the Sorgenfrey line S embeds into 2ω as a closed
subspace, see Example 5 of [6]. If N0 and N1 are disjoint pair of infinite subsets of
ω, then ⟨A,B⟩ → A ∪ B embeds 2N0 × 2N1 into 2ω as a closed subspace. Thus the
Sorgenfrey square S×S embeds into 2ω as a closed subspace. Since it is known that
S × S is not countably paracompact (this fact is also shown by the Claim above),
2ω is not countably paracompact.
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The author does not know whether the following is true.

Question A. Is 2ω countably metacompact?

Immediately we have:

Corollary 2. If 2X is counatbly paracompact, then X is countably compact.

Also note that if 2X is normal, then it is countably paracompact (use the known
results listed above).

Corollary 3. For each nonzero-ordinal α, 2α is countably paracompact iff cfα ̸= ω.

Proof. The “only if” part follows from the Corollary above. Assume cfα ̸= ω.
Then α is ω-bounded (= each countable subset has a compact closure). Therefore
it follows from Theorem 5 of [3] that 2α is countably compact. ¤

The author does not know the answer to:

Question B. Is X ω-bounded if 2X is countably paracompact?

Now we discuss countable paracompactness of K(α). The following is almost
obvious:

Lemma 4. If X is represented as the free union X =
⊕

n∈ω Xn of countably many
non-empty clopen sets Xn, then K(X) =

∪
n∈ω K(

⊕
i<n Xi).

Theorem 5. K(α) is countably paracompact for all nonzero-ordinal α.

Proof. If cfα = 1, then K(α) = 2α is compact. Next assume cfα = ω. Take a
strictly increasing sequence {αn : n ∈ ω} cofinal in α. By the lemma above, we
have K(α) =

∪
n∈ω K([0, αn]) =

∪
n∈ω 2[0,αn], which is σ-compact thus countably

paracompact. Finally assume cfα ≥ ω1. In this case, K(α) is countably compact.
Indeed, let {Kn : n ∈ ω} be a countable subset of K(α). Since maxKn < α for
each n ∈ ω and cfα ≥ ω1, we can find a γ < α with

∪
n∈ω Kn ⊂ [0, γ]. Since

{Kn : n ∈ ω} is a subset of the compact space 2[0,γ], it has a cluster point in 2[0,γ]

and also in K(α). Therefore K(α) is countably compact. ¤

Now we focus on normality of K(α).

Lemma 6. Let X be a zero-dimensional space, F a nonempty compact subset of
X and V a finite collection of open sets with F ∈ ⟨V⟩. Then there is a pairwise
disjoint finite collection W of clopen sets such that F ∈ ⟨W⟩ ⊂ ⟨V⟩.

Proof. For each V ∈ V, fix x(V ) ∈ F ∩ V . Define an equivalence relation V ∼ V ′

on V by x(V ) = x(V ′). For each equivalence class E ∈ V/ ∼, let xE = x(V ) for
some (all) V ∈ E .

Since {xE : E ∈ V/ ∼} is a finite subset of the zero-dimensional T2 space X, one
can find a pairwise disjoint finite collection {WE : E ∈ V/ ∼} of clopen sets with
xE ∈ WE ⊂

∩
E for each E ∈ V/ ∼.

If F \
∪

E∈V/∼ WE = ∅, then W = {WE : E ∈ V/ ∼} is as required. So assume F \∪
E∈V/∼ WE ̸= ∅. Since F \

∪
E∈V/∼ WE is a compact subset of the zero-dimensional

space X and it is covered by V, there is a pairwise disjoint collection {W (V ) : V ∈
V} of clopen sets covering it such that W (V ) ⊂ V and (

∪
E∈V/∼ WE) ∩ W (V ) = ∅

for each V ∈ V. Then putting V ′ = {V ∈ V : W (V ) ∩ F ̸= ∅}, W = {WE : E ∈
V/ ∼} ∪ {W (V ) : V ∈ V ′} is the desired one. ¤
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Observe that by a similar proof, “Let X be a zero-dimensional space, F nonempty
compact subset of X...” in the above lemma can be replaced by “Let X be a normal
strongly zero-dimensional space, F nonempty closed subset of X...”.

Lemma 7. Let γ be a nonzero-ordinal, F ∈ K(γ) and V a finite collection of
open sets in γ with F ∈ ⟨V⟩. Then there are nF ∈ ω and decreasing sequences
{αi : i < nF } and {βi : i < nF } of ordinals in γ such that

(1) α0 = max F , {αi : i < nF } ⊂ F .
(2) αi+1 ≤ βi < αi for each i < nF , where αnF

= −1.
(3) F ∈ ⟨{(βi, αi] : i < nF }⟩ ⊂ ⟨V⟩.

Proof. By the Lemma above, we may assume that V is a finite pairwise disjoint
collection of clopen sets in γ.

Let α ∈ F . Fix the unique Vα ∈ V with α ∈ Vα and let hF (α) = min{β ∈
F : [β, α] ∩ F ⊂ Vα}. Since Vα is open and hF (α) ∈ Vα, we can find gF (α) <
hF (α) with −1 ≤ gF (α) such that (gF (α), hF (α)] ⊂ Vα. Then gF (α) < α and
α ∈ (gF (α), α]∩ F = [hF (α), α]∩ F ⊂ Vα. Therefore if F ∩ [0, hF (α)) ̸= ∅, then by
F ∩ [0, hF (α)) = F ∩ [0, gF (α)], max(F ∩ [0, hF (α))) exists and is ≤ gF (α).

Now we will define such sequences by downward induction. First let α0 = max F
and β0 = gF (α0). Assume that for each i < n, decreasing sequences {αi : i < n}
and {βi : i < n} are defined with βi = gF (αi) < αi. If F ∩ [0, hF (αn−1)) = ∅, then
stop the induction and let nF = n. Otherwise let αn = max(F ∩ [0, hF (αn−1)))
and βn = gF (αn).

Since such αi’s are strictly decreasing, this induction will be stopped in finite
steps. Now it is straightforward to show that these sequences satisfy the required
conditions. ¤

By cfω1 ̸= 1, 2ω1 is not normal. On the other hand:

Theorem 8. If κ is a regular uncountable cardinal, then K(κ) is normal.

Proof. Let F and H be disjoint closed sets in K(κ). Let M0 be an elementary
submodel of H(θ), where θ is large enough, such that F ,H, κ ∈ M0 and |M0| <
κ. For elementary submodels, the readers should refer to [1, 4]. Assume that
elementary submodels M0, ...,Mn−1 of H(θ) with M0 ⊂ ... ⊂ Mn−1 and |Mn−1| <
κ are defined. Let Mn be an elementary submodel of H(θ) satisfying Mn−1 ∪∪

(Mn−1 ∩ κ) ⊂ Mn and |Mn| < κ. Then the union M =
∪

n∈ω Mn is also an
elementary submodel of H(θ) and satisfies F ,H, κ ∈ M , |M | < κ and κ ∩ M is an
ordinal. Let γ = κ ∩ M < κ.

Claim 1. If F ∈ K(κ) ∩ M , then max F < γ.

Proof. Since F is a compact subset of κ, max F exists and < κ. On the other hand
max F is deteremined by F and F ∈ M , by elementarity, we have maxF ∈ M .
Therefore max F ∈ κ ∩ M = γ.

To show that F and H are separated by disjoint open sets in K(κ), it suffices to
show :

(∗) : for each F ∈ F ∪ H, there is a finite collection VF of open sets of κ such
that

F ∈ ⟨VF ⟩,
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(
∪

F∈F

⟨VF ⟩) ∩ (
∪

H∈H

⟨VH⟩) = ∅.

Therefore by elementarity, it suffices to show M |= (∗), that is, for each F ∈
(F ∪H) ∩ M , there is a finite collection VF ∈ M of open sets of κ such that

F ∈ ⟨VF ⟩,

⟨VF ⟩ ∩ ⟨VH⟩ = ∅ for each F ∈ F ∩ M and H ∈ H ∩ M .
Observe that by Claim 1, F ∩ M and H ∩ M are subsets of the compact space

K([0, γ]) = 2[0,γ].

Claim 2. ClK([0,γ])(F ∩ M) ∩ ClK([0,γ])(H ∩ M) = ∅.
Proof. Assume that there is a K ∈ ClK([0,γ])(F ∩ M) ∩ ClK([0,γ])(H ∩ M). Let ⟨V⟩
be an arbitrary neighborhood of K in K(κ), that is, V is a finite collection of open
sets in κ with K ∈ ⟨V⟩. Since K ⊂ [0, γ] ⊂ κ, we may assume that

∪
V ⊂ [0, γ].

Then ⟨V⟩ is a neighborhood of K in K([0, γ]). It follows from K ∈ ClK([0,γ])(F∩M)
that ∅ ≠ ⟨V⟩ ∩ (F ∩M) ⊂ ⟨V⟩ ∩ F . Since ⟨V⟩ was an arbitrary neighborhood of K
in K(κ), we have K ∈ ClK(κ)F = F . Similarly we have K ∈ H, a contradiction.

By normality of K([0, γ]) and Claim 2, for each F ∈ (F ∪ H) ∩ M , there is a
finite collection VF of open sets of [0, γ] such that

F ∈ ⟨VF ⟩,

⟨VF ⟩ ∩ ⟨VH⟩ = ∅ for each F ∈ F ∩ M and H ∈ H ∩ M .
For each F ∈ (F ∪H)∩M , since F ∈ ⟨VF ⟩, applying Lemma 7 to γ + 1 = [0, γ],

we can find two finite sequences {αF
i : i < nF } and {βF

i : i < nF } of [0, γ] satisfying
(1)-(3).

By (3), we may assume VF = {(βF
i , αF

i ] : i < nF }. By Claim 1, αF
0 = maxF <

γ ⊂ M , therefore these two sequences are subsets of M . So by elementarity, these
two finite sequences are elements in M . VF is determined by these two sequences,
consequently we have VF ∈ M . This completes the proof. ¤

The following question seems to be strangely difficult:

Question C. Find a proof of the Theorem above without using elementary submodel
techniques.

Lemma 9. If ω1 ≤ cfγ < γ, then K(γ) is not normal.

Proof. Let κ = cfγ. Choose a strictly incresing sequence {γ(α) : α < κ} such that
(1) cfγ < γ(0),
(2) γ(α) = sup{γ(β) : β < α} if α is limit.
(3) γ = sup{γ(α) : α < κ}.

It is routine to check that the mapping ⟨α, β⟩ → {α, γ(β)} embeds (κ + 1) × κ
into [γ]≤2 and, hence, into K(γ) as a closed subspace. This concludes the proof,
since it is well-known that (κ + 1) × κ is not normal if κ is an uncountable regular
cardinal. ¤

Corollary 10. For every nonzero-ordinal α, K(α) is normal iff, if cfα is uncount-
able, then cfα = α.
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Proof. The “only if” part follows from Lemma 9.
The “if” part: If cfα = 1, then K(α) is compact so normal. If cfα = ω, then

as in the proof of Theorem 5, K(α) is σ-compact so normal. If cfα is uncountable,
then cfα = α so this case follows from Theorem 8. ¤
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