(1) Tel: +81-97-554-7569 (2) Fax: +81-97-554-7514

(3) e-mail: nkemoto@cc.oita-u.ac.jp

NORMALITY AND COUNTABLE PARACOMPACTNESS OF HYPERSPACES OF ORDINALS

NOBUYUKI KEMOTO

ABSTRACT. For an ordinal α , 2^{α} denotes the collection of all nonempty closed sets of α with the Vietoris topology and $\mathcal{K}(\alpha)$ denotes the collection of all nonempty compact sets of α with the subspace topology of 2^{α} . It is wellknown that 2^{α} is normal iff $cf\alpha = 1$. In this paper, we will prove that for every nonzero-ordinal α :

(1) 2^{α} is countably paracompact iff $cf \alpha \neq \omega$.

(2) $\mathcal{K}(\alpha)$ is countably paracompact.

- (3) $\mathcal{K}(\alpha)$ is normal iff, if $cf\alpha$ is uncountable, then $cf\alpha = \alpha$.
- In (3), we use elementary submodel techniques.

Throughout the paper, spaces mean nonempty topological spaces and generally $\alpha, \beta, \gamma, ...(\kappa, \lambda, \mu, ..., k, l, m, ...)$ stand for ordinals (infinite cardinals, natural numbers). ω (ω_1) is the first infinite ordinal (the first uncountable ordinal, respectively) and cf α denotes the cofinality of α . For notational convenience, we consider -1 as the immediate predeccesor of the ordinal 0. Ordinals are considered as spaces with the usual order topology, so cf $\alpha = 1$ iff α is compact whenever α is a nonzero-ordinal.

For a space X, 2^X ($\mathcal{K}(X)$) denotes the collection of all nonempty closed (compact, respectively) subsets of X. For $n \in \omega$, $[X]^{\leq n}$ denotes the collection of all nonempty subsets of X of cardinality $\leq n$ and let $[X]^{<\omega} = \bigcup_{n \in \omega} [X]^{\leq n}$. Equip 2^X with the Vietoris topology τ_V and $\mathcal{K}(X)$ with its subspace topology. To describe τ_V , we need some notation. For every finite family \mathcal{V} of subsets of X, let

$$\langle \mathcal{V} \rangle = \{ F \in 2^X : F \subset \bigcup \mathcal{V}, \forall V \in \mathcal{V}(V \cap F \neq \emptyset) \}.$$

Then the collection of all subsets of 2^X of the form $\langle \mathcal{V} \rangle$, where \mathcal{V} is a finite family of open sets of X, is a base for τ_V . For a subset U of X, let

$$U^{-} = \{ F \in 2^{X} : F \cap U \neq \emptyset \}, U^{+} = \{ F \in 2^{X} : F \subset U \}.$$

Then it is well-known that τ_V has as a subbase all subsets of the form U^- and V^+ , where U and V are open in X. Observe that $[X]^{\leq n}$ is closed in 2^X and $[X]^{<\omega}$ is dense in 2^X and contained in $\mathcal{K}(X)$.

The relations of separation axioms between the base space X and its hyperspace are interesting. For example, the following are shown in [5].

- If X is T_1 then 2^X is T_1 .
- For a T_1 -space X, X is normal iff 2^X is regular.
- For a T_1 -space X, X is regular iff $\mathcal{K}(X)$ is regular.
- For a T_1 -space X, X is compact iff 2^X is compact.

 $^{1991\} Mathematics\ Subject\ Classification.\ 54B20,\ 54D15.$

 $Key\ words\ and\ phrases.$ nomral, coutably paracompact, hyperspace, ordinal, elementary submodel.

One of the strong results proved by [7] is:

• For a T_1 -space X, X is compact iff 2^X is normal.

Since an ordinal α is normal T_1 , 2^{α} and $\mathcal{K}(\alpha)$ are at least regular T_1 . Moreover by the results above, we have $cf\alpha = 1$ iff 2^{α} is normal. An ordinal α is also known to be countably paracompact, that is, every countable open cover has a locally finite open refinement. In this paper, we characterize, as is listed in the abstract, normality and countable paracompactness of 2^{α} and $\mathcal{K}(\alpha)$ using the cofinality function $cf\alpha$. From now on, spaces are assumed to be regular T_1 .

It is well known that 2^{ω} is not normal [2, 3]. First we check the following:

Proposition 1. 2^{ω} is not countably paracompact.

Proof. Decompose ω into two infinite subsets X_0 and X_1 . Fix a 1-1 onto function $f_i : \omega \to X_i$ for each $i \in 2 = \{0, 1\}$ and for every subset $A \subset \omega$, define $F(A) = f_0(A) \cup f_1(\omega \setminus A)$. Keesling [3] proved that $\mathcal{F} = \{F(A) : A \subset \omega\}$ is closed discrete in 2^{ω} . Since $[\omega]^{<\omega}$ is dense in 2^{ω} , the following claim completes the proof. The author beleives the following claim have been already proved by someone, but the author could not find a reference for the following claim, so it is proved here for completeness.

Claim. In a separable countably paracompact space X, there does not exist a closed discrete subspace of cardinality c, here c denotes the cardinality of the set of all subsets of ω .

Proof. Let D be a countable dense subset of X. Assume that there is a discrete closed subset F of X with cardinality c. We may assume $F \cap D = \emptyset$ and identify F = c. Observe that the size of the collection of all countable sequences of subsets of D is at most $c^{\omega} = c$. So we can list all locally finite countable sequences as $\{\langle D_n^{\alpha} : n \in \omega \rangle : \alpha < c\}$, where some of these sequences can be repeated for different α 's, if needed. For $\beta < c$, define $f_{\beta} : c \to \omega$ by for each $\alpha < c$,

$$f_{\beta}(\alpha) = \begin{cases} \max\{n \in \omega : \alpha \in \operatorname{Cl}_X D_n^{\beta}\} & \text{if } \alpha \in \bigcup_{n \in \omega} \operatorname{Cl}_X D_n^{\beta}, \\ 0 & \text{otherwise.} \end{cases}$$

Moreover define $g: c \to \omega$ by

$$g(\alpha) = f_{\alpha}(\alpha) + 1$$

for each $\alpha < c$. Since $\{g^{-1}(n) : n \in \omega\}$ is a discrete collection of closed sets in the countably paracompact space X, we can find a locally finite collection $\{G_n : n \in \omega\}$ of open sets in X with $g^{-1}(n) = G_n \cap F$. Take a $\beta < c$ satisfying $\langle D_n^\beta : n \in \omega \rangle = \langle G_n \cap D : n \in \omega \rangle$. Then for each $n \in \omega$, $g^{-1}(n) \subset G_n \subset \operatorname{Cl}_X G_n = \operatorname{Cl}_X (G_n \cap D) = \operatorname{Cl}_X D_n^\beta$. So for each $\alpha < c$, if $g(\alpha) = n$, then $\alpha \in \operatorname{Cl}_X D_n^\beta$ thus $f_\beta(\alpha) \ge n = g(\alpha)$. Therefore we have $f_\beta(\beta) \ge g(\beta) = f_\beta(\beta) + 1$, a contradiction.

Remark. The referee of the present paper gave the following another proof of Proposition 1 : First note that the Sorgenfrey line S embeds into 2^{ω} as a closed subspace, see Example 5 of [6]. If N_0 and N_1 are disjoint pair of infinite subsets of ω , then $\langle A, B \rangle \to A \cup B$ embeds $2^{N_0} \times 2^{N_1}$ into 2^{ω} as a closed subspace. Thus the Sorgenfrey square $S \times S$ embeds into 2^{ω} as a closed subspace. Since it is known that $S \times S$ is not countably paracompact (this fact is also shown by the Claim above), 2^{ω} is not countably paracompact.

 $\mathbf{2}$

The author does not know whether the following is true.

Question A. Is 2^{ω} countably metacompact?

Immediately we have:

Corollary 2. If 2^X is counably paracompact, then X is countably compact.

Also note that if 2^X is normal, then it is countably paracompact (use the known results listed above).

Corollary 3. For each nonzero-ordinal α , 2^{α} is countably paracompact iff $cf \alpha \neq \omega$.

Proof. The "only if" part follows from the Corollary above. Assume $cf\alpha \neq \omega$. Then α is ω -bounded (= each countable subset has a compact closure). Therefore it follows from Theorem 5 of [3] that 2^{α} is countably compact.

The author does not know the answer to:

Question B. Is X ω -bounded if 2^X is countably paracompact?

Now we discuss countable paracompactness of $\mathcal{K}(\alpha)$. The following is almost obvious:

Lemma 4. If X is represented as the free union $X = \bigoplus_{n \in \omega} X_n$ of countably many non-empty clopen sets X_n , then $\mathcal{K}(X) = \bigcup_{n \in \omega} \mathcal{K}(\bigoplus_{i < n} X_i)$.

Theorem 5. $\mathcal{K}(\alpha)$ is countably paracompact for all nonzero-ordinal α .

Proof. If $\operatorname{cfa} = 1$, then $\mathcal{K}(\alpha) = 2^{\alpha}$ is compact. Next assume $\operatorname{cfa} = \omega$. Take a strictly increasing sequence $\{\alpha_n : n \in \omega\}$ cofinal in α . By the lemma above, we have $\mathcal{K}(\alpha) = \bigcup_{n \in \omega} \mathcal{K}([0, \alpha_n]) = \bigcup_{n \in \omega} 2^{[0, \alpha_n]}$, which is σ -compact thus countably paracompact. Finally assume $\operatorname{cfa} \geq \omega_1$. In this case, $\mathcal{K}(\alpha)$ is countably compact. Indeed, let $\{K_n : n \in \omega\}$ be a countable subset of $\mathcal{K}(\alpha)$. Since $\max K_n < \alpha$ for each $n \in \omega$ and $\operatorname{cfa} \geq \omega_1$, we can find a $\gamma < \alpha$ with $\bigcup_{n \in \omega} K_n \subset [0, \gamma]$. Since $\{K_n : n \in \omega\}$ is a subset of the compact space $2^{[0,\gamma]}$, it has a cluster point in $2^{[0,\gamma]}$ and also in $\mathcal{K}(\alpha)$. Therefore $\mathcal{K}(\alpha)$ is countably compact.

Now we focus on normality of $\mathcal{K}(\alpha)$.

Lemma 6. Let X be a zero-dimensional space, F a nonempty compact subset of X and V a finite collection of open sets with $F \in \langle V \rangle$. Then there is a pairwise disjoint finite collection W of clopen sets such that $F \in \langle W \rangle \subset \langle V \rangle$.

Proof. For each $V \in \mathcal{V}$, fix $x(V) \in F \cap V$. Define an equivalence relation $V \sim V'$ on \mathcal{V} by x(V) = x(V'). For each equivalence class $\mathcal{E} \in \mathcal{V} / \sim$, let $x_{\mathcal{E}} = x(V)$ for some (all) $V \in \mathcal{E}$.

Since $\{x_{\mathcal{E}} : \mathcal{E} \in \mathcal{V}/\sim\}$ is a finite subset of the zero-dimensional T_2 space X, one can find a pairwise disjoint finite collection $\{W_{\mathcal{E}} : \mathcal{E} \in \mathcal{V}/\sim\}$ of clopen sets with $x_{\mathcal{E}} \in W_{\mathcal{E}} \subset \bigcap \mathcal{E}$ for each $\mathcal{E} \in \mathcal{V}/\sim$.

If $F \setminus \bigcup_{\mathcal{E} \in \mathcal{V}/\sim} W_{\mathcal{E}} = \emptyset$, then $\mathcal{W} = \{W_{\mathcal{E}} : \mathcal{E} \in \mathcal{V}/\sim\}$ is as required. So assume $F \setminus \bigcup_{\mathcal{E} \in \mathcal{V}/\sim} W_{\mathcal{E}} \neq \emptyset$. Since $F \setminus \bigcup_{\mathcal{E} \in \mathcal{V}/\sim} W_{\mathcal{E}}$ is a compact subset of the zero-dimensional space X and it is covered by \mathcal{V} , there is a pairwise disjoint collection $\{W(V) : V \in \mathcal{V}\}$ of clopen sets covering it such that $W(V) \subset V$ and $(\bigcup_{\mathcal{E} \in \mathcal{V}/\sim} W_{\mathcal{E}}) \cap W(V) = \emptyset$ for each $V \in \mathcal{V}$. Then putting $\mathcal{V}' = \{V \in \mathcal{V} : W(V) \cap F \neq \emptyset\}, \ \mathcal{W} = \{W_{\mathcal{E}} : \mathcal{E} \in \mathcal{V}/\sim\} \cup \{W(V) : V \in \mathcal{V}'\}$ is the desired one. \Box

NOBUYUKI KEMOTO

Observe that by a similar proof, "Let X be a zero-dimensional space, F nonempty compact subset of X..." in the above lemma can be replaced by "Let X be a normal strongly zero-dimensional space, F nonempty closed subset of X...".

Lemma 7. Let γ be a nonzero-ordinal, $F \in \mathcal{K}(\gamma)$ and \mathcal{V} a finite collection of open sets in γ with $F \in \langle \mathcal{V} \rangle$. Then there are $n_F \in \omega$ and decreasing sequences $\{\alpha_i : i < n_F\}$ and $\{\beta_i : i < n_F\}$ of ordinals in γ such that

- (1) $\alpha_0 = \max F, \{\alpha_i : i < n_F\} \subset F.$
- (2) $\alpha_{i+1} \leq \beta_i < \alpha_i$ for each $i < n_F$, where $\alpha_{n_F} = -1$.
- (3) $F \in \langle \{ (\beta_i, \alpha_i] : i < n_F \} \rangle \subset \langle \mathcal{V} \rangle.$

Proof. By the Lemma above, we may assume that \mathcal{V} is a finite pairwise disjoint collection of clopen sets in γ .

Let $\alpha \in F$. Fix the unique $V_{\alpha} \in \mathcal{V}$ with $\alpha \in V_{\alpha}$ and let $h_F(\alpha) = \min\{\beta \in F : [\beta, \alpha] \cap F \subset V_{\alpha}\}$. Since V_{α} is open and $h_F(\alpha) \in V_{\alpha}$, we can find $g_F(\alpha) < h_F(\alpha)$ with $-1 \leq g_F(\alpha)$ such that $(g_F(\alpha), h_F(\alpha)] \subset V_{\alpha}$. Then $g_F(\alpha) < \alpha$ and $\alpha \in (g_F(\alpha), \alpha] \cap F = [h_F(\alpha), \alpha] \cap F \subset V_{\alpha}$. Therefore if $F \cap [0, h_F(\alpha)) \neq \emptyset$, then by $F \cap [0, h_F(\alpha)) = F \cap [0, g_F(\alpha)]$, max $(F \cap [0, h_F(\alpha)))$ exists and is $\leq g_F(\alpha)$.

Now we will define such sequences by downward induction. First let $\alpha_0 = \max F$ and $\beta_0 = g_F(\alpha_0)$. Assume that for each i < n, decreasing sequences $\{\alpha_i : i < n\}$ and $\{\beta_i : i < n\}$ are defined with $\beta_i = g_F(\alpha_i) < \alpha_i$. If $F \cap [0, h_F(\alpha_{n-1})) = \emptyset$, then stop the induction and let $n_F = n$. Otherwise let $\alpha_n = \max(F \cap [0, h_F(\alpha_{n-1})))$ and $\beta_n = g_F(\alpha_n)$.

Since such α_i 's are strictly decreasing, this induction will be stopped in finite steps. Now it is straightforward to show that these sequences satisfy the required conditions.

By $cf\omega_1 \neq 1$, 2^{ω_1} is not normal. On the other hand:

Theorem 8. If κ is a regular uncountable cardinal, then $\mathcal{K}(\kappa)$ is normal.

Proof. Let \mathcal{F} and \mathcal{H} be disjoint closed sets in $\mathcal{K}(\kappa)$. Let M_0 be an elementary submodel of $H(\theta)$, where θ is large enough, such that $\mathcal{F}, \mathcal{H}, \kappa \in M_0$ and $|M_0| < \kappa$. For elementary submodels, the readers should refer to [1, 4]. Assume that elementary submodels $M_0, ..., M_{n-1}$ of $H(\theta)$ with $M_0 \subset ... \subset M_{n-1}$ and $|M_{n-1}| < \kappa$ are defined. Let M_n be an elementary submodel of $H(\theta)$ satisfying $M_{n-1} \cup \bigcup(M_{n-1} \cap \kappa) \subset M_n$ and $|M_n| < \kappa$. Then the union $M = \bigcup_{n \in \omega} M_n$ is also an elementary submodel of $H(\theta)$ and satisfies $\mathcal{F}, \mathcal{H}, \kappa \in M, |M| < \kappa$ and $\kappa \cap M$ is an ordinal. Let $\gamma = \kappa \cap M < \kappa$.

Claim 1. If $F \in \mathcal{K}(\kappa) \cap M$, then max $F < \gamma$.

Proof. Since F is a compact subset of κ , max F exists and $< \kappa$. On the other hand max F is determined by F and $F \in M$, by elementarity, we have max $F \in M$. Therefore max $F \in \kappa \cap M = \gamma$.

To show that \mathcal{F} and \mathcal{H} are separated by disjoint open sets in $\mathcal{K}(\kappa)$, it suffices to show :

(*): for each $F \in \mathcal{F} \cup \mathcal{H}$, there is a finite collection \mathcal{V}_F of open sets of κ such that

$$F \in \langle \mathcal{V}_F \rangle,$$

$$\left(\bigcup_{F\in\mathcal{F}}\langle\mathcal{V}_F\rangle\right)\cap\left(\bigcup_{H\in\mathcal{H}}\langle\mathcal{V}_H\rangle\right)=\emptyset.$$

Therefore by elementarity, it suffices to show $M \models (*)$, that is, for each $F \in (\mathcal{F} \cup \mathcal{H}) \cap M$, there is a finite collection $\mathcal{V}_F \in M$ of open sets of κ such that

$$F \in \langle \mathcal{V}_F \rangle,$$

$$\langle \mathcal{V}_F \rangle \cap \langle \mathcal{V}_H \rangle = \emptyset$$
 for each $F \in \mathcal{F} \cap M$ and $H \in \mathcal{H} \cap M$.

Observe that by Claim 1, $\mathcal{F} \cap M$ and $\mathcal{H} \cap M$ are subsets of the compact space $\mathcal{K}([0,\gamma]) = 2^{[0,\gamma]}$.

Claim 2.
$$\operatorname{Cl}_{\mathcal{K}([0,\gamma])}(\mathcal{F} \cap M) \cap \operatorname{Cl}_{\mathcal{K}([0,\gamma])}(\mathcal{H} \cap M) = \emptyset$$

Proof. Assume that there is a $K \in \operatorname{Cl}_{\mathcal{K}([0,\gamma])}(\mathcal{F} \cap M) \cap \operatorname{Cl}_{\mathcal{K}([0,\gamma])}(\mathcal{H} \cap M)$. Let $\langle \mathcal{V} \rangle$ be an arbitrary neighborhood of K in $\mathcal{K}(\kappa)$, that is, \mathcal{V} is a finite collection of open sets in κ with $K \in \langle \mathcal{V} \rangle$. Since $K \subset [0,\gamma] \subset \kappa$, we may assume that $\bigcup \mathcal{V} \subset [0,\gamma]$. Then $\langle \mathcal{V} \rangle$ is a neighborhood of K in $\mathcal{K}([0,\gamma])$. It follows from $K \in \operatorname{Cl}_{\mathcal{K}([0,\gamma])}(\mathcal{F} \cap M)$ that $\emptyset \neq \langle \mathcal{V} \rangle \cap (\mathcal{F} \cap M) \subset \langle \mathcal{V} \rangle \cap \mathcal{F}$. Since $\langle \mathcal{V} \rangle$ was an arbitrary neighborhood of K in $\mathcal{K}(\kappa)$, we have $K \in \operatorname{Cl}_{\mathcal{K}(\kappa)}\mathcal{F} = \mathcal{F}$. Similarly we have $K \in \mathcal{H}$, a contradiction.

By normality of $\mathcal{K}([0,\gamma])$ and Claim 2, for each $F \in (\mathcal{F} \cup \mathcal{H}) \cap M$, there is a finite collection \mathcal{V}_F of open sets of $[0,\gamma]$ such that

$$F \in \langle \mathcal{V}_F \rangle,$$

 $\langle \mathcal{V}_F \rangle \cap \langle \mathcal{V}_H \rangle = \emptyset$ for each $F \in \mathcal{F} \cap M$ and $H \in \mathcal{H} \cap M$.

For each $F \in (\mathcal{F} \cup \mathcal{H}) \cap M$, since $F \in \langle \mathcal{V}_F \rangle$, applying Lemma 7 to $\gamma + 1 = [0, \gamma]$, we can find two finite sequences $\{\alpha_i^F : i < n_F\}$ and $\{\beta_i^F : i < n_F\}$ of $[0, \gamma]$ satisfying (1)-(3).

By (3), we may assume $\mathcal{V}_F = \{(\beta_i^F, \alpha_i^F] : i < n_F\}$. By Claim 1, $\alpha_0^F = \max F < \gamma \subset M$, therefore these two sequences are subsets of M. So by elementarity, these two finite sequences are elements in M. \mathcal{V}_F is determined by these two sequences, consequently we have $\mathcal{V}_F \in M$. This completes the proof.

The following question seems to be strangely difficult:

Question C. Find a proof of the Theorem above without using elementary submodel techniques.

Lemma 9. If $\omega_1 \leq cf\gamma < \gamma$, then $\mathcal{K}(\gamma)$ is not normal.

Proof. Let $\kappa = cf\gamma$. Choose a strictly increasing sequence $\{\gamma(\alpha) : \alpha < \kappa\}$ such that

- (1) $\operatorname{cf} \gamma < \gamma(0)$,
- (2) $\gamma(\alpha) = \sup\{\gamma(\beta) : \beta < \alpha\}$ if α is limit.
- (3) $\gamma = \sup\{\gamma(\alpha) : \alpha < \kappa\}.$

It is routine to check that the mapping $\langle \alpha, \beta \rangle \to \{\alpha, \gamma(\beta)\}$ embeds $(\kappa + 1) \times \kappa$ into $[\gamma]^{\leq 2}$ and, hence, into $\mathcal{K}(\gamma)$ as a closed subspace. This concludes the proof, since it is well-known that $(\kappa + 1) \times \kappa$ is not normal if κ is an uncountable regular cardinal.

Corollary 10. For every nonzero-ordinal α , $\mathcal{K}(\alpha)$ is normal iff, if $cf\alpha$ is uncountable, then $cf\alpha = \alpha$.

Proof. The "only if" part follows from Lemma 9.

The "if" part: If $cf\alpha = 1$, then $\mathcal{K}(\alpha)$ is compact so normal. If $cf\alpha = \omega$, then as in the proof of Theorem 5, $\mathcal{K}(\alpha)$ is σ -compact so normal. If $cf\alpha$ is uncountable, then $cf\alpha = \alpha$ so this case follows from Theorem 8.

Acknowledgement. The author thanks the referee of the present paper, Professors Y. Hirata, T. Nogura and K. Tamano for their valuable comments.

References

- A. Dow, An introduction to applications of elementary submodels to topology, Topology Proc. 13 (1988), 17–72.
- [2] V. M. Ivanova, On the theory of spaces of subsets (Russian), Dokl. Akad. Nauk SSSR (N.S.), 101 (1955) 601–603.
- [3] J. Keesling, Normality and properties related to compactness in hyperspaces, Proc. Amer. Math. Soc., 24 (1970) 760-766.
- [4] K. Kunen, Set theory. An introduction to independence proofs, Studies in Logic and the Foundations of Mathematics, 102 (1980), North-Holland Publishing Co., Amsterdam.
- [5] E. Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc., 71 (1951) 152–182.
- [6] V. Popov, On the subspaces of exp X, Colloq. Math. Soc. János Bolyai, 23 (1980) 977–984.
- [7] N. V. Velichko, On the space of closed subsets; English translation, Siberian Math. Journ., 16 (1975) 484–486.

DEPARTMENT OF MATHEMATICS, FACULTY OF EDUCATION, OITA UNIVERSITY, DANNOHARU, OITA, 870-1192, JAPAN