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Abstract. Let βω denote the Stone-Čech compactification of the countable discrete
space ω. We show that if p is a point of βω\ω, then all subspaces of (ω ∪ {p}) × ω1

are paranormal, where (ω ∪ {p}) is considered as a subspace of βω. This answers a
van Douwen’s question. Moreover we show that the existence of a paranormal non-
normal subspace of (ω + 1) × ω1 is independet of ZFC, where ω + 1 is the ordinal
space {0, 1, 2, ..., ω} with the usual order toplogy.

1. Introduction

Throughout this paper, we assume that all spaces are regular and T1. As usual,
an ordinal is equal to the set of smaller ordinals, for example, j = {0, 1, 2, 3, ..., j−1}
for each natural number j. The symbols ω and ω1 stand for the set of all finite and
respectively all countable ordinals. If an ordinal is considered as a topological space,
then its topology is induced by the usual order. It is well known that all subspaces
of ordinals are normal and countably paracompact. A space X is paranormal ([vD])
if for every countable discrete collection {F (n) : n ∈ ω} of closed sets, there is a
collection {U(n, k) : n, k ∈ ω} of open sets such that F (n) ⊂ U(n, k) for each
n, k ∈ ω , and

∩
n,k∈ω ClX U(n, k) = ∅. Let us recall that {F (n) : n ∈ ω} is discrete

in X if each point in X has a neighborhood U with |{n ∈ ω : F (n) ∩ U ̸= ∅}| ≤
1. Obviously, the normal spaces as well as the countably paracompact ones are
paranormal. Van Douwen and Katětov, respectively, proved the following.

Proposition 1.1. [vD, Theorem 5.2] If a space Y has a closed subset K which is
not regular Gδ, then the subspace Z = ω × Y ∪ {ω} × (Y \K) of (ω + 1) × Y is not
paranormal.

Here a subset K is a regular Gδ subset if it is an intersection of a countable
collection of closed neighborhoods.

Proposition 1.2. [Ka, Corollary 1] If a space Y has a closed subset K which is
not regular Gδ and C is a countable space with a non-isolated point p, then the
subspace Z = (C\{p}) × Y ∪ {p} × (Y \K) of C × Y is not normal.

Van Douwen [vD, the remark after Theorem 5.2] also pointed out that Zenor
essentially proved the following.
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Proposition 1.3. [Ze, Theorem 8] If a space Y has a closed subset K which is
not regular Gδ, and C is a countable space with a non-isolated point p, then the
subspace Z = (C\{p}) × Y ∪ {p} × (Y \K) of C × Y is not countably paracompact.

Van Douwen asked:

Van Douwen’s question. If a space Y has a closed subset K which is not regular
Gδ and C is a countable space with a non-isolated point, then does C × Y have a
non-paranormal subspace?

Observe that in the ordinal ω1, the set Lim consisting of all limit ordinals in ω1

is not a (regular) Gδ subset in ω1.
In the present paper, we will show that if p is a point of βω\ω, where βω

denotes the Stone-Čech compactification of the countable discrete space ω, then
all subspaces of (ω ∪ {p}) × ω1 are paranormal. Moreover, we will show that the
existence of a paranormal non-normal subspace of (ω + 1) × ω1 is independet of
ZFC.

Now we introduce two known notions lying between normality and paranormal-
ity. A space X is said to be discretely ω-expandable ([SK]) if for every countable
discrete collection {F (n) : n ∈ ω} of closed sets, there is a locally finite collection
{U(n) : n ∈ ω} of open sets with F (n) ⊂ U(n) for each n ∈ ω. A space X is said
to have the weak D(ω)-property ([KOT]) if for every countable discrete collection
{F (n) : n ∈ ω} of closed sets, there is a collection {U(n) : n ∈ ω} of open sets
such that F (n) ⊂ U(n) for each n ∈ ω and

∩
n∈ω ClX U(n) = ∅. It is easy to see

that discrete ω-expandability is a common generalization of both normality and
countable paracompactness. Moreover, the discrete ω-expandability implies the
weak D(ω)-property and the weak D(ω)-property implies paranormality. Here we
introduce a new notion, which will play an important role in our discussion, and
which lies between discrete ω-expandability and the weak D(ω)-property. A space
X is said to have the weak C(ω)-property if for every countable discrete collection
{F (n) : n ∈ ω} of closed sets, there is a collection {U(n) : n ∈ ω} of open sets such
that F (n) ⊂ U(n) for each n ∈ ω and

∩
n∈J ClX U(n) = ∅ for each J ∈ [ω]ω, where

[A]κ denotes the set {B ⊂ A : |B| = κ} for a set A and a cardinal κ.
Observe that the remark after [vD, Theorem 5.2] works to prove the following:

Proposition 1.4. If a space Y has a closed subset K which is not regular Gδ,
and C is a countable space with a non-isolated point p, then the subspace Z =
(C\{p}) × Y ∪ {p} × (Y \K) of C × Y is not discretely ω-expandable.

So relating to the van Douwen’s question, it is natural to ask:

Question I. If a space Y has a closed subset K which is not regular Gδ and C is a
countable space with a non-isolated point, then does C ×Y have a subspace without
the weak C(ω)-property?

It is known that if A and B are subspaces of ordinals, then the countable para-
compactness of A × B is equivalent to the weak D(ω)-property of A × B ([KOT]).
Another related question is :

Question II. [KOT, problem (ii)] For every subspace X of a product space of
two ordinals, is the countable paracompactness of X equivalent to the weak D(ω)-
property?

We will also answer these questions.
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Throughout the present paper, we use the following specific notation. Let X be
a subspace of a product space S × T , and let s ∈ S, A ⊂ S and B ⊂ T . Set

Vs(X) = {t ∈ T : ⟨s, t⟩ ∈ X},

XA = X ∩ A × T,XB = X ∩ S × B,XB
A = X ∩ A × B.

For each A ⊂ ω1, we denote by Lim(A) the set {α < ω1 : α = sup(A ∩ α)}, in
other words, the set of all cluster points of A in ω1. For technical reasons only, we
consider ”−1” is the immediate predecessor of the ordinal 0, and sup ∅ = −1. Note
that Lim(A) is closed unbounded (cub) in ω1 whenever A is unbounded in ω1. In
particular, assume that C is a cub set in ω1, then Lim(C) ⊂ C. In this case, we
set Succ(C) = C\Lim(C), and pC(α) = sup(C ∩ α) for each α ∈ C. Note that, for
each α ∈ C, pC(α) ∈ C ∪ {−1}, and pC(α) < α iff α ∈ Succ(C). So, pC(α) is the
immediate predecessor of α in C ∪{−1} whenever α ∈ Succ(C) . Moreover observe
that ω1\C is the union of the pairwise disjoint collection {(pC(α), α) : α ∈ Succ(C)}
of open intervals of ω1. So if Y is a subspace of ω1 which is disjoint from some cub
set C of ω1, then Y can be represented as the free union

Y =
⊕

α∈Succ(C)

(Y ∩ (pC(α), α]).

For simplicity, we use Lim and Succ instead of Lim(ω1) and Succ(ω1), respectively.

2. On paranormality

According to Proposition 1.4, the subspace Z = ω × ω1 ∪ {p} × (ω1\Lim) of
(ω ∪ {p})× ω1 is not discrete ω-expandable whenever p is a point of βω\ω. In this
section, we will show that all subspaces of (ω ∪ {p}) × ω1 have the weak C(ω)-
property.

We omit the proof of the following easy lemmas.

Lemma 2.1. If X is a hereditarily normal space and Y ⊂ X, then for every
countable discrete (in Y ) collection {F (n) : n ∈ ω} of closed sets in Y , there is a
pairwise disjoint collection {U(n) : n ∈ ω} of open sets in X with F (n) ⊂ U(n) for
each n ∈ ω, and such that {ClX U(n) ∩ Y : n ∈ ω} is also pairwise disjoint.

Lemma 2.2. If I is a finite set and {Wi(n) : n ∈ ω} is a collection of sub-
sets of X such that

∩
n∈J ClX Wi(n) = ∅ for every i ∈ I and J ∈ [ω]ω, then∩

n∈J ClX(
∪

i∈I Wi(n)) = ∅ for every J ∈ [ω]ω.

Recall that a subset X of ω1 is said to be stationary in ω1 if X ∩ C ̸= ∅ for any
cub set C in ω1.

Lemma 2.3. Assume that X is stationary in ω1 and F = {F (n) : n ∈ ω} is a
countable discrete collection of closed sets of X. Then there is an α < ω1 such that
|{n ∈ ω : F (n) ∩ (α, ω1) ̸= ∅ | ≤ 1.

Proof. Since F is discrete in X, for each β ∈ X, fix an f(β) < β with |{n ∈ ω :
F (n) ∩ (f(β), β] ̸= ∅ | ≤ 1. Then, by Pressing Down Lemma (PDL), we find a
stationary set S ⊂ X and an α < ω1 such that f(β) = α for every β ∈ S. It is
straightforward to see this α is as desired. ¤
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Let C be a countable space with a unique non-isolated point p, say C = ω∪{p}.
Then we can identify the point p as the filter {U ∩ ω : U is a neighborhood of p}
on ω. In this case, this filter p is free, that is,

∩
p = ∅. If p is a free ultrafilter on

ω, then C = ω ∪{p} is a subspace of βω. Moreover if p = {U ⊂ ω : ω\U is finite },
then C = ω ∪ {p} is considered as the ordinal space ω + 1.

Theorem 2.4. Let C = ω ∪ {p} be a countable space with a unique non-isolated
point p. Then for every pairwise disjoint collection {A(n) : n ∈ ω} of ω, {n ∈ ω :
p ∈ Clω∪{p} A(n)} is finite if and only if all subspaces of (ω ∪ {p}) × ω1 have the
weak C(ω)-property.

Proof. “if” part: Assume there is a pairwise disjoint collection {A(n) : n ∈ ω} of ω
such that J0 = {n ∈ ω : p ∈ Clω∪{p} A(n)} is infinite. Let X = ω ×ω1 ∪ {p}× Succ
and F (n) = A(n) × Lim for each n ∈ ω. Then F = {F (n) : n ∈ ω} is a discrete
collection of closed sets in X. Let {U(n) : n ∈ ω} be a collection of open sets such
that F (n) ⊂ U(n) for each n ∈ ω. Let j ∈ A =

∪
n∈J0

A(n), say j ∈ A(n). Since

Vj(F (n)) = Lim is stationary, there is an αj < ω1 such that X
(αj ,ω1)

{j} ⊂ U(n). Pick
a β ∈ Succ with sup{αj : j ∈ A} < β. Then ⟨p, β⟩ ∈ ClX U(n) for each n ∈ J0.
Hence X does not have the weak C(ω)-property.

“only if” part: Let X ⊂ (ω ∪ {p}) × ω1. We consider two cases.

Case 1. Vp(X) is stationary in ω1.

We will show the normality of X, which implies the weak C(ω)-property of X.
Let F (0) and F (1) be disjoint closed sets in X. By Lemma 2.3 one of F (0) and
F (1), say F (0), has the empty intersection with X

(α0,ω1)
{p} for some α0 < ω1. Since

⟨p, α⟩ /∈ F (0), for each α ∈ Vp(X) ∩ (α0, ω1), we can find an open neighborhood of
N(α) of p and an f(α) < α in such a way that α0 ≤ f(α) and X

(f(α),α]
N(α) ∩F (0) = ∅.

Applying PDL, we find an α1 < ω1 and a stationary set S ⊂ Vp(X)∩ (α0, ω1) such
that f(α) = α1 for each α ∈ S. Define W (α) =

∪
{W ⊂ ω ∪ {p} : X

(α1,α]
W ∩ F (0) =

∅ and W is open in ω ∪{p}} for each α ∈ S. Then W (α) is an open neighborhood
of p in ω ∪ {p} and N(α) ⊂ W (α). Since the collection W = {W (α) : α ∈ S} is
decreasing and ω ∪ {p} is countable, we find a γ ∈ S such that W (γ) = W (α) for
each α ∈ S\γ. Let W = W (γ). Then we have X

(α1,ω1)
W ∩ F (0) = ∅. Since both

W and (α1, ω1) are closed and open (clopen) in ω ∪ {p} and ω1 respectively, so is
X

(α1,ω1)
W in X. So X can be represented as the free union

X = X [0,α1]
⊕

X
(α1,ω1)
ω\W

⊕
X

(α1,ω1)
W .

The subspace X [0,α1] is normal because it is countable, and also X
(α1,ω1)
ω\W is normal,

because it can be represented as the free union

X
(α1,ω1)
ω\W =

⊕
j∈ω\W

X
(α1,ω1)
{j}

of subspaces of X which are homeomorphic to some subspaces of ω1. Moreover
X

(α1,ω1)
W does not meet F (0). These considerations yield disjoint open sets U(0)

and U(1) containing F (0) and F (1), respectively. Therefore X is normal.
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Case 2. Vp(X) is not stationary in ω1.

Let F = {F (n) : n ∈ ω} be a discrete collection of closed sets in X. Since
{Vp(F (n)) : n ∈ ω} is a discrete collection of closed sets in Vp(X) ⊂ ω1, by Lemma
2.1, there is a pairwise disjoint collection {U(n) : n ∈ ω} of open sets in ω1 such
that Vp(F (n)) ⊂ U(n) for each n ∈ ω and {Clω1 U(n) ∩ Vp(X) : n ∈ ω} remains
pairwise disjoint. Set W0(n) = X

U(n)
(n,ω)∪{p} for each n ∈ ω. Then W0(n) is open and

F (n)∩X{p} ⊂ W0(n) for each n ∈ ω. Since {Clω1 U(n)∩Vp(X) : n ∈ ω} is pairwise
disjoint, we have

∩
n∈J ClX W0(n) = ∅ for each J ∈ [ω]ω.

Next let A = {j ∈ ω : Vj(X) is stationary in ω1}. It follows from Lemma 2.3
that, for each j ∈ A, there is an αj < ω1 with |{n ∈ ω : F (n) ∩ X

(αj ,ω1)

{j} ̸= ∅}| ≤ 1.

Let γ0 = sup{αj : j ∈ A}. Then we have |{n ∈ ω : F (n) ∩ X
(γ0,ω1)
{j} ̸= ∅}| ≤ 1

for each j ∈ A. Let A(n) = {j ∈ A : F (n) ∩ X
(γ0,ω1)
{j} ̸= ∅}. Since the collection

{A(n) : n ∈ ω} is pairwise disjoint, the set {n ∈ ω : p ∈ Clω∪{p} A(n)} is finite.
Set W1(n) = X

(γ0,ω1)
A(n) for each n ∈ ω. Then W1(n) is open and F (n) ∩ X

(γ0,ω1)
A ⊂

W1(n) for each n ∈ ω. Since {n ∈ ω : p ∈ Clω∪{p} A(n)} is finite, we have∩
n∈J ClX W1(n) = ∅ for each J ∈ [ω]ω.
Since X [0,γ0] is countable so normal, so there is a collection W2(n) : n ∈ ω} of

open sets such that F (n)∩X [0,γ0] ⊂ W2(n) for every n ∈ ω and
∩

n∈J ClX W2(n) = ∅
for each J ∈ [ω]ω.

Next for each j ∈ (ω\A) ∪ {p}, we can find a cub set Dj disjoint from Vj(X)
because Vj(X) is not stationary. Since D =

∩
j∈(ω\A)∪{p} Dj is cub in ω1 and

XD
(ω\A)∪{p} = ∅, we represent

X(ω\A)∪{p} =
⊕

α∈Succ(D)

X
(pD(α),α]
(ω\A)∪{p}

as it is mentioned in the introduction. Therefore Y = X(ω\A)∪{p} is normal as a
free union of countable spaces. So there is a collection {U(n) : n ∈ ω} of open
sets in Y such that F (n) ∩ Y ⊂ U(n) for each n ∈ ω and {ClY U(n) : n ∈ ω} is
pairwise disjoint. Since Xω\A is open in X, W3(n) = U(n) ∩ Xω\A is also open in
X and F (n) ∩ Xω\A ⊂ W3(n). Since {ClY U(n) : n ∈ ω} is pairwise disjoint, so is
{ClX W3(n) : n ∈ ω}. Therefore

∩
n∈J ClX W3(n) = ∅ for each J ∈ [ω]ω.

Finally set W (n) =
∪

0≤i≤3 Wi(n) for each n ∈ ω. Then F (n) ⊂ W (n) for each
n ∈ ω and, by Lemma 2.2,

∩
n∈J ClX W (n) = ∅ for each J ∈ [ω]ω. ¤

If p is a free ultrafilter on ω, then for every pairwise disjoint collection {A(n) :
n ∈ ω} of ω, p ∈ Clω∪{p} A(n) for at most one n ∈ ω. So we have:

Corollary 2.5. Let p ∈ βω\ω. Then all subspaces of (ω ∪{p})×ω1 have the weak
C(ω)-property, therefore they are paranormal.

Corollary 2.5 answers Question I and the van Douwen’s question.

3. On normality

In this section, we will show that the discretely ω-expandable subspaces of C×ω1

are normal whenever C is a countable space with a unique non-isolated point.
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Theorem 3.1. Let C = ω ∪ {p} be a countable space with a unique non-isolated
point p. Then for every subspace X of C × ω1, the following are equivalent:

(1) X is normal.
(2) X is countably paracompact.
(3) X is discretely ω-expandable.

Proof. (1) → (2): Assume that X is a normal subspace of C × ω1. Since X is a
countable union of countably metacompact closed subspaces X{j}’s (j ∈ C), X is
also countably metacompact. By the normality, X is countably paracompact.

(2) → (3): Obvious.
(3) → (1): Let X ⊂ (ω ∪ {p}) × ω1 be discretely ω-expandable. Let A =

{j ∈ ω : Vj(X) is stationary in ω1 }. We may assume that Vp(X) is not stationary
in ω1, otherwise, by the proof of Case 1 of Theorem 2.4, X is normal. For each
j ∈ (ω\A)∪{p}, take a cub set Dj disjoint from Vj(X). Then D =

∩
j∈(ω\A)∪{p} Dj

is a cub set in ω1. Clearly X{p} and XD are disjoint closed sets in X and XD = XD
A .

Claim. X{p} and XD are separated by disjoint open sets in X.

Proof. For each j ∈ A, set F (j) = XD
{j}. It is easy to see that F = {F (j) : j ∈ A} is

a discrete collection of closed sets in X. By the discrete ω-expandability of X, there
is a locally finite collection U = {U(j) : j ∈ A} of open sets of X with F (j) ⊂ U(j)
for each j ∈ A. Since for each j ∈ A, Vj(F (j)) = Vj(X)∩D is stationary in ω1, by
PDL, we can find an αj < ω1 such that X

(αj ,ω1)

{j} ⊂ U(j). Let γ0 = sup{αj : j ∈ A}.
Then we have X

(γ0,ω1)
{j} ⊂ U(j) for each j ∈ A. Since U is locally finite, so is

{X(γ0,ω1)
{j} : j ∈ A}. Therefore for each α ∈ Vp(X), there is a neighborhood N(α)′

of p and an f(α) < α such that H(α) = {j ∈ A : X
(f(α),α]
N(α)′ ∩X

(γ0,ω1)
{j} ̸= ∅} is finite.

Then N(α) = N(α)′\H(α) is also a neighborhood of p for each α ∈ Vp(X). Since
X

(f(α),α]
N(α) ∩ X

(γ0,ω1)
{j} = ∅ for each j ∈ A and α ∈ Vp(X),

∪
α∈Vp(X) X

(f(α),α]
N(α) and

X
(γ0,ω1)
A are disjoint open sets which separate X

(γ0,ω1)
{p} and X

D∩(γ0,ω1)
A respectively.

Since X [0,γ0] is normal and XD = XD
A , XD and X{p} are also separated by disjoint

open sets in X. This completes the proof of Claim.

Using this claim, take disjoint open sets U and V containing X{p} and XD

respectively. Observe that X\U ⊂ X\X{p} = Xω =
⊕

j∈ω X{j} and

X\V ⊂ X\XD = Xω1\D =
⊕

α∈Succ(D)

X(pD(α),α].

Since
⊕

j∈ω X{j} and
⊕

α∈Succ(D) X(pD(α),α] are normal, X\U and X\V are also
normal closed subspaces. Hence X = (X\U) ∪ (X\V ) is normal. ¤
Problem 3.2. Let C be a countable space and X ⊂ C × ω1. Are normality,
countable paracompactness and discrete ω-expandability of X equivalent?

4. Paranormal non-normal subspaces of (ω + 1) × ω1

In this section, we will find equivalent combinatorial conditions of the existence
of a subspace of (ω + 1) × ω1 with the weak C(ω)-property which is not discretely
ω-expandable as well as the existence of a paranormal non-normal subspace of
(ω + 1) × ω1.
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Theorem 4.1. The following are equivalent:
(1) There is a non-normal subspace of (ω + 1) × ω1 which has the weak C(ω)-

property.
(2) The following property (A) holds:

(A): There is a collection {N(α) : α < ω1} of infinite subsets of ω such
that, for every pairwise disjoint collection {A(n) : n ∈ ω} of subsets of ω
and K ∈ [ω1]ω1 , there is an α ∈ K such that for every J ∈ [ω]ω, A(n)∩N(α)
is finite for some n ∈ J .

Proof. (1) → (2): Assume that X is a non-normal subspace of (ω + 1)×ω1 having
the weak C(ω)-property. Since X is not normal, similarily to Case 1 of the proof
of Theorem 2.4, Vω(X) is not stationary in ω1. Let

A = {j ∈ ω : Vj(X) is stationary in ω1},

and take a cub set Dj disjoint from Vj(X) for each j ∈ (ω\A) ∪ {ω}. Let D =∩
j∈(ω\A)∪{ω} Dj . Then it is straightforward to show that XD and X{ω} are disjoint

closed sets in X, XD
A = XD, and XA is an open set including XD

A = XD.

Claim 1. Vω(ClX XA) is uncountable.

Proof. Assume that Vω(ClX XA) is countable. Take an ordinal γ0 < ω1 with
Vω(ClX XA) ⊂ γ0. Then X = X [0,γ0]

⊕
X(γ0,ω1) and X [0,γ0] is normal. Let

Y = X(γ0,ω1). Since ClYA ∩ Y{ω} = ∅, U = Y \ClYA and V = YA are disjoint
open sets including Y{ω} and Y D, respectively. Then, as in the proof of Theorem
3.1, Y = (Y \U) ∪ (Y \V ) is normal. Hence X is normal, a contradiciton. This
completes the proof of Claim 1.

Enumerate Vω(ClX XA) = {α(γ) : γ < ω1} with the increasing order. For each
γ < ω1, since ⟨ω, α(γ)⟩ ∈ ClX XA and X is first countable, we can take two increas-
ing functions fγ : ω → A and hγ : ω → [0, α(γ)] in such a way that the sequence
S(γ) = {⟨fγ(l), hγ(l)⟩ : l ∈ ω} converges to ⟨ω, α(γ)⟩. Since the sequence S(γ) is
contained in XA and converges to ⟨ω, α(γ)⟩, we may assume that the function fγ is
strictly increasing, i.e., fγ(n′) < fγ(n) whenever n′ < n. Therefore N(γ) = ran(fγ)
(= {fγ(l) : l ∈ ω}) is an infinite subset of A for each γ < ω1. We will show that
the collection {N(γ) : γ < ω1} is as desired. Let {A(n) : n ∈ ω} be a pairwise
disjoint collection of ω and K ∈ [ω1]ω1 . Define F (n) = XD

A(n)∩A for each n ∈ ω.
Then F = {F (n) : n ∈ ω} is a discrete collection of closed sets in X. By the
weak C(ω)-property, there is a collection {U(n) : n ⊂ ω} of open sets in X such
that F (n) ⊂ U(n) for each n ∈ ω and

∩
n∈J ClX U(n) = ∅ for each J ∈ [ω]ω. Let

j ∈ A(n)∩A and α ∈ Vj(F (n)). Since ⟨j, α⟩ ∈ F (n) ⊂ U(n) and U(n) is open, there
is a gj(α) < α satisfying X

(gj(α),α]

{j} ⊂ U(n). Moreover since Vj(F (n)) = Vj(X) ∩D

is stationary, by PDL, we can find an αj < ω1 such that X
(αj ,ω1)

{j} ⊂ U(n). Let

γ0 = sup{αj : j ∈ (
∪

n∈ω A(n))∩A}. Then clearly we have X
(γ0,ω1)
A(n)∩A ⊂ U(n) for each

n ∈ ω. Since K is uncountable, take a γ ∈ K with γ0 < α(γ). Then ⟨ω, α(γ)⟩ ∈ X.
Let J ∈ [ω]ω. It follows from

∩
n∈J ClX X

(γ0,ω1)
A(n)∩A ⊂

∩
n∈J ClX U(n) = ∅ that there

is an n ∈ J such that ⟨ω, α(γ)⟩ /∈ ClX X
(γ0,ω1)
A(n)∩A. If A(n) ∩ N(γ) is infinite, then

the subsequence {⟨fγ(l), hγ(l)⟩ : l ∈ A(n) ∩ N(γ), hγ(l) > γ0} of S(γ) is a subset
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of X
(γ0,ω1)
A(n)∩A and converges to ⟨ω, α(γ)⟩. So we have ⟨ω, α(γ)⟩ ∈ ClX X

(γ0,ω1)
A(n)∩A, a

contradiction. Therefore A(n) ∩ N(γ) is finite.
(2) → (1): Let {N(α) : α < ω1} be a collection satisfying the property (A). Let

X be the subspace

X = ω × Lim∪
∪

α<ω1

(N(α) ∪ {ω}) × {α + 1}

of (ω + 1) × ω1.

Claim 2. X is not normal.

Proof. Obviously XLim and X{ω} are disjoint closed sets in X. Let W be an open
set containing XLim. For each j ∈ ω and α ∈ Vj(XLim) = Lim, since ⟨j, α⟩ ∈
XLim ⊂ W and W is open, we can find an fj(α) < α such that X

(fj(α),α]

{j} ⊂ W .

Applying PDL, for each j ∈ ω, there is an αj < ω1 satisfying X
(αj ,ω1)

{j} ⊂ W .

Setting γ0 = sup{αj : j ∈ ω}, we have X
(γ0,ω1)
ω ⊂ W . For any α ≥ γ0, since

N(α) × {α + 1} ⊂ X
(γ0,ω1)
ω ⊂ W , we have ⟨ω, α + 1⟩ ∈ ClX W ∩ X{ω}. Thus XLim

and X{ω} cannot be separated by disjoint open sets.

Claim 3. X has the weak C(ω)-property.

Proof. Let F = {F (n) : n ∈ ω} be a countable discrete collection of closed sets in
X. As in Case 2 of Theorem 2.4, we can find a collection {W0(n) : n ∈ ω} of open
sets in X such that F (n)∩X{ω} ⊂ W0(n) for each n ∈ ω and

∩
n∈J ClX W0(n) = ∅

for each J ∈ [ω]ω.
Next, for every j ∈ ω, applying Lemma 2.3, fix an αj < ω1 with |{n ∈ ω : F (n)∩

X
(αj ,ω1)

{j} ̸= ∅}| ≤ 1. Let γ0 = sup{αj : j ∈ ω}. Then |{n ∈ ω : F (n) ∩ X
(γ0,ω1)
{j} ̸=

∅}| ≤ 1 for every j ∈ ω. So setting A(n) = {j ∈ ω : F (n) ∩ X
(γ0,ω1)
{j} ̸= ∅} for each

n ∈ ω, we have that {A(n) : n ∈ ω} is a pairwise disjoint collection of subsets of ω.
Let

K =
∪

J∈[ω]ω

∩
n∈J

{α < ω1 : A(n) ∩ N(α) is infinite }.

Then it follows from the property (A) that K is countable. So pick a γ1 < ω1

with γ0 ≤ γ1 and α < γ1 for every α ∈ K. Define W1(n) = X
(γ1,ω1)
A(n) for each

n ∈ ω. Note that, for each n ∈ ω, F (n) ∩ X
(γ1,ω1)
ω ⊂ W1(n), W1(n) is open in

X, ClX W1(n)\W1(n) ⊂ X
(γ1,ω1)
{ω} and the collection {W1(n) : n ∈ ω} is pairwise

disjoint. Assume that there is a J ∈ [ω]ω with ⟨j, β⟩ ∈
∩

n∈J ClX W (n) for some
j and β. Since {W1(n) : n ∈ ω} is pairwise disjoint and ClX W1(n)\W1(n) ⊂
X

(γ1,ω1)
{ω} , we have j = ω and γ1 < β. It follows from ⟨j, β⟩ = ⟨ω, β⟩ ∈ X that

β = α + 1 for some α < ω1. Therefore γ1 ≤ α, thus α /∈ K. So it follows from
α /∈

∩
n∈J{α < ω1 : A(n)∩N(α) is infinite } that F = A(n)∩N(α) is finite for some

n ∈ J . Let N(α)′ = N(α)\F . Then (N(α)′ ∪ {ω}) × {α + 1} is a neighborhood of
⟨ω, α+1⟩ = ⟨j, β⟩ disjoint from W1(n) = X

(γ1,ω1)
A(n) . Now we have ⟨j, β⟩ /∈ ClX W1(n),

a contradiction. Therefore
∩

n∈J ClX W1(n) = ∅ for each J ∈ [ω]ω.
Since X [0,γ1] is countable so normal, so there is a collection {W2(n) : n ∈ ω} of

open sets such that F (n)∩X [0,γ1] ⊂ W2(n) for every n ∈ ω and
∩

n∈J ClX W2(n) = ∅
for each J ∈ [ω]ω.
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Finally set W (n) =
∪

0≤i≤2 Wi(n) for each n ∈ ω. Then F (n) ⊂ W (n) for each
n ∈ ω and, by Lemma 2.2,

∩
n∈J ClX W (n) = ∅ for each J ∈ [ω]ω. This completes

the proof of Claim 3. ¤

A similar proof of Theorem 4.1 works to show the following theorem, so we leave
its proof to the reader.

Theorem 4.2. The following are equivalent:
(1) There is a non-normal subspace of (ω + 1) × ω1 which is paranormal.
(2) There is a non-normal subspace of (ω + 1) × ω1 which has the weak D(ω)-

property.
(3) The following property (B) holds:

(B): There is a collection {N(α) : α < ω1} of infinite subsets of ω such
that, for every pairwise disjoint collection {A(n) : n ∈ ω} of subsets of ω
and K ∈ [ω1]ω1 , A(n) ∩ N(α) is finite for some α ∈ K and n ∈ ω.

Note that the property (A) implies the property (B). Here we ask:

Problem 4.3. In ZFC, are the properties (A) and (B) equivalent?

5. Independence of the existence of a
paranormal non-normal subspace of (ω + 1) × ω1

In this section, we see that the Continuum Hypothesis (CH) implies the property
(A) and that the Martin’s Axiom at ω1 (MA(ω1)) implies the negation of the
property (B). For undefined notions in this section, see [Ku].

Theorem 5.1. If there is a P -point p in βω\ω which has a neighborhood base of
cardinality ω1, then the property (A) holds.

Proof. Recall that a point p in a space X is a P-point in X if the intersection of
countably many neighborhoods of p is also a neighborhood of p.

Assume that p is a P -point in βω\ω with a neighborhood base {B(α) : α < ω1}
at p in βω\ω. Inductively defining N(α)’s, we can find a collection {N(α) : α < ω1}
of infinite subsets of ω such that {Clβω N(α)\ω : α < ω1} forms a neighborhood
base at p in βω\ω and N(α) ⊂∗ N(β), that is, N(α)\N(β) is finite, whenever
β < α. To show that the collection {N(α) : α < ω1} satisfies the property (A), let
{A(n) : n ∈ ω} be a pairwise disjoint collection of subsets of ω and K ∈ [ω1]ω1 .
Then F = {n ∈ ω : p ∈ Clβω A(n)} has at most one member. So for each n ∈ ω\F ,
we can take an α(n) < ω1 such that Clβω A(n) ∩ (Clβω N(α(n))\ω) = ∅, that is,
A(n) ∩ N(α(n)) is finite. Let α = sup{α(n) : n ∈ ω\F}. Then N(α) ⊂∗ N(α(n))
for each n ∈ ω\F . Let J ∈ [ω]ω. Then A(n) ∩ N(α) is finite for n ∈ J\F . ¤

If CH is assumed, then there is a P -point in βω\ω ([Ru]) and every point of
βω\ω has a neighborhood base of cardinality ω1, so we get:

Corollary 5.2. If CH is assumed, then there is a non-normal subspace of (ω +
1) × ω1 which has the weak C(ω)-property.

Moreover by Corollary 3.1:

Corollary 5.3. If CH is assumed, then there is a subspace of (ω + 1) × ω1 which
has the weak D(ω)-property but is not countably paracompact.

This corollary gives a consistently negative answer to Question II.
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Lemma 5.4. If MA(ω1) is assumed, then for every collection {N(α) : α < ω1}
of infinite subsets of ω, there are disjoint subsets A(0) and A(1) of ω such that
A(i) ∩ N(α) is infinite for every α < ω1 and i ∈ 2.

Proof. Let

P = {p : p ⊂ ω × 2, |p| < ω and p is a partial function }.

Define p ≤ q iff q ⊂ p. Then the partially ordered set ⟨P,≤⟩ satisfies the countable
chain condition (ccc)(see [Ku, p.54]). For each n ∈ ω and α < ω1, define

Dnα = {p ∈ P : n ∈ dom(p) and there are m0, m1 ∈ dom(p) such that

n < m0, n < m1, m0 ∈ N(α), m1 ∈ N(α), p(m0) = 0 and p(m1) = 1 }.

Then it is straightforward to show that each Dnα is dense in P . Applying MA(ω1),
find a generic filter G in P such that G ∩ Dnα ̸= ∅ for each n ∈ ω and α < ω1.
Observe that

∪
G is a function from ω to 2. Let A(i) = (

∪
G)−1(i) for each i ∈ 2.

Assume that A(i) ∩ N(α) is finite for some α < ω1 and i ∈ 2. Take an n ∈ ω with
A(i) ∩ N(α) ⊂ n and a p ∈ G with p ∈ Dnα. Then there is mi ∈ dom(p) such that
n < mi,mi ∈ N(α) and p(mi) = i. It follows from (

∪
G)(mi) = p(mi) = i that

mi ∈ A(i). But by mi ∈ N(α), we have mi ∈ A(i)∩N(α) ⊂ n. So mi < n < mi, a
contradiction. Hence A(i) ∩ N(α) is infinite for every α < ω1 and i ∈ 2. ¤
Theorem 5.5. If MA(ω1) is assumed, then for every collection {N(α) : α < ω1}
of infinite subsets of ω, there is a pairwise disjoint collection {A(n) : n ∈ ω} of
susets of ω such that A(n) ∩ N(α) is infinite for every α < ω1 and n ∈ ω.

Proof. Let {N(α) : α < ω1} be a collection of infinite subsets of ω. We will define,
by induction on n ∈ ω, disjoint subsets An(0) and An(1) of ω such that An(i)∩N(α)
is infinite for each α < ω1 and i ∈ 2. The existence of A0(0) and A0(1) follows from
Lemma 5.4. Assume An(0) and An(1) have been already defined. By the inductive
assumption, An(1)∩N(α) is infinite for every α < ω1, so applying Lemma 5.4 to the
collection {N(α) ∩ An(1) : α < ω1}, we get disjoint subsets An+1(0) and An+1(1)
of An(1) such that An+1(i) ∩ N(α) is infinite for every α < ω1 and i ∈ 2. This
completes the inductive construction. Finally put A(n) = An(0) for each n ∈ ω
Then {A(n) : n ∈ ω} is as desired. ¤
Corollary 5.6. If MA(ω1) is assumed, then the property (B) does not hold.

It follows Theorem 4.2 and Corollary 3.3 that:

Corollary 5.7. If MA(ω1) is assumed, then the paranormal subspaces of (ω+1)×
ω1 are normal.

Corollary 5.8. If MA(ω1) is assumed, then the subspaces of (ω + 1) × ω1 which
have the weak D(ω)-property are countably paracompact.

Finally we ask:

Problem 5.9. In ZFC, does there exist a subspace of ω2
1 which has the weak

D(ω)-property but is not countably paracompact?
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