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Abstract. We study separation and covering properties of special subspaces of

products of ordinals. In particular, it is proven that certain subspaces of Σ-products
of ordinals are quasi-perfect preimages of Σ-products of copies of ω. We obtain
as corollaries that products of ordinals are κ-normal and strongly zero-dimensional.
Also, σ-products and Σ-products of ordinals are shown to be countably paracompact,

κ-normal and strongly zero-dimensional. Normality in Σ-products and σ-products
of ordinals is also characterized. It is also shown that any continuous real-valued
function on a σ-product of ordinals has countable range.

0. Introduction

Products of ordinals provide a fairly comprehensive store of basic counterex-
amples delineating normality, countable paracompactness and closely related prop-
ertes. For example, it is well known that;

• ω1 × (ω1 + 1) is countably paracompact but not normal,
• if A and B are disjoint stationary sets in ω1, then A × B is neither normal

nor countably paracompact [KOT],
• ωω1 is normal, but ω1ω1 is not normal [Co],
• κω1 is countably (para)compact for every κ,
• ωω is metrizable, so normal and countably paracompact.

On the other hand,
• ω1ω is neither normal nor countably paracompact [Na, Do, Co].

Also, Fleissner, Kemoto and Terasawa [FKT] proved that finite products of sub-
spaces of ordinals are strongly zero-dimensional: every disjoint pair of zero-sets is
separated by disjoint clopen sets.

In a different line Kalantan and Szeptycki [KS] proved that arbitrary products
of ordinals are κ-normal: every disjoint pair of regular closed sets is separated by
disjoint open sets. In contrast, if A, B and C are stationary subsets of ω1 such
that any two have stationary intersection but the intersection of all three is not
stationary, then the product A × B × C is not κ-normal [HK].

In Section 1, we prove a technical result characterizing Σ-products of certain
subspaces of ordinals as quasi-perfect preimages of Σ-products of copies of the
discrete space ω. Using this, we obtain as a corollary that products of ordinals (and
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certain dense subsets) are both κ-normal and strongly zero-dimensional. Further
corollaries are obtained: in Section 2, ω1-compactness, countable paracompactness
and normality are characterized for Σ-products of ordinals.

In Section 3 we study σ-products of ordinals. We prove that many properties
of a σ-product of ordinals holds if and only if it holds for every finite subproduct.
Hence, such σ-products are countably paracompact, κ-normal, and strongly zero-
dimensional. Also it is proven that a continuous real-valued function on a σ-product
of ordinals has countable range. Elementary submodel techniques play a central
role in the proofs of Section 3.

Notation. Throughout this paper, spaces are regular topological spaces. Let Xi

be a space for each i ∈ κ and κ a cardinal.
∏

i∈κ Xi denotes the product space with
the usual Tychonoff product topology. When Xi = X for each i ∈ κ, we denote∏

i∈κ Xi by κX. For x ∈
∏

i∈κ Xi, x(i) denotes the i-th coordinate of x.
A Σ-product of the family of spaces {Xi : i ∈ κ} with a base point s ∈

∏
i∈κ Xi

is the subspace

Σ(
∏
i∈κ

Xi, s) = {x ∈
∏
i∈κ

Xi : |{i ∈ κ : x(i) ̸= s(i)}| ≤ ω}.

A σ-product of Xi’s (i ∈ κ) with a base point s ∈
∏

i∈κ Xi means the subspace

σ(
∏
i∈κ

Xi, s) = {x ∈
∏
i∈κ

Xi : |{i ∈ κ : x(i) ̸= s(i)}| < ω}.

For x in either the Σ-product or σ-product with a base point s, we let supt(x)
denotes the set {i ∈ κ : x(i) ̸= s(i)}.

A countable (finite) subproduct of
∏

i∈κ Xi means a product
∏

i∈B Xi for some
countable (finite) B ⊂ κ.

For a subset B ⊂ κ, πB : Σ(
∏

i∈κ Xi, s) → Σ(
∏

i∈B Xi, s ¹ B) denotes the
canonical projection map.

For a basic open set U of a product space, supt(U) denotes the set {i ∈ κ :
π{i}(U) ̸= Xi}. We will use a similar notation for basic open subsets of Σ and
σ-products.

A quasi-perfect map is a closed, continuous and onto map whose point inverses
are countably compact. The properties of quasi-perfect maps that we will use is
that they inversely preserve expandability and ω1-compactness. In addition count-
able paracompactness and other properties are inversely preserved by quasi-perfect
mappings, but, in general, normality is not.

1. Strong zero-dimensionality and κ-normality

First we prepare some Lemmas.

Lemma 1.1. For each i ∈ κ, let Yi =
⊕

n∈ω Yi(n) where each Yi(n) is sequentially
compact. Define gi : Yi → ω by gi(β) = n iff β ∈ Yi(n), moreover define g =∏

i∈κ gi :
∏

i∈κ Yi → κω by g(y)(i) = gi(y(i)). For each s ∈
∏

i∈κ Yi, the restriction
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g′ = g ¹ Σ(
∏

i∈κ Yi, s) : Σ(
∏

i∈κ Yi, s) → Σ(κω, g(s)) is a closed continuous onto
map.

Proof. Recall that a space is sequentially compact if every countably infinite subset
has a convergent subsequence.

Obviuosly, g′ is continuous and onto. Let Σ0 = Σ(
∏

i∈κ Yi, s), Σ1 = Σ(κω, g(s)),
E colsed in Σ0 and f ∈ ClΣ1 g′(E) = ClΣ1 g(E). Since by [KM, Corollary], Σ1 is
Fréchet, there is a subset {ej : j ∈ ω} ⊂ E such that {g(ej) : j ∈ ω} converges
to f (we write f = limj∈ω g(ej)). Then one can find an infinite countable subset
A ⊂ κ such that supt(f) ⊂ A and supt(ej) ⊂ A for each j ∈ ω. Well-order A as
A = {i(n) : n ∈ ω} and set Un = {u ∈ Σ1 : f ¹ An+1 = u ¹ An+1}, where An =
{i(m) : m < n}. Then Un is a neighborhood of f in Σ1. Let F−1 = ω. By induction
on ω, we will define a decreasing sequence {Fn : n ∈ ω} of infinite subsets of ω and
y(i(n)) ∈ Yi(n)(f(i(n))), n ∈ ω, such that for each n ∈ ω, y(i(n)) = limj∈Fn ej(i(n)).
Assume that F0, ..., Fn−1 and y(i(0)), ..., y(i(n−1)) have been already defined. Since
Un is a neighborhood of f = limj∈Fn−1 g(ej), F ′

n = {j ∈ Fn−1 : g(ej) ∈ Un} is
infinite. For j ∈ F ′

n, by i(n) ∈ An+1 and g(ej) ∈ Un, we have g(ej)(i(n)) = f(i(n)),
thus ej(i(n)) ∈ Yi(n)(f(i(n))), i. e., {ej(i(n)) : j ∈ F ′

n} ⊂ Yi(n)(f(i(n))). It follows
from the sequential compactness of Yi(n)(f(i(n))) that there are an infinite subset
Fn of F ′

n and a point y(i(n)) ∈ Yi(n)(f(i(n))) such that y(i(n)) = limj∈Fn ej(i(n)).
Define x ∈

∏
i∈κ Yi by

x(i) =
{

y(i(n)), if i = i(n) for some n ∈ ω,

s(i), otherwise.

Then x ∈ Σ0. Moreover since x(i(n)) = y(i(n)) ∈ Yi(n)(f(i(n))) and supt(f) ⊂
A, we have g(x) = f .

Fact. x ∈ ClΣ0{ej : j ∈ ω}.

Proof. Let U be a basic open neighborhood of x in Σ0. It suffices to prove that
ej ∈ U for infinitely many j ∈ ω. Since supt(ej) ⊂ A and x(i) = s(i) for each
i ∈ κ\A, we may assume supt(U) = {i(n) : n ≤ m} ⊂ A for some m ∈ ω. Since
limj∈Fn ej(i(n)) = y(i(n)) = x(i(n)) ∈ π{i(n)}(U) for each n ≤ m and {Fn : n ∈ ω}
is decreasing, we have ej ∈ U for all but finitely many j ∈ Fm. This completes the
proof of Fact. ⊣

Finally since x ∈ ClΣ0{ej : j ∈ ω} ⊂ ClΣ0 E = E, f = g(x) ∈ g(E), thus g is
closed. ⊣

Lemma 1.2. The Σ-product Σ = Σ(
∏

i∈κ Yi, s) of ω-bounded spaces Yi’s with a
base point s is ω-bounded.

Proof. Recall that a space is ω-bounded if each countable subset has a compact
closure. Let H be a countable subset of Σ. Then

∏
i∈κ ClYi{z(i) : z ∈ H} is a

compact subset of Σ which includes H. ⊣

Recall that a space has countable tightness if for each point x and a subset A
with x ∈ ClA, there is a countable subset A′ ⊂ A such that x ∈ ClA′. It is well-
known that a Σ-product space Σ has countable tightness if every finite subproduct
of Σ has countable tightness [KM, Proposition 1].
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Lemma 1.3. Let Y be ω-bounded, pX : X × Y → X the natural projection, g :
X → Z a closed continuous onto map, and Z have countable tightness. Then the
composition g ◦ pX : X × Y → Z is a closed continuous onto map.

Proof. Let E be a closed subset in X × Y and z ∈ ClZ g ◦ pX(E). Since Z has
countable tightness, there is a countable subset {ej : j ∈ ω} of E such that z ∈
ClZ{g ◦ pX(ej) : j ∈ ω}. Since g is closed, we can find a point x ∈ g−1(z) ∩
ClX{pX(ej) : j ∈ ω}. For each neighborhood U of x, set H(U) = {j ∈ ω :
pX(ej) ∈ U}. Since Y is ω-bounded, we can find a point y ∈

∩
{ClY {pY (ej) : j ∈

H(U)} : U is a neighborhood of x }, where pY denotes the natural projection to
Y . Let U × V be a basic open neighborhood of ⟨x, y⟩ in X × Y . It follows from
y ∈ ClY {pY (ej) : j ∈ H(U)} that there is j ∈ H(U) such that pY (ej) ∈ V . Then
ej = ⟨pX(ej), pY (ej)⟩ ∈ E ∩ U × V . Thus ⟨x, y⟩ ∈ ClX×Y E = E and therefore
z = g(x) = g ◦ pX(⟨x, y⟩) ∈ g ◦ pX(E). This shows that g ◦ pX is closed. ⊣

Now we prove one of main results of this paper:

Theorem 1.4. Let αi be an ordinal and Yi = {β < αi : cf β ≤ ω} for each
i ∈ κ. Then the Σ-product Σ = Σ(

∏
i∈κ Yi, s) with a base point s is a quasi-perfect

preimage of a Σ-product of copies of ω.

Proof. Set A(0) = {i ∈ κ : cf αi = ω} and A(1) = κ\A(0). Moreover let Σl =
Σ(

∏
i∈A(l) Yi, s ¹ A(l)) for each l ∈ 2 = {0, 1}, then Σ = Σ0 × Σ1. By Lemma 1.2,

Σ1 is ω-bounded.
For each i ∈ A(0), fix a strictly increasing sequence ⟨αi(n) : n ∈ ω⟩ cofinal in αi

with s(i) < αi(0) such that Yi(n) = Yi ∩ (αi(n − 1), αi(n)] is non-empty for each
n ∈ ω, where αi(−1) = −1. Then Yi =

⊕
n∈ω Yi(n) and each Yi(n) is sequentially

compact and ω-bounded. Define for each i ∈ A(0), gi : Yi → ω by gi(β) = n iff
β ∈ Yi(n). By Lemma 1.1, g = (

∏
i∈A(0) gi) ¹ Σ0 : Σ0 → Σ2 = Σ(A(0)ω, 0) is a

closed continuous onto map, where we let 0 denote the constant map having value
0. Since each Yi(n) is ω-bounded, each point inverse of g is ω-bounded. Since Σ2

has countable tightness, by Lemma 1.3, the composition g ◦ p : Σ = Σ0 × Σ1 → Σ2

is a closed continuous onto, wher p : Σ0 ×Σ1 → Σ0 denotes the natural projection.
Moreover for each f ∈ Σ2, (g ◦ p)−1(f) = g−1(f) × Σ1 is a product of two ω-
bounded sets, so it is ω-bounded. Therefore g ◦ p is quasi-perfect. This shows Σ is
a quasi-perfect preimage of Σ(A(0)ω, 0). ⊣

Recall that a space is ω1-compact if there is no uncountable closed discrete
subspace. The following two lemmas are due to [KM, Basic Lemma] and [En1,
Theorem 1], see also [NU, Proposition 2.1] for the latter one.

Lemma 1.5. [KM] Let Σ be a Σ-product of Xi’s (i ∈ κ) with a base point s, more-
over let F0 and F1 be disjoint closed sets in Σ. If Σ is ω1-compact and has count-
able tightness, then there is a countable subset B ⊂ κ such that ClX(B) πB(F0) ∩
ClX(B) πB(F1) = ∅, where X(B) =

∏
i∈B Xi and πB is the canonical projection.

Lemma 1.6. [En1] Let Σ be a Σ-product space of Xi’s (i ∈ κ) with a base point
s, Z a T2-space with Gδ-diagonal and f : Σ → Z a continuous map. If every finite
subproduct of

∏
i∈κ Xi is ω1-compact, then there are a countable subset B ⊂ κ and

a continuous map f ′ : X(B) =
∏

i∈B Xi → Z such that f = f ′ ◦ πB.
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Lemma 1.7. Every Σ-product of copies of ω is ω1-compact.

Proof. Let Σ be a Σ-product of copies of ω. Note that Σ-products of metric spaces
are collectionwise normal [Le]. If Σ were not ω1-compact, by the collectionwise
normality of Σ, there would be a disjoint collection of uncountably many non-
empty open sets in Σ. But Σ is a dense subspace of a product of separable spaces,
hence ccc. This is a contradiction. ⊣

The following result is due to [KS, Lemma 2]. Note that the proof does not use
elementary submodel techniques.

Lemma 1.8. [KS] Let αi be an ordinal and Yi = {β < αi : cf β ≤ ω} for each
i ∈ ω. Then Y =

∏
i∈ω Yi is a normal C∗-embedded subspace of

∏
i∈ω αi.

Nagami [Na] proved that if every finite subproduct of X =
∏

i∈ω Xi has covering
dimension ≤ n and X is normal, then X has also covering dimension ≤ n. With
the result of [FKT], these results yield:

Lemma 1.9. [KS, Na, FKT] Let αi be an ordinal and Yi = {β < αi : cf β ≤ ω} for
each i ∈ ω. Then Y =

∏
i∈ω Yi is a normal strongly zero-dimensional C∗-embedded

subspace of
∏

i∈ω αi.

Applying this lemma, we show:

Theorem 1.10. Let αi be an ordinal and Yi = {β < αi : cf β ≤ ω} for each i ∈ κ.
Then the Σ-product Σ = Σ(

∏
i∈κ Yi, s) with a base point s is a normal strongly

zero-dimensional C∗-embedded subspace of
∏

i∈κ αi.

Proof. Since ω1-compactness is inversely preserved by a quasi-perfect map, by The-
orem 1.4 and Lemma 1.7, Σ is also ω1-compact. Moreover since each Yi is first
countable, Σ has countable tightness, in fact it is Fréchet [KM]. It follows from
Lemmas 1.9 and 1.5 that Σ is normal and strongly zero-dimensional. To show
that Σ is C∗-embedded in

∏
i∈κ αi, let f : Σ → I be a coutinuous map, where I

denotes the closed unit interval [0, 1]. Applying Lemma 1.6 to Σ and
∏

i∈κ Yi, we
can find a countable subset B ⊂ κ and a continuous map f ′ : Y (B) =

∏
i∈B Yi → I

such that f = f ′ ◦ πB , where πB : Σ → Y (B) is the projection. Apply Lemma
1.8 to Y (B), then we have a continuous map h′ :

∏
i∈B αi → I extending f ′. Let

pB :
∏

i∈κ αi →
∏

i∈B αi be the projection map. Then h = h′ ◦ pB :
∏

i∈κ αi → I is
a continuous extension of f to

∏
i∈κ αi. ⊣

The next corollary follows from the fact that if a space has a dense C∗-embedded
κ-normal (strongly zero-dimensional) subspace, then it is also κ-normal [KS, The-
orem 1.3] (strongly zero-dimensional [En2, 7.1.17], respectively).

Corollary 1.11. Let αi be an ordinal, Yi = {β < αi : cf β ≤ ω} for each i ∈ κ and
Σ = Σ(

∏
i∈κ Yi, s), where s ∈

∏
i∈κ Yi. If Σ ⊂ Z ⊂

∏
i∈κ αi, then Z is κ-normal

and strongly zero-dimensional. In particular, both
∏

i∈κ αi and Σ(
∏

i∈κ αi, s) are
κ-normal and strongly zero-dimensional.

Remark 1.12. Note that ω1-compactness of Σ(
∏

i∈κ Yi, s) played an important
role in the above proofs.

First observe that in general, ω1-compactness is not productive (the Sorgenfrey
line is hereditarily separable so ω1-compact, but, as is well-known, the square is
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not ω1-compact). On the other hand, it is known that if every finite subproduct
of a product space is pseudo-ω1-compact, then its full product and Σ-product are
also pseudo-ω1-compact [NU]. Recall that a space is pseudo-ω1-compact if every
locally finite collection of non-empty open sets is countable. This result cannot
be extended to ω1-compactness: Przymusinski [Pr] constructed a Lindelöf space X
such that nX is Lindelöf for every n ∈ ω, but ωX is not normal. In fact, in his
proof of non-normality of ωX, an uncountable closed discrete subspace of ωX is
constructed. Therefore each finite product of copies of X is ω1-compact but the
countable product ωX is not ω1-compact. Another examples is due to Mycielski
[My]: he proved that ω1ω is not ω1-compact. In this case, countable subproducts
or Σ-products of ω1ω are ω1-compact by Lemma 1.7.

2. Countable paracompactness and ω1-compactness

Henceforth, a Σ-product (σ-product) of ordinals means a Σ-product (σ-product)
Σ(

∏
i∈κ αi, s) (σ(

∏
i∈κ αi, s)) of ordinals αi’s with some base point s. With minor

changes to the proof of Theorem 1.4 (for example, set Yi(n) = (αi(n− 1), αi(n)] in
this case), one can prove:

Theorem 2.1. Every Σ-product of ordinals is a quasi-perfect preimage of a Σ-
product of copies of ω.

Corollary 2.2. Every Σ-product of ordinals is expandable (hence countably para-
compact) and ω1-compact.

Proof. Recall a space is expandable if for each locally finite collecion F of closed
sets, there exists a locally finite collection U = {U(F ) : F ∈ F} of open sets with
F ⊂ U(F ). Note that expandable spaces are countably paracompact and preserved
by quasi-perfect preimages. Let Σ be a Σ-product of copies of ω. Since Σ-products
of metric spaces are countably paracompact (in fact, shrinking) and collectionwise
normal [Le], it is normal and expandable [Al]. By Theorem 2.1, Σ-product of
ordinals are expandable. In a similar way, ω1-compactness follows from Lemma
1.7. ⊣

We showed that products of ordinals are κ-normal and strongly zero-dimensional
in Corollary 1.11. Conover characterized normality of products of ordinals in [Co,
Theorem 3]. But the situation of countable paracompactness of such product spaces
is somewhat different from these properties.

Corollary 2.3. Let αi be an ordinal for each i ∈ κ. Then X =
∏

i∈κ αi is countably
paracompact (equivalently, expandable) iff A(0) = {i ∈ κ : cf αi = ω} is countable.

Proof. Assume that A(0) is not countable, then X contains a homeomorphic closed
copy of ω1ω. So X is not countably paracompact.

Assume that A(0) is countable. Then a similar proof of Theorem 1.4 or 2.1
works to show that F :

∏
i∈A(0) αi ×

∏
i∈A(1) αi → A(0)ω is quasi-perfect. Thus X

is expandable. ⊣

Thus for example, ω(ℵω) × ω1((ω1 + 1) × ω1) is countably paracompact, but
ω1(ℵω) × ω((ω1 + 1) × ω1) is not countably paracompact. In particular:
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Corollary 2.4. [Ao] Every countable product of ordinals is countably paracompact.

Nagami [Na] proved that if a countable product space X =
∏

i∈ω Xi is countably
paracompact and every finite subproduct of X is normal, then X is normal. So we
have:

Corollary 2.5. A countable product of ordinals is normal if and only if every finite
subproduct of it is normal.

It is known that Σ(κω1, s), s ∈ κω, is normal for each cardinal κ [Ko2, Theorem
3 or 4]. On the other hand as is well known, since Σ(ω1(ω1 + 1), s), s ∈ ω1(ω1 + 1),
contains a closed copy of ω1 and is homeomorphic to (ω1 + 1)×Σ(ω1(ω1 + 1), s) it
contains a closed copy of (ω1 + 1) × ω1, so it is not normal. The following result
clarifies this situation.

Theorem 2.6. Let αi be an ordinal with 2 ≤ αi for each i ∈ κ and s ∈
∏

i∈κ αi,
where κ is uncountable cardinal. Then Σ = Σ(

∏
i∈κ αi, s) is normal iff αi ≤ ω1 for

each i ∈ κ.

Proof. Assume that ω1 < αi for some i ∈ κ. Then as in the above argument, Σ
contains a closed copy of (ω1 + 1) × ω1.

To show the other direction, assume that αi ≤ ω1 for each i ∈ κ. By applying
Theorem 3 of [Co] for finite products, we have that every finite subproduct of∏

i∈κ αi is normal. So by Corollary 2.5, every countable subproduct of
∏

i∈κ αi is
normal. Since each αi is first countable, Σ has countable tightness. Moreover by
Lemma 1.7 and Theorem 2.1, Σ is also ω1-compact. Therefore by Lemma 1.5, Σ is
normal. ⊣

Observe that countable paracompactness and ω1-compactness are in general dif-
ferent topological properties (consider, for example, an uncountable discrete space).
However, for some important classes of spaces they can coincide. Indeed using the
fact that ω1ω is not ω1-compact [My], the following can be proved in a similar way
to Corollary 2.3.

Corollary 2.7. Let αi be an ordinal for each i ∈ κ. Then X =
∏

i∈κ αi is ω1-
compact iff A(0) = {i ∈ κ : cf αi = ω} is countable. Thus countable paracompact-
ness and ω1-compactness are equivalent for products of ordinals.

3. σ-products of ordinals

In this section we study σ-products of ordinals. In particular we show that such
spaces are countably paracompact and strongly zero-dimensional. Also, we prove
that a σ-product of ordinals is normal if and only if every finite subproduct is nor-
mal. One should note that this characterization does not hold for arbitary spaces:
If X is a Dowker space, then the product of X with σ(ω2, 0) is homeomorphic to
a non-normal σ-product all of whose finite subproducts are normal. We should
emphasize that it is open whether a general σ-product is countably paracompact if
and only if every finite subproduct is countably paracompact.

First note that if every finite subproduct of a product space is ω1-compact, then
its σ-product is also ω1-compact [NU]. This can be shown by assuming the existence
of an uncountable closed discrete subset {xα : α ∈ ω1} and then by applying the
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△-system lemma to {supt(xα) : α ∈ ω1}. Therefore every σ-product of ordinals is
also ω1-compact.

The other results require more work. In particular, the approach of Sections 1
and 2 are not readily applicable to σ-products. Essential to proving that the map
defined in Section 1 is quasi-perfect is that a Σ-product of a sequence ordinals of
uncountable cofinality is countably compact. Clearly, this fails for σ-products. In
this section, elementary submodel techniques play a crucial role in the proofs. For
background on elementary submodels see [D].

Let X be the σ-product σ(
∏

i∈κ αi, 0) of the sequence ⟨αi : i ∈ κ⟩ of ordinals
where we let 0 denote the constant function with value 0. We will use an elementary
submodel to define a metrizable space Y and a continuous surjection p : X → Y .
Although the map will not in general be closed, it will have additional properties
allowing us to analyze basic properties of X.

Let M be a countable elementary submodel of Hθ where θ is large enough, so
that

{αi : i ∈ κ} ∈ M.

For each ordinal β < sup(M ∩ON), where ON denotes the class of ordinal numbers,
let p̃(β) = min(M \ β). Then for each β < sup(M ∩ ON), “β ≤ p̃(β)” and “β ∈ M
iff p̃(β) = β” hold.

For each i ∈ M ∩ κ, define

Yi = {p̃(β) : β ∈ αi}.

Then it follows that for each i ∈ κ ∩ M ,
(a) Yi = αi ∩ M if cf(αi) ≤ ω
(b) Yi = (αi + 1) ∩ M if cf(αi) > ω

We give Yi the order topology, equivalently, the elementary submodel topology
determined by M . Therefore, each Yi is homeomorphic to a countable ordinal. Let

Y = σ(
∏

i∈κ∩M

Yi, 0)

Since every finite subset of M is an element of M we have Y ⊆ M . In the rest of this
section the expression sup{γ + 1 : γ ∈ M ∩ β} plays a crucial role. If β ∈ M ∩ON
and if we let q(β) = sup{γ + 1 : γ ∈ M ∩ β} then q(β) = min{η : p̃(η) = β}.
Moreover, the preimage p̃−1(β) is the closed interval [q(β), β].

Define a surjection p : X → Y by:

p(x)(i) = p̃(x(i)) for each i ∈ κ ∩ M.

Note that x(i) ∈ M iff p(x)(i) = x(i) for each i ∈ κ ∩ M , and that supt(x) ∩ M =
supt(p(x)). It is not difficult to verify that p is continuous. Indeed, if U is the
subbasic open set π−1

{i}((βi, γi]∩M) in Y with βi, γi ∈ M , then p−1(U) is the subbasic
open set π−1

{i}((βi, γi]) in X. Although, in general, p is not a closed mapping, it is
the case that p(D) is closed for any closed D ⊂ X such that D ∈ M :
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Lemma 3.1. For each D ∈ M if D ⊂ X is closed in X then p(D) is closed in Y .

Proof. Suppose that y /∈ p(D). Let A = supt(y) and let

A0 = {i ∈ A ∩ M : y(i) ≠ sup{γ + 1 : γ ∈ M ∩ y(i)}} ⊂ A,

Let B0 = {i ∈ A0 : y(i) = αi}. For each i ∈ A0, let ξi = sup{γ+1 : γ ∈ M∩y(i)}
( = sup(M ∩ y(i)) ). For each B ⊂ A0 such that B0 ⊂ B define zB ∈ X as follows

zB(i) =


0, if i ̸∈ M,

ξi, if i ∈ B,

y(i), otherwise.

Note that p(zB) = y for every such B. Thus if we let

CB = {x ∈ X : x(i) = y(i) for all i ∈ A0 \ B}

where B0 ⊂ B ⊂ A0, then
zB /∈ clX(CB ∩ D).

Otherwise, zB ∈ D and y = p(zB) ∈ p(D). So, for each such B, we may fix a basic
clopen neighborhood UB of zB such that

UB ∩ CB ∩ D = ∅

UB is determined by a finite family of clopen intervals restricted to M . Thus,
we may fix

(a) a finite set FB disjoint from supt(y)
(b) a set of ordinals {γB

i : i ∈ A \ A0} ⊂ M such that γB
i < y(i) for all i ∈ A \ A0,

and
(c) a set of ordinals {γB

i : i ∈ B} ⊂ M such that γB
i < y(i) for all i ∈ B,

such that UB =

{x ∈ X : ∀i ∈ FB(x(i) = 0)∧∀i ∈ A\A0(x(i) ∈ (γB
i , y(i)])∧∀i ∈ B(x(i) ∈ (γB

i , ξi])}.

Note that the ordinals γB
i ’s in (b) and (c) may be chosen to be in M : in the

case i ∈ A \ A0, y(i) = sup{γ + 1 : γ ∈ M ∩ y(i)}, and in the case i ∈ B,
zB(i) = sup{γ + 1 : γ ∈ M ∩ y(i)}.

Set F̂B = FB ∩ M and ÛB =

{x ∈ X : ∀i ∈ F̂B(x(i) = 0) ∧ ∀i ∈ A \ A0(x(i) ∈ (γB
i , y(i)])∧

∀i ∈ B0(x(i) ∈ (γB
i , αi)) ∧ ∀i ∈ B \ B0(x(i) ∈ (γB

i , y(i)])}.

Obviously CB , F̂B ∈ M . Since all parameteres in ÛB are in M , we also have ÛB ∈
M . Moreover since supt(x) ⊂ M for each x ∈ M , we have ÛB ∩ CB ∩ D ∩ M = ∅.
By elmentarity, we know that

(d) D is disjoint from CB ∩ ÛB .
Now define a basic open neighborhood V of y in Y as follows:
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For each i ∈ A0, let

γi = max{γB
i : B0 ∪ {i} ⊂ B ⊂ A0}.

For each i ∈ A \ A0, let

γi = max{γB
i : B0 ⊂ B ⊂ A0}.

Let F =
∪
{F̂B : B0 ⊂ B ⊂ A0}.

Let V be the basic clopen neighborhood of y:

V = {x ∈ Y : ∀i ∈ F (x(i) = 0) ∧ ∀i ∈ A(x(i) ∈ (γi, y(i)] ∩ M)}.

Claim. V ∩ p(D) = ∅

Proof. If not, we may fix x ∈ D such that p(x) ∈ V . Let

B = {i ∈ A0 : x(i) ̸= y(i)}

Note that B0 ⊂ B. By definition of p and the fact that p(x) ∈ V , we have that
x(i) = y(i) for all i ∈ A0 \ B, and
x(i) ∈ (γB

i , y(i)] for all i ∈ B \ B0, and
x(i) > γB

i for all i ∈ B0, and
x(i) ∈ (γB

i , y(i)] for all i ∈ A \ A0, and
x(i) = 0 for all i ∈ F̂B

But this contradicts (d). Thus V ∩ p(D) = ∅. This completes the proof that
p(D) is closed. ⊣

⊣

For X a σ-product of ordinals and for Y constructed as above, we will refer to
Y as the quotient of X modulo M . Indeed, it is not hard to show that the map
p : X → Y is a quotient map (this is discussed after the proof of Theorem 3.3
below).

To prove main result in this section, we will need another technical result:

Lemma 3.2. Let D ∈ M be a closed subset of X and x ∈ D (but not necessarily
in M). Then there is a x′ ∈ D such that supt(x′) = supt(x)∩M , p(x) = p(x′) and
x′(i) = sup(M ∩ x′(i)) if x′(i) /∈ M .

Proof. Define x′ ∈ X by

x′(i) =


x(i), if i ∈ κ ∩ M,x(i) ∈ M,

sup(M ∩ x(i)), if i ∈ κ ∩ M,x(i) /∈ M,

0, otherwise.

We show that x′ ∈ D. The other properties are evident. Let

A = supt(x) ∩ M and B = {i ∈ A : x(i) ∈ M}
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Let {Fn : n ∈ ω} be an increasing sequence of finite subsets of κ ∩ M such that∪
n∈ω

Fn = (κ ∩ M) \ A

Let un ∈
∏

i∈A(M ∩ αi) be such that for i ∈ B, un(i) = x(i) for all n, and for
i ∈ A \ B, {un(i) : i ∈ ω} is an increasing sequence cofinal in x′(i).

For each n, let Φn(z) be the following formula with one free variable z:

∀i ∈ B(z(i) = x(i)) ∧ ∀i ∈ A \ B(un(i) < z(i) < p(x)(i)) ∧ ∀i ∈ Fn(z(i) = 0)

Note that all parameters of Φn(z) are in M (p(x)(i) ∈ M even though p ̸∈ M).
Also, ∃z ∈ DΦn(z) is valid in Hθ (since x is a witness). Thus, by elementarity,
there is an xn ∈ D ∩ M such that Φn(xn). Note that A ⊂ supt(xn) ⊂ M , and
that by choice of the un’s and the Fn’s, we get that {xn : n ∈ ω} is a sequence of
elements of M ∩ D converging to x′. Therefore x′ ∈ D.

⊣

Now we come to the first application of this construction and of Lemmas 3.1 and
3.2:

Theorem 3.3. Suppose that {αi : i ∈ κ} is a family of ordinals and suppose that

X = σ(
∏
i∈κ

αi, 0).

Then X is countably paracompact.

Proof. Suppose that {Dn : n ∈ ω} is a decreasing family of closed subsets of X
with empty intersection.

Let M be a countable elementary submodel of Hθ where θ is large enough, so
that

{{αi : i ∈ κ}{Dn : n ∈ ω}} ⊂ M.

Let Y be the quotient of X modulo M . Thus, {p(Dn) : n ∈ ω} is a decreasing
sequence of closed subsets of Y .

Claim.
∩
{p(Dn) : n ∈ ω} = ∅

Proof. Suppose not. Let y ∈ p(Dn) for every n ∈ ω. Then for each n there is
xn ∈ Dn such that p(xn) = y. By Lemma 3.2, we may assume that for each n,
supt(xn) = supt(y) and that for each i, if xn(i) ̸∈ M then xn(i) = sup(M ∩ xn(i)).
For each n let

An = {i ∈ κ ∩ M : xn(i) ̸∈ M} = {i ∈ κ ∩ M : xn(i) ̸= y(i)}

and
Bn = {i ∈ κ ∩ M : xn(i) = y(i) ̸= 0}

Then supt(y) = An ∪Bn for each n. Since supt(y) is finite, there are sets A and B
such that

{n ∈ ω : A = An ∧ B = Bn} is infinite
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So, without loss of generality An = A and Bn = B for every n ∈ ω. Therefore
(since for each n xn(i) = sup(M ∩ y(i)) for each i ∈ A, and xn(i) = y(i) for each
i ∈ B), xn = xm for all n,m ∈ ω. Thus

∩
n∈ω Dn ̸= ∅. Contradiction. ⊣

We have now proven that {p(Dn) : n ∈ ω} is a decreasing sequence of closed
subsets of Y with empty intersection. Since Y is metrizable, we may fix an open
expansion Un ⊃ p(Dn) such that

∩
n∈ω ClY Un = ∅. Let Vn = p−1(Un). Clearly

Dn ⊂ Vn and by continuity we have that Vn is open and p(ClX Vn) ⊂ ClY Un. Thus∩
n∈ω ClX Vn = ∅. This completes the proof of Theorem 3.3. ⊣

Remark 3.4. Given X, a σ-product of ordinals (possibly only a finite product
of ordinals), and given M a countable elementary submodel let Y be as above
the quotient of X modulo M and let p be the associated surjection. We now
show that p : X → Y is, in fact, a quotient map: suppose that A ⊂ Y is such
that p−1(A) is open. Let y ∈ A be arbitrary. Let x ∈ p−1(y) be chosen so that
supt(x) = supt(y) ⊂ M and for all i ∈ supt(y), if sup{γ + 1 : γ ∈ y(i)∩M} < y(i),
then x(i) = sup{γ + 1 : γ ∈ y(i) ∩ M}. We may choose a basic open neighborhood
U(x) ⊂ p−1(A) of x. We may suppose that for some finite set F ⊂ κ disjoint from
supt(x) and βi ∈ M ∩ x(i) with i ∈ supt(x),

U(x) = {z ∈ X : ∀i ∈ supt(x)(z(i) ∈ (βi, x(i)]) ∧ ∀i ∈ F (z(i) = 0)}.

Thus, p(U(x)) is open in Y and clearly y ∈ p(U(x)) ⊂ A. Thus A is open and
therefore p is a quotient map.

It is not hard to verify that the equivalence relation defining this quotient space
is given by x =M y if and only if for all i ∈ κ ∩ M ,

(y(i) < x(i) ⇒ [y(i), x(i)) ∩ M = ∅) ∧ (x(i) < y(i) → [x(i), y(i)) ∩ M = ∅).

Equivalently, x =M y if and only if f(x) = f(y) for all continuous functions f :
X → R such that f ∈ M . This later definition was recently introduced and studied
in the general case by T. Eisworth and A. Stanley. Since we need to use this fact
in the proof of Theorem 3.9 below, we give a proof.

Lemma 3.5. Suppose that X is a σ-product of ordinals and that M is a countable
elementary submodel containing X. Let Y be the quotient of X modulo M and let
p be the associated quotient map. Then for each x, y ∈ X, p(x) = p(y) if and only
if f(x) = f(y) for all continuous functions f : X → R such that f ∈ M .

Proof. One direction is trivial. If p(x) ̸= p(y), then we may assume that there is
i ∈ κ ∩ M and α ∈ M such that y(i) ≤ α < x(i). So y and x can be separated by
a clopen set in M , thus by a two-valued function in M .

Conversely, suppose that p(x) = p(y) and that f ∈ M is a real-valued continuous
function on X. Without loss of generality we may assume that y has the property
that supt(y) ⊂ M and that y(i) = sup{γ + 1 : γ ∈ M ∩ y(i)} for all i ∈ supt(y).
If f(x) ̸= f(y), let q be a rational number between f(x) and f(y). Without loss of
generality we may assume that f(x) < q < f(y). Let U be a basic open neighbor-
hood of y such that f(U) ⊂ (q,∞). Let r ∈

∏
i∈supt(y)(M ∩ y(i)) and let F ⊂ κ be

finite such that,

U = {z ∈ X : ∀i ∈ supt(y)(z(i) ∈ (r(i), y(i)]) ∧ ∀i ∈ F (z(i) = 0)}
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Let F̂ = F ∩M and A = {i ∈ supt(y) : p(y)(i) ̸= y(i)}. Then A is the set of i such
that y(i) ̸∈ M . Define Û =

{z ∈ X : ∀i ∈ supt(y) \ A(z(i) ∈ (r(i), y(i)]) ∧ ∀i ∈ A(z(i) ∈ (r(i), p(y)(i)))

∧∀i ∈ F̂ (z(i) = 0)}.

Notice that the following holds:

(∗) For all z ∈ Û ∩ M , f(z) > q holds.

Thus, since all the parameters in the above statement are in M (supt(y) is in M

even though y may not be), we may conclude that the same holds true for all z ∈ Û .
Notice that x is in the closure of Û , so f(x) ≥ q. Contradiction. Thus f(x) = f(y).
⊣

The following lemma is a kind of pressing down lemma for finite products of
ordinals. We will need it below but believe it should be of general interest.

Lemma 3.6. Suppose that βi are ordinals with ω < cf βi for i < n. Let K ⊂
Z =

∏
i<n βi be closed and cofinal in Z, i.e., K is (topologically) closed in Z and

for every x = ⟨x(i) : i < n⟩ ∈ Z, there is k = ⟨k(i) : i < n⟩ ∈ K such that
x(i) < k(i) for each i < n. Let U ⊃ K be open in Z. Then there is x ∈ Z such that∏

i<n(x(i), βi) ⊂ U .

Proof. Fix an appropriate countable elementary submodel M containing everything
relevant. For each i < n let s(i) = sup(M ∩ βi). Let V be an arbitrary basic open
set containing s = ⟨s(i) : i < n⟩. Since M ∩ s(i) is unbounded in each s(i), we may
fix y ∈ M such that y(i) < s(i) for all i < n and such that∏

i<n

(y(i), s(i)] ⊂ V

By elementarity, since K is cofinal, there is z ∈ K∩
∏

i<n(y(i), s(i)]. Thus V ∩K ̸=
∅. Thus s ∈ K ⊂ U . Since U is open, we can fix x ∈ M with x(i) < s(i) for all
i < n and ∏

i<n

(x(i), s(i)] ⊂ U.

Note that for all z ∈ M ∩ Z if x(i) < z(i) < βi for all i < n, then z ∈ U . Thus by
elementarity this is true. Thus,

∏
i<n(x(i), βi) ⊂ U , completing the proof of the

lemma. ⊣

We now consider κ-normality and strong zero-dimensionality of σ-products of
ordinals. We will use Lemmas 3.1 and 3.2 proven above and in addition we will
need a characterization of normality for finite products of ordinals.

We will say that a pair of closed subsets H and K in a topological space can be
strongly separated if there are open sets U and V containing H and K respectively
such that ClU ∩ ClV = ∅.
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Theorem 3.7. Suppose that H and K are disjoint closed subsets of a σ-product
X = σ(

∏
i∈κ αi, 0) of ordinals and that M is a countable elementary submodel such

that X,H,K ∈ M . Let Y be the quotient of X modulo M and the surjection
p : X → Y as before. Then H and K can be strongly separated by open subsets of
X if and only if p(H) and p(K) are disjoint.

Proof. Suppose that p(H) and p(K) are disjoint. By Lemma 3.1, they are both
closed and since Y is a countable product of countable ordinals, Y is metrizable,
hence normal. Let U0 and U1 be disjoint open sets in Y strongly separating p(H)
and p(K). Since p is continuous, p−1(U0) and p−1(U1) strongly separate H and K.

Conversely, suppose that x ∈ p(H) ∩ p(K). For each h′ ∈ p−1(x) ∩ H, set
Bh′ = {i ∈ supt(x) : h′(i) ∈ M ∧ sup{γ + 1 : γ ∈ M ∩ h′(i)} < h′(i)}. Similarly,
for each k′ ∈ p−1(x) ∩ K, set Ck′ = {i ∈ supt(x) : k′(i) ∈ M ∧ sup{γ + 1 : γ ∈
M ∩ k′(i)} < k′(i)}. Choose h ∈ p−1(x) ∩ H and k ∈ p−1(x) ∩ K so that Bh

is maximal with respect to all Bh′ for h′ ∈ p−1(x) ∩ H and Ck is maximal with
respect to all Ck′ for k′ ∈ p−1(x) ∩ K. Applying Lemma 3.2, we may moreover
assume that supt(h) = supt(k) = supt(x), h(i) = sup(M ∩ h(i)) (equivalently,
h(i) = sup{γ + 1 : γ ∈ M ∩ h(i)}) if h(i) /∈ M and k(i) = sup(M ∩ k(i)) if
k(i) /∈ M . Set A = {i ∈ supt(x) : h(i) ̸= k(i)}, B = A ∩ Bh, C = A ∩ Ck and
D = {i ∈ supt(x) : h(i) = k(i) /∈ M}.

Claim 1. A = B∪C, B∩C = ∅ and h(i) = k(i) = x(i) for each i ∈ κ∩M\A∪D.

Proof. Let i ∈ A. We may assume k(i) < h(i). Since p(k)(i) = p(h)(i) = x(i),
we have [k(i), h(i)) ∩ M = ∅, in particular k(i) /∈ M . Therefore sup{γ + 1 : γ ∈
M ∩ h(i)} = sup{γ + 1 : γ ∈ M ∩ k(i)} ≤ k(i) < h(i). If we assume h(i) /∈ M ,
then we have h(i) = sup(M ∩ h(i)) = sup(M ∩ k(i)) = k(i), a contradiction. Thus
h(i) ∈ M and therefore i ∈ B.

To prove B ∩ C = ∅, assume i ∈ B ∩ C. We may assume k(i) < h(i). Then as
above k(i) /∈ M , thus i /∈ Ck, a contradiction.

To show the final property, let i ∈ κ ∩ M\A ∪ D. We may assume i ∈ supt(x).
It follows from i /∈ A that h(i) = k(i). If h(i) ̸= x(i), then it follows from p(h)(i) =
x(i) that h(i) /∈ M .

Thus i ∈ D, a contradiction. ⊣

Now we have:

(a) x(i) = h(i) for all i ∈ B, and x(i) = k(i) for all i ∈ C.

Since for each i ∈ A ∪ D, sup{γ + 1 : γ ∈ M ∩ x(i)} < x(i) ∈ M , we have:

(b) cf x(i) > ω for all i ∈ A ∪ D.

And:

(c) h(i) < x(i) for all i ∈ C, and k(i) < x(i) for all i ∈ B.

By elementarity, H satisfies:

(d) For all r ∈
∏

i∈C∪D x(i), there is z ∈ H such that z(i) = x(i) for all i ∈
κ ∩ M\C ∪ D, z(i) = 0 for all i ∈ κ\M and z(i) ∈ (r(i), x(i)) for all i ∈ C ∪ D.

Similarly K satisfies:
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(e) For all r ∈
∏

i∈B∪D x(i), there is z ∈ K such that z(i) = x(i) for all i ∈
κ ∩ M\B ∪ D, z(i) = 0 for all i ∈ κ\M and z(i) ∈ (r(i), x(i)) for all i ∈ B ∪ D.

Now we restrict to closed subsets of H and K. Let

H ′ = {z ∈ H : ∀i ∈ κ ∩ M\C ∪ D(z(i) = x(i)) ∧ ∀i ∈ κ\M(z(i) = 0)

∧∀i ∈ C ∪ D(z(i) ∈ (h(i), x(i)))}

and let

K ′ = {z ∈ K : ∀i ∈ κ ∩ M\B ∪ D(z(i) = x(i)) ∧ ∀i ∈ κ\M(z(i) = 0)

∧∀i ∈ B ∪ D(z(i) ∈ (k(i), x(i)))}

Claim 2. Both H ′ and K ′ are closed in X.

Proof. Suppose z ∈ ClX H ′\H ′. Then z has the property that p(z) = x, z(i) = x(i)
for all i ∈ κ ∩ M\C ∪ D, z(i) = 0 for all i ∈ κ\M and z ∈ H. Since z /∈ H ′,
z(i) = x(i) for some i ∈ C ∪D. It follows from Bh ∩ (C ∪D) = ∅ that Bz as defined
above is a proper superset of Bh, contradicting the maximality of Bh. A similar
argument shows that K ′ is closed. ⊣

Let

Z = {z ∈ X : ∀i ∈ A ∪ D(z(i) ≤ x(i)) ∧ ∀i ∈ κ ∩ M\A ∪ D(z(i) = x(i))

∧∀i ∈ κ\M(z(i) = 0)}.

Since H ′ and K ′ are closed subsets of Z ⊂ X, it suffices to prove that H ′ and K ′

cannot be strongly separated in Z. Let U and V be open sets in Z with H ′ ⊂ U
and K ′ ⊂ V .

Note that by (d), H ′ is homeomorphic to a closed cofinal subset of
∏

i∈C∪D x(i),
where by (b), each x(i) has uncountable cofinality. Applying Lemma 3.6, there is
a g ∈

∏
i∈C∪D x(i) such that∏

i∈C∪D

(g(i), x(i)) ×
∏

i∈κ∩M\C∪D

{x(i)} ×
∏

i∈κ\M

{0} ⊂ U.

Similarly, considering the open sets V , we may extend the domain of g to include
B ∪ D such that∏

i∈B∪D

(g(i), x(i)) ×
∏

i∈κ∩M\B∪D

{x(i)} ×
∏

i∈κ\M

{0} ⊂ V.

Let v be defined by

v(i) =
{

g(i) + 1, if i ∈ D,

x(i), otherwise.

By the definition of g, it follows that v ∈ ClZ U ∩ClZ V . This completes the proof
of Theorem 3.7. ⊣
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Corollary 3.8. A σ-product of ordinals is normal if and only if each finite sub-
product is normal.

Proof. Since each finite subproduct is homeomorphic to a closed subset of the σ-
product, one direction is trivial. For the other implication, suppose

X = σ(
∏
i∈κ

αi, 0)

and suppose that each finite subproduct of {αi : i ∈ κ} is normal. Fix H and
K disjoint closed subsets of X. Let M be an appropriate countable elementary
submodel containing κ, {αi : i ∈ κ}, H and K. Let Y be the restriction of X to M
and let p : X → Y be the corresponding surjection. Then by Lemma 3.1 we have
that p(H) and p(K) are closed subsets of Y . By Theorem 3.7, it suffices to show:

Claim. p(H) ∩ p(K) = ∅.
Proof. Suppose not and let h ∈ H and k ∈ K be such that p(h) = p(k). Then by
Lemma 3.2, we may assume that supt(h) ⊂ M and supt(k) ⊂ M . Thus supt(h) =
supt(k). Call this finite set A. Let

H ′ = {z ∈ H : supt(z) = A} and K ′ = {z ∈ K : supt(z) = A}.
Then the projection of H ′ and K ′ to A are disjoint closed subsets of

∏
i∈A αi.

However, since p(H ′) ∩ p(K ′) ̸= ∅, applying Theorem 3.7 to the finite product∏
i∈A αi = σ(

∏
i∈A αi, 0), we conclude that the projection of H ′ and K ′ cannot

be strongly separated in
∏

i∈A αi. Thus, this finite subproduct is not normal.
Contradiction. ⊣

⊣
We now consider strong zero-dimensionality of σ-products.

Theorem 3.9. For every real-valued continuous function f on a σ-product X =
σ(

∏
i∈κ αi, 0) of ordinals, the range of f is countable.

Proof. Let f : X → R be continuous. Let M be a countable elementary submodel
such that κ, {αi : i ∈ κ}, f ∈ M . Let Y be the quotient of X modulo M and let
p : X → Y be the corresponding quotient map. Since f ∈ M , it follows by Lemma
3.5 that f respects equivalence classes. Thus, f can be factored through Y . I.e.,
there is a continuous g : Y → R such that f = g ◦ p. But Y is countable, so the
range of g is countable. Hence the range of f is countable. ⊣

Note that the irrationals P is identified with the product ωω. The inclusion map
f : P → R defined by f(x) = x does not have countable range. Therefore we cannot
extend Theorem 3.9 for countable products or Σ-products. However we have the
following analogous result of Corollary 1.11 for strong zero-dimensionality.

Corollary 3.10. Every σ-product of ordinals is strongly zero-dimensional.

Proof. Let H and K be disjoint zero-sets in X. Disjoint zero-sets can be functionally
separated, so let f : X → [0, 1] be continuous, such that f(H) = 0 and f(K) = 1.
Since the range of f is countable, pick r in [0, 1] but not in the range of f . Then
f−1([0, r)) is a clopen set containing H and disjoint from K. Thus, X is strongly
zero-dimensional. ⊣

Finally, we prove that σ-products of ordinals are κ-normal:
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Theorem 3.11. Every σ-product of ordinals is κ-normal.

Proof. Suppose that H and K are disjoint regular closed sets in a σ-product X =
σ(

∏
i∈κ αi, 0) of ordinals. Let M be an appropriate countable elementary submodel

containing κ, {αi : i ∈ κ}, H and K. Let Y be the restriction of X to M and
let p : X → Y be the corresponding surjection. Then by Lemma 3.1 we have
that p(H) and p(K) are closed subsets of Y . By Theorem 3.7, it suffices to show
p(H) ∩ p(K) = ∅. Write H = ClX(

∪
U) and K = ClX(

∪
V), where U and V

are collections of basic open subsets of X. We may assume that U and V are
in M because of H,K ∈ M . For each U ∈ U ∩ M , set Ũ = πκ∩M (U) ∩ Y ,
where πκ∩M : X → σ(

∏
i∈κ∩M αi, 0) is the canonical projection. Note that by

elementarity, supt(U) ∈ M thus supt(U) ⊂ M for each U ∈ U ∩ M . Similarly
define Ṽ for each V ∈ V ∩ M .

Claim 1. Ũ ⊂ p(U) for each U ∈ U ∩ M .

Proof. Let y ∈ Ũ and pick x ∈ U with πκ∩M (x) = y.
For each i ∈ κ ∩ M , it follows from x(i) = y(i) ∈ M that p(x)(i) = x(i) = y(i).

Thus y = p(x) ∈ p(U).

Claim 2. p(H) = ClY (
∪
{Ũ : U ∈ U ∩ M}).

Proof. Since p(H) is closed and p(H) ⊃ p(U) ⊃ Ũ for each U ∈ U∩M , one inclusion
is obvious.

To show the remaining inclusion, let x ∈ p(H) and W be a basic open neighbor-
hood of x in Y . We may assume that

W = {z ∈ Y : ∀i ∈ supt(x)(z(i) ∈ (r(i), x(i)] ∩ Yi) ∧ ∀i ∈ F (z(i) = 0)},

where F is a finite subset of κ ∩ M disjoint from supt(x) and r(i) ∈ M ∩ x(i) for
each i ∈ supt(x). Note F ∈ M . Fix h ∈ H with x = p(h). By Lemma 3.2, we may
assume that supt(h) = supt(x) and

h(i) =


x(i), if i ∈ κ ∩ M,h(i) ∈ M,

sup(M ∩ h(i)), if i ∈ κ ∩ M,h(i) /∈ M,

0, otherwise.

Set A = {i ∈ κ ∩ M : h(i) < x(i)}. Note that A ∈ M by A ⊂ supt(x) ⊂ M and
that r(i) < h(i) for each i ∈ A, by r(i) ∈ x(i) ∩ M . Let

Ŵ = {t ∈ X : ∀i ∈ A(t(i) ∈ (r(i), x(i)))∧

∀i ∈ supt(x)\A(t(i) ∈ (r(i), x(i)]) ∧ ∀i ∈ F (t(i) = 0)}.

Since all parameters in the definion of Ŵ are in M , we have Ŵ ∈ M . Since Ŵ
is a neighborhood of h ∈ H in X, by elementarity, there is U ∈ U ∩ M such that
Ŵ ∩ U ̸= ∅. By elementarity, we can pick t ∈ M with t ∈ Ŵ ∩ U . It follows from
t(i) ∈ M for each i ∈ κ ∩ M that t(i) ∈ (r(i), x(i)] ∩ Yi for each i ∈ supt(x) and
t(i) = 0 for each i ∈ F . Therefore πκ∩M (t) ∈ W ∩ πκ∩M (U) ⊂ W ∩ Ũ . Thus
x ∈ ClY (

∪
{Ũ : U ∈ U ∩ M}).
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Similarly we have p(K) = ClY (
∪
{Ṽ : V ∈ V ∩ M}). To show p(H) ∩ p(K) = ∅,

we assume x ∈ p(H) ∩ p(K). For each i ∈ κ, set

y(i) =
{

sup{γ + 1 : γ ∈ M ∩ x(i)}, if i ∈ supt(x),
0, otherwise.

Then obviously y ∈ X, supt(y) = supt(x) and p(y) = x. Moreover if y(i) ̸= 0, then
{(γ, y(i)] : γ ∈ M ∩ y(i)} is a neighborhood base at y(i) in αi. Let W be a basic
open neighborhood of y in X. We may assume that

W = {z ∈ X : ∀i ∈ supt(y)(z(i) ∈ (r(i), y(i)]) ∧ ∀i ∈ F (z(i) = 0)},

where F is a finite subset of κ disjoint from supt(y) and r(i) ∈ M ∩ y(i) for each
i ∈ supt(y). Set F ′ = F ∩ M and

W ′ = {t ∈ Y : ∀i ∈ supt(y)(t(i) ∈ (r(i), x(i)] ∩ Yi) ∧ ∀i ∈ F ′(t(i) = 0)}.

Since W ′ is a neighborhood of x in Y , by Claim 2, there is U ∈ U ∩ M such that
W ′ ∩ Ũ ̸= ∅. Pick t ∈ W ′ ∩ Ũ . It follows from U ∈ M that L = supt(U) ∈ M
thus L ⊂ M . Hence U can be represented as U = π−1

L (
∏

i∈L Ui), where Ui is open
in αi. We will show W ∩ U ̸= ∅. It suffices to show that Wi ∩ Ui ̸= ∅ for each
i ∈ (supt(y) ∪ F ) ∩ L, where

Wi =
{

(r(i), y(i)], if i ∈ supt(y),
{0}, if i ∈ F.

Let i ∈ L. Note that by i ∈ L ⊂ M , Ui ∈ M .

Case 1. i ∈ supt(y) and y(i) < x(i).

In this case, if x(i) ∈ Ui, then by elementarity, there is γ ∈ M ∩ x(i) such
that (γ, x(i)] ⊂ Ui. By the definition of y(i), we have γ < y(i). Thus y(i) ∈
(r(i), y(i)] ∩ (γ, x(i)] ⊂ Wi ∩ Ui. If x(i) /∈ Ui, then t(i) ∈ ((r(i), x(i)] ∩ Yi) ∩ Ui =
((r(i), x(i)) ∩ Yi) ∩ Ui ⊂ (r(i), y(i)) ∩ Ui ⊂ Wi ∩ Ui.

Case 2. i ∈ supt(y) and y(i) = x(i).

In this case, we obviously have t(i) ∈ Wi ∩ Ui.

Case 3. i ∈ F .

Since i ∈ L ⊂ M , we have i ∈ F ′ = F ∩M and thus obviously t(i) = 0 ∈ Wi∩Ui.

These cases shows W ∩ U ̸= ∅, therefore y ∈ H. Similarly we have y ∈ K, a
contradiction because of H ∩ K = ∅. Thus p(H) ∩ p(K) = ∅. ⊣

Remarks. It is natural to ask whether the results of this section extend to include
σ-products of ordinals at base points other than 0. If we require that the base point
has countable cofinality at all coordinates (or at all but finitely many coordinates)
then all the results of Section 3 generalize, and the proofs are essentially the same.
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However, if the base point has uncountable cofinality at infinitely many coordinates
then the proofs of this section do not generalize.1

In another direction, it is also natural to ask if the results generalize to include
σ-products of subspaces of ordinals. The proofs given in this section can be slightly
modified to include σ-products of spaces Xi where for each i

{β < αi : cof(β) ≤ ω} ⊆ Xi ⊆ αi.

In the proofs, all ordinals of countable cofinality must be included to assure that
for a given countable elementary submodel M , if δ ∈ αi and δ = sup(M ∩ δ)
then δ ∈ Xi. All the main results of this section hold for this general case (even
with the other base points described above) and the proofs are essentially the
same. For example, in the proof of Lemma 3.1, one must redefine the set B0 to be
{i ∈ A0 : y(i) ̸∈ X(i)}

Certainly, one cannot expect all the proofs to generalize to σ-products of arbi-
trary subspaces of ordinals. However, it is open whether σ-products of subspaces
of ordinals are strongly zero-dimensional. In addition, it is open whether countable
products of subspaces of ordinals are strongly zero-dimensional.
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