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Abstract. We give several characterizations of normality, orthocompactness and rectangularity for
products of monotonically normal spaces and various special factors in terms of some neighborhood

properties of the factors. Such a special factor is a compact factor, a DC-like factor, an almost
discrete factor or an ordinal factor. Moreover, we deal with the same properties for products of
GO-spaces with ordinal factors.
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1. Introduction

This paper is a continuation of several papers [9, 10, 17, 18]. The study for products of monotonically
normal spaces with special factors was actually begun with the following result.

Theorem 1.1 ([17]). Let X be a monotonically normal space and K a compact space. If X ×K is
orthocompact, then it is normal.

Subsequently, in [18], this result was extended for the products X × Y of monotonically normal
spaces X with DC-like factors Y defined by topological games of Telgársky. Moreover, it was proved
in there that if such a product space X×Y is normal and rectangular, then it is collectionwise normal
and has the shrinking property.

In Section 2, as our preliminaries, we explain monotone normality, normal covers and rectangular
products, which play important roles in this paper.

In Section 3, we define three neighborhood properties for spaces. This section might be somewhat
boring for the reader without the background. However, these new concepts are a key of our several
characterizations.

From Section 4, we begin our theorems. In this section, we give a characterization of normality
of the product X ×K of a monotonically normal space X and a compact space K, in terms of two
neighborhood properties stated in the previous section.
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In Section 5, we consider the product X×Y of a monotonically normal space X and a paracompact
DC-like space Y . We give characterizations of normality and orthocompactness of X×Y , respectively.

In Section 6, an almost discrete space means a space with only one non-isolated point. We give a
characterization of normality of the product X×Y of a monotonically normal space X and an almost
discrete space Y . Moreover, we show an unexpected result in the sense that rectangularity of X × Y
implies its normality.

Scott [14] proved that for any two ordinals λ and µ, the product λ × µ is orthocompact iff it is
normal. This result was extended to the products of two subspaces of an ordinal as follows.

Theorem 1.2 ([7, 8, 10]). Let A and B be subspaces of an ordinal. Then the following are equivalent.

(a) A×B is orthocompact.
(b) A×B is normal and rectangular.
(c) A×B is normal.
(d) A×B is collectionwise normal.
(e) A×B has the shrinking property.

In Section 7, to extend some implications above, we consider the product X×B of a monotonically
normal space X and a subspace B of an ordinal. We show that (a)⇒(b) in Theorem 1.2 holds for the
product X × B and that (c)⇔(d)⇔(e) in there holds under rectangularity of X × B. On the other
hand, examples of X × B refuting (b)⇒(a) and (c)⇒(b) were found in [17] and [12], respectively,
where X is a certain almost discrete space and B = κ is a regular uncountable cardinal.

In Section 8, we show that (a)⇔(b)⇔(c) in Theorem 1.2 holds for the product X×B of a GO-space
X and a subspace B of an ordinal. Moreover, we prove the equivalence of rectangularity and countable
paracompactness for such a product X ×B.

Throughout this paper, we will try to put our theorems at the beginning of each subsection, and put
the proof at the last. Thus we hope the reader will easily understand the purpose of each subsection.
Moreover, since we have to prepare several new concepts and tools for our results and their proofs,
we will try to explain them as just before we use as possible. All spaces are assumed to be Hausdorff.
The letters κ and τ always mean infinite cardinals. We follow the books [3, 11] for notation and
terminology which are not explained here.

2. Some preliminaries

In this section, as our preliminaries, we explain normal covers, rectangular products and monotone
normality which play important roles in this paper. When we discuss monotone normality, the notation
S(X),S(X,κ) and S∗(X) are necessary, because we often make use of Balogh-Rudin’s Theorem stated
below. Moreover, we sometimes use a characterization of normal covers of monotonically normal spaces
given here.

Normal covers and rectangular products. Recall that a subset U of a space X is cozero (or a
cozero-set) in X if there is a continuous function f : X → I such that U = {x ∈ X : f(x) > 0}, where
I = [0, 1] is the unit interval in the real line. It is well-known (as a part of Stone-Michael-Morita’s
Theorem) that an open cover of a space has a locally finite cozero refinement iff it has a σ-locally finite
cozero refinement iff it has a σ-discrete cozero refinement. An open cover having such a refinement is
said to be normal. It is also well-known that an open cover of a normal (and countably paracompact)
space is normal iff it has a locally finite (σ-disjoint) open refinement.

Let X × Y be a product of two spaces. A subset of the form U × V in X × Y is called a rectangle.
A rectangle U × V is called a cozero (open, closed) rectangle in X × Y if U and V are cozero (open,
closed) in X and Y , respectively. A cover G of X×Y is rectangular if each member of G is a rectangle
in X × Y . We say that a product space X × Y is rectangular [13] if every finite (equivalently, binary)
cozero cover of X × Y has a σ-locally finite rectangular cozero refinement. It is well-known that
X×Y is rectangular iff every cozero-set in X×Y is the union of a σ-locally finite collection by cozero
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rectangles. It is often used the fact that X × Y is normal and rectangular iff every binary open cover
of X × Y has a σ-locally finite rectangular cozero refinement. In particular, if X × Y is normal and
rectangular, then each closed rectangle E × F in X × Y is also normal and rectangular.

As stated in [13, Proposition 1], there are many kinds of rectangular products. In particular, we
will use the following typical rectangular products, which was proved in [2].

Lemma 2.1 (Terasawa). If X is a space and K is a compact space, then X ×K is rectangular.

Monotone normality. A subset S in an ordinal λ with cf(λ) > ω is stationary if every club (=
closed unbounded) set in λ meets S. We denote by Lim(S) the subset of λ consisting of all limit
points of S, that is, Lim(S) = {α ∈ λ : sup(S ∩ α) = α}, where sup ∅ = −1. For stationary sets,
we will frequently use a well-known lemma called the Pressing Down Lemma (see [11, Lemma 6.15]),
which is abbreviated by PDL.

Let X be a space. For each regular uncountable cardinal κ, we let

S(X,κ) = {E : E is a closed set in X such that it is homeomorphic to a stationary subset in κ}.
For each E ∈ S(X,κ), we assign a stationary subset SE in κ and a homeomorphism eE : SE → E
onto E, and fix them. We say a subset E of X is almost contained in a subset U of X if |E \U | < |E|.
When E ∈ S(X,κ) and U ⊂ X, remark that E is almost contained in U iff eE(SE ∩ (γ, κ)) ⊂ U
for some γ < κ. Moreover, the following fact witnesses that the choices of SE and eE will have no
influence on later arguments (see Lemma 3.2 and Lemma 8.6 etc. below).

Fact 2.2 (folklore). Let S and T be subspaces of a regular uncountable cardinal κ which are home-
omorphic to each other. Then there is a club set C in κ such that S ∩ C = T ∩ C. Moreover,
if both e : S → E and f : T → E are homeomorphism onto a space E, then we can take C as
e � (S ∩ C) = f � (T ∩ C).

In fact, it is not difficult to show the following: Let S be a subset in a regular uncountable cardinal
κ. If f : S → κ is a continuous map such that f(S) is unbounded in κ, then there is a club set C in
κ such that f(α) = α for each α ∈ S ∩ C.

The following well-known fact is easily obtained by PDL, and we frequently use it.

Fact 2.3 (folklore). Let X be a space with E ∈ S(X,κ). If U is a point-countable family of open sets
in X with E ⊂

∪
U , then E is almost contained in some member of U .

For a space X and a regular uncountable cardinal κ, using S(X,κ), we let

S∗(X) = {κ : κ is a regular uncountable cardinal with S(X,κ) ̸= ∅} and

S(X) =
∪
{S(X,κ) : κ ∈ S∗(X)}.

Definition 1. A space X is said to be monotonically normal if for any two disjoint closed sets E and
F in X, one can assign an open set M(E,F ), satisfying that

(i) E ⊂M(E,F ) ⊂M(E,F ) ⊂ X \ F ,
(ii) if E ⊂ E′ and F ⊃ F ′, then M(E,F ) ⊂M(E′, F ′).

Lemma 2.4 ([5]). A space X is monotonically normal if and only if for each open set U in X and
for each x ∈ U , one can assign an open set H(x,U) in X, satisfying that

(i) x ∈ H(x, U) ⊂ U ,
(ii) H(x, U) ∩H(y, V ) ̸= ∅ implies that x ∈ V or y ∈ U .

The functionM in Definition 1 is called a monotone normality operator, and we call the function H
in Lemma 2.4 a monotone normality assignment for X. We will use them a couple of times. Instead

of them, we will frequently make use of the following powerful results.
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Theorem 2.5 (Balogh and Rudin [1]). Let X be a monotonically normal space. For every open cover
U of X, there are a σ-disjoint partial open refinement V of U and a discrete collection F ⊂ S(X) such
that X \

∪
V =

∪
F .

Through this theorem, the notation S(X,κ), S∗(X) and S(X) defined above are very useful to
observe many topological properties of a monotonically normal space X. For example, the following
lemma was proved by applying this theorem.

Lemma 2.6 ([18, Lemma 8.2]). Let X be a monotonically normal space and K a compact space. Let
G be an open cover of X ×K, satisfying that for each E ∈ S(X) and each y ∈ K, there is an open
rectangle P ×Q in X×K such that E is almost contained in P , y ∈ Q and P ×Q is contained in some
member of G. Then there is a locally finite open (cozero) cover U of X and a family {VU : U ∈ U} of
finite open (cozero) covers of K such that {U × V : U ∈ U and V ∈ VU} refines G.

Considering K = {q} as one-point space, this lemma immediately yields

Corollary 2.7. Let X be a monotonically normal space. An open cover U of X is normal if and only
if each E ∈ S(X) is almost contained in some member of U .

Conversely, Lemma 2.6 can be easily derived from this corollary, which is so useful that we will
sometimes use it in later proofs.

3. Three neighborhood properties and related products

In this section, we state three neighborhood properties, which are necessary to characterize nor-
mality and orthocompactness of products of monotonically normal spaces and several special factors
in later sections. Here, we state their definitions, and discuss their implications and the properties of
related products.

Definitions for three neighborhood properties. Let us begin with the definitions of three neigh-
borhood properties.

Definition 2 ([9]). Let κ be an infinite cardinal. A space Y has orthocaliber κ at q ∈ Y if for each
collection V of open neighborhoods of q in X with |V| = κ, there is a subcollection W of V such that
|W| = κ and q ∈ Int(

∩
W). We say that a space Y has orthocaliber κ if it has orthocaliber κ at each

point of Y .

For a set S of ordinals, we say that a sequence {Vα : α ∈ S} of subsets in a set Y is descending
(increasing) if Vβ ⊃ Vα (Vβ ⊂ Vα) for each α, β ∈ S with β < α.

Definition 3. Let κ be a regular cardinal. We say that a space Y has the κ-descending open preserving
property at q ∈ Y (the κ-dop property at q ∈ Y for short) if for every descending sequence {Vα : α ∈ κ}
of open neighborhoods of q in Y , q ∈ Int(

∩
α∈κ Vα) holds. We say that a space Y has the κ-dop property

if it has the κ-dop property at each point of Y .

It is obvious that a space Y has the κ-dop property iff for every descending sequence {Vα : α ∈ κ}
of open sets in Y ,

∩
α∈κ Vα is open in Y .

A sequence {Vα : α ∈ S} of subsets in a space Y , where S is a set of ordinals, is continuously
descending if it is descending and Vα =

∩
{Vβ : β ∈ S ∩ α} for each α ∈ S ∩ Lim(S).

Definition 4. Let Y be a space and S a set of ordinals. We say that Y has the S-descending
open continuously shrinking property (the S-docs property for short) at q ∈ Y if for each descending
sequence V ={Vα : α ∈ S} of open neighborhoods of q in Y , there is a continuously descending
sequence F ={Fα : α ∈ S} of closed neighborhoods of q in Y such that Fα ⊂ Vα for each α ∈ S. We
call such F a continuous shrinking of V by closed neighborhoods of q. We say that a space Y has the
S-docs property if it has the S-docs property at each point of Y .
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Obviously, a regular space Y has the ω-docs property, and the S-docs property if maxS exists.
The following is easily seen.

Fact 3.1. Let S and T be unbounded subsets in a limit ordinal λ with T ⊂ S. If a space Y has the
S-docs property at q ∈ Y , then it has the T -docs property at q.

Lemma 3.2. Let S be a stationary subset in a regular uncountable cardinal κ, and Y a space with
q ∈ Y .

(1) A descending sequence {Vα : α ∈ S} of open neighborhoods of q in Y has a continuous
shrinking by closed neighborhoods of q if {Vα : α ∈ S ∩C} has such a shrinking for some club
set C in κ.

(2) Y has the S-docs property at q if and only if it has the (S ∩ C)-docs property at q for some
(any) club set C in κ.

Proof. (1): Take a descending sequence {Fα : α ∈ S ∩ C} of closed neighborhoods of q with Fα ⊂ Vα
for each α ∈ S ∩ C. For each α ∈ S \ C, let α+ = min{α′ ∈ S ∩ C : α < α′} and let Fα = Fα+ .
Then F := {Fα : α ∈ S} is a descending sequence of closed neighborhoods of q with Fα ⊂ Vα for
each α ∈ S. Pick α ∈ S ∩ Lim(S). In case α ∈ Lim(S ∩ C): By α ∈ S ∩ C ∩ Lim(S ∩ C), we have
Fα =

∩
β∈S∩C∩α Fβ =

∩
β∈S∩α Fβ . In case α /∈ Lim(S ∩C): Let δ = sup(S ∩C ∩α). Then δ < α and

S ∩ C ∩ (δ, α) = ∅. For each β ∈ S ∩ (δ, α), by β /∈ C, we have β+ ≤ α+ and α ≤ β+. Hence we see
β+ = α+, that is, Fα = Fα+ = Fβ+ = Fβ . Thus Fα =

∩
β∈S∩(δ,α) Fβ =

∩
β∈S∩α Fβ . This means that

F is continuously descending.
(2): The “only if” part follows from the Fact 3.1. And the ”if” part is obvious from (1). �

Remark 3.3. As shown in Example 6.20 below, the S-docs property for a stationary subset S in a
regular uncountable cardinal κ depends on the choice of S. On the other hand, Lemma 3.2 shows
that for a fixed E ∈ S(X,κ), the SE-docs property does not depend on the choice of a stationary set
SE in κ which is homeomorphic to E (by Fact 2.2).

Three neighborhood properties defined above are all different with each other, and several examples
dividing them are given later in this section. Here we state the following lemma which is easily seen.

Lemma 3.4. Let κ be a regular cardinal.

(1) If a space Y has orthocaliber κ at q ∈ Y , then it has the κ-dop property at q.
(2) If a regular space Y has the κ-dop property at q ∈ Y , then it has the S-docs property at q for

each unbounded subset S in κ.

The relations to products with stationary sets. Let us recall that a space X is orthocompact if
every open cover of X has an interior-preserving open refinement, where a collection V of open sets
in a space X is interior-preserving if

∩
{W :W ∈ W} is open in X for any W ⊂ V.

Lemma 3.5 ([9, 10]). Let S be a stationary subset in a regular uncountable cardinal κ and Y a space.
If S × Y is orthocompact, then Y has orthocaliber κ.

We can give analogous results for the κ-dop and S-docs properties to the above.

Lemma 3.6. Let S be a stationary subset in a regular uncountable cardinal κ and Y a space. If S×Y
is normal and rectangular, then Y has the κ-dop property.

Proof. Pick any q ∈ Y . Let {Vα : α ∈ κ} be a descending sequence of open neighborhoods of q in Y .
Then G :=

∪
{(S ∩ [0, α]) × Vα : α ∈ κ} is an open set in S × Y with S × {q} ⊂ G. Since S × Y is

normal and rectangular, there is a σ-locally finite collection H of cozero rectangles in S×Y such that
S × {q} ⊂

∪
H ⊂ G. Applying Fact 2.3 for a σ-locally finite open cover {U : U ×W ∈ H, q ∈ W}

of S, we obtain U × W ∈ H and γ < κ with S ∩ (γ, κ) ⊂ U and q ∈ W . Pick any y ∈ W and
α ∈ S ∩ (γ, κ). Since ⟨α, y⟩ ∈ U ×W ⊂

∪
H ⊂ G, there is an α0 ∈ S with ⟨α, y⟩ ∈ (S ∩ [0, α0])× Vα0 .

By α ≤ α0, we have y ∈ Vα0 ⊂ Vα. Hence W ⊂
∩

α∈S∩(γ,κ) Vα =
∩

α∈κ Vα holds. This means that

q ∈ Int(
∩

α∈κ Vα). �
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Lemma 3.7. Let S be a stationary subset in a regular uncountable cardinal κ and Y a space. If S×Y
is normal, then Y has the S-docs property.

Proof. Pick any q ∈ Y . Let V ={Vα : α ∈ S} be a descending sequence of open neighborhoods
of q in Y . Then G :=

∪
{(S ∩ [0, α]) × Vα : α ∈ S} is an open set in S × Y with S × {q} ⊂ G.

There is an open set H in S × Y such that S × {q} ⊂ H ⊂ H ⊂ G. For each α ∈ S, there are
a γ(α) < α and an open neighborhood Qα of q in Y such that

(
S ∩ (γ(α), α]

)
× Qα ⊂ H. By

PDL, there are T ⊂ S and γ ∈ κ such that T is stationary in κ and γ(α) = γ for each α ∈ T . To
see that V has a continuous shrinking by closed neighborhoods of q, it suffices to find a continuous
shrinking {Fα : α ∈ S ∩ (γ, κ)} of {Vα : α ∈ S ∩ (γ, κ)} by closed neighborhoods of q. For each

α ∈ S ∩ (γ, κ) \ Lim(S), let Fα = {y ∈ Y :
(
S ∩ (γ, α]

)
× {y} ⊂ H}. Taking a δ ∈ T with α ≤ δ, we

have
(
S ∩ (γ, α]

)
× Qδ ⊂

(
S ∩ (γ(δ), δ]

)
× Qδ ⊂ H, so q ∈ Qδ ⊂ Fα holds. Hence Fα is a closed

neighborhood of q in Y . For each α ∈ S ∩ (γ, κ) ∩ Lim(S), let Fα =
∩
{Fξ : ξ ∈ S ∩ (γ, α) \ Lim(S)}.

Then {Fα : α ∈ S ∩ (γ, κ)} is a continuously descending sequence of closed neighborhoods of q in Y .
It suffices to show that each Fα is contained in Vα. Pick any α ∈ S∩(γ, κ) and any z ∈ Fα. Take any

open rectangle U ×W in S × Y containing ⟨α, z⟩. We can pick β ∈ U ∩ (S \Lim(S)) with γ < β ≤ α.
Since z ∈ Fα ⊂ Fβ , by the choice of Fβ , we can pick y ∈ W such that

(
S ∩ (γ, β]

)
× {y} ⊂ H. We

obtain ⟨β, y⟩ ∈ (U ×W ) ∩H. This means that ⟨α, z⟩ ∈ H ⊂ G. By the choice of G, there is η ∈ S
with ⟨α, z⟩ ∈ (S ∩ [0, η])× Vη. By α ≤ η, we obtain that z ∈ Vη ⊂ Vα. Hence Fα ⊂ Vα holds. �

Pulling together lemmas stated above, we have the following:

Implications 1. Let S be a stationary subset in a regular uncountable cardinal κ.

S × Y : Y :
orthocompact =⇒ orthocaliber κ

⇓
normal and rectangular =⇒ κ-dop property

⇓
normal =⇒ S-docs property

More about three neighborhood properties. In this subsection, we compare three neighborhood
properties with some well-known concepts about neighborhoods. And several examples dividing these
properties are found. Moreover, the κ-dop property is characterized by closedness of the projection.
Most of our main results in this paper do not need the consequences in this subsection, though
they probably makes three neighborhood properties more familiar to one. The reader may skip this
subsection and go to Section 4.

Lemma 3.8. Let κ be a regular cardinal and Y a space with q ∈ Y .

(1) If the character of Y at q is less than κ, then Y has orthocaliber κ at q.
(2) If the tightness of Y at q is less than κ, then Y has the κ-dop property at q.

Proof. (1) is obvious. To see (2), assume that Y does not have the κ-dop property at q. Then there

is a descending sequence {Vα : α ∈ κ} of neighborhoods of q in Y such that q ∈ Y \
∩

α∈κ Vα. On
the other hand, it is easy to see that for each A ⊂ Y \

∩
α∈κ Vα with |A| < κ, there is a β ∈ κ with

Vβ ∩A = ∅, so we have q /∈ A. Hence the tightness of Y at q is at least κ. �
For an infinite cardinal κ and for a space Y with q ∈ Y , as a well known concept, recall that q is

a Pκ-point in Y if for any collection V of open neighborhoods of q in X with |V| < κ, the intersection∩
V is a neighborhood of q.

Proposition 3.9. For an infinite cardinal κ and a space Y with q ∈ Y , the following are equivalent.

(a) q is a Pκ-point in Y .
(b) Y has orthocaliber τ at q for each regular cardinal τ < κ.
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(c) Y has the τ -dop property at q for each regular cardinal τ < κ.

Proof. (a)⇒(b): This is obvious.
(b)⇒(c): This follows from Lemma 3.4(1).
(c)⇒(a): By induction on κ′ < κ, we show that for each collection V of open neighborhoods of q

in Y with |V| = κ′,
∩
V is a neighborhood of q. We may consider κ′ ≥ ω. Let τ = cf(κ′). Then τ is

a regular cardinal with τ ≤ κ′ < κ. We can express V as V =
∪

α∈τ Vα, |Vα| < κ′, and Vα ⊂ Vβ for
every α < β < τ . Let Wα = Int(

∩
Vα) for each α ∈ τ . By inductive hypothesis, {Wα : α ∈ τ} is a

descending sequence of open neighborhoods of q in Y . By (c),
∩

α∈τ Wα ⊂
∩
V is a neighborhood of

q. Hence, q is a Pκ-point in Y . �
Let Y be a space with q ∈ Y and let κ and τ be regular cardinals with κ < τ . If q is a Pτ -point in

Y , then q is a Pκ-point in Y . On the other hand, it is possible that Y has orthocaliber τ (hence has
the τ -dop property) at q, but Y does not have the κ-dop property (hence does not have orthocaliber
κ) at q.

Example 3.10. Let κ be a regular cardinal. Then an ordinal κ+1 = [0, κ] is a compact space which
has orthocaliber τ at κ for each regular cardinal τ ̸= κ, but does not have the κ-dop property at κ.
Obviously, [0, κ] has the character (tightness) κ at κ.

Let κ be a regular cardinal. Let Y be a space with q ∈ Y . As seen in Lemma 3.8 and Proposition
3.9, if q is a Pτ -point for some cardinal τ > κ or the character (tightness) of Y at q is less than κ,
then Y has orthocaliber κ (the κ-dop property). The converse does not hold at all.

Example 3.11. Let µ, κ and ν be regular cardinals with µ < κ < ν. Then Y = [0, µ] × [0, ν] is a
compact space which has orthocaliber κ at q = ⟨µ, ν⟩. But q is not a Pτ point for any cardinal τ > κ.
And the character (tightness) of Y at q is ν, which is larger than κ.

Example 3.12. For regular cardinals θ and κ with θ ≤ κ, let Aθ(κ) denote the space with |Aθ(κ)| = κ,
having only one non-isolated point q, such that V ⊂ Aθ(κ) is a neighborhood of q in Aθ(κ) iff q ∈ V
and |Aθ(κ) \ V | < θ. Then,

(1) Aθ(κ) has the τ -dop property for each regular cardinal τ with τ ̸= θ.
(2) Aθ(κ) does not have the θ-dop property at q.
(3) Aθ(κ) does not have orthocaliber τ at q for each cardinal τ with θ ≤ τ ≤ κ.

Proof. (1) Let {Vα : α ∈ τ} be a descending sequence of open neighborhoods of q in Aθ(κ), where τ is
a regular cardinal with τ ̸= θ. By an easy cardinal arithmetic, whenever τ < θ,

∩
α∈τ Vα is obviously

an open neighborhood of q. Also whenever τ > θ, we can find α0 ∈ τ such that Vα = Vα0 fore every
α ∈ τ with α0 ≤ α. Otherwise, we can inductively choose a sequence {α(ξ) : ξ ∈ θ} of τ such that
Vα(ξ) \ Vα(ξ+1) ̸= ∅ for each ξ ∈ θ. Let ζ = sup{α(ξ) : ξ ∈ θ}. By ζ < τ , Vζ is not a neighborhood of
q. Hence

∩
α∈τ Vα = Vα0 is a neighborhood of q. On the other hand, (2) and (3) are obvious. �

Remark 3.13. In the example above, we may consider that

• Aω(κ) is the one-point compactification of a discrete space of cardinality κ. It has the τ -dop
property for every regular uncountable cardinal τ , but does not have orthocaliber κ at q.
• Aκ(κ) is the subspace in an ordinal κ+1 defined by Aκ(κ) = {κ}∪{α+1 : α ∈ κ} and q = κ,
where κ is a regular cardinal. It does not have the κ-dop property at q.

By the first statement of the remark above, we see that the converse of Lemma 3.4(1) does not
hold. Moreover, the following example shows that the converse of 3.4(2) does not also hold.

Example 3.14. Let κ be an infinite cardinal. There is a space Y [κ] having exactly one non-isolated
point q such that Y [κ] has the τ -docs property for each regular uncountable cardinal τ , but does not
have the τ -dop property for any regular cardinal τ with τ ≤ κ.

Proof. Ohta [12] constructed the space Y [κ] defined by
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(i) Y [κ] = [κ]<ω ∪ {q} as a set,
(ii) each y ∈ [κ]<ω is an isolated point in Y [κ],
(iii) {B(r) : r ∈ [κ]<ω} is a neighborhood base at q in Y [κ], where B(r) = {y ∈ [κ]<ω : r ⊂ y}∪{q}.

He proved that κ× Y [κ] is normal, but not rectangular for each regular uncountable cardinal κ. We
show that Y [κ] is also an example required here. Note that every neighborhood of q is clopen in Y [κ]
since only q is a non-isolated point.

Let τ be a regular cardinal with τ ≤ κ. For each α ∈ τ , let Wα = {q}∪{y ∈ [κ]<ω : y∩ (α, τ) ̸= ∅}.
Then {Wα : α ∈ τ} is a descending sequence of open neighborhoods of q in Y . Since

∩
α∈τ Wα = {q}

is not a neighborhood of q, Y [κ] does not have the τ -dop property at q.
We will show that the space Y [κ] has the τ -docs property for each regular uncountable cardinal τ .

Let {Vξ : ξ ∈ τ} be a descending sequence of open neighborhoods of q in Y [κ]. For each ζ ∈ τ , take
and fix a rζ ∈ [κ]<ω with B(rζ) ⊂ Vζ . For each r ∈ [κ]<ω, let S(r) = {ζ ∈ τ : rζ = r}.

In case that there is an r ∈ [κ]<ω such that S(r) is unbounded in τ : Letting Fξ = B(r) for each
ξ ∈ τ , we obtain a continuous shrinking {Fξ : ξ ∈ κ} of {Vξ : ξ ∈ κ} by closed neighborhoods of q.
Actually, by taking ζ ∈ S(r) with ξ ≤ ζ, we have rζ = r, and so Fξ = B(r) = B(rζ) ⊂ Vζ ⊂ Vξ.

In case that S(r) is bounded in τ for any r ∈ [κ]<ω: Take a club set C of τ such that supS(rζ) < ξ
for every ξ ∈ C and ζ < ξ. And let Fξ =

∪
η∈τ\ξ B(rη) for each ξ ∈ C. It suffices from Lemma 3.2 to

show that {Fξ : ξ ∈ C} is a continuous shrinking of {Vξ : ξ ∈ C}. It is easy to see that {Fξ : ξ ∈ C}
is a descending sequence of closed neighborhoods of q with Fξ ⊂ Vξ for every ξ ∈ C. To see that
{Fξ : ξ ∈ C} is continuously descending, let ξ ∈ Lim(C). Then sup(S(r) ∩ ξ) < ξ for any r ∈ [κ]<ω.
Actually, if ζ ∈ S(r) ∩ ξ, then rζ = r, so S(r) = S(rζ). It follows from ξ ∈ C and ζ < ξ that
sup(S(r) ∩ ξ) ≤ supS(rζ) < ξ. Let y ∈

∩
ζ∈C∩ξ Fζ . If y ̸= q, then y ∈ [κ]<ω is a finite set, so it has

at most finitely many subsets. By ξ ∈ Lim(C), we can take a ζ ∈ C ∩ ξ such that S(r) ∩ [ζ, ξ) = ∅
for every r ⊂ y. By y ∈ Fζ , there is η ∈ τ \ ζ with y ∈ B(rη). Then rη ⊂ y. So S(rη) ∩ [ζ, ξ) = ∅.
Therefore η /∈ ζ∪ [ζ, ξ) = ξ since η ∈ S(rη). We have y ∈ Fξ. Hence, Fξ =

∩
ζ∈C∩ξ Fζ . So {Fξ : ξ ∈ C}

is continuously descending. �

We close the section by showing another characterization of the κ-dop property.

Proposition 3.15. Let Y be a space and κ a regular cardinal. Then the following are equivalent.

(a) Y has the κ-dop property.
(b) The projection π : κ× Y → Y is closed.
(c) The projection πA : A× Y → Y is closed for some unbounded subset A in κ.

Proof. (a)⇒(b): Take any closed set F in κ× Y . Pick any y ∈ Y \ π(F ). For each α ∈ κ, let

Vα =
∪
{V : V is open in Y with ([0, α]× V ) ∩ F = ∅}.

Then {Vα : α ∈ κ} is a descending sequence of open sets in Y . Let W =
∩

α∈κ Vα. Then W is an
open set in Y missing π(F ). Since each [0, α] is compact, W contains y. Hence π(F ) is closed in Y .

(b)⇒(c): This is obvious.
(c)⇒(a): Let {Vα : α ∈ κ} be a descending sequence of open sets in Y . Let W =

∩
α∈κ Vα and

pick any y ∈ W . Let F = (A × Y ) \
∪

α∈κ

(
(A ∩ [0, α]) × Vα

)
. Then F is a closed set in A × Y with

(A×{y})∩F = ∅. Since πA is closed and y ̸∈ πA(F ), there is an open neighborhood Q of y in Y with
(A×Q) ∩ F = ∅. Let z ∈ Q. For each α ∈ A, since ⟨α, z⟩ ∈ A×Q ⊂ (A× Y ) \ F , there is an α0 ∈ A
with ⟨α, z⟩ ∈ (A∩ [0, α0])× Vα0 . By α ≤ α0, we have z ∈ Vα0 ⊂ Vα. Hence Q ⊂

∩
α∈A Vα =W holds,

which means that W is open in Y . �

4. Products with compact factors

Only this section has no subsection. A theorem here is a characterization for normality of products
of a monotonically normal space and a compact space, which makes clearer than that of [17, Theorem
3.1].
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Theorem 4.1. Let X be a monotonically normal space and K a compact space. Then the following
are equivalent.

(a) X ×K is normal.
(b) E ×K is normal for each E ∈ S(X).
(c) K has the κ-dop property for each κ ∈ S∗(X).
(d) K has the SE-docs property for each E ∈ S(X).

Lemma 4.2. Let Y be a locally compact space with q ∈ Y . Let S be a stationary subset in a regular
uncountable cardinal κ. Then Y has the S-docs property at q if and only if it has the κ-dop property
at q.

Proof. It suffices from Lemma 3.4(2) to show the “only if” part. Let {Vα : α ∈ κ} be a descending
sequence of open neighborhoods of q in Y . Take a compact neighborhood K of q in Y . By the
assumption, there is a continuously descending sequence {Fα : α ∈ S} of closed neighborhoods of q
in Y such that Fα ⊂ Vα for each α ∈ κ. Note that there is γ(α) < α with K ∩ Fγ(α) ⊂ Vα for each
α ∈ S∩Lim(S). In fact, this follows from the compactness of K and K∩(

∩
β∈S∩α Fβ) = K∩Fα ⊂ Vα.

By PDL, there are T ⊂ S ∩ Lim(S) and γ ∈ κ such that T is stationary in κ and γ(α) = γ for each
α ∈ T . Pick any α ∈ κ. Take a δ ∈ T with α < δ. Then we have K ∩ Fγ = K ∩ Fγ(δ) ⊂ Vδ ⊂ Vα.
Hence we obtain q ∈ Int(K ∩ Fγ) ⊂ Int(

∩
α∈κ Vα). �

Lemma 4.3. Let κ be a regular uncountable cardinal. Let X be a space with E ∈ S(X,κ). Let Y be
a space having the κ-dop property at q ∈ Y . If an open set G in X × Y contains E × {q}, then there
are a γ ∈ κ and an open neighborhood W of q in Y such that eE

(
SE ∩ (γ, κ)

)
×W ⊂ G.

Proof. Let S = SE and e = eE . For each α ∈ S, there are a γ(α) ∈ α and an open neighborhood Vα
of q in Y such that e

(
S ∩ (γ(α), α]

)
× Vα ⊂ G. By PDL, there are T ⊂ S and γ ∈ κ such that T is

stationary in κ and γ(α) = γ for each α ∈ T . Let Wα = Int{y ∈ Y : e
(
S ∩ (γ, α]

)
× {y} ⊂ G} for

each α ∈ T . Then, e(S ∩ (γ, α]) ×Wα ⊂ G holds. And Wα contains Vα since e
(
S ∩ (γ, α]

)
× Vα =

e
(
S ∩ (γ(α), α]

)
× Vα ⊂ G. Hence {Wα : α ∈ T} is a descending sequence of open neighborhoods of

q in X. By the assumption, W := Int(
∩

α∈T Wα) is an open neighborhood of q in Y . We also have

that e
(
S ∩ (γ, κ)

)
×W ⊂

∪
α∈T (e(S ∩ (γ, α])×Wα) ⊂G. �

Proof of Theorem 4.1. (a)⇒(b): This is obvious.
(b)⇒(c) : This immediately follows from Lemmas 2.1 and 3.6.
(c)⇔(d) : Since K is compact, this is an immediate consequence of Lemma 4.2.
(c)⇒(a): Let G = {G0, G1} be a binary open cover of X ×K. We show that G is normal. Take a

κ ∈ S∗(X) and an E ∈ S(X,κ), and let S = SE and e = eE . Pick any q ∈ K. By Fact 2.3, there are
δ ∈ κ and i ∈ 2 such that e

(
S∩(δ, κ)

)
×{q} ⊂ Gi. By the assumption of K, it follows from Lemma 4.3

that there are a γ ∈ (δ, κ) and an open neighborhood W of q in K such that e
(
S ∩ (γ, κ)

)
×W ⊂ Gi.

Take an open neighborhood Q of q in K with Q ⊂ W . Let P = {x ∈ X : {x} ×Q ⊂ Gi}. Since Q is
compact, P is an open set in X. Moreover, we conclude that e

(
S ∩ (γ, κ)

)
⊂ P and P ×Q ⊂ Gi. It

follows from Lemma 2.6 that G is normal. Hence X ×K is normal. �
Moreover, we can obtain an analogue to Theorem 4.1 for orthocompactness of the same products.

Theorem 4.4. Let X be a monotonically normal space and K a non-empty compact space. Then the
following are equivalent.

(a) X ×K is orthocompact.
(b) X is orthocompact and E ×K is orthocompact for each E ∈ S(X).
(c) X is orthocompact and K has orthocaliber κ for each κ ∈ S∗(X).

This will be proved by a more generalized form in terms of DC-likeness in the next section (see
Theorem 5.7).
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5. Products with DC-like factors

Telgársky [15] introduced and studied the topological game G(K, Y ). This section devotes to
generalize the results in the previous section in terms of topological games in the sense of Telgársky
as studied in [18].

Topological games of Telgársky. Details of Telgársky’s topological game G(K, Y ) are described
in [15, 18]. For reader’s convenience, we give here only a sketch of the definition.

Definition 5. Let Y be a space, and K a class of spaces, for instance K = DC, where DC denotes the
class of all spaces which have a discrete cover by compact sets. In the game G(K, Y ), two players take
closed subsets En and Fn in Y for each n ∈ ω in turn E0, F0, E1, F1, · · · . Player I chooses En ∈ K with
En ⊂ Fn−1, where F−1 = Y . Player II chooses Fn with Fn ⊂ Fn−1 \En. Player I wins if

∩
n∈ω Fn = ∅.

A space Y is said to be DC-like if Player I has a winning strategy in the game G(DC, Y ).

It is known that a space with a σ-closure preserving cover by compact sets and a subparacompact
C-scattered space are DC-like. So the class of DC-like spaces is much broader than that of compact
spaces. The class of DC-like spaces plays important roles in the study of covering properties of
rectangular products. In fact, the following was proved.

Theorem 5.1 ([4, 15, 16]). If X is a paracompact (metacompact) space and Y is a paracompact
(metacompact regular) DC-like space, then X × Y is paracompact and rectangular (metacompact).

Arguments in this section is worth considering only in the case that a monotonically normal spaceX
does not have a weak covering property such as the weak metalindelöf property. Otherwise, it follows
from [1, Corollary 2.1] that X is paracompact, and so all results would be trivial from Theorem 5.1.

Normality and rectangularity of the products.

Theorem 5.2. Let X be a monotonically normal and orthocompact space and Y a paracompact DC-
like space. Then the following are equivalent.

(a) X × Y is normal and rectangular.
(b) E × Y is normal and rectangular for each E ∈ S(X).
(c) Y has the κ-dop property for each κ ∈ S∗(X).

Remark 5.3. It is natural to ask whether orthocompactness of X in Theorem 5.2 can be taken off.
However, Example 6.18 below shows that it is negative. Hence the compact factor of Theorem 4.1
cannot be extended to the DC-like factor as in Theorem 5.2.

Let us begin to prove Theorem 5.2.

Lemma 5.4 ([18, Lemmas 8.2 and 8.3]). Let X be a monotonically normal space and Y a paracompact
(metacompact regular) DC-like space. Let G be an open cover of X × Y . Assume that, for each
E ∈ S(X) and for each y ∈ Y , there is an open rectangle U × V in X × Y such that E is almost
contained in U , y ∈ V and U × V is contained in some member of G. Then G has a σ-locally finite
rectangular cozero refinement (a point-finite rectangular open refinement).

Lemma 5.5. Let X be a monotonically normal space and Y a paracompact DC-like space. Assume
that for each E ∈ S(X), for each y ∈ Y and for each open set G in X × Y containing E × {y}, there
is an open rectangle U × V in X × Y such that E is almost contained in U, y ∈ V and U × V ⊂ G.
Then X × Y is normal and rectangular.

Proof. Let G = {G0, G1} be a binary open cover of X × Y . Take any E ∈ S(X,κ) with κ ∈ S∗(X)
and pick any y ∈ Y . By Fact 2.3, there are an i ∈ 2 and an E′ = eE(SE ∩ (δ, κ)) for some δ ∈ κ such
that E′×{y} ⊂ Gi. Applying the assumption for E′ ∈ S(X,κ), we obtain an open rectangle U ×V in
X × Y such that E′ is (and so E is) almost contained in U , y ∈ V and U × V ⊂ Gi. By Lemma 5.4,
G has a σ-locally finite rectangular cozero refinement. Hence X × Y is normal and rectangular. �
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Lemma 5.6. Let X be an orthocompact space with E ∈ S(X,κ), where κ ∈ S∗(X). Let U be a
collection of open sets in X with E ⊂

∪
U . Then there are a γ ∈ κ and an increasing open expansion

{P (α) : α ∈ (γ, κ)} of {eE(SE ∩ (γ, α]) : α ∈ (γ, κ)} in X which partially refines U .

Proof. Since U ∪ {X \E} is an open cover of X, it has an interior-preserving open refinement V. Let
S = SE and e = eE . Pick any α ∈ S. Choose a Vα ∈ V with e(α) ∈ Vα and a γ(α) ∈ α ∪ {−1}
with e(S ∩ (γ(α), α]) ⊂ Vα. By PDL, there are T ⊂ S and γ ∈ κ such that T is stationary in κ and
γ(α) = γ for each α ∈ T . Let P = {P (α) : α ∈ (γ, κ)}, where P (α) =

∩
{V ∈ V : e(S ∩ (γ, α]) ⊂ V }.

Then P is an increasing open expansion of {e(S ∩ (γ, α]) : α ∈ (γ, κ)} since V is interior preserving
and {e(S ∩ (γ, α]) : α ∈ (γ, κ)} is increasing. Let α ∈ (γ, κ). Take a β ∈ T with α ≤ β. By
e(S ∩ (γ, α]) ⊂ e(S ∩ (γ(β), β]) ⊂ Vβ with Vβ ∈ V, we have P (α) ⊂ Vβ . Since V refines U ∪ {X \ E}
and e(β) ∈ Vβ ∩ E, there is a U ∈ U with P (α) ⊂ Vβ ⊂ U . Hence P partially refines U . �

Proof of Theorem 5.2. (a)⇒(b): This is obvious.
(b)⇒(c): This immediately follows from Lemma 3.6.
(c)⇒(a): Take any E ∈ S(X,κ) with κ ∈ S∗(X), and pick any y ∈ Y . By (c), Y has the κ-dop

property at y. Moreover, take any open set G in X×Y containing E×{y}. Let U be the family of all
open sets U inX such that U×V ⊂ G for some open neighborhood V of y in Y . Then we have E ⊂

∪
U .

Let S = SE and e = eE . It follows from Lemma 5.6 that there are a γ ∈ κ and an increasing open
expansion P = {P (α) : α ∈ (γ, κ)} of {e(S∩(γ, α]) : α ∈ (γ, κ)} in X which partially refines U . By the
definition, P is a subcollection of U . For each α ∈ (γ, κ), let Wα = IntY ({z ∈ Y : P (α)× {z} ⊂ G}).
By P (α) ∈ U , we see that Wα is an open neighborhood of y in Y . Since {Wα : α ∈ (γ, κ)} is
descending, the κ-dop property of Y witnesses that W := Int(

∩
α∈(γ,κ)Wα) is an open neighborhood

of y in Y . Let U =
∪
{P (α) : α ∈ (γ, κ)}. Then U is an open set with e(S ∩ (γ, κ)) ⊂ U , that is, E is

almost contained in U . Moreover, we obtain that U ×W⊂
∪
{P (α)×Wα : α ∈ (γ, κ)} ⊂ G. It follows

from Lemma 5.5 that X × Y is normal and rectangular. �

Orthocompactness of the products. Now, we show a generalization of Theorem 4.4 in terms of
DC-likeness.

Theorem 5.7. Let X be a monotonically normal space and Y a non-empty metacompact DC-like
regular space. Then the following are equivalent.

(a) X × Y is orthocompact.
(b) X is orthocompact and E × Y is orthocompact for each E ∈ S(X).
(c) X is orthocompact and Y has orthocaliber κ for each κ ∈ S∗(X).

The following which is a generalization of Theorem 1.1 is an immediate consequence of Theorems
5.2, 5.7 and Lemma 3.4(1).

Corollary 5.8 ([18]). Let X be a monotonically normal space and Y a paracompact DC-like space.
If X × Y is orthocompact, then it is normal and rectangular.

Let us prove Theorem 5.7.

Lemma 5.9. Let X be an orthocompact space with E ∈ S(X,κ), where κ ∈ S∗(X). Let Y be a space
with orthocaliber κ at q ∈ Y . Let G be an open cover of X × Y . Then there are a γ ∈ κ, an open
neighborhood V of q in Y and an increasing open expansion {P (α) : α ∈ (γ, κ)} of {eE(SE ∩ (γ, α]) :
α ∈ (γ, κ)} in X such that {P (α)× V : α ∈ (γ, κ)} partially refines G.

Proof. Let U be the family of all open sets U in X such that U ×V is contained in some member of G
for some open neighborhood V of q in Y . Then U is an open cover of X. Let S = SE and e = eE . It
follows from Lemma 5.6 that there are a γ ∈ κ and an increasing open expansion {P (α) : α ∈ (γ, κ)}
of {e(S ∩ (γ, α]) : α ∈ (γ, κ)} in X which partially refines U . For each α ∈ (γ, κ), we can take an open
neighborhood V (α) of q in Y such that P (α)× V (α) is contained in some member G(α) of G. Since
Y has orthocaliber κ, we can take an open neighborhood V of q in Y such that V ⊂ V (β) holds for
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unbounded many β ∈ (γ, κ) in κ. For each α ∈ (γ, κ), by taking β ∈ [α, κ) with V ⊂ V (β), we have
P (α)× V ⊂ P (β)× V (β) ⊂ G(β). Hence {P (α)× V : α ∈ (γ, κ)} partially refines G. �

Proof of Theorem 5.7. (a)⇒(b): This is obvious.
(b)⇒(c): This immediately follows from Lemma 3.5.
(c)⇒(a): Let G be an open cover of X × Y . Let

O = {O ⊂ X × Y : O is open in X × Y, G � O has an interior-preserving open refinement in O}.

Then O is an open cover of X × Y . It suffices to show that O has a point-finite open refinement.
Take an E ∈ S(X,κ) and a y ∈ Y . Let S = SE and e = eE . By the assumption, Y has orthocaliber
κ at y. By Lemma 5.9, there are a γ ∈ κ, an open neighborhood V of y in Y and an increasing open
expansion {P (α) : α ∈ (γ, κ)} of {e(S ∩ (γ, α]) : α ∈ (γ, κ)} in X such that {P (α) × V : α ∈ (γ, κ)}
partially refines G. Let U =

∪
{P (α) : α ∈ (γ, κ)}. Then U is an open set in X with e(S∩ (γ, κ)) ⊂ U .

Since {P (α) × V : α ∈ (γ, κ)} is an increasing open cover of U × V , it is an interior-preserving open
refinement of G � (U × V ). This means U × V ∈ O. It follows from the parenthetic part of Lemma
5.4 that O has a point-finite open refinement. �

6. Products with almost discrete factors

A space Y is said to be almost discrete if it has exactly one non-isolated point. Note that an almost
discrete space is monotonically normal, paracompact and DC-like. Moreover, observe that the spaces
Aθ(κ) and Y [κ] in Examples 3.12 and 3.14, respectively, are almost discrete.

Normality of the products. The first main result here is to characterize the normal products of a
monotonically normal space and an almost discrete space in terms of the S-docs property as follows.

Theorem 6.1. Let X be a monotonically normal space and Y an almost discrete space with a non-
isolated point q. Then the following are equivalent.

(a) X × Y is normal.
(b) E × Y is normal for each E ∈ S(X).
(c) Y has the SE-docs property at q for each E ∈ S(X).

Proof. (a)⇒(b): This is obvious.
(b)⇒(c): This immediately follows from Lemma 3.7.
(c)⇒(a): This immediately follows from Lemmas 6.3 and 6.5 stated below. �

Recall that two disjoint sets E and F in a space X are separated if there are disjoint open sets U
and V in X such that E ⊂ U and F ⊂ V .

Lemma 6.2. Let X and Y be monotonically normal spaces. Let E and F be closed sets in X and Y ,
respectively, and let O be an open set in X × Y with E × F ⊂ O. If there are two open sets OE and
OF in X × Y such that E × F ⊂ OE ∩OF , (E × Y ) ∩ OE ⊂ O and (X × F ) ∩ OF ⊂ O, then E × F
and (X × Y ) \O are separated.

Proof. Let us take two monotone normality assignments HX and HY for X and Y , respectively (see
Lemma 2.4). For each ⟨x, y⟩ ∈ E×F , take an open rectangle Ux,y×Vx,y in X×Y with ⟨x, y⟩ ∈ Ux,y×
Vx,y ⊂ O, and let Ox,y = HX(x, Ux,y)×HY (y, Vx,y). Let G = OE∩OF ∩(

∪
⟨x,y⟩∈E×F Ox,y). Obviously,

G is an open set in X×Y with E×F ⊂ G. So it suffices to show that G ⊂ O. Pick any ⟨x, y⟩ ∈ G. In
case x ∈ E, we have ⟨x, y⟩ ∈ (E×Y )∩OE ⊂ O. In case y ∈ F , we have ⟨x, y⟩ ∈ (X×F )∩OF ⊂ O. In
case x /∈ E and y /∈ F , since the neighborhood HX(x,X \E)×HY (y, Y \ F ) of ⟨x, y⟩ meets G which
is contained in

∪
⟨x′,y′⟩∈E×F Ox′,y′ , there is ⟨p, q⟩ ∈ E ×F such that HX(p, Up,q) meets HX(x,X \E)

and HY (q, Vp,q) meets HY (y, Y \ F ). Then we have ⟨x, y⟩ ∈ Up,q × Vp,q ⊂ O. �
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Lemma 6.3. Let X and Y be monotonically normal spaces with E ∈ S(X,κ), where κ ∈ S∗(X), and
q ∈ Y . If Y has the SE-docs property at q, then for each open set O in X × Y containing E × {q},
there is γ ∈ κ such that eE(SE ∩ (γ, κ))× {q} and (X × Y ) \O are separated.

Proof. Let S = SE and e = eE . Let O be an open set in X × Y containing E × {q}. For each α ∈ S,
take a γ(α) < α and an open neighborhood Wα of q in Y such that e

(
S ∩ (γ(α), α]

)
×Wα ⊂ O. By

PDL, there is γ ∈ κ such that e
(
S ∩ (γ, α]

)
×Wα ⊂ O holds for stationarily many α ∈ S ∩ (γ, κ). Let

S0 = S ∩ (γ, κ) and E0 = e(S0) = e(S ∩ (γ, κ)). Since E0×{q} ⊂ E×{q} ⊂ O, it suffice from Lemma
6.2 to show that there are two open sets OE and Oq in X × Y , satisfying

(i) E0 × {q} ⊂ OE and (E0 × Y ) ∩OE ⊂ O and
(ii) E0 × {q} ⊂ Oq and (X × {q}) ∩Oq ⊂ O.

Let P (O) = {x ∈ X : ⟨x, q⟩ ∈ O}. Since it is an open set in a normal space X and contains a closed
set E, there is an open set U in X with E ⊂ U ⊂ U ⊂ P (O). Let Oq = U × Y . Then Oq is an open
set in X × Y satisfying (ii).

We will find an open set OE in X × Y satisfying (i). Take a monotone normality operator M for
X (see Definition 1). For each α ∈ κ with γ < α, let E∗(α) = e(S ∩ (γ, α]) and E∗(α) = e(S ∩ (α, κ)).
For each α ≤ γ, let E∗(α) = ∅ and E∗(α) = e(S ∩ (γ, κ)). Since E∗(α) and E

∗(α) are disjoint closed
sets in X, we can take the open set Uα :=M(E∗(α), E

∗(α)) in X for each α ∈ κ. By the property of
M , U :={Uα : α ∈ κ} is an increasing sequence of open sets in X with E∗(α) ⊂ Uα ⊂ Uα ⊂ X \E∗(α).
For each α ∈ S, we also let Vα = Int{y ∈ Y : E∗(α) × {y} ⊂ O}. It is easy to see that {Vα : α ∈ S}
is a descending sequence of open neighborhoods of q in Y with E∗(α)× Vα ⊂ O. By the assumption,
there is a continuously descending sequence {Fα : α ∈ S} of closed neighborhoods of q in Y such that
Fα ⊂ Vα for each α ∈ S. Here let OE =

∪
α∈S0

(Uα× IntY Fα). Obviously, OE is an open set of X×Y
with E0 × {q} ⊂ OE . For (i), it suffices to show that (E0 × Y ) ∩OE ⊂ O.

Pick any ⟨x, y⟩ ∈ (E0 × Y ) ∩OE . There is ξ ∈ S0 with x = e(ξ). Let α+ = min{α′ ∈ S0 : α < α′}
for each α ∈ κ.
Claim. y ∈ Fα+ for each α ∈ ξ.

Proof. Pick an α ∈ ξ. Since x = e(ξ) ∈ E∗(α) and E∗(α) misses Uα, X \Uα is an open neighborhood
of x in X. Take any open neighborhood W of y in Y . Since (X \ Uα) × W meets OE , there is
δ ∈ S0 such that (X \ Uα) × W meets Uδ × IntFδ. Then X \ Uα meets Uδ and W meets IntFδ.
Since U is increasing, we have α < δ, so α+ ≤ δ. Hence we obtain Fα+ ⊃ Fδ. Thus we have
W ∩ Fα+ ⊃W ∩ Fδ ⊃W ∩ IntFδ ̸= ∅. This means that y ∈ Fα+ = Fα+ . �

In case of ξ ∈ Lim(S), since y ∈ Fα+ ⊂ Fα for each α ∈ S ∩ ξ, we have y ∈
∩

α∈S∩ξ Fα = Fξ. In

case ξ /∈ Lim(S), by letting α = sup(S ∩ ξ) < ξ, we have ξ = α+ and so y ∈ Fα+ = Fξ. In any case,
we conclude that ⟨x, y⟩ ∈ E∗(ξ)× Fξ ⊂ E∗(ξ)× Vξ ⊂ O. �
Lemma 6.4 (folklore). Let X be a normal space and Y an almost discrete space with a non-isolated
point q. Then X × Y is normal if and only if for each closed set F in X × Y disjoint from X × {q},
F and X × {q} are separated.

Lemma 6.5. Let X be a monotonically normal space and Y an almost discrete space with a non-
isolated point q. Assume that for each E ∈ S(X,κ) with κ ∈ S∗(X) and for each open set G in X×Y
with E×{q} ⊂ G, there is γ ∈ κ such that eE(SE ∩ (γ, κ))×{q} and (X×Y )\G are separated. Then
X × Y is normal.

Proof. Let G be an open set in X × Y containing X × {q}. It suffices to show from Lemma 6.4 that
X × {q} and (X × Y ) \G are separated. Let

U = {U : U is open in X such that U × {q} and (X × Y ) \G are separated}.
Since X×Y is regular, it is obvious that U is an open cover of X. By the assumption, each E ∈ S(X)
is almost contained in some member of U . It follows from Corollary 2.7 that U is normal. So there is
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a locally finite open refinement V of U . By the choice of U , for each V ∈ V , one can find an open set
WV in X × Y such that V × {q} ⊂ WV ⊂ WV ⊂ G. Then H = {(V × Y ) ∩WV : V ∈ V} is a locally

finite collection of open sets in X × Y . Hence we obtain that X × {q} ⊂
∪
H ⊂

∪
H ⊂ G. �

Rectangularity implies normality for the products. For two subspaces A and B of an ordinal, if
A×B is normal, it follows from Theorem 1.2 that it is rectangular. On the other hand, it follows from
Lemma 2.1 that ω1 × (ω1 + 1) is rectangular, though this is not normal as well-known. So, normality
of products seems to be stronger than its rectangularity. However, for the product of a monotonically
normal space and an almost discrete space, such an implication suddenly becomes opposite as follows.

Theorem 6.6. Let X be a monotonically normal space and Y an almost discrete space. If X × Y is
rectangular, then it is normal.

Remark 6.7. As stated in the proof of Example 3.14, Ohta [12] showed that the product κ × Y [κ]
is normal but not rectangular. Since Y [κ] is almost discrete, the converse of Theorem 6.6 is not true.
Example 6.18 is also another example in this case.

In order to prove Theorem 6.6, we define a new neighborhood property which we call the S-
codecop property. This property plays important roles also in Section 8 to characterize rectangularity
and countable paracompactness of the product of a GO-space and a subspace of an ordinal.

Recall that a sequence {Vα : α ∈ S} of subsets in a space Y , where S is an index set of ordinals,
is continuously descending if Vα ⊃ Vα′ for each α, α′ ∈ S with α < α′ and Vα =

∩
β∈S∩α Vβ for each

α ∈ S ∩ Lim(S) (see Definition 4).

Definition 6. Let Y be a space and S a set of ordinals. We say that Y has the S-continuously
descending clopen preserving property at q ∈ Y (the S-codecop property at q ∈ Y for short) if for each
continuously descending sequence {Vα : α ∈ S} of clopen neighborhoods of q in Y , q ∈ Int(

∩
α∈S Vα)

holds. We also say that Y has the S-codecop property if Y has the S-codecop property at each point
of Y .

Note that a space Y has the S-codecop property iff for each continuously descending sequence
{Vα : α ∈ S} of clopen sets in Y ,

∩
α∈S Vα is clopen in Y . The following is easy to see.

Lemma 6.8. Let κ be a regular cardinal. If a space Y has the κ-dop property at q ∈ Y , then Y has
the S-codecop property at q for any unbounded subset S in κ.

Proposition 6.9. Let κ be a regular cardinal. Let Y be an almost discrete space with a non-isolated
point q. Then Y has the κ-dop property at q if and only if it has the S-codecop property at q for some
(any) unbounded subset S in κ.

Proof. We only show the ”if” part. Let {Vα : α ∈ κ} be a descending sequence of open neighborhoods
of q in Y . Let Wα = Vα for each α ∈ S \ Lim(S) and let Wα =

∩
β∈S∩α Vβ for each α ∈ S ∩ Lim(S).

Note that any neighborhood of q is clopen in Y , so is each Wα. Since {Wα : α ∈ S} is continuously
descending, we have q ∈ Int(

∩
α∈S Wα) ⊂

∩
α∈S Vα =

∩
α∈κ Vα. �

Remark 6.10. We cannot remove the almost discreteness of Y in the proposition above. In fact,
for a regular uncountable cardinal κ, let Y = [0, κ] and q = κ. Then it follows from Lemma 8.19
below that Y has the S-codecop property at q for each stationary subset S in κ (notice that cq,0 is the
identity map of Y in there). On the other hand, it is easily seen that Y has not the κ-dop property
at q. Moreover, for the case of κ = ω, every connected and first countable space X with at least two
points has the ω-codecop property, but does not have the ω-dop property at each point of X.

Lemma 6.11. Let X be a monotonically normal space with E ∈ S(X,κ), where κ ∈ S∗(X). If
{Wα : α ∈ κ} is a continuously descending sequence of clopen sets in a space Y , then there is a
cozero-set G in X × Y such that G ∩ (E × Y ) =

∪
α∈SE

(
{eE(α)} ×Wα

)
.
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Proof. Let S = SE and e = eE . Let {Wα : α ∈ κ} be as above. LetM be a monotone normality opera-
tor for X. For each α ∈ κ, let E∗(α) = e(S∩ [0, α]), E∗(α) = e(S∩(α, κ)) and Uα =M(E∗(α), E

∗(α)).
Then {Uα : α ∈ κ} is an increasing sequence of open sets in X with E∗(α) ⊂ Uα ⊂ Uα ⊂ X \ E∗(α).
Here we let U =

∪
α∈κ Uα. Then U is an open set in X containing E. Let I = [0, 1] be the unit interval

in the real line. Since X is normal, for each α ∈ κ, there is a continuous function fα : X → I such that
fα(x) = 1 if x ∈ Uα and fα(x) = 0 if x ∈ E∗(α). Moreover, there is a continuous function g : X → I
such that g(x) = 1 if x ∈ E and g(x) = 0 if x ∈ X \U . For convenience, let f−1 ≡ 0 and fκ ≡ 1 be the
constant functions on X, and let W−1 = Y, Wκ =

∩
α∈κWα and Wκ+1 = ∅. We let Lα =Wα \Wα+1

for each α ∈ [−1, κ]. Since Wα is clopen in Y for each α ∈ κ, note that {Lα : α ∈ [−1, κ]} is a pairwise
disjoint closed cover of Y . For each y ∈ Y , one can decide the unique α(y) ∈ [−1, κ] with y ∈ Lα(y).
Now, we take the function h : X × Y → I defined by h(x, y) = fα(y)(x)g(x) for each ⟨x, y⟩ ∈ X × Y .

Claim. h is continuous.

Proof. Note that h � (X × Lα) = (fα · g) ◦ πX � (X × Lα) for each α ∈ [−1, κ), where πX denotes
the projection from X × Y onto X. So h is continuous on X × Lα. Since Lα is clopen in Y for each
α ∈ [−1, κ), h is continuous on X ×

(∪
α∈[−1,κ) Lα

)
. Since 0 ≤ h(x, y) ≤ g(x) for each ⟨x, y⟩ ∈ X × Y

and g(x) = 0 for each x ∈ X \ U , h is continuous at each ⟨x, y⟩ ∈ (X \ U) × Y . It remains to show
that h is continuous at each point in U × Lκ⊂

∪
α∈κ(Uα ×Wα). For that, it suffices to show that

h � (Uα ×Wα) ≡ g ◦ πX � (Uα ×Wα) for each α ∈ κ. Pick any α ∈ κ and any ⟨x, y⟩ ∈ Uα ×Wα.
When α(y) = κ, we have fα(y)(x) = fκ(x) = 1. Assume that α(y) < κ. Since y ∈ Lα(y) and
Lα(y) ∩Wα′ = ∅ if α(y) < α′, we have y ̸∈

∪
α′>α(y)Wα′ . By y ∈ Wα, we obtain α ≤ α(y). Since

x ∈ Uα ⊂ Uα(y) and fα(y) � Uα(y) ≡ 1, we conclude that fα(y)(x) = 1. In any case, we have that
h(x, y) = fα(y)(x)g(x) = g(x). �

We put G = {⟨x, y⟩ ∈ X×Y : h(x, y) > 0}. Then G is a cozero-set in X×Y . Pick an α ∈ S. Since
e(α) ∈ E and g(e(α)) = 1, it follows that

⟨e(α), y⟩ ∈ G⇔ h(e(α), y) > 0⇔ fα(y)(e(α)) > 0⇔ α ≤ α(y)⇔ y ∈Wα

for each y ∈ Y . This means that G ∩ (E × Y ) =
∪

α∈SE

(
{eE(α)} ×Wα

)
. �

Proposition 6.12. Let X be a monotonically normal space and Y a space. If X × Y is rectangular,
then Y has the κ-codecop property for each κ ∈ S∗(X).

Proof. Take a κ ∈ S∗(X). Take an E ∈ S(X,κ), and let S = SE and e = eE . Let {Vα : α ∈ κ} be
a continuously descending sequence of clopen neighborhoods of q ∈ Y . By Lemma 6.11, there is a
cozero-set G in X ×Y such that G∩ (E×Y ) =

∪
α∈S

(
{e(α)}×Vα

)
. Then note that e(S)×{q} ⊂ G.

Since X×Y is rectangular, G is the union of a σ-locally finite collection by cozero rectangles in X×Y .
There are a cozero rectangle U ×W in X × Y and a γ ∈ κ such that e

(
S ∩ (γ, κ)

)
⊂ U, q ∈ W and

U ×W ⊂ G. Pick any y ∈ W and any α ∈ κ. Take a ξ ∈ S with max{α, γ} < ξ. Then we have
⟨e(ξ), y⟩ ∈ e

(
S ∩ (γ, κ)

)
×W ⊂ U ×W ⊂ G. By the choice of G, we have y ∈ Vξ ⊂ Vα. We obtain

q ∈W ⊂
∩

α∈κ Vα. Hence Y has the κ-codecop property. �

Proof of Theorem 6.6. Let q be a non-isolated point of Y , and take an E ∈ S(X,κ) with κ ∈ S∗(X).
By Proposition 6.12, rectangularity of X × Y implies that Y has the κ-codecop property at q. By
Proposition 6.9, Y has the κ-dop property. It follows from Lemma 3.4(2) that Y has the SE-docs
property for every E ∈ S(X). Theorem 6.1 witnesses that X × Y is normal. �

Monotonically normal spaces which are not orthocompact. By Balogh-Rudin’s Theorem (=
Theorem 2.5), we see that monotonically normal spaces have a covering property which is near to
paracompactness. On the other hand, GO-spaces are monotonically normal and orthocompact. It is
natural to consider whether monotonically normal spaces are orthocompact. As a negative answer
to this, we give a machine to produce, from a monotonically normal, non-paracompact space, a
monotonically normal space but not orthocompact.
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For a space Y with A ⊂ Y , we denote by YA (see [3, p.306]) the space of the set Y with the new
topology

{V ∪ L : V is an open set in Y and L ⊂ Y \A}.
So Y{q} is an almost discrete space for each q ∈ Y .

Lemma 6.13. If X is a monotonically normal space and Y is a space with q ∈ Y , then (X×Y )[X×{q}]
is also monotonically normal.

Proof. Let Z = (X × Y )[X×{q}]. Let H be a monotone normality assignment for X. For each A ⊂ Z,
let U(A) = {x ∈ X : ⟨x, q⟩ ∈ A}. For each ⟨x, y⟩ ∈ Z and for each open set G in Z with ⟨x, y⟩ ∈ G,
let HZ(⟨x, y⟩, G) =

(
H(x, U(G))× Y

)
∩G if y = q and let HZ(⟨x, y⟩, G) = {⟨x, y⟩} if y ̸= q. Then it

is easy to check that HZ is a monotone normality assignment for Z. �

Let X be a space with a collection W of open subsets in X and x ∈ X. We denote by Wx or
(W)x the collection consisting of all members of W containing x. Note that W is interior-preserving
iff x ∈ Int(

∩
Wx) for each x ∈ X.

Proposition 6.14. Let X be a space and Y an almost discrete space with a non-isolated point q.
Then X × Y is orthocompact if and only if so is (X × Y )[X×{q}].

Proof. Let Y = D ∪ {q} with q ̸∈ D. Let Z = (X × Y )[X×{q}]. Each open set in X × Y is also open
in Z. For each x ∈ X, the neighborhood bases at ⟨x, q⟩ in X × Y and in Z coincide with each other.

Assume that X × Y is orthocompact. Let G be an open cover of Z. Since {IntX×YG : G ∈
G} ∪ {X ×D} is an open cover of X × Y , it has an interior preserving open refinement H0 in X × Y .
Let H = {H ∈ H0 : H meets X×{q}}∪{{z} : z ∈ X×D}. Obviously, H is an open refinement of G in
Z, and

∩
(H)z = {z} is open in Z for each z ∈ X×D. Pick any x ∈ X. Then

∩
(H)⟨x,q⟩ =

∩
(H0)⟨x,q⟩

is open in X × Y , so open also in Z. Hence H is an interior preserving open refinement of G in Z.

Conversely, assume that Z is orthocompact. Observe that X is orthocompact, since X × {q} is a
closed subspace of Z. So X ×D =

⊕
y∈D(X ×{y}) is an orthocompact open subspace in X × Y . Let

G be an open cover of X × Y . Then it is also an open cover of Z. We may assume without loss of
generality that each member of G is an open rectangle in X×Y . Since Z is orthocompact, there is an
interior-preserving open refinement H∗ of G in Z. For each H ∈ H∗, take and fix a P (H)×Q(H) ∈ G
containing H, and let U(H) = {x ∈ X : ⟨x, q⟩ ∈ H}. Then U(H) is open in X and U(H) ⊂ P (H).
Let H0 = {U(H)×Q(H) : H ∈ H∗}. Then it is a partial open refinement of G in X × Y containing
X × {q}. Pick any ⟨x, y⟩ ∈ X × Y . Since H∗ is interior-preserving at ⟨x, q⟩ in Z, there is an open
rectangle P × Q in X × Y with ⟨x, q⟩ ∈ P × Q ⊂

∩
(H∗)⟨x,q⟩. Assume ⟨x, y⟩ ∈ U(H) × Q(H) with

H ∈ H∗. Then by ⟨x, q⟩ ∈ H, we have P × Q ⊂ H ⊂ P (H) × Q(H). It follows from q ∈ Q that
P × {q} ⊂ P × Q ⊂ H, thus P ⊂ U(H) holds. By Q ⊂ Q(H), we have P × Q ⊂ U(H) × Q(H).
Hence we see that ⟨x, q⟩ ∈ P × Q ⊂

∩
(H0)⟨x,q⟩. Now assume y ̸= q. By y ∈ Q(H), we have

P × {y} ⊂ U(H)×Q(H). This means that ⟨x, y⟩ ∈ P × {y} ⊂
∩
(H0)⟨x,y⟩. Therefore H0 is interior-

preserving inX×Y . SinceX×D is orthocompact, G has an interior-preserving partial open refinement
H1 in X ×Y covering X ×D. Then H0 ∪H1 is an interior-preserving open refinement of G in X ×Y .

�

Corollary 6.15. If X is a monotonically normal space with κ ∈ S∗(X), and Y is an almost dis-
crete space which does not have orthocaliber κ, then

(
X × Y

)
[X×{q}] is monotonically normal but not

orthocompact, where q is the non-isolated point in Y .

Proof. Let Z =
(
X × Y

)
[X×{q}]. By Lemma 6.13, Z is monotonically normal. Since Y is almost

discrete, it is paracompact DC-like. By the assumption of Y , it follows from Theorem 5.7 that X ×Y
is not orthocompact. Hence it follows from Proposition 6.14 that Z is not orthocompact. �

Moreover, by this, we immediately obtain
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Corollary 6.16. If X is a monotonically normal space which is not paracompact with κ ∈ S∗(X),
then

(
X × Aω(κ)

)
[X×{κ}] and

(
X × Aκ(κ)

)
[X×{κ}] are monotonically normal but not orthocompact,

where Aω(κ) and Aκ(κ) are defined in Example 3.12.

Remark 6.17. There are many monotonically normal spaces that are not paracompact. A typical
example is a stationary subset of a regular uncountable cardinal.

Normal products which are not rectangular. As stated in Example 3.14, Ohta [12] constructed
the almost discrete space Y [κ], where κ is a regular uncountable cardinal, and showed that the product
κ× Y [κ] is normal but not rectangular (see Remark 6.7). We give here another such example X × Y .
The difference is that: Ohta’s example Y [κ] does not have the κ-dop property, and it is a key to
refuting rectangularity. On the other hand, our example Y has the τ -dop property for every regular
uncountable cardinal τ , and it witnesses that in Theorem 5.2, the assumption ofX being orthocompact
cannot be removed (see Remark 5.3).

Example 6.18. For a regular uncountable cardinal κ, there are a monotonically normal space X and
an almost discrete space Y , satisfying that

(1) |X| = |Y | = κ, and κ is embedded into X as a closed subset,
(2) Y has the τ -dop property for each regular uncountable cardinal τ ,
(3) X × Y is normal,
(4) X × Y is not rectangular.

Proof. Let κ be a regular uncountable cardinal. First, by Theorem 5.2, note that the required space X
must be a monotonically normal space which is not orthocompact. Now, we letX = (κ×Aκ(κ))[κ×{κ}],
where Aκ(κ) = {α + 1 : α ∈ κ} ∪ {κ}. By Corollary 6.16, we see that X is such a space. Obviously,
|X| = κ holds, and κ is homeomorphic to a closed subset κ× {κ} in X.

Let Sκ
ω = {β ∈ κ : cf(β) = ω}. Then Sκ

ω is stationary in κ (see [11, Lemma II.6.10]). Let
Y = {q} ∪ (

∪
β∈Sκ

ω

(
{β} × β)

)
as a set, and the topology of Y is defined by

(i) each point of Y \ {q} is an isolated point in Y ,
(ii) a neighborhood base of q in Y is defined by{

{q} ∪
( ∪
β∈Sκ

ω

(
{β} × [φ(β), β)

))
: φ ∈

∏
β∈Sκ

ω

β
}
.

Then Y is clearly an almost discrete space with a non-isolated point q. It is obvious that |Y | = κ,
so (1) holds. Normality of X × Y is assured by Lemma 3.4(2) and Theorem 6.1 if (2) is satisfied. It
remains to show that (2) and (4) are satisfied.

(2): Let τ be a regular uncountable cardinal. Let {Vξ : ξ ∈ τ} be a descending sequence of
open neighborhoods of q in Y . For each ξ ∈ τ , there is φξ ∈

∏
β∈Sκ

ω
β such that Vξ contains {q} ∪(∪

β∈Sκ
ω
({β} × [φξ(β), β))

)
. We may assume that φξ(β) = min{δ ∈ β : {β} × [δ, β) ⊂ Vξ} for each

β ∈ Sκ
ω. Then notice that φξ(β) ≤ φη(β) for each β ∈ Sκ

ω and for each ξ, η ∈ τ with ξ < η. Since
cf(β) = ω < τ , there is φ(β) ∈ β such that {ξ ∈ τ : φξ(β) ≤ φ(β)} is unbounded in τ . Since the
sequence {φξ(β) : ξ ∈ τ} is increasing, we have φξ(β) ≤ φ(β) for each ξ ∈ τ . Hence we obtain that

{q} ∪
( ∪
β∈Sκ

ω

({β} × [φ(β), β))
)
⊂

∩
ξ∈τ

(
{q} ∪

( ∪
β∈Sκ

ω

({β} × [φξ(β), β))
))
⊂

∩
ξ∈τ

Vξ.

This means that q ∈ Int(
∩

ξ∈τ Vξ).

(4): For each α ∈ κ, let Pα = [0, α] × (Aκ(κ) ∩ (α, κ]) and let Qα = {q} ∪
(∪

β∈Sκ
ω
({β} ×Wα,β)

)
,

where let Wα,β = [α, β) for each β ∈ Sκ
ω ∩ (α, κ) and Wα,β = [0, β) for each β ∈ Sκ

ω ∩ [0, α]. Let
G =

∪
α∈κ(Pα × Qα). Then G is open in X × Y and (κ × {κ}) × Y ⊂ G holds. Now, pick any

⟨x, y⟩ /∈ G. Note that {x} is open in X. When y = q, {x} × Y misses G since x /∈
∪

α∈κ Pα. When
y ̸= q, {⟨x, y⟩} is open in X×Y and misses G. So G is a clopen set in X×Y containing (κ×{κ})×Y .
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Assume that X × Y is rectangular. Then there is a σ-locally finite collection H by open (cozero)
rectangles in X × Y with G =

∪
H. Let U = {U ∩ (κ × {κ}) : U × V ∈ H with q ∈ V }. Then

U is a σ-locally finite open cover of κ × {κ}. By Fact 2.3, there are an open rectangle U0 × V0 in
X × Y and a γ ∈ κ such that (γ, κ) × {κ} ⊂ U0, q ∈ V0 and U0 × V0 ⊂ G. There is ψ ∈

∏
β∈Sκ

ω
β

with {q} ∪
(∪

β∈Sκ
ω
({β} × [ψ(β), β))

)
⊂ V0. Take a function g : (γ, κ) → κ defined by ⟨α, g(α)⟩ ∈ U0

and g(α) > α for each α ∈ (γ, κ). Let C = {β ∈ (γ, κ) : α ∈ (γ, β) implies g(α) < β}. By [11, Lemma
II.6.13], C is a club set in κ. Since Sκ

ω is stationary in κ, take a β0 ∈ Sκ
ω ∩C. Pick an α0 ∈ (ψ(β0), β0)

with γ < α0. By β0 ∈ C, note that g(α0) < β0. Since (⟨α0, g(α0)⟩, ⟨β0, ψ(β0)⟩) ∈ U0 × V0 ⊂ G, it
follows from the choice of G that (⟨α0, g(α0)⟩, ⟨β0, ψ(β0)⟩) ∈ Pδ×Qδ for some δ ∈ κ. By ⟨α0, g(α0)⟩ ∈
Pδ, we have α0 ≤ δ < g(α0). Hence we obtain that ψ(β0) < α0 ≤ δ < g(α0) < β0. By ⟨β0, ψ(β0)⟩ ∈ Qδ

and δ < β0, we have ψ(β0) ∈Wδ,β0 = [δ, β0). This contradicts ψ(β0) < δ. �

Normal products and non-normal products. As an immediate consequence of Theorems 5.2
and 5.7, we obtain

Proposition 6.19. Let X and X ′ be monotonically normal and orthocompact spaces with S∗(X) =
S∗(X ′). Let Y be an almost discrete space. Then the following are true.

(1) X × Y is normal and rectangular if and only if so is X ′ × Y .
(2) X × Y is orthocompact if and only if so is X ′ × Y .

It is natural to ask whether X × Y is normal if and only if so is X ′ × Y , when S∗(X) = S∗(X ′).
However, it is negative as shown in Corollary 6.21 below. Note that each stationary subsets S and T
in ω1 are monotonically normal and orthocompact spaces with S∗(S) = S∗(T ) = {ω1}.

Example 6.20. Let κ be a regular uncountable cardinal. For each stationary subset T in κ, there is
an almost discrete space YT with a non-isolated point q and |YT | = κ, satisfying that for each S ⊂ κ,
YT has the S-docs property at q iff S ∩ T is non-stationary in κ.

Proof. Let us define an almost discrete space YT with a non-isolated point q, satisfying that

(i) YT = T ∪ {q} with q ̸∈ T as a set,
(ii) {{q} ∪ (T ∩ C) : C is a club set in κ} is a neighborhood base at q.

Take an S ⊂ κ such that S ∩ T is non-stationary in κ. We show that YT has the S-docs property
at q. Let {Vα : α ∈ S} be a descending sequence of open neighborhoods of q in YT . For each α ∈ S,
there is a club set Cα in κ with {q}∪ (T ∩Cα) ⊂ Vα. We can take (by [11, Lemma II.6.14]) a club set
C ⊂ {ξ ∈ κ : ξ ∈

∩
α∈S∩ξ Cα} in κ missing S∩T . For each α ∈ S, let Fα = {q}∪

(
T ∩C∩ [α, κ)

)
. Then

note that each Fα is a closed neighborhood of q in YT such that Fα =
∩

β∈S∩α Fβ if α ∈ S ∩ Lim(S).

Pick an α ∈ S and any ξ ∈ Fα \ {q}. Then we obtain α < ξ, otherwise we have the contradiction that
ξ = α ∈ S ∩ (T ∩ C) = ∅. By α ∈ S ∩ ξ and ξ ∈ C, we have that ξ ∈ T ∩ Cα ⊂ Vα. So we obtain
Fα ⊂ Vα. Hence YT has the S-docs property at q.

Next, take an S ⊂ κ such that S ∩ T is stationary in κ. Assume that YT has the S-docs property
at q. For each α ∈ S, let Vα = {q} ∪

(
T ∩ (α, κ)

)
. Then {Vα : α ∈ S} is a descending sequence of

open neighborhoods of q in YT . There is a continuously descending sequence {Fα : α ∈ S} of closed
neighborhoods of q in YT such that Fα ⊂ Vα for each α ∈ S. For each α ∈ S, there is a club set Cα

in κ with {q} ∪ (T ∩Cα) ⊂ Fα. Let C = {ξ ∈ κ : ξ ∈
∩

α∈S∩ξ Cα}. Since C is a club set in κ, there is

ξ0 ∈ (S ∩ T ) ∩ Lim(S) ∩ C. Then it follows that ξ0 ∈ T ∩ (
∩

α∈S∩ξ0
Cα) ⊂

∩
α∈S∩ξ0

Fα = Fξ0 ⊂ Vξ0 .
This contradicts ξ0 ̸∈ Vξ0 . Hence YT does not have the S-docs property at q. �

Corollary 6.21. There are two stationary subsets S and T in ω1 and an almost discrete space YT
such that S × YT is normal but T × YT is not normal.

Proof. Let S and T be disjoint stationary subsets in ω1 (the existence is assured by [11, Lemma
II.6.12]). Take the almost discrete space YT described in Example 6.20. Take any E ∈ S(S). Since
E is closed in S and uncountable, there is a club set C in ω1 with E = S ∩ C. So E is a stationary
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subset of ω1 . Since the subsets E and SE in ω1 is homeomorphic, by Fact 2.2, there is a club set
C0 ⊂ C in ω1 such that E ∩C0 = SE ∩C0. Since (SE ∩ T ) ∩C0 = (E ∩C0) ∩ T ⊂ S ∩ T = ∅, SE ∩ T
is non-stationary in ω1. It follows from Example 6.20 that YT has the SE-docs property at q. By
Theorem 6.1, S×YT is normal. On the other hand, since T ∩T = T is stationary in ω1, it follows from
Example 6.20 that YT has not the T -docs property at q. By Lemma 3.7, T × YT is not normal. �

7. Products with ordinal factors

In this section, we characterize the normal and rectangular products of monotonically normal
spaces with ordinal factors. Similarly, we also characterize orthocompactness of such products. As
a consequence, we can extend one ordinal factor of the products in Theorem 1.2 to a monotonically
normal factor.

Dop products and orthocaliber products. For a set T of ordinals, we denote by otp(T ) the order
type of T . Note that if S is a stationary subset of an ordinal λ with cf λ = κ > ω, then there is T ⊂ S
with otp(T ) = κ such that T is stationary in λ.

For a limit ordinal λ, a function c : cf(λ) → λ is called a normal function for λ if it is strictly
increasing, continuous and the range {c(ξ) : ξ ∈ cf(λ)} is unbounded in λ. In particular, if κ is a
regular cardinal, then we can fix the identity map on κ as the normal function.

Definition 7. A product space X ×Y is called a diagonal stationary product if for each κ ∈ S∗(X)∩
S∗(Y ), whenever E ∈ S(X,κ) and F ∈ S(Y, κ), SE ∩ SF is stationary in κ.

By Fact 2.2, the definition above does not depend on the choices of SE and SF . We will sometimes
use the following. The parenthetic part follows from Theorem 8.1 below.

Lemma 7.1 ([7, Theorem B]). Let S and T be two stationary subsets in a regular uncountable cardinal
κ. If S × T is countably paracompact (or equivalently, rectangular), then S ∩ T is stationary in κ.

Lemma 7.2. A product space X×Y is a diagonal stationary product if one of the following conditions
holds:

(1) X × Y is orthocompact,
(2) X × Y is normal,
(3) X × Y is countably paracompact.

Proof. Pick any κ ∈ S∗(X) ∩ S∗(Y ). Take an E ∈ S(X,κ) and an F ∈ S(Y, κ). Let X × Y be
orthocompact (normal, countably paracompact). Since E × F is closed in X × Y , SE × SF has the
same property. By Theorem 1.2(e), SE×SF is at least countably paracompact. It follows from Lemma
7.1 that SE ∩ SF is stationary in κ. �

Definition 8. A product space X × Y is called a dop product (an orthocaliber product) if X × Y is a
diagonal stationary product, satisfying that

(i) Y has the κ-dop property (orthocaliber κ) for each κ ∈ S∗(X),
(ii) X has the κ-dop property (orthocaliber κ) for each κ ∈ S∗(Y ).

It follows from Lemma 3.4(1) that every orthocaliber product is a dop product.

Proposition 7.3. Let X and Y be spaces.

(1) If X × Y is normal and rectangular, then it is a dop product.
(2) If X × Y is orthocompact, then it is an orthocaliber product.

Proof. By Lemma 7.2(1) and (2), X × Y is a diagonal stationary product. Take any κ ∈ S∗(X) and
an E ∈ S(X,κ). Since X × Y is normal and rectangular (orthocompact), so is SE × Y . By Lemma
3.6 (Lemma 3.5), Y has the κ-dop property (orthocaliber κ). Similarly, (ii) in Definition 8 is satisfied.
So (1) and (2) are true. �
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Normality and rectangularity of the products revisited.

Theorem 7.4. Let X be a monotonically normal space and B a subspace of an ordinal. Then X ×B
is normal and rectangular if and only if it is a dop product.

In order to prove this theorem, we need several lemmas below.

For a subspace B of an ordinal, we use the notation Γ(B) defined by

Γ(B) = {µ : µ is an ordinal such that B ∩ µ is stationary in µ, µ ̸∈ B and cf(µ) > ω}.

Notice that S(B, κ) ̸= ∅ holds iff µ ∈ Γ(B) with cf µ = κ exists (use Proposition 8.3 if necessary).

Lemma 7.5. Let X be a monotonically normal space and B a subspace of an ordinal. Let G be an
open cover of X ×B, satisfying the following two conditions;

(1) for each x ∈ X and for each µ ∈ Γ(B), there are an open neighborhood U of x in X and a
δ0 ∈ µ such that U ×

(
B ∩ (δ0, µ)

)
is contained in some member of G,

(2) for each E ∈ S(X) and for each µ ∈ B ∪ Γ(B), there are an open set W in X and a
δ1 ∈ µ ∪ {−1} such that E is almost contained in W and W ×

(
B ∩ (δ1, µ]

)
is contained in

some member of G.
Then G has a locally finite rectangular cozero refinement.

Proof. Let λ be an ordinal with B ⊂ [0, λ]. Let Bµ = B ∩ [0, µ] for each µ ≤ λ. Using induction by
µ ≤ λ, we shall construct a locally finite rectangular cozero refinement Hµ of G � (X ×Bµ). Take any
µ ≤ λ. Assume that such a Hξ has been already constructed for each ξ < µ.

Case 1. In case µ ̸∈ B ∪ Γ(B): By µ ̸∈ B, we have B ∩ µ = B ∩ (µ + 1) = Bµ. By µ ̸∈ Γ(B),
cf(µ) ≤ ω or Bµ is non-stationary in µ, where cf(µ) > ω. We may express Bµ =

⊕
ξ∈cf(µ)B(ξ) such

that B(ξ) = B ∩ (γξ, βξ], where −1 ≤ γξ < βξ < µ, for each ξ ∈ cf(µ). Since each Hβξ
has been

already constructed, we may let

Hµ = {H ∩ (X ×B(ξ)) : H ∈ Hβξ
and ξ ∈ cf(µ)}.

Then Hµ is a locally finite rectangular cozero refinement of G � (X ×Bµ).

Case 2. In case µ ∈ B ∪ Γ(B): Let

U = {U : U is open in X such that there are δU ∈ µ ∪ {−1} and GU ∈ G
with U × (B ∩ (δU , µ]) ⊂ GU}.

By (1), note that U is an open cover of X. Since each E ∈ S(X) is almost contained in a member of
U by (2), it follows from Corollary 2.7 that U is a normal cover of X. There is a locally finite cozero
refinement U∗ of U . By the choice of U , for each U ∈ U∗, there are δU ∈ µ ∪ {−1} and GU ∈ G such
that U × (B ∩ (δU , µ]) ⊂ GU . By the inductive assumption, there is a locally finite rectangular cozero
partial refinement HδU of G such that X ×BδU =

∪
HδU . Now, we let

Hµ = {U × (B ∩ (δU , µ]) : U ∈ U∗} ∪ {H ∩ (U ×BδU ) : H ∈ HδU and U ∈ U∗}.

Then Hµ is a locally finite rectangular cozero partial refinement of G. Moreover, it is easily checked
that Hµ covers X × Bµ. Thus we have constructed the desired {Hµ : µ ≤ λ}. Then Hλ is a locally
finite rectangular cozero refinement of G. �

Lemma 7.6. Let B be a stationary subset in an ordinal µ with cf(µ) = τ > ω. And let X be a space
with the τ -dop property at x ∈ X. If {G0, G1} is a binary open cover of X × B, then there are an
open neighborhood U of x in X, a δ ∈ µ and an i ∈ 2 such that U × (B ∩ (δ, µ)) ⊂ Gi.

Proof. Pick an x ∈ X. For each β ∈ B, there are an open neighborhood Wβ of x in X, a δ(β) < β
and an i(β) ∈ 2 such that Wβ × (B ∩ (δ(β), β]) ⊂ Gi(β). It follows from PDL that there are T ⊂ B,
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δ ∈ µ and i ∈ 2 such that T is stationary in µ with otp(T ) = τ and that δ(β) < δ < β and i(β) = i
for each β ∈ T . Moreover, for each β ∈ T , we let

Uβ =
∪
{U : U is open in X such that U × (B ∩ (δ, β]) ⊂ Gi}.

Then {Uβ : β ∈ T} is a descending sequence of open sets in X with x ∈Wβ ⊂ Uβ for each β ∈ T . Let
U = IntX(

∩
β∈T Uβ). By otp(T ) = τ , the τ -dop property implies that U is an open neighborhood of

x in X. And we have U ×
(
B ∩ (δ, µ)

)
⊂

∪
β∈T

(
Uβ × (B ∩ (δ, β])

)
⊂ Gi. �

The following is well known and convenient to use.

Fact 7.7 (folklore). Let µ and ν be ordinals with cf(µ) ̸= cf(ν), where cf(µ) ≥ ω (cf(µ) > ω). Let
A be an unbounded (stationary) subset of µ, and let f : A → ν be a function. Then there is a δ ∈ ν
such that {α ∈ A : f(α) ≤ δ} is unbounded (stationary) in µ.

Lemma 7.8. Let X be a space with E ∈ S(X,κ), where κ ∈ S∗(X). Let B be a stationary subset in
an ordinal µ with τ = cf(µ) > ω. Assume that κ ̸= τ and X has the τ -dop property. If {G0, G1} is a
binary open cover of X ×B, then there are an open set U in X, a δ ∈ µ and an i ∈ 2 such that E is
almost contained in U and U ×

(
B ∩ (δ, µ)

)
⊂ Gi.

Proof. Let S = SE and e = eE . By Lemma 7.6, for each α ∈ S, there are an open neighborhood Uα of
e(α) in X, a δ(α) ∈ µ and an i(α) ∈ 2 such that Uα ×

(
B ∩ (δ(α), µ)

)
⊂ Gi(α). Take a γ(α) < α such

that e(S ∩ (γ(α), α]) ⊂ Uα. By PDL and Fact 7.7 with κ ̸= τ , there are a T ⊂ S, a γ ∈ κ, a δ ∈ µ and
an i ∈ 2 such that T is stationary in κ and that γ(α) = γ, δ(α) ≤ δ and i(α) = i for each α ∈ T . Let
U =

∪
α∈T Uα. Then U is open in X. We have e(S ∩ (γ, κ)) =

∪
α∈T e(S ∩ (γ(α), α]) ⊂

∪
α∈T Uα ⊂ U

and U × (B ∩ (δ, µ)) ⊂
∪

α∈T (Uα × (B ∩ (δ(α), µ))) ⊂ Gi. �

Lemma 7.9. Let X be a space with E ∈ S(X,κ), where κ ∈ S∗(X). Let B be a stationary subset
in an ordinal µ with κ = cf(µ). Assume that SE ∩ c−1(B) is stationary in κ, where c : κ → µ is a
normal function, and assume that X has the κ-dop property. If {G0, G1} is a binary open cover of
X × B, then there are an open set U in X, a δ ∈ µ and an i ∈ 2 such that E is almost contained in
U and U ×

(
B ∩ (δ, µ)

)
⊂ Gi.

Proof. Let S = SE and e = eE . For each limit α ∈ S ∩ c−1(B), take i(α) ∈ 2 with ⟨e(α), c(α)⟩ ∈
Gi(α). We can take an open neighborhood Wα of e(α) in X and a γ(α) < α such that Wα ×

(
B ∩

(c(γ(α)), c(α)]
)
⊂ Gi(α) and e(S ∩ (γ(α), α]) ⊂ Wα. By PDL, there are a T ⊂ S ∩ c−1(B), a γ ∈ κ

and an i ∈ 2 such that T is stationary in κ and that γ(α) = γ and i(α) = i for each α ∈ T . Let
δ = c(γ) ∈ µ. For each α ∈ T , let

Uα =
∪
{W :W is an open set in X with W ×

(
B ∩ (δ, c(α)]

)
⊂ Gi}.

Then Wα ⊂ Uα and Uα × (B ∩ (δ, c(α)]) ⊂ Gi hold. Let U =
∩

α∈T Uα. Since {Uα : α ∈ T}
is a descending sequence of open sets in X with otp(T ) = κ, the κ-dop property implies that U
is an open set in X. We have U ×

(
B ∩ (δ, µ)

)
⊂

∪
α∈T

(
Uα × (B ∩ (δ, c(α)])

)
⊂ Gi. Pick any

ξ ∈ S ∩ (γ, κ) and any α ∈ T . Choose η ∈ T with η > max{ξ, α}. By γ(η) = γ < ξ < η, we have
e(ξ) ∈ e(S ∩ (γ(η), η]) ⊂Wη ⊂ Uη ⊂ Uα. Hence U contains e(S ∩ (γ, κ)). �

Lemma 7.10. Let X be a space with E ∈ S(X,κ), where κ ∈ S∗(X). Let µ be an ordinal with
τ = cf(µ) and µ ∈ B ⊂ µ + 1. Assume κ ̸= τ . If {G0, G1} is a binary open cover of X × B, then
there are an open set U in X, a δ ∈ µ and an i ∈ 2 such that E is almost contained in U and
U × (B ∩ (δ, µ]) ⊂ Gi.

Proof. Let S = SE and e = eE . Pick an α ∈ S. By ⟨e(α), µ⟩ ∈ X×B, there are an open neighborhood
Uα of e(α) in X, a δ(α) ∈ µ and an i(α) ∈ 2 such that Uα × (B ∩ (δ(α), µ]) ⊂ Gi(α). Take a γ(α) < α
with e(S ∩ (γ(α), α]) ⊂ Uα. By PDL and Fact 7.7 with κ ̸= τ (containing the case of τ ≤ ω), there
are T ⊂ S, γ ∈ κ, δ ∈ µ and i ∈ 2 such that T is stationary in κ and that γ(α) = γ, δ(α) ≤ δ and



22 YASUSHI HIRATA, NOBUYUKI KEMOTO AND YUKINOBU YAJIMA

i(α) = i for each α ∈ T . Let U =
∪

α∈T Uα. Then U is an open set in X. As in the proof of Lemma

7.8, we can easily verify that e(S ∩ (γ, κ)) ⊂ U and U ×
(
B ∩ (δ, µ]

)
⊂ Gi. �

Proof of Theorem 7.4. Let X be a monotonically normal space and B a subspace of an ordinal. The
“only if” part immediately follows from Proposition 7.3(1).

Assume that X × B is a dop product. Let G = {G0, G1} be a binary open cover of X × B. We
show that G has a σ-locally finite rectangular cozero refinement. For that, it suffices to show that (1)
and (2) in Lemma 7.5 are satisfied. In the proof, (1) and (2) mean that conditions.

First we consider the case of µ ∈ Γ(B). Take a normal function c : τ → µ, where τ = cf(µ).
Then F = B ∩ {c(ξ) : ξ ∈ τ} is a closed subset in B which is homeomorphic to a stationary subset
c−1(B) in τ , so we have F ∈ S(B, τ) and τ ∈ S∗(B). By the assumption, X has the τ -dop property.
Applying Lemma 7.6, for each x ∈ X, we see that (1) is satisfied. And Lemma 7.8 assures (2) for
each E ∈ S(X,κ) with κ ̸= τ . In case E ∈ S(X,κ) with κ = τ , since X × B is a diagonal stationary
product, SE ∩ SF is stationary in κ = τ . Since SF and c−1(B) are homeomorphic, by Fact 2.2, we
see that SE ∩ c−1(B) is stationary in κ = τ . Then Lemma 7.9 assures (2) for each E ∈ S(X,κ) with
κ = τ .

Next we consider the case of µ ∈ B. Let τ = cf(µ) and let E ∈ S(X,κ). If κ ̸= τ , then (2) is
assured by Lemma 7.10. If κ = τ , then B has the κ-dop property, so it is easy to see that B ∩ µ is
bounded in µ. Hence µ is an isolated point of B. Then Fact 2.3 assures (2) in this case. �
Collectionwise normality and the shrinking property.

Theorem 7.11. Let X be a monotonically normal space and B a subspace of an ordinal. If X × B
is normal and rectangular, then it is collectionwise normal and has the shrinking property.

In order to prove this theorem, we also need several lemmas.

Lemma 7.12 ([18, Lemma 10.3]). Let X and Y be two spaces such that X×Y is normal and rectan-
gular. Let F ∈ S(Y ). If D is a discrete collection of closed sets in X × Y , then for each x ∈ X, there
is an open rectangle Ux × Vx in X × Y such that x ∈ Ux, F is almost contained in Vx and Ux × Vx
meets at most one member of D.

Lemma 7.13 ([10, Lemma 6.4]). Let κ and τ be regular uncountable cardinals. Let S and T be
stationary subsets in κ and τ , respectively. If G is a σ-locally finite rectangular open cover of S × T ,
then there are γ ∈ κ and δ ∈ τ such that

(
S ∩ (γ, κ)

)
×
(
T ∩ (δ, τ)

)
is contained in some member of G.

Lemma 7.14. Let X and Y be spaces with E ∈ S(X,κ) and F ∈ S(Y, τ), where κ ∈ S∗(X) and
τ ∈ S∗(Y ) such that X×Y is normal and rectangular. If G is an open set in X×Y containing E×F ,
then there is an open rectangle U ×V in X ×Y such that E and F are almost contained in U and V ,
respectively, and that U × V ⊂ G.

Proof. Since X × Y is normal and rectangular and E × F is closed in X × Y , it follows that there
is a σ-locally finite collection H of cozero rectangles in X × Y with E × F ⊂

∪
H ⊂ G. Since

{e−1
E (U) × e−1

F (V ) : U × V ∈ H} is a σ-locally finite rectangular cozero cover of SE × SF , it follows
from Lemma 7.13 that there are U ×V ∈ H, γ ∈ κ and δ ∈ τ such that (SE ∩ (γ, κ))× (SF ∩ (δ, τ)) ⊂
e−1
E (U)× e−1

F (V ). Then we have eE(SE ∩ (γ, κ))× eF (SF ∩ (δ, τ)) ⊂ U × V ⊂ G. �
Lemma 7.15. Let X and Y be spaces with E ∈ S(X,κ) and F ∈ S(Y, τ), where κ ∈ S∗(X) and
τ ∈ S∗(Y ) such that X × Y is normal and rectangular. If D is a discrete collection of closed sets in
X × Y , then there is an open rectangle U × V in X × Y such that E and F are almost contained in
U and V , respectively, and U × V meets at most one member of D.

Proof. Let S = SE , e = eE , T = SF and f = eF . By Lemma 7.14, it suffices to find E′ = e(S∩ (γ, κ))
and F ′ = f(T ∩ (δ, τ)) for some γ ∈ κ and δ ∈ τ such that E′ × F ′ meets at most one member of D.

Case 1. Assume that κ < τ : It follows from Lemma 7.12 that for each α ∈ S, there is an open
rectangle Uα × Vα in X × Y such that α ∈ Uα, F is almost contained in Vα and Uα × Vα meets at
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most one member of D. Take γ(α) < α with e(S ∩ (γ(α), α])) ⊂ Uα. By PDL, there are S0 ⊂ S and
γ ∈ κ such that S0 is stationary in κ and γ(α) = γ for each α ∈ S0. By |S0| = κ < τ , we find some
δ ∈ τ with f(T ∩ (δ, τ)) ⊂

∩
α∈S0

Vα. Let E′ = e(S ∩ (γ, κ)) and F ′ = f(T ∩ (δ, τ)). It is easy to see

that for each z0, z1 ∈ E′ × F ′, there is an α0 ∈ S0 with z0, z1 ∈ Uα0 × Vα0 . Hence E′ × F ′ meets at
most one member of D. The case of κ > τ is the same from the symmetry.

Case 2. Assume that κ = τ : Since X × Y is normal, so is S × T . Since S × T has the shrinking
property by Theorem 1.2, it is countably paracompact. It follows from Lemma 7.1 that S ∩ T is
stationary in κ. For each ξ ∈ S ∩ T , there is an open rectangle Uξ × Vξ in X × Y with ⟨e(ξ), f(ξ)⟩ ∈
Uξ×Vξ such that Uξ×Vξ meets at most one member ofD. Take γ(ξ) < ξ such that e

(
S ∩ (γ(ξ), ξ]

)
⊂ Uξ

and f
(
T ∩ (γ(ξ), ξ]

)
⊂ Vξ. By PDL, there are R ⊂ S ∩ T and γ ∈ κ such that R is stationary in κ

and γ(ξ) = γ for each ξ ∈ R. Let E′ = e
(
S ∩ (γ, κ)

)
and F ′ = f

(
T ∩ (γ, κ)

)
. In a similar way to the

above case, it is verified that E′ × F ′ meets at most one member of D. �

Lemma 7.16 ([18, Lemma 11.1]). Let X × Y be normal and rectangular. If G is an open cover of
X × Y , then for each x ∈ X and for each F ∈ S(Y ), there is an open rectangle U × V in X × Y such
that x ∈ U,F is almost contained in V and G � (U × V ) has a shrinking.

Lemma 7.17. Let X and Y be spaces with E ∈ S(X,κ) and F ∈ S(Y, τ), where κ ∈ S∗(X) and
τ ∈ S∗(Y ) such that X × Y is normal and rectangular. Let G be an open cover of X × Y . Then there
is an open rectangle U×V in X×Y such that E and F are almost contained in U and V , respectively,
and G � (U × V ) has a shrinking.

Proof. Since E × F is normal, it follows from Theorem 1.2 that E × F has the shrinking property.
There is a shrinking {L(G) : G ∈ G} of G � (E × F ). Since X × Y is normal, for each G ∈ G, there
is an open set H(G) in X × Y such that L(G) ⊂ H(G) ⊂ H(G) ⊂ G. Let H =

∪
{H(G) : G ∈ G}.

Then H is an open set in X × Y containing E × F . Since X × Y is normal and rectangular, it
follows from Lemma 7.14 that there is an open rectangle U × V in X × Y such that E and F are
almost contained in U and V , respectively, and that U × V ⊂ H. Then G � (U × V ) has a shrinking

{H(G) ∩ (U × V ) : G ∈ G}. �

Proof of Theorem 7.11. Let D be a discrete collection of closed sets in X ×B. Then

G = {G ⊂ X ×B : G is an open set meeting at most one member of D}

is an open cover of X × B. In case µ ∈ Γ(B): Let τ = cf(µ). Then F = B ∩D ∈ S(B, τ) by taking
a club set D in µ with otp(D) = τ . For each x ∈ X, it follows from Lemma 7.12 that there is an
open rectangle Ux × Vx in X × B such that x ∈ Ux, F is almost contained in Vx and that Ux × Vx
is contained in some member of G. Then Lemma 7.5(1) is satisfied. Take an E ∈ S(X,κ). It follows
from Lemma 7.15 that there is an open rectangle U × V in X × Y such that E and F are almost
contained in U and V , respectively, and that U × V is contained in some member of G. Then Lemma
7.5(2) is also satisfied. In case µ ∈ B: It follows from Lemma 7.12 that Lemma 7.5(2) is similarly
satisfied. Hence G is normal. This implies that X ×B is collectionwise normal.

Next, let G be an arbitrary open cover of X ×B. Obviously,

O = {O ⊂ X ×B : O is an open set, G � O has a shrinking}

is an open cover of X ×B. We show that O is normal. For each x ∈ X and each µ ∈ Γ(B), it follows
from Lemma 7.16 that Lemma 7.5(1) is satisfied. For each E ∈ S(X,κ) and µ ∈ B ∪ Γ(B), it follows
from Lemmas 7.16 and 7.17 that Lemma 7.5(2) is satisfied. Hence O is normal. So there is a locally
finite shrinking {F (O) : O ∈ O} of O. Hence it is easy to show that G has a shrinking. �

Orthocompactness of the products revisited.

Theorem 7.18. Let X be a monotonically normal and orthocompact space and B a subspace of an
ordinal. Then X ×B is orthocompact if and only if it is an orthocaliber product.
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Since each orthocaliber product is a dop product, the following analogue to Theorem 1.1 is an
immediate consequence of Theorems 7.4 and 7.18.

Corollary 7.19. Let X be a monotonically normal space and B a subspace of an ordinal. If X × B
is orthocompact, then it is normal and rectangular.

Let us begin the proof of Theorem 7.18.

Lemma 7.20. Let B be a stationary subset in an ordinal µ with cf(µ) = τ > ω. Let X be a space
with orthocaliber τ at x ∈ X. Then for each open cover G of X × B, there are an open neighborhood
U of x in X and a δ ∈ µ such that {U × (B ∩ (δ, β]) : β ∈ (δ, µ)} partially refines G.

Proof. For each β ∈ B, there are a δ(β) < β, an open neighborhood U(β) of x in X and a G(β) ∈ G
such that U(β) ×

(
B ∩ (δ(β), β]

)
⊂ G(β). By PDL, there are a δ ∈ µ and a T ⊂ B such that T is

stationary in µ with otp(T ) = τ and δ(β)≤ δ < β for each β ∈ T . By the assumption, there is a
T0 ⊂ T such that T0 is unbounded in µ and x ∈ U := Int

(∩
β∈T0

U(β)
)
. Obviously, U and δ satisfy

the required condition. �
Lemma 7.21. Let X be an orthocompact space with E ∈ S(X,κ), where κ ∈ S∗(X). Let B be a
stationary subset in an ordinal µ with cf(µ) = τ > ω. Assume that κ ̸= τ and X has orthocaliber τ .
Then for each open cover G of X × B, there are a γ ∈ κ, a δ ∈ µ and an increasing open expansion
P = {P (α) : α ∈ (γ, κ)} of {eE(SE ∩ (γ, α]) : α ∈ (γ, κ)} in X such that

H = {P (α)×
(
B ∩ (δ, β]

)
: α ∈ (γ, κ) and β ∈ (δ, µ)}

is a partial open refinement of G.

Proof. Applying Lemma 7.20, for each α ∈ SE , there are an open neighborhood Uα of e(α) in X and a
δα ∈ µ such that {Uα× (B ∩ (δα, β]) : β ∈ (δα, µ)} partially refines G. Next applying Lemma 5.6 to E
and U :={Uα : α ∈ SE}, there are a γ ∈ κ and an increasing open expansion P = {P (α) : α ∈ (γ, κ)}
of {eE(SE ∩ (γ, α]) : α ∈ (γ, κ)} such that P partially refines U . Then we can take δ(α) ∈ µ such
that Hα := {P (α) × (B ∩ (δ(α), β]) : β ∈ (δ(α), µ)} partially refines G for each α ∈ (γ, κ). By
κ ̸= τ , using Fact 7.7, we find a δ ∈ µ such that {α ∈ (γ, κ) : δ(α) ≤ δ} is unbounded in κ. Then,
H := {P (α)×

(
B ∩ (δ, β]

)
: α ∈ (γ, κ) and β ∈ (δ, µ)} partially refines G. Actually, pick any ⟨α, β⟩ ∈

(γ, κ)× (δ, µ). Choose an α′ ∈ κ with α ≤ α′ and δ(α′) ≤ δ. Since α′ ∈ (γ, κ), β ∈ (δ(α′), µ) and Hα′

partially refines G, we obtain a G ∈ G with P (α)× (B ∩ (δ, β]) ⊂ P (α′)× (B ∩ (δ(α′), β]) ⊂ G. �
Lemma 7.22. Let X be an orthocompact space with E ∈ S(X,κ), where κ ∈ S∗(X). Let B be a
stationary subset in an ordinal µ with cf(µ) = κ. Assume that SE ∩ c−1(B) is stationary in κ, where
c: κ→ µ is a normal function. Then for each open cover G of X × B, there are a γ ∈ κ and an
increasing open expansion P = {P (α) : α ∈ (γ, κ)} of {eE(SE ∩ (γ, α]) : α ∈ (γ, κ)} in X such that

H = {P (α)×
(
B ∩ (c(γ), c(α)]

)
: α ∈ (γ, κ)}

is a partial open refinement of G.

Proof. Let S = SE and e = eE . Pick any limit α ∈ S ∩ c−1(B). By ⟨e(α), c(α)⟩ ∈ E × B, choose a
Gα ∈ G with ⟨e(α), c(α)⟩ ∈ Gα. Take an open neighborhood Uα of e(α) with E ∩ Uα ⊂ e(S ∩ [0, α]),
and γ(α) < α such that Uα× (B∩ (c(γ(α)), c(α)]) ⊂ Gα and e(S∩ (γ(α), α]) ⊂ Uα. Letting α run over
S∩c−1(B), it follows from PDL that there are γ0 ∈ κ and T ⊂ S∩c−1(B) such that T is stationary in
κ and γ(α) = γ0 for each α ∈ T . Then, U := {Uα : α ∈ T} covers e(S∩(γ0, κ)). It follows from Lemma
5.6 that there are a γ ∈ κ with γ0 ≤ γ and an increasing open expansion P = {P (α) : α ∈ (γ, κ)} of
{e(S ∩ (γ, α]) : α ∈ (γ, κ)} in X such that P partially refines U . Pick any α ∈ (γ, κ). Take α′ ∈ S
with α ≤ α′ and choose η ∈ T with P (α′) ⊂ Uη. Since e(α

′) ∈ e(S ∩ (γ, α′]) ⊂ E ∩ P (α′) ⊂ E ∩ Uη ⊂
e(S ∩ [0, η]), we obtain α′ ≤ η. By P (α) ⊂ P (α′) ⊂ Uη and γ(η) = γ0 ≤ γ, it follows that

P (α)×
(
B ∩ (c(γ), c(α)]

)
⊂Uη ×

(
B ∩ (c(γ(η)), c(η)]

)
⊂ Gη ∈ G.

Hence H partially refines G. �
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Proof of Theorem 7.18. Since the “only if” part follows from Lemma 7.3(2), assume that X ×B is an
orthocaliber product. Let G be an open cover of X ×B. Let

O = {
∪
W :W is an interior-preserving partial open refinement of G}.

Note that O is an open cover of X ×B. It suffices to show that O has a point-finite open refinement.
Using Lemma 7.5, we shall show that O is normal.

Claim 1. For each x ∈ X and each µ ∈ Γ(B), there are an open neighborhood U of x in X and a
δ ∈ µ such that U ×

(
B ∩ (δ, µ)

)
∈ O.

Proof. Let τ = cf(µ). Since µ ∈ Γ(B) implies τ ∈ S∗(B), X has orthocaliber τ . Pick an x ∈ X.
It follows from Lemma 7.20 that there are δ ∈ µ and an open neighborhood U of x in X such that
W := {U × (B ∩ (δ, β]) : β ∈ (δ, µ)} partially refines G. Since W is an increasing open cover of
U ×

(
B ∩ (δ, µ)

)
, we obtain U ×

(
B ∩ (δ, µ)

)
=

∪
W ∈ O. �

Claim 2. For each E ∈ S(X,κ) and each β ∈ B, there are an open set U in X and a δ ∈ β ∪ {−1}
such that E is almost contained in U and U × (B ∩ (δ, β]) ∈ O.

Proof. Take an E ∈ S(X,κ) and pick any β ∈ B. Then B has orthocaliber κ. It follows from Lemma
5.9 that there are a γ ∈ κ, an open neighborhood V of β in B and an increasing open expansion
P = {P (α) : α ∈ (γ, κ)} of {eE(SE ∩ (γ, α]) : α ∈ (γ, κ)} such that {P (α)× V : α ∈ (γ, κ)} partially
refines G. Let U =

∪
α∈(γ,κ) P (α). Then U is an open set in X which contains eE(SE ∩ (γ, κ)). Take

δ < β with B ∩ (δ, β] ⊂ V . Let H0 = {P (α)× (B ∩ (δ, β]) : α ∈ (γ, κ)}. Since P is increasing, H0 is an
increasing open cover of U × (B ∩ (δ, β]) which partially refines G. Hence we obtain U × (B ∩ (δ, β]) =∪
H0 ∈ O. �

Claim 3. For each E ∈ S(X,κ) and each µ ∈ Γ(B), there are an open set U in X and a δ ∈ µ such
that E is almost contained in U and U × (B ∩

(
δ, µ)

)
∈ O.

Proof. We divide into the two cases of κ ̸= cf(µ) and κ = cf(µ).
Case 1. In case κ ̸= cf(µ): Let τ = cf(µ). Since τ ∈ S∗(B), X has orthocaliber τ . It follows from

Lemma 7.21 that there are a γ ∈ κ, a δ ∈ µ and an increasing open expansion P = {P (α) : α ∈ (γ, κ)}
of {eE(SE ∩ (γ, α]) : α ∈ (γ, κ)} in X such that

H1 = {P (α)× (B ∩ (δ, β]) : α ∈ (γ, κ) and β ∈ (δ, µ)}
partially refines G. Let U =

∪
α∈(γ,κ) P (α). Then U is an open set in X which contains eE(SE∩(γ, κ)).

Since P and {B∩(δ, β] : β ∈ (δ, µ)} are both increasing, it is easily seen thatH1 is an interior-preserving
open cover of U×

(
B∩(δ, µ)

)
which partially refines G. Hence we obtain U×

(
B∩(δ, µ)

)
=

∪
H1 ∈ O.

Case 2. In case κ = cf(µ): Let c : κ → µ be a normal function and let F = B ∩ {c(ξ) : ξ ∈ κ}.
Then F ∈ S(B, κ). Since c−1(B) is homeomorphic to SF and X×B is a diagonal stationary product,
SE ∩ c−1(B) is stationary in κ. It follows from Lemma 7.22 that there are a γ ∈ κ and an increasing
open expansion P = {P (α) : α ∈ (γ, κ)} of {eE(SE ∩ (γ, α]) : α ∈ (γ, κ)} in X such that

H2 = {P (α)× (B ∩ (c(γ), c(α)]) : α ∈ (γ, κ)}
partially refines G. Let U =

∪
α∈(γ,κ) P (α). Then U is an open set in X which contains eE(SE∩(γ, κ)).

Similarly, H2 is interior-preserving. Hence we obtain U ×
(
B ∩ (δ, µ)

)
=

∪
H2 ∈ O. �

By the Claims 1, 2 and 3, O satisfies (1) and (2) in Lemma 7.5. Hence O is normal. Thus we
complete the proof of Theorem 7.18. �
Remark 7.23. A spaceX is weakly suborthocompact if every open cover U ofX has an open refinement∪

n∈ω Vn, satisfying that for each x ∈ X, there is nx ∈ ω such that x ∈
∪
Vnx and

∩
{V ∈ Vnx : x ∈ V }

is an open neighborhood of x in X. Obviously, every orthocompact space is weakly suborthocompact.
Using [10, Lemma 3.1] in stead of Lemma 3.5, we see that every weakly suborthocompact product is
an orthocaliber product. As a consequence, we obtain the following analogue to [18, Theorems 1.3
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and 4.3]: Let X be a monotonically normal space and B a subspace of an ordinal. Then X × B is
orthocompact if and only if it is weakly suborthocompact.

8. Products of GO-spaces with ordinal factors

As a similar result to Theorem 1.2, we can recall the following result.

Theorem 8.1 ([7, 10]). Let A and B be two subspaces of an ordinal. Then the following are equivalent.

(a) A×B is expandable.
(b) A×B is countably paracomapct.
(c) A×B is rectangular.

It is natural to consider whether this result can be extended by the same way as in the previous
section. That is, it is the problem whether A can be replaced by a monotonically normal space X in
there. In this section, we introduce the concept called codecop products, and discuss the rectangular
products of GO-spaces. Moreover, using this concept, we give a characterization of the rectangular
(equivalently, countably paracompact) products of a GO-space and a subspace of an ordinal. This
gives a partial answer to the above problem by the case of X being a GO-space.

We also show that normality of such products is equivalent to their orthocompactness and implies
their rectangularity. This gives an extension of (a) ⇔ (b) ⇔ (c) in Theorem 1.2 in the introduction.

GO-spaces and continuous maps. Recall that a space X is called a GO-space (= generalized
ordered space) if there is a linear order < on X such that the topology τ of X is generated by some
family of convex subsets by <. In particular, a linearly ordered set L = (L,<) having the interval
topolgy λ generated by the base {(a, b) : a, b ∈ L∪{←,→}, a < b} is called a LOTS (= linearly ordered
topological space), where (a,→) and (←, b) denote {x ∈ L : a < x} and {x ∈ L : x < b} respectively.
Note that the topology of a GO-space (X,<) is stronger than the interval topology by < as above
because X is Hausdorff.

It is well known that for each GO-space X = (X,<X , τ), there is a compact LOTS LX = (LX , <, λ)
with X ⊂ LX such that (X, τ) is a dense subspace of (LX , λ), and the order < coincides with <X on
X. We will fix such LX with no mention. For A ⊂ X, we denote by ClLX

A the closure of A in LX .
It is well-known that in any compact LOTS L, (in particular L = LX for a GO-space X), each subset
A has the least upper bound and the greatest lower bound in L, and they are denoted by supA and
inf A, respectively.

Let X be a GO-space. For A ⊂ B ⊂ LX , we say that A is 0-cofinal (1-cofinal) in B if for each
b ∈ B, there is an a ∈ A with b ≤ a (b ≥ a). For each p ∈ LX , let

0- cf(p) = min{|A| : A is a 0-cofinal subset in (←, p)LX
},

1- cf(p) = min{|A| : A is a 1-cofinal subset in (p,→)LX
}.

Then 0- cf(p) = 0 in case p = minLX , 0- cf(p) = 1 in case (←, p) has a maximum, and 0- cf(p) is a
regular infinite cardinal in the other case. Since X is dense in LX , the following is easy to see.

Fact 8.2. Let X be a GO-space with p ∈ LX . If 0- cf(p) = κ ≥ ω, then there is a strictly increasing
continuous function c : κ→ LX such that

(i) p = supLX
{c(ξ) : ξ ∈ κ},

(ii) c(ξ) ∈ X for each ξ ∈ κ \ Lim(κ).

For each p ∈ LX , we will fix such a function cp,0 = c. Similarly, we define cp,1. Such cp,0 and cp,1
are called normal functions at p. The details for i- cf(p), i = 0, 1, are seen in [6].

The following seems to be known. However, as we cannot find any citation for it, we only give an
outline of the proof.
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Proposition 8.3 (folklore). Let f : S → L be a continuous map from a stationary subset S of a
regular uncountable cardinal κ into a LOTS L. Then there is a club set C of κ such that f � (S ∩ C)
is either constant, strictly increasing or strictly decreasing.

Outline of Proof. For each α ∈ S, let T0(α) = {β ∈ S : f(α) = f(β)}, T1(α) = {β ∈ S : f(α) < f(β)}
and T2(α) = {β ∈ S : f(α) > f(β)}. Let Si = {α ∈ S : Ti(α) is stationary in κ} (i ∈ 3). Then Si is
stationary in κ for some i ∈ 3.

In case that S0 is stationary in κ: Let C = {α ∈ κ : α ∈
∩

β∈S0∩α Lim(T0(β))} ∩ Lim(S0). By

[11, Lemma II.6.14], C is a club set in κ. We can show that f � (S ∩ C) is constant. In case that S0

is non-stationary and that S1 is stationary in κ: Take a club set C0 of κ disjoint from S0. For each
α ∈ S \ S0, take a club set C1(α) of κ disjoint from T0(α). Let

C = C0 ∩ Lim(S1) ∩ {α ∈ κ : α ∈
∩
{C1(β) : β ∈ (S \ S0) ∩ α}}

∩ {α ∈ κ : α ∈
∩
{Lim(T1(β)) : β ∈ S1 ∩ α}}.

Then C is as well as a club set of κ. We can show that f � (S ∩ C) is strictly increasing. The other
cases are similar.

Considering eE and SE as f and S, respectively, in Proposition 8.3, we immediately have

Corollary 8.4. Let X be a GO-space with E ∈ S(X,κ), where κ ∈ S∗(X). Then there is a club set
C in κ such that eE � (SE ∩ C) is strictly increasing for X or strictly decreasing for X.

Observe that each E ∈ S(X) may have another order <E introduced by SE . Corollary 8.4 states
an implication between these orders <X and <E on E.

Codecop products. Let Y be a space and S a set of ordinals. Recall that Y has the S-codecop
property at q ∈ Y if for each continuously descending sequence {Vα : α ∈ S} of clopen neighborhoods
of q in Y , q ∈ Int(

∩
α∈S Vα) holds (see Definition 6). The following are easy to see.

Fact 8.5. Let S and T be unbounded subsets in a limit ordinal λ with T ⊂ S. If a space Y has the
T -codecop property at q ∈ Y , then it has the S-codecop property at q.

Lemma 8.6. Let S be a stationary subset in a regular uncountable cardinal κ. Then a space Y has
the S-codecop property at q ∈ Y if and only if Y has the (S ∩C)-codecop property at q for some (any)
club set C in κ.

By Fact 2.2, we see that the SE-codecop property does not depend on the choice of SE for each
E ∈ S(X,κ). Moreover, we can get an analogue to Lemmas 3.5, 3.6 and 3.7.

Lemma 8.7. Let S be a stationary subset in a regular uncountable cardinal κ and Y a space. If S×Y
is rectangular, then Y has the S-codecop property.

Proof. Pick a q ∈ Y . Let {Vα : α ∈ S} be a continuously descending sequence of clopen neighborhoods
of q in Y . For each α ∈ S, let Gα = (S ∩ [0, α]) × Vα, and let G =

∪
α∈S Gα. To show that G is

closed in S × Y , pick any ⟨β, z⟩ ∈ (S × Y ) \G. Then we have z ̸∈ Vβ . In case β ∈ S ∩ Lim(S), there
is β0 ∈ S ∩ β with z ̸∈ Vβ0 . Then let O = (S ∩ (β0, β]) × (Y \ Vβ0). In case β ∈ S \ Lim(S), there
is β1 ∈ β ∪ {−1} with S ∩ (β1, β] = {β}. Then let O = (S ∩ (β1, β]) × (Y \ Vβ). In any case, O is
an open neighborhood of ⟨β, z⟩ in S × Y disjoint from G. So G is a clopen set in S × Y containing
S×{q}. Since G is the union of a σ-locally finite collection of open (cozero) rectangles in S×Y , there
are an open rectangle U ×W in S × Y and a γ ∈ κ such that U ×W ⊂ G, q ∈W and S ∩ (γ, κ) ⊂ U .
To show W ⊂

∩
α∈S Vα, pick any y ∈ W and any α ∈ S. Take a ξ ∈ S with ξ > max{α, γ}. Since

⟨ξ, y⟩ ∈ U ×W ⊂ G, there is η ∈ S with ⟨ξ, y⟩ ∈ Gη = (S ∩ [0, η]) × Vη. By α < ξ ≤ η, we have
y ∈ Vη ⊂ Vα. Hence we conclude that q ∈W ⊂

∩
α∈S Vα. �

Definition 9. A product space X × Y is called a codecop product (a docs product) if X × Y is a
diagonal stationary product, satisfying



28 YASUSHI HIRATA, NOBUYUKI KEMOTO AND YUKINOBU YAJIMA

(i) Y has the SE-codecop property (SE-docs property) for each E ∈ S(X),
(ii) X has the SF -codecop property (SF -docs property) for each F ∈ S(Y ).

Recall that a diagonal stationary product is defined in Definition 7.

Definition 10. A product space X × Y is called a weak codecop product if

(i) Y has the κ-codecop property for each κ ∈ S∗(X),
(ii) X has the τ -codecop property for each τ ∈ S∗(Y ).

The following is an immediate consequence of Lemma 6.8 and Fact 8.5.

Proposition 8.8. The following are true.

(1) Every dop product is a codecop product.
(2) Every codecop product is a weak codecop product.

Proposition 8.9. The following are true.

(1) If the product of two spaces is normal, then it is a docs product.
(2) If the product of two monotonically normal spaces is rectangular, then it is a weak codecop

product.

These immediately follow from Lemmas 3.7 and 7.2 for (1) and from Proposition 6.12 for (2).

Rectangular products of GO-spaces. In Proposition 8.9, if we strengthen monotone normality of
X and Y with GO-spaces, then we can take off the “weak” condition of X × Y (see Theorem 8.14).
To prove this, we need the concept of retract.

Recall that a closed set E in a space X is called a retract of X if there is a continuous map
f : X → E such that f(x) = x for each x ∈ E. Such a map f is called a retraction from X to E.

Lemma 8.10. Let X and Y be spaces with E ⊂ X and F ⊂ Y . Suppose that E and F are retracts
of X and Y , respectively. If X × Y is rectangular, then so is E × F .

Proof. Let G be a cozero-set in E×F . Since E×F is also a retract of X×Y , there is a cozero-set G∗

in X×Y such that G∗∩ (E×F ) = G. Then there is a σ-locally finite collection G of cozero rectangles
in X × Y such that

∪
G = G∗. Then

G � (E × F ) = {(U × V ) ∩ (E × F ) : U × V ∈ G}

is a σ-locally finite collection of cozero rectangle in E × F such that
∪(
G � (E × F )

)
= G. Hence

E × F is rectangular. �

Lemma 8.11. Let A be a subspace of an ordinal. Then each non-empty closed subspace is a retract
of A.

Proof. Let A ⊂ λ+1. Take any non-empty closed subspace F in A. Let µ = supλ+1 F . When µ ∈ A,
we have µ ∈ F . Pick a fixed α0 ∈ F . Take the function g : A→ F defined by g(α) = α for each α ∈ F ,
g(α) = min{α′ ∈ F : α < α′} for each α ∈ (A ∩ [0, µ]) \ F and g(α) = α0 for each α ∈ A ∩ (µ, λ]. It
suffices to show that g is continuous at each point of A. Pick an α ∈ A. In case α ∈ F : Pick a β < α.
Then it is easily checked that g(A∩ (β, α]) ⊂ F ∩ (β, α]. In case α ∈ (A∩ [0, µ]) \F : Take γ < α with
F ∩ (γ, α] = ∅. Then (γ, g(α)) misses F . So we have g(A ∩ (γ, α]) = {g(α)}. In case α ∈ A ∩ (µ, λ]:
Then A ∩ (µ, λ] is clopen in A and g(A ∩ (µ, λ]) = {α0} = {g(α)}. Hence g is continuous on A. This
means that g is a retraction of A onto F . �

Lemma 8.12. Let X be a GO-space with E ∈ S(X,κ), where κ ∈ S∗(X). Then there is a club set C
in κ such that either C ⊂ SE or SE ∩ C is homeomorphic to a retract of X.
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Proof. Let S = SE and e = eE . If κ \ S is non-stationary in κ, then there is a club set C in κ with
C ⊂ S. So we may assume that κ \ S is stationary in κ. By Corollary 8.4, there is a club set D in κ
such that e � (S ∩D) is strictly increasing or strictly decreasing. We may assume that e � (S ∩D) is
strictly increasing because the other case is similar. Let T = Lim(S ∩D) ∩ (κ \ S), C = Lim(T ) and
E∗ = e(S ∩ C). Then C is a club set in κ since T is stationary in κ. And C ⊂ D holds. Obviously,
E∗ is homeomorphic to S ∩ C and closed in X. It suffices to show that E∗ is a retract of X.

Claim. For each y, z ∈ E∗ with y < z, there is a d(y, z) ∈ LX \X with y < d(y, z) < z.

Proof. Take α, β ∈ S ∩C with y = e(α) and z = e(β). Since e � (S ∩D) is strictly increasing, C ⊂ D
and β ∈ C = Lim(T ) with α < β, there is ξ ∈ T with α < ξ < β. Let d(y, z) = supLX

e(S∩D∩ξ) := d.
Then it is easily checked that y < d < z. By ξ /∈ S, S∩D∩ξ is closed in S. Assume that d ∈ X. Then
we have d ∈ e(S ∩D ∩ ξ) = e(S ∩D ∩ ξ). Take η ∈ S ∩D ∩ ξ with e(η) = d. By ξ ∈ T ⊂ Lim(S ∩D),
there is ζ ∈ S ∩D with η < ζ < ξ. Then we obtain a contradiction that d = e(η) < e(ζ) ≤ d. Hence
d ∈ LX \X. �

Set

E(−,+) = {⟨y, z⟩ : y ∈ ClLX
(E∗) ∪ {←}, z ∈ E∗ ∪ {→}, y < z and E∗ ∩ (y, z) = ∅}.

Pick an x ∈ X. Put x+ = min(E∗ ∩ (x,→)) if E∗ ∩ (x,→) ̸= ∅, otherwise put x+ =→. Put
x− = supLX

(E∗ ∩ (←, x)) if E∗ ∩ (←, x) ̸= ∅, otherwise put x− =←. Then the following are easily
checked.

(1) If a ∈ E∗ ∪ {←}, b ∈ E∗ ∪ {→} and x ∈ (a, b), then a ≤ x− ≤ x < x+ ≤ b.
(2) If x− ∈ X, then x− ∈ ClX(E∗) = E∗ holds.
(3) If x ∈ X \ E∗, then ⟨x−, x+⟩ is a unique member of E(−,+) satisfying x ∈ (x−, x+). Hence
{X ∩ (y, z) : ⟨y, z⟩ ∈ E(−,+)} is a pairwise disjoint open cover of X \ E∗.

(4) If x ∈ E∗, then x+ ∈ E∗ and ⟨x, x+⟩ ∈ E(−,+) always hold, and ⟨x−, x⟩ ∈ E(−,+) holds
except the case that x = supLX

(E∗ ∩ (←, x)) with E∗ ∩ (←, x) ̸= ∅.
We will define a retraction g : X → E∗. Let g(x) = x for each x ∈ E∗. Pick any ⟨y, z⟩ ∈ E(−,+).

We will define a continuous function g � (X ∩ (y, z)). In case z =→: Fix some x∗ ∈ E∗ and let
g(x) = x∗ for each x ∈ X ∩ (y, z). In case y /∈ E∗ and z ∈ E∗: Let g(x) = z for each x ∈ X ∩ (y, z).
In case y, z ∈ E∗, we define g(x) = y for each x ∈ X ∩ (y, d(y, z)) and define g(x) = z for each
x ∈ X ∩ (d(y, z), z). Thus g : X → E∗ has been defined. It follows from (3) that g � (X \ E∗) is
continuous. So it suffices to show that g is continuous at each point in E∗.

Pick an x ∈ E∗. By (4), we have ⟨x, x+⟩ ∈ E(−,+) and x, x+ ∈ E∗. By the above claim,
x < d(x, x+) < x+ holds, and we have g(X ∩ (x, d(x, x+))) = {x} = {g(x)}. In case ⟨x−, x⟩ ∈ E(−,+)
for some x−: When x− /∈ E∗, we have g(X ∩ (x−, x)) = {x} = {g(x)}. When x− ∈ E∗, by the above
claim, x− < d(x−, x) < x holds. So we have g

(
X ∩ (d(x−, x), x)

)
= {x} = {g(x)}.

If there is not such x−, then x = supLX
(E∗ ∩ (←, x)) with E∗ ∩ (←, x) ̸= ∅. Each neighborhood

V of g(x) = x in E∗ contains E∗ ∩ [a, x] for some a ∈ E∗ ∩ (←, x). Pick any y ∈ X ∩ (a, x). When
y ∈ E∗, obviously, g(y) = y ∈ E∗ ∩ (a, x). When y ∈ X \ E∗, by (1), a ≤ y− ≤ g(y) < y+ ≤ x holds.
Hence we obtain g(X ∩ (a, x)) ⊂ E∗ ∩ [a, x] ⊂ V . Thus g is continuous at x in any case. �

Remark 8.13. We cannot remove “C ⊂ SE” in Lemma 8.12, because there is a GO-space X with
an E ∈ S(X,κ) such that SE ∩ C is not homeomorphic to a retaract of X for any club set C in κ.
In fact, consider the space X = κ × [0, 1) topologized by the lexicographic order, where [0, 1) is an
interval in the real line. Then X is a connected LOTS (hence a GO-space) with the closed subspace
E := κ × {0} ∈ S(X,κ). Since connectedness is preserved by continuous maps, any retract of X is
connected. On the other hand, E is not connected, so it is not a retract of X. In the same reason,
SE ∩ C is not homeomorphic to a retract of X for any club set C in κ.

Theorem 8.14. If the product of two GO-spaces is rectangular, then it is a codecop product.
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Proof. Let X and Y be GO-spaces such that X × Y is rectangular. First we show that X × Y is a
diagonal stationary product. Pick a κ ∈ S∗(X) ∩ S∗(Y ). Take E ∈ S(X,κ) and F ∈ S(Y, κ). By
Lemma 8.12, there are two club sets C and D in κ such that SE ⊃ C or SE ∩ C is homeomorphic to
a retract in X and that SF ⊃ D or SF ∩ D is homeomorphic to a retract in Y . When SE ⊃ C or
SF ⊃ D, it is obvious that SE ∩ SF is stationary in κ. Otherwise, let E′ and F ′ be retracts in X and
Y , respectively, such that SE ∩ C is homeomorphic to E′ and that SF ∩ D is homeomorphic to F ′.
By Lemma 8.10, since X × Y is rectangular, so is E′ × F ′. So (SE ∩C)× (SF ∩D) is rectangular. It
follows from the parenthetic part of Lemma 7.1 that (SE ∩ C) ∩ (SF ∩D) is stationary in κ. Hence
so is SE ∩ SF .

Since GO-spaces are monotonically normal, it follows from Proposition 8.9 that X × Y is a weak
codecop product. So Y has the κ-codecop property for each κ ∈ S∗(X). Take an E ∈ S(X,κ),
where κ ∈ S∗(X). By Lemma 8.12, there is a club set C in κ such that either C ⊂ SE or SE ∩ C is
homeomorphic to a retract E′ of X. In case C ⊂ SE : By κ∩C = C, it follows from Lemma 8.6, Y has
the C-codecop property. By Fact 8.5, Y has the SE-codecop property. Otherwise, since E′ is a retract
of X and X × Y is rectangular, we see by applying Lemma 8.10 that E′ × Y is rectangular. Hence
(SE ∩ C)× Y is rectangular. Since SE ∩ C is stationary in κ, it follows from Lemma 8.7 that Y has
the (SE ∩ C)-codecop property. It follows from Fact 8.5 again that Y has the SE-codecop property.
Similarly, (ii) in Definition 9 is satisfied. �

Normality, orthocompactness and rectangularity. From this subsection, we deal with the prod-
ucts of a GO-space and a subspace of an ordinal. Here we show the equivalence of normality and
orthocompactness for such products.

Proposition 8.15. Let X be a GO-space with x ∈ X and κ a regular uncountable cardinal. The
following are equivalent.

(a) X has orthocaliber κ at x.
(b) X has the κ-dop property at x.
(c) X has the S-docs property at x for any stationary subset S in κ.
(d) X has the S-docs property at x for some stationary subset S in κ.
(e) 0- cf(x) ̸= κ and 1- cf(x) ̸= κ in LX .

Proof. (a)⇒(b)⇒(c): These are immediate consequences of Lemma 3.4.
(c)⇒(d): Obvious.
(d)⇒(e): Let L = LX . Assume that 0- cf(x) = κ. Then there is a normal function cx,0 : κ→ L at

x described in Fact 8.2. Let c = cx,0. Let Vα = X ∩ (c(α + 1),→)L for each α ∈ κ, where note that
c(α + 1) ∈ X by Fact 8.2(ii). Since {Vα : α ∈ S} is a descending sequence of open neighborhoods of
x in X, there is a continuously descending sequence {Fα : α ∈ S} of closed neighborhoods of x in X
such that Fα ⊂ Vα for each α ∈ S. For each α ∈ S, choose ξα ∈ κ such that X ∩ (c(ξα), x]L ⊂ Fα and
c(α+ 1) < c(ξα) < x. Let

C = {α ∈ κ : β ∈ S ∩ α implies ξβ < α}.

Since C is a club set in κ by [11, Lemma II.6.13], we can choose α0 ∈ S ∩ Lim(S) ∩C. Then we have
that

c(α0 + 1) ∈ X ∩ [c(α0 + 1), x]L ⊂ X ∩
( ∩
β∈S∩α0

(
c(ξβ), x

])
L
⊂

∩
β∈S∩α0

Fβ = Fα0 ⊂ Vα0 .

Hence we obtain c(α0 + 1) ∈ Vα0 = X ∩ (c(α0 + 1),→)L, which is a contradiction.
Assume that 1- cf(x) = κ. Then there is another normal function cx,1 : κ → L at x similarly

described in Fact 8.2. Let c′ = cx,1. Let Wα = X ∩ (←, c′(α + 1))L for each α ∈ κ. The remaining
argument is similar to the above.

(e)⇒(a): Let {Vα : α ∈ κ} be a sequence of open neighborhoods of x of X. It suffices to show that
(i) and (ii) below hold.
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(i) For each unbounded subset S of κ, there are S0 ⊂ S and a ∈ [←, x)L such that S0 is unbounded
in κ and X ∩ (a, x]L ⊂

∩
α∈S0

Vα.
(ii) For each unbounded subset S of κ, there are S1 ⊂ S and b ∈ X ∩ (x,→]L such that S1 is

unbounded in κ and X ∩ [x, b)L ⊂
∩

α∈S1
Vα.

Actually, if (i) and (ii) are true, then by applying (i) for S = κ and by applying (ii) for S = S0,
we obtain an unbounded subset S1 of κ and an open neighborhood X ∩ (a, b)L of x in X which is
contained in

∩
α∈S1

Vα, that is, x ∈ Int(
∩

α∈S1
Vα) holds. Hence X has orthocaliber κ at x.

Because (i) and (ii) are similar, we prove only (i). For each α ∈ κ, we can take x(α) ∈ [←, x)L with
X ∩ (x(α), x]L ⊂ Vα. Let S be an unbounded subset of κ, and let S(β) = {α ∈ S : x(α) ≤L x(β)}
for each β ∈ S. If S(β) is unbounded in κ for some β ∈ S, then a = x(β) and S0 = S(β) satisfy the
required condition. If S(β) is bounded in κ for every β ∈ S, then by induction, we can take a strictly
increasing sequence {αξ : ξ ∈ κ} by members of S such that αξ /∈

∪
ζ∈ξ S(αζ) for each ξ ∈ κ. Let

a = supL{x(αξ) : ξ ∈ κ} ∈ L. Since {x(αξ) : ξ ∈ κ} is strictly increasing in L and κ is regular, we
have 0- cf(a) = κ ̸= 0- cf(x), thus a <L x holds. Hence a and S0 = {αξ : ξ ∈ κ} satisfy the required
condition. �
Corollary 8.16. Let X be a GO-space and B a subspace of an ordinal. Then X×B is normal if and
only if it is orthocompact.

Proof. The “if” part is an immediate consequence of Corollary 7.19, because X is monotonically
normal. Assume that X×B is normal. By Proposition 8.9(1), X×B is a docs product. In particular,
it is a diagonal stationary product. Pick a κ ∈ S∗(X) and take an E ∈ S(X,κ). Then B has the
SE-docs property. By Proposition 8.15, B has orthocaliber κ. Similarly, X has orthocaliber κ for
each κ ∈ S∗(B). Hence X ×B is an orthocaliber product. It follows from Theorem 7.18 that X ×B
is orthocompact. �

The following is an immediate consequence of Corollaries 7.19 and 8.16.

Corollary 8.17. Let X be a GO-space and B a subspace of an ordinal. If X ×B is normal, then it
is rectangular.

Countable paracompactness and rectangularity. Recall that a space X is expandable if for
every locally finite collection F of closed sets in X, there is a locally finite open expansion of F . It
is well known that a space X is countably paracompact iff every locally finite countable collection
{Fn : n ∈ ω} of closed sets in X has a locally finite open expansion {U(Fn) : n ∈ ω}.

Here we prove the equivalence of expandability, countable paracompactness and rectangularity of
the products of a GO-space and a subspace of an ordinal as an extension of Theorem 8.1.

Theorem 8.18. Let X be a GO-space and B a subspace of an ordinal. Then the following are
equivalent.

(a) X ×B is expandable.
(b) X ×B is countably paracompact.
(c) X ×B is rectangular.
(d) X ×B is a codecop product.

For the proof of this, we need some lemmas below.

Lemma 8.19. Let X be a GO-space with x ∈ X. Let S be a stationary subset in a regular uncountable
cardinal κ. Then X has the S-codecop property at x if and only if the following conditions are satisfied;

(i) if 0- cf(x) = κ, then S ∩ c−1
x,0(X) is stationary in κ,

(ii) if 1- cf(x) = κ, then S ∩ c−1
x,1(X) is stationary in κ.

Proof. Let c = cx,0 and L = LX . The “only if” part: We show only (i), because (ii) is similar.
Assuming the contrary of (i), there is a club set C in κ such that S ∩ c−1(X) ∩ C = ∅. Pick an
α ∈ S ∩ C. Let Vα = X ∩ (c(α),→)L. By c(α) ∈ L \ X, Vα is a clopen neighborhood of x in X.
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When α ∈ Lim(S ∩ C), by the continuity of c, we have Vα =
∩

β∈S∩C∩α Vβ . Hence {Vα : α ∈ S ∩ C}
is a continuously descending sequence of clopen neighborhoods of x in X. By x = supL{c(α) : α ∈
S ∩ C}, we have

∩
α∈S∩C Vα ⊂ X ∩ [x,→)L. Since x ∈ X ∩ (←, x)L by 0- cf(x) = κ > 1, we have

x ̸∈ Int(
∩

α∈S∩C Vα). Hence X does not have the (S ∩C)-codecop property at x. By Lemma 8.6, this
is a contradiction.

The “if” part: Let {Vα : α ∈ S} be a continuously descending sequence of clopen neighborhoods of
x in X. Assuming (i), we show that there is a ∈ [←, x)L with X ∩ (a, x) ⊂

∩
α∈S Vα. This is easily

seen for the case of 0- cf(x) < κ or 0- cf(x) > κ. So we may assume that 0- cf(x) = κ. For each α ∈ S,
since Vα is a neighborhood of x, there is f(α) ∈ κ with f(α) > α and X ∩ (c(f(α)), x] ⊂ Vα. Let
C = {α ∈ κ : β ∈ S∩α implies f(β) < α}, then C is a club set in κ. Let T = S∩c−1(X)∩Lim(S)∩C.
By the assumption, T is stationary in κ. Pick an α ∈ T . For each β ∈ S ∩ α, by the choice of C,
we have c(α) ∈ X ∩

(
c(f(β)), x

]
⊂ Vβ . Since {Vα : α ∈ S} is continuously descending and α is

a limit, we have that c(α) ∈
∩

β∈S∩α Vβ=Vα. Since c is continuous, we can take g(α) < α with

X ∩
(
c(g(α)), c(α)

]
⊂ Vα. By PDL, there is T0 ⊂ T and α0 ∈ κ such that T0 is stationary in κ

and g(α) = α0 for each α ∈ T0. Let a = c(α0). Then a < x. Let x′ ∈ X ∩ (a, x) and α ∈ S. By
taking α1 ∈ T0 with α < α1 and x′ < c(α1), we have x′ ∈ X ∩ (c(g(α1)), c(α1)] ⊂ Vα1 ⊂ Vα. Hence,
x′ ∈

∩
α∈S Vα, and so X ∩ (a, x) ⊂

∩
α∈S Vα holds.

Assuming (ii), by the similar argument, we can show that there is b ∈ (x,→]L such that X ∩
(x, b) ⊂

∩
α∈S Vα. We obtain an open neighborhood X ∩ (a, b) of x which is contained in

∩
α∈S Vα, so

x ∈ IntX(
∩

α∈S Vα). Thus X has the S-codecop property at x. �

Lemma 8.20 ([7, Theorem B]). Let κ be a regular uncountable cardinal. Let S be a stationary subset
in κ and T an unbounded subset in κ. If S × (T ∪ [κ}) is countably paracompact, then S ∩ T is
stationary in κ.

Lemma 8.21. Let X and Y be GO-spaces. If X × Y is countably paracompact, then it is a codecop
product.

Proof. By Lemma 7.2, note that X×Y is a diagonal stationary product. Take an E ∈ S(X,κ), where
κ ∈ S∗(X). We show that Y has the SE-codecop property. Pick any y ∈ Y with 0-cf(y) = κ. Let
c = cy,0. Since c

−1(Y ) is unbounded in κ and c(c−1(Y )) is closed in Y ∩ (←, y)LY
, c(c−1(Y ))∪ {y} is

closed in Y . So c−1(Y )∪ {κ} is homeomorphic to a closed subspace in Y . Since SE × (c−1(Y )∪ {κ})
is homeomorphic to a closed subspace in X ×Y , it is countably paracompact. It follows from Lemma
8.20 that SE∩c−1(Y ) is stationary in κ. Hence Lemma 8.19(i) is satisfied. Similarly, we can show that
Lemma 8.19(ii) is satisfied. Thus Y has the SE-codecop property. Similarly, X has the SF -codecop
property for each F ∈ S(Y ). Hence X × Y is a codecop product. �

Fact 8.22. Let X be a space with E ∈ S(X,κ), where κ ∈ S∗(X). Let E′ be a closed subset of E with
|E′| = κ. Then E′ ∈ S(X,κ) holds, and for each open set U in X, E is almost contained in U iff E′

is almost contained in U .

The proof is a routine by PDL. So it is omitted here.

Fact 8.23. Let X be a GO-space with E ∈ S(X,κ) and an open set U in X. If E is almost contained
in U , then there is an open interval I in LX such that E is almost contained in I and X ∩ I ⊂ U .

Proof. Let e = eE and S = SE . By Proposition 8.3, there is a club set C in κ such that e � (S ∩C) is
strictly increasing or strictly decreasing. We may assume that e � (S∩C) is strictly increasing, because
the other case is similar. And we may also assume that e(S ∩ C) ⊂ U . Let p = supLX

(S ∩ C) and
S0 = S∩C∩Lim(S∩C). For each α ∈ S0, take a γ(α) ∈ S∩C∩α such that X∩(e(γ(α)), e(α)]LX ⊂ U .
By PDL, there are an S1 ⊂ S0 and a γ ∈ S ∩ C such that S1 is stationary in κ and γ(α) = γ for
each α ∈ S1. Define an open interval I in LX by putting I = (e(γ), p)LX and let U ′ = X ∩ I. Then
U ′ is an open set of X such that U ′ ⊂

∪
α∈S1

(
X ∩ (e(γ(α)), e(α)]LX

)
⊂ U . Obviously, e(S ∩ C) is a
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closed subset of E with |e(S ∩ C)| = κ. And it is almost contained in an open set U ′ ∩ E of E since
e(S ∩ C ∩ (γ, κ)) ⊂ U ′ ∩ E. By Fact 8.22, E is almost contained in U ′ ∩ E, and so in U ′. �

Definition 11. We say that a family G of subsets of a space Z is countably determined if the following
condition holds:

for each subset Z ′ of Z, if every countable subset of Z ′ is contained in some member
of G, then Z ′ is contained in some member of G.

Lemma 8.24. A family G of subsets of a space Z is countably determined if one of the following
conditions holds.

(1) G is point-countable.
(2) G = {G ⊂ Z : G is an open set meeting at most finitely many members of L} for some locally

finite collection L of closed sets of Z.

Proof. Assume that a subset Z ′ of Z is not contained in any member of G. It suffices to find a
countable subset M of Z ′ which is not contained in any member of G.

(1): We may assume that Z ′ is uncountable. Take z0 ∈ Z ′ and let G0 = {G ∈ G : z0 ∈ G}. Then
G0 is countable. For each G ∈ G0, we can take a zG ∈ Z ′ \ G. Let M = {z0} ∪ {zG : G ∈ G0}. It is
easily seen that M is a desired countable subset of Z ′.

(2): Let L0 = {L ∈ L : Z ′ ∩ L ̸= ∅} and G0 = Z \
∪
(L \ L0). Then G0 is an open set of Z with

Z ′ ⊂ G0. Let L1 = {L ∈ L0 : L ∩ G0 ̸= ∅}. By G0 /∈ G, we have |L1| ≥ ω. Take a L2 ⊂ L1 with
|L2| = ω. For each L ∈ L2, pick a zL ∈ L ∩ Z ′. Let M = {zL : L ∈ L2}. It is also easily seen that M
is a desired countable subset of Z ′. �

Lemma 8.25. Let X be a space with E ∈ S(X,κ), and G a countably determined family of open sets
of X with E ⊂

∪
G. Then E is almost contained in some member of G.

Proof. Let e = eE and S = SE . For each ξ ∈ S, take Gξ ∈ G with e(ξ) ∈ Gξ and take γ(ξ) < ξ with
e(S ∩ (γ(ξ), ξ]) ⊂ Gξ. By PDL, there are an S0 ⊂ S and a γ ∈ κ such that S0 is stationary in κ and
γ(ξ) = γ for each ξ ∈ S0. Put E0 = e(S ∩ (γ, κ)). Let M be a countable subset of E0. Since there
is ξ0 ∈ S0 with e−1(M) ⊂ ξ0, it follows that M ⊂ e(S ∩ (γ, ξ0]) = e(S ∩ (γ(ξ0), ξ0]) is contained in
Gξ0 ∈ G. This means that every countable subset of E0 is contained in some member of G. By the
assumption of G, E0 is contained in some member G of G. �

Note that if G is countably determined in Z and A ⊂ Z, then so is G � A in A. Considering as
Z = X × Y and A = {x} × Y , Lemma 8.25 immediately yields

Lemma 8.26. Let X and Y be spaces with x ∈ X and F ∈ S(Y, τ). Let G be a countably determined
family of open sets of X × Y with {x} × F ⊂

∪
G. Then there is an open set V of Y , satisfying that

(i) F is almost contained in V ,
(ii) {x} × V is contained in some member of G.

Lemma 8.27. Let X be a GO-space with x ∈ X and Y a space with F ∈ S(Y, τ). And let G be an
open set in X × Y such that {x} × F ⊂ G.

(1) If 0-cf(x) ̸= τ , then there are an a ∈ [←, x)LX
and an open set V in Y which almost contains

F such that
(
X ∩ (a, x]LX

)
× V ⊂ G.

(2) If 1-cf(x) ̸= τ , then there are a b ∈ (x,→]LX
and an open set W in Y which almost contains

F such that
(
X ∩ [x, b)LX

)
×W ⊂ G.

Proof. (1) and (2) are proved in a similar way, so we prove only (1). Let f = eF and T = SF . Let
κ = 0-cf(x) and c = cx,0. For each β ∈ T , take a γ(β) ∈ κ ∪ {−1}, an open neighborhood Vβ of f(β)
in Y and a δ(β) ∈ β ∪ {−1} such that

(
X ∩ (c(γ(β)), x]LX

)
× Vβ ⊂ G and f

(
T ∩ (δ(β), β]

)
⊂ Vβ . By

PDL and κ ̸= τ , it follows from Fact 7.7 that there are a T0 ⊂ T , a γ ∈ κ∪ {−1}, and a δ ∈ τ ∪ {−1}
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such that T0 is stationary in τ , and for each β ∈ T0, γ(β) ≤ γ and δ(β) = δ hold. We obtain required
a and V by letting a = c(γ) and V =

∪
β∈T0

Vβ . �

Lemma 8.28. Let X and Y be GO-spaces with E ∈ S(X,κ), F ∈ S(Y, τ) and κ ̸= τ . Let G be a
countably determined family of open sets of X×Y with E×F ⊂

∪
G. Then there is an open rectangle

U × V in X × Y , satisfying that

(i) E and F are almost contained in U and V , respectively,
(ii) U × V is contained in some member of G.

Proof. Let e = eE , S = SE , f = eF and T = SF . By Proposition 8.3, take club sets C and D
of κ and τ , respectively, such that each of e � (S ∩ C) and f � (T ∩ D) is strictly increasing or
strictly decreasing. By κ ̸= τ , either κ < τ or κ > τ holds. We may assume that e � (S ∩ C)
and f � (T ∩ D) are strictly increasing and κ < τ , because the other cases are similar. Let p =
supLX

e(S ∩ C) and q = supLY
f(T ∩ D). By Lemmas 8.26, 8.27, Fact 8.23 and PDL, we can take

a γ ∈ S ∩ C, δ ∈ T ∩ D and R ⊂ S ∩ C ∩ Lim(S ∩ C) ∩ (γ, κ) such that R is stationary in κ and
Zα =

(
X ∩ (e(γ), e(α)]LX

)
×
(
Y ∩ (f(δ), q)LY

)
is contained in some member of G for each α ∈ R. Let

U = X ∩ (e(γ), p)LX
and V = Y ∩ (f(δ), q)LY

. By Fact 8.22, E and F are almost contained in I and
J , respectively. Each countable subset of U × V is contained in Zα for some α ∈ R, so it is contained
in some member of G. Since G is countably determined, U × V is also contained in some member of
G. �
Lemma 8.29. Let X and Y be GO-spaces with x ∈ X and F ∈ S(Y, κ). Assume that κ = 0- cf(x)
(κ = 1- cf(x)) and SF ∩ c−1(X) is stationary in κ, where c = cx,0( c = cx,1). Then for each countably
determined family G of open sets of X × Y with (c(κ) ∩X)× F ⊂

∪
G, there are γ ∈ κ and an open

set V in Y such that

(i) F is almost contained in V ,
(ii)

(
X ∩ (c(γ), x)LX

)
× V (respectively,

(
X ∩ (x, c(γ))LX

)
× V ) is contained in some member of

G.
Proof. We consider the “κ = 0- cf(x)” case. Let S = c−1(X), T = SF and f = eF . By Proposition
8.3, there is a club set C in κ such that f � (T ∩C) is strictly increasing or strictly decreasing. We may
assume that it is strictly increasing, because the other cases are similar. Let q = supLY

f(T ∩C). Since
T ∩S is stationary, by PDL, we can take a γ ∈ S∩T ∩C and an R0 ⊂ S∩T ∩C∩Lim(S∩T ∩C)∩(γ, κ)
such that R0 is stationary in κ and Zα =

(
X ∩ (c(γ), c(α)]LX

)
×
(
Y ∩ (f(γ), f(α)]LY

)
is contained in

some member of G for every α ∈ R0. Let V = Y ∩ (f(γ), q)LY
. By Fact 8.22, note that F is almost

contained in F . Since each countable subset of
(
X ∩ (c(γ), x)LX

)
× V is contained in Zα for some

α ∈ R0, it is contained in some member of G. Since G is countably determined,
(
X ∩ (c(γ), x)LX

)
×V

is also contained in some member of G. Thus γ and V witness the lemma. �
Lemma 8.30. Let X and Y be GO-spaces with E ∈ S(X, k) and F ∈ S(Y, κ). Assume that SE∩SF is
stationary in κ. Then for each countably determined family G of open sets of X×Y with E×F ⊂

∪
G,

there is an open rectangle U × V in X × Y , satisfying that

(i) E and F are almost contained in U and V , respectively,
(ii) U × V is contained in some member of G.

Proof. Let S = SE , e = eE , T = SF and f = eF . By Proposition 8.3, we may assume that e � (S ∩C)
and f � (S ∩ C) are strictly increasing for some club set C in κ. Let p = supLX

e(S ∩ C) and
q = supLY

f(S ∩ C). Then, as in the proof of the lemma above, we can find γ ∈ S ∩ T ∩ C such that
U ×V is contained in some member of G, where U = X ∩ (e(γ), p) and V = Y ∩ (f(γ), q). Then U ×V
is the desired open rectangle. �
Lemma 8.31. Let X and Y be GO-spaces with x ∈ X and F ∈ S(Y, τ). Assume that X has the
SF -codecop property at x and that L is a locally finite collection of closed sets in X × Y . Let

G = {G ⊂ X × Y : G is an open set meeting at most finitely many members of L}.



PRODUCTS OF MONOTONICALLY NORMAL SPACES 35

Then there is an open rectangle U × V in X × Y , satisfying that

(i) x ∈ U and F is almost contained in V ,
(ii) U × V is contained in some member of G.

Proof. By Lemmas 8.24(2) and 8.26, there are an open set V0 of Y which almost contains F , and
G0 ∈ G such that {x} × V0 ⊂ G0. It suffices to show that (1) and (2) below hold.

(1) There are an a ∈ [←, x)LX
, an open set V1 in Y which almost contains F , and a G1 ∈ G such

that
(
X ∩ (a, x)LX

)
× V1 ⊂ G1.

(2) There are a b ∈ (x,→]LX
, an open set V2 in Y which almost contains F , and a G2 ∈ G such

that
(
X ∩ (x, b)LX

)
× V2 ⊂ G2.

In fact, when (1) and (2) above are true, by Fact 8.23, we can take an open set V in Y such that F is
almost contained in V and V ⊂ V0 ∩ V1 ∩ V2 holds. Let U = X ∩ (a, b)LX

. Then U and V witness the
lemma because of G0∪G1∪G2 ∈ G. We prove only (1), because (2) is similar. In case 0- cf(x) ̸= τ , we
obtain (1) by letting G1 = G0 and applying Lemma 8.27. So assume that 0- cf(x) = τ . Let c = cx,0.
Since X has the SF -codecop property at x, it follows from Lemma 8.19 that SF ∩c−1(X) is stationary
in τ . Since G covers X × Y , Lemma 8.29 shows (1). �

Lemma 8.32. Let X and Y be GO-spaces with x ∈ X and F ∈ S(Y, τ). Assume that X has the
SF -codecop property at x. If G is a binary cozero cover of X × Y , then there is an open rectangle
U × V in X × Y , satisfying that

(i) x ∈ I and F is almost contained in J ,
(ii) U × V is contained in some member of G.

Proof. By Lemma 8.26, there are an open set V0 of Y which almost contains F , and G ∈ G such that
{x} × V0 ⊂ G. It suffices to show that (1) and (2) below hold.

(1) There are an a ∈ [←, x)LX
and an open set V1 of Y which almost contains F such that(

X ∩ (a, x)LX

)
× V1 ⊂ G.

(2) There are a b ∈ (x,→]LX and an open set V2 of Y which almost contains F such that(
X ∩ (x, b)LX

)
× V2 ⊂ G.

In fact, when (1) and (2) above are true, by Fact 8.23, we can take an open set V in Y such that F is
almost contained in V and V ⊂ V0 ∩ V1 ∩ V2 holds. Let U = X ∩ (a, b)LX

. Then U and V witness the
lemma. Since (1) and (2) are similar, we prove only (1). In case 0- cf(x) ̸= τ : Lemma 8.27 shows (1).
So we may assume 0- cf(x) = τ . Let c = cx,0, S = c−1(X), and T = SF . Since X has the T -codecop
property at x, it follows from Lemma 8.19 that S ∩ T is stationary in τ . Since a cozero set G is an
Fσ-set, there is a sequence {Hn : n ∈ ω} of open sets in X × Y such that (X × Y ) \ G =

∩
n∈ωHn.

For each n ∈ ω, Hn := {G,Hn} is a binary open cover of X × Y . By Lemma 8.29, there are γn ∈ τ
and an open set Wn in Y such that

(i) F is almost contained in Wn,
(ii) Un ×Wn is contained in some member Gn of Hn, where Un = X ∩ (c(γn), x)LX

.

Since F is almost contained in V0 and Wn’s, one can take y0 ∈ F ∩ V0 ∩
∩

n∈ωWn. It follows from
⟨x, y0⟩ ∈ {x}×V0 ⊂ G that there is δ ∈ τ with (X ∩ (c(δ), x))×{y0} ⊂ G. Pick γ ∈ τ with δ < γ and
sup{γn : n ∈ ω} < γ, moreover pick x0 ∈ X∩(c(γ), x). Then we have ⟨x0, y0⟩ ∈ G∩

∩
n∈ω (Un ×Wn) ⊂∩

n∈ω Gn. Hence
∩

n∈ω Gn ̸= (X×Y )\G =
∩

n∈ωHn holds. Therefore, there ism ∈ ω with Gm ̸= Hm,
that is, Gm = G holds. Since Um ×Wm ⊂ Gm = G, a := c(γm) and V1 :=Wm witness (1). �

Proof of Theorem 8.18. (a)⇒(b): This is obvious because every expandable space is countably para-
compact.

(b)⇒(d): This immediately follows from Lemma 8.21.
(c)⇒(d): This immediately follows from Theorem 8.14.
(d)⇒(a): Let L be a locally finite collection of closed sets in X ×B. And let

G = {G ⊂ X × Y : G is an open set meeting at most finitely many members of L}.
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Then G is an open cover of X × B. To show that L has a locally finite open expansion, it suffices to
show that G is a normal cover. Note that G is countably determined by Lemma 8.24. Let µ ∈ Γ(B).
Take a club set D of µ having order type τ = cf(µ), and let F = B ∩D. Then F ∈ S(B, τ). Since
X × B is a codecop product, X has the SF -codecop property. By Lemma 8.31, (1) in Lemma 7.5
holds. Let E ∈ S(X,κ). In case κ ̸= τ , by Lemma 8.28, (2) in Lemma 7.5 holds for E and µ. In
case κ = τ , since X ×B is a diagonal stationary product, SE ∩ SF is stationary in κ = τ . By Lemma
8.30, (2) in Lemma 7.5 holds for E and µ. Let E ∈ S(X,κ) and µ ∈ B. Since X × B is a codecop
product, B has the SE-codecop property at µ. By Lemma 8.31, (2) in Lemma 7.5 holds for E and µ.
By Lemma 7.5, G is a normal cover.

(d)⇒(c): Let G = {G0, G1} be a binary cozero cover of X × B. In the similar way to the case of
(d)⇒(a), applying Lemmas 8.28, 8.30 and 8.32, we can verify that G satisfies (1) and (2) in Lemma
7.5. Hence G has a locally finite rectangular cozero refinement. �

9. Problems

Refuting rectangularity of X × Y , Example 6.18 shows that orthocompactness of X in Theorem
5.2 cannot be taken off from the assumption. On the other hand, the product space X × Y in that
example is normal. So it is natural to ask

Problem 9.1. Let X be a monotonically normal space and Y a paracompact DC-like space. Assume
that Y has the κ-dop property for each κ ∈ S∗(X). Is X × Y normal?

By Theorem 6.1, Y cannot be almost discrete if a counterexample exists for this.

It is also natural to ask whether the arguments for ordinal factors can be extended to GO-space
factors. That is, we raise

Problem 9.2. Let X and Y be GO-spaces (or monotonically normal and orthocompact spaces).

(1) If X × Y is orthocompact, is it normal?
(2) If X × Y is normal, is it collectionwise normal?
(3) If X × Y is normal, does it have the shrinking property?
(4) If X × Y is rectangular, is it countably paracompact?
(5) If X × Y is countably paracompact, is it rectangular?
(6) If X × Y is a codecop product, is it rectangular?
(7) If X × Y is a codecop product, is it countably paracompact?

Our arguments are separated in several sections.

Problem 9.3. Is it possible to have a unified approach for some of our sections?
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