(1) Tel: +81-97-554-7569 (2) Fax: +81-97-554-7514
(3) e-mail: nkemoto@cc.oita-u.ac.jp

MILD NORMALITY OF FINITE PRODUCTS OF SUBSPACES

$$
\text { OF } \omega_{1}
$$

YASUSHI HIRATA AND NOBUYUKI KEMOTO

Abstract

It is known that products of arbitrary many ordinals are mildly normal [4] and products of two subspaces of ordinals are also mildly normal [3]. It was asked if products of arbitrary many subspaces of ordinals are mildly normal. In this paper, we characterize the mild normality of products of finitely many subspaces of ω_{1}. Using this characterization, we show that there exist 3 subspaces of ω_{1} whose product is not mildly normal.

1. Introduction

The closure of an open set in a topological space is called a regular closed set, and the interior of a closed set is called a regular open set. A space is called mildly normal (or κ-normal) if every pair of disjoint regular closed sets can be separated by disjoint open sets.

Obviously, every normal space is mildly normal. But mild normality does not imply normality. For instance, $\omega_{1} \times\left(\omega_{1}+1\right)$ is mildly normal but not normal. Moreover, using elementary submodels, it is proved in [4] that products of arbitrary many ordinals are mildly normal. In [6], it is proved that for $A, B \subseteq \omega_{1}, A \times B$ is normal if and only if A or B is non-stationary or $A \cap B$ is stationary in ω_{1}. Since there are disjoint stationay sets A and B in ω_{1}, there is a non-normal product $A \times B$ of two subspaces of ω_{1}. On the other hand, $A \times B$ is mildly normal wherever A and B are arbitrary subsets of ordinals, see [3]. In [3], a subspace of ω_{1}^{2} which is not mildly normal is given and they asked whether every finite product of subspaces of ordinals is mildly normal. On the other hand recently, it has been known that strong zero-dimensionality behaves like mild normality in the realm of products of ordinals. In particular, without using elementary submodels, a simultaneous proof of strong zero-dimensionality and mild normality of products of arbitrary many ordinals is given in [5]. Moreover in the same paper, it is proved that Σ-products and σ-products of arbitrary many ordinals are both strongly zero-dimensional and mildly normal. In [1], they proved that finite products of subspaces of ordinals are strongly zero-dimensional. Of course, they first proved it for two products and then extended for finite products.

In this paper, we characterize the mild normality of finite products of subspaces of ω_{1} in terms of stationarity. Moreover, we show that there exist 3 subspaces of ω_{1} whose product is not mildly normal.

[^0]We call a sequence $\left\langle A_{k}: k<n\right\rangle$ of subsets of ω_{1} with $2 \leq n<\omega$ a stationary chain if $A_{k-1} \cap A_{k}$ is stationary in ω_{1} for every $0<k<n$. A family $\left\{A_{k}: k \in N\right\}$ of subsets of ω_{1} is well-partitioned if for every 1-1 function $w: n \longrightarrow N$ with $2 \leq n<\omega$, if $\left\langle A_{w(k)}: k<n\right\rangle$ is a stationary chain, then $\bigcap_{k<n} A_{w(k)}$ is stationary in ω_{1}. Note that if $|N| \leq 2$, then such a family $\left\{A_{k}: k \in N\right\}$ is well-partitioned moreover that if $\left\{A_{k}: k \in N\right\}$ is well-partitioned then $\left\{A_{k}: k \in N^{\prime}\right\}$ is wellpartitioned for every $N^{\prime} \subseteq N$ and $\left\{A_{k} \cap[0, p(k)]: k \in N\right\}$ is also well-partitioned for every $p \in\left(\omega_{1}+1\right)^{N}$.

We prove the theorem below.
THEOREM 1.1. The finite product space $\Pi_{k \in N} A_{k}$ of non-empty subspaces of ω_{1} is mildly normal if and only if the family $\left\{A_{k}: k \in N\right\}$ is well-partitioned.

2. Preliminaries

We identify an ordinal α with the set of all ordinals less than α. We do not distinguish natural numbers from finite ordinals. Hence a natural number n is the set $\{0,1, \ldots, n-1\}$. A sequence s of finite length n is a function of domain n, so $s=\langle s(0), s(1), \ldots, s(n-1)\rangle$. In particular, A^{n} denotes the set of all functions from $\{0,1, \ldots, n-1\}$ into A. For each sequence $s, \operatorname{lh}(s)$ denotes the length of s, and $\operatorname{ran}(s)$ denotes the set $\{s(i): i<\operatorname{lh}(s)\}$.

Throughout the paper, each ordinal α is considered to be a space with the ordertopology. For $X \subseteq \omega_{1}, \operatorname{Lim}(X)$ denotes the set $\left\{\alpha<\omega_{1}: \alpha=\sup (X \cap \alpha)\right\}$ (i.e., the set of all cluster points of X in ω_{1}), where $\sup \emptyset=-\infty$ and $-\infty$ is considered as the immediate predecessor of the ordinal 0 for notational conveniences. Moreover $\operatorname{Succ}(X), \operatorname{Lim}$ and Succ denote the sets $X \backslash \operatorname{Lim}(X), \operatorname{Lim}\left(\omega_{1}\right)$ and $\operatorname{Succ}\left(\omega_{1}\right)$ respectively. Observe that $\operatorname{Lim}(X)$ is club (closed and unbounded) whenever X is unbounded in ω_{1}. Note that if X is not stationary, then X is covered by a pairwise disjoint family of bounded (in ω_{1}) clopen sets of X.
$\alpha^{\leq n}$ denotes the set $\bigcup_{k \leq n} \alpha^{k}$. Let A be a set of sequences of ordinals less than ω_{1}. We use the following notations.

$$
\begin{aligned}
& \left.\cdot A\right|_{<}=\left\{s \in A: \forall k_{0}, k_{1}<\operatorname{lh}(s)\left(k_{0}<k_{1} \rightarrow s\left(k_{0}\right)<s\left(k_{1}\right)\right)\right\}, \\
& \left.\cdot A\right|_{\leq}=\left\{s \in A: \forall k_{0}, k_{1}<\operatorname{lh}(s)\left(k_{0}<k_{1} \rightarrow s\left(k_{0}\right) \leq s\left(k_{1}\right)\right)\right\}
\end{aligned}
$$

A function $c: \omega_{1} \longrightarrow \omega_{1}$ is said to be normal if it is strictly increasing, cofinal, and continuous. Note that if c is a normal function on ω_{1}, then $\operatorname{ran}(c)$ is a club set in ω_{1} and conversely that the increasing enumeration c of a club set C as $C=\left\{c(\alpha): \alpha<\omega_{1}\right\}$ is normal. Let c be a normal function, N a finite set and $\tau: N \longrightarrow m$ a function, where $m<\omega$. We define a function $\operatorname{pr}_{\tau}^{c}: \omega_{1}^{m} \longrightarrow \omega_{1}^{N}$, functions $\partial_{k}^{c}: \omega_{1}^{N} \longrightarrow \omega_{1}$ for each $k \in N$, moreover we define subsets $\left.A\right|_{\tau,<} ^{c}$ and $\left.A\right|_{\tau, \leq} ^{c}$ of A, where $A \subseteq \omega_{1}^{N}$, as follows.

$$
\begin{aligned}
& \cdot \operatorname{pr}_{\tau}^{c}(y)(k)=c(y(\tau(k))) \text { for each } y \in \omega_{1}^{m} \text { and } k \in N \text {, } \\
& \cdot \partial_{k}^{c}(x)=\min \left\{\xi<\omega_{1}: x(k) \leq c(\xi)\right\} \text { for each } k \in N \text { and } x \in \omega_{1}^{N}, \\
& \left.\cdot A\right|_{\tau,<} ^{c}=\left\{s \in A: \forall k_{0}, k_{1} \in N\left(\tau\left(k_{0}\right)<\tau\left(k_{1}\right) \rightarrow \partial_{k_{0}}^{c}(s)<\partial_{k_{1}}^{c}(s)\right)\right\}, \\
& \left.\cdot A\right|_{\tau, \leq} ^{c}=\left\{s \in A: \forall k_{0}, k_{1} \in N\left(\tau\left(k_{0}\right)<\tau\left(k_{1}\right) \rightarrow \partial_{k_{0}}^{c}(s) \leq \partial_{k_{1}}^{c}(s)\right)\right\} .
\end{aligned}
$$

If c is identity on ω_{1}, then we omit c and write $\operatorname{pr}_{\tau}(y), \partial_{k}, \ldots$ etc. Observe that pr_{τ}^{c}, and ∂_{k}^{c} are continuous and that for each $k_{1}, k_{2} \in N,\left\{x \in \omega_{1}^{N}: \partial_{k_{1}}^{c}(x)<\partial_{k_{2}}^{c}(x)\right\}$ is
open, and $\left\{x \in \omega_{1}^{N}: \partial_{k_{1}}^{c}(x) \leq \partial_{k_{2}}^{c}(x)\right\}$ is closed in ω_{1}^{N}. So $\left.A\right|_{\tau,<} ^{c}$ is an open set in A and $\left.A\right|_{\tau, \leq} ^{c}$ is a closed set in A. For convenience, let $c(\alpha-1)=-\infty$ if $\alpha=0$.

3. Stationary open sets

DEFINITION 3.1. Let $m<\omega$. We say that $X \subseteq \omega_{1}^{m}$ is stationary (in ω_{1}^{m}) if $X \cap C^{m} \neq \emptyset$ for every club set $C \subseteq \omega_{1}$. A function $f: X \longrightarrow\left(\omega_{1} \cup\{-\infty\}\right)^{m}$ is called a regressive function if $f(x)(j)<x(j)$ for every $x \in X$ and $j<m . T \subseteq \omega_{1}^{\leq m}$ is called a tree in ω_{1}^{m} if $t \upharpoonright j \in T$ for each $t \in T$ and $j<\operatorname{lh}(t)$. Let $\operatorname{Lv}_{j}(T)$ $\left(\operatorname{Lv}_{<j}(T), \operatorname{Lv}_{\leq j}(T)\right)$ denote the set of all elements $t \in T$ of height $j(<j, \leq j$ respectively), that is $\operatorname{lh}(t)=j(<j, \leq j$ respectively $)$. A tree in ω_{1}^{m} is called an m stationary tree (m-cofinal tree) if $\emptyset \in T$ and $\left\{\alpha: t^{\wedge}\langle\alpha\rangle \in T\right\}$ is stationary (cofinal) in ω_{1} for every $t \in \operatorname{Lv}_{<m}(T)$.

LEMMA 3.2. Let $m<\omega$. If $\left.X \subseteq\left(\omega_{1}^{m}\right)\right|_{<}$is stationary in ω_{1}^{m} and $f: X \longrightarrow$ $\left(\omega_{1} \cup\{-\infty\}\right)^{m}$ is a regressive function, then there exist an m-stationary tree T in ω_{1}^{m} and a function $g: \operatorname{Lv}_{<m}(T) \longrightarrow \omega_{1} \cup\{-\infty\}$ such that $\operatorname{Lv}_{m}(T) \subseteq X$ and $f(t)(j)=g(t \upharpoonright j)$ for every $t \in \operatorname{Lv}_{m}(T)$ and $j<m$.
Proof. Proofs of this lemma are seen in [1] and [2]. For reader's convenience, we give here a sketch of the proof. Put $X_{m}=X$ and $f_{m}=f$. Assume that $j<m, X_{j+1} \subseteq$ $\left.\left(\omega_{1}^{j+1}\right)\right|_{<}$is stationary in ω_{1}^{j+1} and f_{j+1} is a regressive function of domain X_{j+1}. Put $X_{j}=\left\{\left.s \in\left(\omega_{1}^{j}\right)\right|_{<}:\left\{\alpha<\omega_{1}: s^{\wedge}\langle\alpha\rangle \in X_{j+1}\right\}\right.$ is stationary in $\left.\omega_{1}\right\}$. Then X_{j} is stationary in ω_{1}^{j} by the normality of the club filter. By the Pressing Down Lemma for ω_{1} and completeness of the club filter, we can pick $f_{j}(s) \in \Pi_{j^{\prime}<j}\left(s\left(j^{\prime}\right) \cup\{-\infty\}\right)$ and $g(s)<\omega_{1}$, for each $s \in X_{j}$, such that $A(s)=\left\{\alpha<\omega_{1}: \hat{s}\langle\alpha\rangle \in X_{j+1}\right.$ and $\left.f_{j+1}\left(s^{\wedge}\langle\alpha\rangle\right)=f_{j}(s)^{\wedge}\langle g(s)\rangle\right\}$ is stationary in $\omega_{1} . T=\left\{s \in \omega_{1}^{\leq m}: s(j) \in A(s \upharpoonright j)\right.$ for each $j<\operatorname{lh}(s)\}$ satisfies the required condition.

LEMMA 3.3. Let X be a subspace of ω_{1}^{n}, where $n<\omega, \mathcal{P}=\left\{P_{i}: i \in \mathcal{I}\right\}$ a countable family of open sets of X such that $P_{i} \mid \leq$ is stationary in ω_{1}^{n} for each $i \in \mathcal{I}$. If T is an n-cofinal tree on ω_{1} such that $\operatorname{Lv}_{n}(T) \subseteq X$, then $\bigcap_{i \in \mathcal{I}} P_{i} \cap \operatorname{Lv}_{n}(T) \neq \emptyset$.
Proof. Fix $i \in \mathcal{I}$. Since

$$
\left.\omega_{1}^{n}\right|_{\leq}=\bigcup\left\{\operatorname{pr}_{\tau}\left(\left.\omega_{1}^{m}\right|_{<}\right): m \leq n, \tau: n \longrightarrow m \text { is a non-decreasing, onto map }\right\},
$$

we can pick an $m_{i} \leq n$ and a non-decreasing, onto map $\tau_{i}: n \longrightarrow m_{i}$ such that $P_{i} \cap \operatorname{pr}_{\tau_{i}}\left(\left.\omega_{1}^{m_{i}}\right|_{<}\right)$is stationary. Put $Y_{i}=\left.\left(\operatorname{pr}_{\tau_{i}}^{-1}\left(P_{i}\right)\right)\right|_{<,}$then Y_{i} is a stationary subset of $\omega_{1}^{m_{i}}$. Since P_{i} is open, there is a regressive function $f_{i}: Y_{i} \longrightarrow\left(\omega_{1} \cup\{-\infty\}\right)^{m_{i}}$ such that $X \cap \Pi_{k<n}\left(f_{i}(y)\left(\tau_{i}(k)\right), y\left(\tau_{i}(k)\right)\right] \subseteq P_{i}$ for every $y \in Y_{i}$. By Lemma 3.2 , there are an m_{i}-stationary tree U_{i} in $\omega_{1}^{m_{i}}$ and a function $g_{i}: \mathrm{Lv}_{<m_{i}}\left(U_{i}\right) \longrightarrow$ $\omega_{1} \cup\{-\infty\}$ such that $\operatorname{Lv}_{m_{i}}\left(U_{i}\right) \subseteq Y_{i}$ and $f_{i}(u)(j)=g_{i}(u \upharpoonright j)$ for each $u \in \operatorname{Lv}_{m_{i}}\left(U_{i}\right)$ and $j<m_{i}$.

We define inductively $t \in \operatorname{Lv}_{n}(T)$ and $u_{i} \in \operatorname{Lv}_{m_{i}} U_{i}$ for each $i \in \mathcal{I}$ as follows. Set $t \upharpoonright 0=u_{i} \upharpoonright 0=\emptyset$. Assume that $k<n$ and that $t \upharpoonright k \in T$ and $u_{i} \upharpoonright \tau_{i}(k) \in$ U_{i} for every $i \in \mathcal{I}$ are determined. Pick $t(k)$ such that $(t \upharpoonright k)^{\wedge}\langle t(k)\rangle \in T$ and $g_{i}\left(u_{i} \upharpoonright \tau_{i}(k)\right)<t(k)$ for all $i \in \mathcal{I}$. For each $i \in \mathcal{I}$ satisfying $k=\max \tau_{i}^{-1}\left(\left\{\tau_{i}(k)\right\}\right)$, pick $u_{i}\left(\tau_{i}(k)\right)$ such that $\left(u_{i} \upharpoonright \tau_{i}(k)\right)^{\wedge}\left\langle u_{i}\left(\tau_{i}(k)\right)\right\rangle \in U_{i}$ and $t\left(k^{\prime}\right) \leq u_{i}\left(\tau_{i}(k)\right)$ for all $k^{\prime} \in \tau_{i}^{-1}\left(\left\{\tau_{i}(k)\right\}\right)$.

It follows from $t \in \operatorname{Lv}_{n}(T)$ that $t \in X$. For each $i \in \mathcal{I}$ and $k<n, f_{i}\left(u_{i}\right)\left(\tau_{i}(k)\right)=$ $g_{i}\left(u_{i} \upharpoonright \tau_{i}(k)\right)<t(k) \leq u_{i}\left(\tau_{i}(k)\right) . \quad t \in X \cap \Pi_{k<n}\left(f_{i}\left(u_{i}\right)\left(\tau_{i}(k)\right), u_{i}\left(\tau_{i}(k)\right)\right] \subseteq P_{i}$ because of $u_{i} \in \operatorname{Lv}_{m_{i}}\left(U_{i}\right)$. Hence $t \in \bigcap_{i \in \mathcal{I}} P_{i} \cap \operatorname{Lv}_{n}(T)$.
LEMMA 3.4. Let $\left\langle A_{k}: k<n\right\rangle$ be a stationary chain with $2 \leq n<\omega$ such that $\bigcap_{k<n} A_{k}$ is non-stationary in ω_{1}. Then $A=\Pi_{k<n} A_{k}$ is not mildly normal.
Proof. Let C be a club set disjoint from $\bigcap_{k<n} A_{k}$ and $c: \omega_{1} \longrightarrow \omega_{1}$ the increasing enumeration of C. Define non-decreasing, onto mappings $\tau_{0}^{-}: n \longrightarrow m_{0}$ and $\tau_{1}^{-}: n \longrightarrow m_{1}$ with $m_{0}, m_{1} \leq n$ by, for each $0<k<n$,

$$
\begin{gathered}
\tau_{0}^{-}(k-1)<\tau_{0}^{-}(k) \text { iff } k \text { is odd } \\
\tau_{1}^{-}(k-1)<\tau_{1}^{-}(k) \text { iff } k \text { is even }
\end{gathered}
$$

For each $i \in 2=\{0,1\}$ and $j<m_{i}$, put $\tau_{i}(k)=k$ if $\left(\tau_{i}^{-}\right)^{-1}(\{j\})=\{k\}$ and put $\tau_{i}(k-1)=k, \tau_{i}(k)=k-1$ if $\left(\tau_{i}^{-}\right)^{-1}(\{j\})=\{k-1, k\}$. Then $\tau_{i}: n \longrightarrow n$ is $1-1$ onto. Put $U_{i}=\left.A\right|_{\tau_{i},<} ^{c}$ and $F_{i}=\left.A\right|_{\tau_{i}, \leq} ^{c}$. Since U_{i} is open and F_{i} is closed, $\mathrm{cl} U_{i}$ is regular closed in A and $\operatorname{cl} U_{i} \subseteq F_{i}$.
Claim 1. $\operatorname{cl} U_{0} \cap \operatorname{cl} U_{1}=\emptyset$
Proof. Assume that $x \in \operatorname{cl} U_{0} \cap \mathrm{cl} U_{1}$. If $0<k<n$ is odd, then $\tau_{0}^{-}(k-1)<\tau_{0}^{-}(k)$ and $\tau_{1}^{-}(k-1)=\tau_{1}^{-}(k)$, so $\tau_{0}(k-1)<\tau_{0}(k)$ and $\tau_{1}(k-1)>\tau_{1}(k)$. Thus by $x \in F_{0} \cap F_{1}$, we have $\partial_{k-1}^{c}(x) \leq \partial_{k}^{c}(x)$ and $\partial_{k-1}^{c}(x) \geq \partial_{k}^{c}(x)$, hence $\partial_{k-1}^{c}(x)=\partial_{k}^{c}(x)$. If $0<k<n$ is even, then similarly we have $\partial_{k-1}^{c}(x)=\partial_{k}^{c}(x)$. Therefore there exists a $\xi<\omega_{1}$ such that $\partial_{k}^{c}(x)=\xi$ for all $k<n$. Since $x \in A=\Pi_{k<n} A_{k}$, $x(k) \leq c\left(\partial_{k}^{c}(x)\right)=c(\xi)$ for each $k<n$, and $c(\xi) \notin \bigcap_{k<n} A_{k}$, we have $x(k)<c(\xi)$ for some $k<n$. It follows from the minimality of $\partial_{k}^{c}(x)$ and the normality of c that $\xi \in$ Succ. Then $A \cap \Pi_{k<n}(c(\xi-1), c(\xi)]$, where $\xi-1$ denotes the immediate predecessor of ξ, is a neighborhood of x disjoint from U_{0}. Thus $x \notin \operatorname{cl} U_{0}$, a contradiction.

Now we go back to the proof of the lemma. Since $\left\langle A_{k}: k<n\right\rangle$ is a stationary chain, $A_{k-1} \cap A_{k}$ is stationary in ω_{1} for every $0<k<n$. For $i \in 2$ and $j<m_{i}$, put $Y_{i, j}^{\prime}=c^{-1}\left(\bigcap\left\{A_{k}: k \in\left(\tau_{i}^{-}\right)^{-1}(\{j\})\right\}\right), Y_{i, j}=Y_{i, j}^{\prime} \cap \operatorname{Lim}\left(Y_{i, j}^{\prime}\right)$, and $Y_{i}=$ $\left.\left(\Pi_{j<m_{i}} Y_{i, j}\right)\right|_{<\cdot}$. Since $Y_{i, j}^{\prime}$ is stationary in $\omega_{1}, Y_{i, j}$ is also stationary, hence Y_{i} is stationary in $\omega_{1}^{m_{i}}$. It follows from $\left.\operatorname{pr}_{\tau_{i}}^{c}\left(Y_{i}\right) \subseteq\left(\operatorname{cl} U_{i}\right)\right|_{\leq \text {that }}\left(\operatorname{cl} U_{i}\right) \mid \leq$ is stationary in ω_{1}^{n}. Obviously, there is an n-cofinal tree T in ω_{1}^{n} such that $\operatorname{Lv}_{n}(T) \subseteq A$. By Lemma 3.3, $\mathrm{cl} U_{0}$ and $\mathrm{cl} U_{1}$ cannot be separated by disjoint open sets.

Since if $X \times Y \neq \emptyset$ is mildly normal then so is X, now by Lemma 3.4, we have one half of the proof of the main theorem.
LEMMA 3.5. If the finite product space $\Pi_{k \in N} A_{k}$ of non-empty subspaces of ω_{1} is mildly normal, then $\left\{A_{k}: k \in N\right\}$ is well-partitioned.

4. Mildly normal products

In this section, we prove another half of the proof of the main theorem.
Lemma 4.1. If a finite family $\mathcal{A}=\left\{A_{k}: k \in N\right\}$ of non-empty subspaces of ω_{1} is well-partitioned, then the product space $\Pi_{k \in N} A_{k}$ is mildly normal.

Proof. For notational reasons, we assume $N \cap \omega_{1}=\emptyset$. We prove this lemma by induction on $n=|N|$. Assume that this lemma holds for $<n$ and let $\mathcal{A}=\left\{A_{k}\right.$: $k \in N\}$ be a well-partitioned family of non-empty subspaces of ω_{1} with $|N|=n$.

Let \prec be the well-founded relation on $\left(\omega_{1}+1\right)^{N}$ defined by:

$$
p^{\prime} \prec p \text { iff } \forall k \in N\left(p^{\prime}(k) \leq p(k)\right) \text { and } \exists k \in N\left(p^{\prime}(k)<p(k)\right) .
$$

Note that $\left(\omega_{1}+1\right)^{N}$ has the \prec-largest element p_{0} defined by $p_{0}(k)=\omega_{1}$ for each $k \in N$. Using \prec-induction on $p \in\left(\omega_{1}+1\right)^{N}$, we will prove that $A(p)=\Pi_{k \in N}\left(A_{k} \cap\right.$ $[0, p(k)])$ is mildly normal. Then the \prec-largest element witnesses the lemma.

Let $p \in\left(\omega_{1}+1\right)^{N}$ and assume that $A\left(p^{\prime}\right)$ is mildly normal for every $p^{\prime} \prec p$. We call a clopen subset B of $A(p)$ bounded if $B \subseteq A\left(p^{\prime}\right)$ for some $p^{\prime} \prec p$, moreover a subset B of $A(p)$ small if B is represented as the union of a locally finite family of bounded clopen sets. Note that by the \prec-inductive assumption, every small clopen subset of $A(p)$ is mildly normal.

Set $N_{0}=\left\{k \in N: p(k)=\omega_{1}\right\}$ and $N_{1}=N \backslash N_{0}$. We may assume $A(p) \neq \emptyset$ and $N_{0} \neq \emptyset$, otherwise $A(p)$ is metrizable (since regular, Lindelöf, and 2nd-countable). In some special cases, we can immediately show the mild normality of $A(p)$.
Case 1. There is $k_{0} \in N_{1}$ such that $p\left(k_{0}\right)=0$.
Since $A(p)$ is homeomorphic to $\Pi_{k \in N \backslash\left\{k_{0}\right\}}\left(A_{k} \cap[0, p(k)]\right)$, use the inductive assumption for $n-1$.

Case 2. There is $k_{0} \in N_{1}$ such that $p\left(k_{0}\right)=\lambda+1$ for some λ.
Since $A_{k_{0}}$ is represented as the free union $A_{k_{0}}=\left(A_{k_{0}} \cap[0, \lambda]\right) \bigoplus\left(A_{k_{0}} \cap\{\lambda+\right.$ $1\}$), $A(p)$ is mildly normal (more precisely, the mild normality of $\Pi_{k \in N \backslash\left\{k_{0}\right\}}\left(A_{k} \cap\right.$ $[0, p(k)]) \times\left(A_{k_{0}} \cap\{\lambda+1\}\right)$ follows from the inductive assumption for $\left.n-1\right)$.

Case 3. There is $k_{0} \in N_{1}$ such that $p\left(k_{0}\right) \in \operatorname{Lim} \backslash A_{k_{0}}$.
Fix a strictly increasing cofinal sequence $\left\langle\lambda_{n}: n \in \omega\right\rangle$ in $p\left(k_{0}\right)$. Then $A_{k_{0}}$ can be represented as the free union $A_{k_{0}}=\bigoplus_{n \in \omega}\left(A_{k_{0}} \cap\left(\lambda_{n-1}, \lambda_{n}\right]\right)$, where $\lambda_{0-1}=-\infty$. Therefore $A(p)$ is small.

Case 4. There is $k_{0} \in N_{0}$ such that $A_{k_{0}}$ is non-stationary.
Since $A_{k_{0}}$ is covered by bounded clopen sets in $A_{k_{0}}, A(p)$ is small.
With the observation above, we may assume that

- $N_{0}=\left\{k \in N: p(k)=\omega_{1}\right\}$ is non-empty,
- A_{k} is stationary for every $k \in N_{0}$,
- $p(k)$ is limit and $p(k) \in A_{k}$ for every $k \in N_{1}=N \backslash N_{0}$.

Set Stat $=\left\{N^{\prime} \subseteq N_{0}: \bigcap_{k \in N^{\prime}} A_{k}\right.$ is stationary in $\left.\omega_{1}\right\}$. Let C be a club set disjoint from $\bigcup\left\{\bigcap_{k \in N^{\prime}} A_{k}: N^{\prime} \subseteq N_{0}, N^{\prime} \notin \operatorname{Stat}\right\}$ and $c: \omega_{1} \longrightarrow \omega_{1}$ the increasing enumeration of C. For each $r=\left\{k_{0}, k_{1}\right\} \in\left[N_{0}\right]^{2} \backslash$ Stat and $\xi \in r \cup$ Succ, let

$$
F_{r \xi}= \begin{cases}\left\{s \in A(p): \partial_{k_{0}}^{c}(s)<\partial_{k_{1}}^{c}(s)\right\} & \text { if } \xi=k_{0} \\ \left\{s \in A(p): \partial_{k_{0}}^{c}(s)>\partial_{k_{1}}^{c}(s)\right\} & \text { if } \xi=k_{1} \\ \left\{s \in A(p): \partial_{k_{0}}^{c}(s)=\partial_{k_{1}}^{c}(s)=\xi\right\} & \text { if } \xi \in \text { Succ. }\end{cases}
$$

Claim 1. For each $r \in\left[N_{0}\right]^{2} \backslash$ Stat, $\mathcal{F}_{r}=\left\{F_{r \xi}: \xi \in r \cup\right.$ Succ $\}$ is a discrete clopen cover of $A(p)$.

Proof. Let $r=\left\{k_{0}, k_{1}\right\} \in\left[N_{0}\right]^{2} \backslash$ Stat. It is evident that \mathcal{F}_{r} is disjoint and $F_{r \xi}$ is open in $A(p)$ for each $\xi \in r$. Let $\xi \in$ Succ and $s_{0} \in F_{r \xi}$. Then $\{s \in A(p): \forall i \in$ $\left.2\left(c(\xi-1)<s\left(k_{i}\right) \leq c(\xi)\right)\right\}$ is a neighborhood of s_{0} contained in $F_{r \xi}$, thus $F_{r \xi}$ is open. To show that \mathcal{F}_{r} is cover, let $s \in A(p) \backslash\left(F_{r k_{0}} \cup F_{r k_{1}}\right)$. Assume $\xi=\partial_{k_{0}}^{c}(s)=$ $\partial_{k_{1}}^{c}(s) \in \operatorname{Lim}$. Since c is normal, we have $c(\xi)=s\left(k_{0}\right)=s\left(k_{1}\right) \in A_{k_{0}} \cap A_{k_{1}} \cap C$, a contradiction. Thus $\xi \in$ Succ and $s \in F_{r \xi}$. This completes the proof of the claim.

Now set

$$
\begin{aligned}
& H=\left\{h \in \Pi_{r \in\left[N_{0}\right]^{2} \backslash \operatorname{Stat}}(r \cup \operatorname{Succ}): \forall r \in\left[N_{0}\right]^{2} \backslash \operatorname{Stat}\left(F_{r h(r)} \neq \emptyset\right)\right\}, \\
& F_{h}=\bigcap_{r \in\left[N_{0}\right]^{2} \backslash \operatorname{Stat}} F_{r h(r)} \text { for each } h \in H, \text { and } \mathcal{F}=\left\{F_{h}: h \in H\right\} .
\end{aligned}
$$

By Claim 1 above, \mathcal{F} is a discrete clopen cover of $A(p)$. It suffices to show that F_{h} is mildly normal for each $h \in H$. Set

$$
H_{0}=\left\{h \in H: \exists r \in\left[N_{0}\right]^{2} \backslash \operatorname{Stat}(h(r) \in \operatorname{Succ})\right\} \text { and } H_{1}=H \backslash H_{0}
$$

First let $h \in H_{0}$ and take $r \in\left[N_{0}\right]^{2} \backslash$ Stat with $h(r) \in$ Succ. Then it follows from

$$
F_{h} \subseteq F_{r h(r)} \subseteq \Pi_{k \in N \backslash r}\left(A_{k} \cap[0, p(k)]\right) \times \Pi_{k \in r}\left(A_{k} \cap[0, c(h(r))]\right)
$$

that F_{h} is a small clopen set of $A(p)$, thus F_{h} is mildly normal.
Next fix $h \in H_{1}$. Note $h(r) \in r$ for each $r \in\left[N_{0}\right]^{2} \backslash$ Stat.
Claim 2. There is an onto function $\tau: N_{0} \longrightarrow m$ for some $m<\omega$ such that
(1) $\bigcap_{k \in \tau^{-1}(\{j\})} A_{k}$ is stationary for each $j<m$,
(2) $F_{h}=\left.\left(\Pi_{k \in N_{0}} A_{k}\right)\right|_{\tau,<} ^{c} \times \Pi_{k \in N_{1}}\left(A_{k} \cap[0, p(k)]\right)$.

Proof. Define a binary relation \triangleleft on N_{0} by:

$$
k_{0} \triangleleft k_{1} \text { iff }\left\{k_{0}, k_{1}\right\} \in\left[N_{0}\right]^{2} \backslash \text { Stat and } h\left(\left\{k_{0}, k_{1}\right\}\right)=k_{0}
$$

Then note that either $k_{0} \triangleleft k_{1}$ or $k_{1} \triangleleft k_{0}$ iff $\left\{k_{0}, k_{1}\right\} \in\left[N_{0}\right]^{2} \backslash$ Stat. Fix $s \in F_{h}$ and let $k_{0}, k_{1} \in N_{0}$ be satisfying $k_{0} \triangleleft k_{1}$. By $h\left(\left\{k_{0}, k_{1}\right\}\right)=k_{0}$, we have $s \in F_{h} \subseteq F_{\left\{k_{0}, k_{1}\right\} k_{0}}$. Therefore $\partial_{k_{0}}^{c}(s)<\partial_{k_{1}}^{c}(s)$, this shows that \triangleleft is a well-founded relation on N_{0}. Let $\tau: N_{0} \longrightarrow m$ be the rank function of the well-founded set $\left\langle N_{0}, \triangleleft\right\rangle$. Evidently $m<\omega$ because N_{0} is finite. We will show that τ is the desired one. Let $j<m$ and $w: n_{0} \longrightarrow \tau^{-1}(\{j\})$ be 1-1 and onto, where $n_{0}=\left|\tau^{-1}(\{j\})\right|$. For every k with $0<k<n_{0}$, by $\tau(w(k-1))=\tau(w(k))=j$, we have that neither $w(k-1) \triangleleft w(k)$ nor $w(k) \triangleleft w(k-1)$ iff $\{w(k-1), w(k)\} \in$ Stat iff $A_{w(k-1)} \cap A_{w(k)}$ is stationary. Therefore $\left\langle A_{w(k)}: k<n_{0}\right\rangle$ is stationary chain (if $2 \leq n_{0}$), thus $\bigcap_{k \in \tau^{-1}(\{j\})} A_{k}=\bigcap_{k<n_{0}} A_{w(k)}$ is stationary by the well-partitionedness of \mathcal{A}.
Fact 1. Let $0<j<m$. Then for every $k_{0} \in \tau^{-1}(\{j-1\})$ and $k_{1} \in \tau^{-1}(\{j\})$, $\left\{k_{0}, k_{1}\right\} \in\left[N_{0}\right]^{2} \backslash$ Stat and $k_{0} \triangleleft k_{1}$ hold.

Proof. If once we prove $\left\{k_{0}, k_{1}\right\} \in\left[N_{0}\right]^{2} \backslash$ Stat, then we have $k_{0} \triangleleft k_{1}$ or $k_{1} \triangleleft k_{0}$. However since $\tau\left(k_{0}\right)=j-1<j=\tau\left(k_{1}\right), k_{1} \triangleleft k_{0}$ does not hold, so we have $k_{0} \triangleleft k_{1}$.

Now assume $\left\{k_{0}, k_{1}\right\} \in$ Stat. Since τ is a rank function and $\tau\left(k_{1}\right)=j$, there is $k_{2} \in \tau^{-1}(\{j-1\})$ with $k_{2} \triangleleft k_{1}$. It follows from $\left\{k_{0}, k_{1}\right\} \in \operatorname{Stat}$ and $\left\{k_{1}, k_{2}\right\} \notin \operatorname{Stat}$ that k_{0}, k_{1} and k_{2} are distinct. Since by (1) $A_{k_{0}} \cap A_{k_{2}} \supseteq \bigcap_{k \in \tau^{-1}(\{j-1\})} A_{k}$ is stationary, we have $\left\{k_{0}, k_{2}\right\} \in$ Stat. Therefore $\left\langle A_{k_{2}}, A_{k_{0}}, A_{k_{1}}\right\rangle$ is a stationary chain, so $A_{k_{2}} \cap A_{k_{0}} \cap A_{k_{1}}$ is stationary by the well-partitionedness. On the other hand by
$\left\{k_{1}, k_{2}\right\} \notin$ Stat, we have $A_{k_{2}} \cap A_{k_{0}} \cap A_{k_{1}}$ is not stationary, a contradiction. This completes the proof of fact.

To prove (2), first let $\left.s \in\left(\Pi_{k \in N_{0}} A_{k}\right)\right|_{\mathcal{T},<} ^{c} \times \Pi_{k \in N_{1}}\left(A_{k} \cap[0, p(k)]\right)$. Now fix $r=\left\{k_{0}, k_{1}\right\} \in\left[N_{0}\right]^{2} \backslash$ Stat. We may assume $h(r)=k_{0}$. Then we have $k_{0} \triangleleft k_{1}$ so $\tau\left(k_{0}\right)<\tau\left(k_{1}\right)$. By $\left.s \in\left(\Pi_{k \in N_{0}} A_{k}\right)\right|_{\tau,<} ^{c} \times \Pi_{k \in N_{1}}\left(A_{k} \cap[0, p(k)]\right)$, we have $\partial_{k_{0}}^{c}(s)<$ $\partial_{k_{1}}^{c}(s)$. Therefore $s \in F_{r k_{0}}=F_{r h(r)}$. Moving $r \in\left[N_{0}\right]^{2} \backslash$ Stat, we have $s \in F_{h}$.

Next let $s \in F_{h}$ and $k_{0}, k_{1} \in N_{0}$ with $\tau\left(k_{0}\right)<\tau\left(k_{1}\right)$, say $j_{0}=\tau\left(k_{0}\right)$ and $j_{1}=\tau\left(k_{1}\right)$. Since τ is onto, for each j with $j_{0} \leq j \leq j_{1}$, we can pick $k_{j}^{\prime} \in \tau^{-1}(\{j\})$ such that $k_{j_{0}}^{\prime}=k_{0}$ and $k_{j_{1}}^{\prime}=k_{1}$. Let $j_{0}<j \leq j_{1}$. It follows from the fact above that $\left\{k_{j-1}^{\prime}, k_{j}^{\prime}\right\} \in\left[N_{0}\right]^{2} \backslash$ Stat and $k_{j-1}^{\prime} \triangleleft k_{j}^{\prime}$, so $h\left(\left\{k_{j-1}^{\prime}, k_{j}^{\prime}\right\}\right)=k_{j-1}^{\prime}$. Since $s \in F_{h} \subseteq F_{\left\{k_{j-1}^{\prime}, k_{j}^{\prime}\right\} k_{j-1}^{\prime}}$, we have $\partial_{k_{j-1}^{\prime}}^{c}(s)<\partial_{k_{j}^{\prime}}^{c}(s)$. Moving j with $j_{0}<j \leq j_{1}$, we have $\partial_{k_{0}}^{c}(s)<\partial_{k_{1}}^{c}(s)$. This shows $\left.s \in\left(\Pi_{k \in N_{0}} A_{k}\right)\right|_{\tau,<} ^{c} \times \Pi_{k \in N_{1}}\left(A_{k} \cap[0, p(k)]\right)$. This completes the proof of Claim 2.

Set

$$
X=\left.\left(\Pi_{k \in N_{0}} A_{k}\right)\right|_{\tau,<} ^{c} \text { and } Z=\Pi_{k \in N_{1}}\left(A_{k} \cap[0, p(k)]\right)
$$

If we show that $F_{h}=X \times Z$ is mildly normal, the proof of the lemma is complete.
Claim 3. $X \times Z$ is mildly normal.
Proof. Let $\mathcal{U}=\left\{U_{0}, U_{1}\right\}$ be a regular open cover of $X \times Z$ and $z_{0}=p \upharpoonright N_{1} \in Z$. We will show that $X \times Z \backslash U_{i}$ is contained in a small clopen set for some $i \in 2$. Noting $\operatorname{pr}_{\tau}: \omega_{1}^{m} \longrightarrow \omega_{1}^{N_{0}}$, it follows from $\tau^{-1}(\{j\}) \in$ Stat for each $j<m$ that $\operatorname{pr}_{\tau}^{-1}(X)$ is stationary in ω_{1}^{m} and $\left.\operatorname{pr}_{\tau}^{-1}(X) \subseteq \omega_{1}^{m}\right|_{<}$.

For each $i \in 2$, set $V_{i}=\left\{x \in X:\left\langle x, z_{0}\right\rangle \in U_{i}\right\}$. Then $\left\{V_{0}, V_{1}\right\}$ is an open cover of X. So we may assume that $Y_{0}=\operatorname{pr}_{\tau}^{-1}\left(V_{0}\right)$ is stationary in ω_{1}^{m}. For each $y \in Y_{0}$, by $\left\langle\operatorname{pr}_{\tau}(y), z_{0}\right\rangle \in U_{0}$, we can fix $f_{0}(y) \in \Pi_{j<m}(y(j) \cup\{-\infty\})$ and $f_{1}(y) \in \Pi_{k \in N_{1}}\left(z_{0}(k) \cup\{-\infty\}\right)$ such that

$$
(X \times Z) \cap\left(\Pi_{k \in N_{0}}\left(f_{0}(y)(\tau(k)), y(\tau(k))\right] \times \Pi_{k \in N_{1}}\left(f_{1}(y)(k), z_{0}(k)\right]\right) \subseteq U_{0} .
$$

Since $\Pi_{k \in N_{1}}\left(z_{0}(k) \cup\{-\infty\}\right)$ is countable, there are a stationary set $Y_{1} \subseteq Y_{0}$ in ω_{1}^{m} and $z_{1} \in \Pi_{k \in N_{1}}\left(z_{0}(k) \cup\{-\infty\}\right)$ such that $f_{1}(y)=z_{1}$ for each $y \in Y_{1}$. Moreover since $f_{0} \upharpoonright Y_{1}$ is regeressive on a stationary set Y_{1}, by Lemma 3.2, there are a stationary tree T in ω_{1}^{m} and a function $g: \operatorname{Lv}_{<m}(T) \longrightarrow \omega_{1} \cup\{-\infty\}$ such that $\operatorname{Lv}_{m}(T) \subseteq Y_{1}$ and $f_{0}(t)(j)=g(t \upharpoonright j)$ for every $t \in \operatorname{Lv}_{m}(T)$ and $j<m$.

Set

$$
E=\left\{\xi<\omega_{1}: \forall t \in \operatorname{Lv}_{<m} T \cap \xi^{\leq m}\left(g(t)<\xi \in \operatorname{Lim}\left(\left\{\alpha<\omega_{1}: t^{\wedge}\langle\alpha\rangle \in T\right\}\right)\right)\right\}
$$

Then it is straightforward to show that E is club. Let

$$
D=C \cap E \cap \bigcap_{k \in N_{0}} \operatorname{Lim}\left(A_{k}\right)
$$

and let $d: \omega_{1} \longrightarrow \omega_{1}$ be the increasing enumeration of D. Set $X^{\prime}=X \cap\left(d(0), \omega_{1}\right)^{N_{0}}$ and $Z^{\prime}=Z \cap \Pi_{k \in N_{1}}\left(z_{1}(k), z_{0}(k)\right]$. Then since $X \times Z-X^{\prime} \times Z^{\prime}$ is a small clopen set, it suffices to show that $X^{\prime} \times Z^{\prime} \backslash U_{0}$ is contained in a small clopen set.

For each $j<m$ and $x \in X$, let

$$
\nu_{j}^{-}(x)=\min \left\{\partial_{k}^{d}(x): k \in \tau^{-1}(\{j\})\right\}, \nu_{j}^{+}(x)=\max \left\{\partial_{k}^{d}(x): k \in \tau^{-1}(\{j\})\right\} .
$$

Obviously, ν_{j}^{-}and ν_{j}^{+}are continuous.

Let $0<j<m$. For each $\xi \in$ Succ, let

$$
L_{j \xi}=\left\{x \in X^{\prime}: \xi=\nu_{j-1}^{+}(x) \geq \nu_{j}^{-}(x)\right\} \times Z^{\prime}
$$

Note that this $L_{j \xi}$ is actually $\left\{x \in X^{\prime}: \xi=\nu_{j-1}^{+}(x)=\nu_{j}^{-}(x)\right\} \times Z^{\prime}$. Moreover, let

$$
L_{j \infty}=\left\{x \in X^{\prime}: \nu_{j-1}^{+}(x)<\nu_{j}^{-}(x)\right\} \times Z^{\prime}
$$

Fact 1. For each j with $0<j<m, \mathcal{L}_{j}=\left\{L_{j \xi}: \xi \in \operatorname{Succ} \cup\{\infty\}\right\}$ is a discrete clopen cover of $X^{\prime} \times Z^{\prime}$.

Proof. Evidently \mathcal{L}_{j} is pairwise disjoint. To show that \mathcal{L}_{j} covers $X^{\prime} \times Z^{\prime}$, let $\langle x, z\rangle \in X^{\prime} \times Z^{\prime} \backslash L_{j \infty}$. Then $\nu_{j-1}^{+}(x) \geq \nu_{j}^{-}(x)$. Assume $\xi=\nu_{j-1}^{+}(x) \in \operatorname{Lim}$, then $x\left(k_{0}\right)=d(\xi)$ for some $k_{0} \in \tau^{-1}(\{j-1\})$. Moreover it follows from $\nu_{j}^{-}(x) \leq \xi$ that $x\left(k_{1}\right) \leq d(\xi)$ for some $k_{1} \in \tau^{-1}(\{j\})$. Then $x\left(k_{1}\right) \leq x\left(k_{0}\right)$, therefore $\partial_{k_{1}}^{c}(x) \leq$ $\partial_{k_{0}}^{c}(x)$. But it follows from $x \in X$ and $\tau\left(k_{0}\right)<\tau\left(k_{1}\right)$ that $\partial_{k_{0}}^{c}(x)<\partial_{k_{1}}^{c}(x)$, a contradiction. Therefore $\xi \in$ Succ and \mathcal{L}_{j} covers $X^{\prime} \times Z^{\prime}$.
$L_{j \infty}$ is open by continuity of ν_{j}^{-}and ν_{j}^{+}. Fix $\xi \in$ Succ. To show that $L_{j \xi}$ is open, let $\langle x, z\rangle \in L_{j \xi}$. Then there are $k_{0} \in \tau^{-1}(\{j-1\})$ and $k_{1} \in \tau^{-1}(\{j\})$ such that $\partial_{k_{0}}^{d}(x)=\xi$ and $\partial_{k_{1}}^{d}(x) \leq \xi$. Since $\partial_{k}^{d}(x) \leq \xi$ for each $k \in \tau^{-1}(\{j-1\})$,
$U=\left\{y \in X^{\prime}: d(\xi-1)<y\left(k_{0}\right), y\left(k_{1}\right) \leq x\left(k_{1}\right), \forall k \in \tau^{-1}(\{j-1\})(y(k) \leq d(\xi))\right\} \times Z^{\prime}$ is a neighborhood of $\langle x, z\rangle$ contained in $L_{j \xi}$, thus $L_{j \xi}$ is open.

By the fact above, $\left\{L_{\varphi}: \varphi \in(\operatorname{Succ} \cup\{\infty\})^{m \backslash\{0\}}\right\}$ is a discrete clopen cover of $X^{\prime} \times Z^{\prime}$ where $L_{\varphi}=\bigcap_{0<j<m} L_{j \varphi(j)}$. Let φ_{0} be the function on $m \backslash\{0\}$ defined by $\varphi_{0}(j)=\infty$ for each $j<m$. Since L_{φ} is small for each $\varphi \in(\operatorname{Succ} \cup\{\infty\})^{m \backslash\{0\}} \backslash\left\{\varphi_{0}\right\}$, the following fact completes the proof.
Fact 2. $L_{\varphi_{0}} \subseteq U_{0}$.
Proof. Since U_{0} is regular open, it suffices to show $L_{\varphi_{0}} \subseteq \operatorname{cl} U_{0}$. Let $\langle x, z\rangle \in L_{\varphi_{0}}$ moreover let $x^{\prime} \in\left(\omega_{1} \cup\{-\infty\}\right)^{N_{0}}$ and $z^{\prime} \in\left(\omega_{1} \cup\{-\infty\}\right)^{N_{1}}$ satisfy $x^{\prime}(k)<x(k)$ for each $k \in N_{0}$ and $z^{\prime}(k)<z(k)$ for each $k \in N_{1}$. We will show that $U_{0} \cap$ $\left(\Pi_{k \in N_{0}}\left(x^{\prime}(k), x(k)\right] \times \Pi_{k \in N_{1}}\left(z^{\prime}(k), z(k)\right]\right) \neq \emptyset$. Set $e(j)=d\left(\nu_{j}^{+}(x)\right)$ for each $j<m$. For convenience, let $e(j-1)=d(0)$ if $j=0$.

Let $j<m$ and $k \in \tau^{-1}(\{j\})$. Then $e(j-1)<x(k) \leq e(j)$ since $\nu_{j-1}^{+}(x)<\nu_{j}^{-}(x)$ if $0<j$ by $\langle x, z\rangle \in L_{\varphi_{0}} . e(j) \in D \subseteq \operatorname{Lim}\left(A_{k}\right)$, so we can pick $y(k) \in A_{k}$ such that $\max \left\{e(j-1), x^{\prime}(k)\right\}<y(k) \leq x(k)$ and $y(k)<e(j)$.

Since $d(0) \leq e(j-1)<y(k)$ for each $k \in \tau^{-1}(\{j\})$ with $j<m$ and $y\left(k_{0}\right)<$ $e(j-1)<y\left(k_{1}\right)$ for each $k_{0} \in \tau^{-1}(\{j-1\})$ and $k_{1} \in \tau^{-1}(\{j\})$ with $0<j<m$, we have $y \in X \cap \Pi_{k \in N_{0}}\left(x^{\prime}(k), x(k)\right]$. It suffices to show $\langle y, z\rangle \in U_{0}$.

Now we will define $t \in T$ by induction on $j \leq m$ as follows. Let $j<m$ and assume that $t \upharpoonright j \in T \cap \Pi_{j^{\prime}<j} e\left(j^{\prime}\right)$ is already defined. It follows from $e(j) \in D$ that $e(j) \in$ $\operatorname{Lim}\left(\left\{\alpha<\omega_{1}:(t \upharpoonright j)^{\wedge}\langle\alpha\rangle \in T\right\}\right)$. Therefore by $\max \left\{y(k): k \in \tau^{-1}(\{j\})\right\}<e(j)$, we can find $t(j)$ with $(t \upharpoonright j)^{\wedge}\langle t(j)\rangle \in T$ and $\max \left\{y(k): k \in \tau^{-1}(\{j\})\right\} \leq t(j)<e(j)$. Then for each $j<m$, it follows from $t \upharpoonright j \in \operatorname{Lv}_{j}(T) \cap e(j-1)^{j}$ and $e(j-1) \in D \subseteq E$ that for each $k \in \tau^{-1}(\{j\})$,

$$
g(t \upharpoonright j)<e(j-1)<y(k) \leq t(j)
$$

Thus by $z \in Z^{\prime}$, we have

$$
\langle y, z\rangle \in(X \times Z) \cap\left(\Pi_{k \in N_{0}}\left(f_{0}(t)(\tau(k)), t(\tau(k))\right] \times \Pi_{k \in N_{1}}\left(f_{1}(t)(k), z_{0}(k)\right]\right) \subseteq U_{0}
$$

5. Applications

In this section, we apply the main theorem. Immediately we have:
COROLLARY 5.1. If $\left\{A_{k}: k \in N\right\}$ is a finite family of subsets of ω_{1} with the pairwise non-stationary intersection, then $\Pi_{k \in N} A_{k}$ is mildly normal.

Now, we answer the question of [4] and [3].
COROLLARY 5.2. Let m and N be natural numbers with $2 \leq m<N$. Then there is a family $\left\{A_{k}: k \in N\right\}$ of subsets of ω_{1} satisfying:
(1) $\Pi_{k \in r} A_{k}$ is mildly normal for each $r \in[N]^{m}$,
(2) $\Pi_{k \in r} A_{k}$ is not mildly normal for each $r \in[N]^{m+1}$.

Proof. Enumerate $[N]^{m}$ as $[N]^{m}=\left\{r_{j}: j<K\right\}$, where $K=\frac{N!}{m!\times(N-m)!}$. Let $\mathcal{B}=\left\{B_{j}: j<K\right\}$ be a pairwise disjoint family of stationary sets in ω_{1}. For each $k<N$, set $A_{k}=\bigcup\left\{B_{j}: k \in r_{j}\right\}$.

It follows from $B_{j} \subseteq \bigcap_{k \in r_{j}} A_{k}$ that $\left\{A_{k}: k \in r_{j}\right\}$ is well-partitioned, this shows (1).

Let $r \in[N]^{m+1}$. Note that $\left\{A_{k}: k \in r\right\}$ has the pairwise stationary intersection. Assume $\alpha \in \bigcap_{k \in r} A_{k}$. Then for each $k \in r$, we can find $j(k)<K$ such that $k \in r_{j(k)}$ and $\alpha \in B_{j(k)}$. Since \mathcal{B} is pairwise disjoint, for some $j<K, j(k)=j$ for each $k \in r$. This means $r \subseteq r_{j}$ and contradicts $|r|=m+1$ and $\left|r_{j}\right|=m$, therefore $\bigcap_{k \in r} A_{k}=\emptyset$. So $\left\{A_{k}: k \in r\right\}$ is not well-partitioned, this shows (2).

In particular, applying the corollary above for $m=2$ and $N=3$, we have:
Corollary 5.3. There are subspaces A, B and C of ω_{1} whose product $A \times B \times C$ is not mildly normal.
Problem 5.4. Let $\left\{A_{k}: k \in \omega\right\}$ be a pairwise disjoint infinite family of stationary sets in ω_{1}. Then is the product $\Pi_{k \in \omega} A_{k}$ mildly normal?

References

[1] W. G. Fleissner, N. Kemoto and J. Terasawa, Strong Zero-dimensionality of products of ordinals, Topology Appl., 132 (2003), 109-127.
[2] Y. Hirata and N. Kemoto, Separating G_{δ}-sets in finite powers of ω_{1}, Fund. Math., 177 (2003), 83-94.
[3] L. Kalantan and N. Kemoto, Mild normality in products of ordinals, Houston J. Math., 29(4) (2003) 937-947.
[4] L. Kalantan and P. J. Szeptycki, κ-normality and products of ordinals, Topology Appl. 123 (2002), 537-545.
[5] N. Kemoto and P. J. Szeptycki, Topological properties of products of ordinals, Topology Appl., to appear.
[6] N. Kemoto, H. Ohta and K. Tamano, Products of spaces of ordinal numbers, Topology Appl. 45 (1992), 119-130.

Graduate School of Mathematics, University of Tsukuba, Ibaraki 305-8571, Japan E-mail address: yhira@jb3.so-net.ne.jp

Department of Mathematics, Faculty of Education, Oita University, Dannoharu,
Oita, 870-1192, Japan
E-mail address: nkemoto@cc.oita-u.ac.jp

[^0]: 2000 Mathematics Subject Classification. 54B10, 03E10, 54D15, 54D20.
 Key words and phrases. mildly normal, product, regular open, ordinal, stationary set, Pressing Down Lemma.

