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MILD NORMALITY OF FINITE PRODUCTS OF SUBSPACES
OF ω1

YASUSHI HIRATA AND NOBUYUKI KEMOTO

Abstract. It is known that products of arbitrary many ordinals are mildly
normal [4] and products of two subspaces of ordinals are also mildly normal
[3]. It was asked if products of arbitrary many subspaces of ordinals are mildly
normal. In this paper, we characterize the mild normality of products of finitely

many subspaces of ω1. Using this characterization, we show that there exist 3
subspaces of ω1 whose product is not mildly normal.

1. Introduction

The closure of an open set in a topological space is called a regular closed set,
and the interior of a closed set is called a regular open set. A space is called mildly
normal (or κ-normal) if every pair of disjoint regular closed sets can be separated
by disjoint open sets.

Obviously, every normal space is mildly normal. But mild normality does not
imply normality. For instance, ω1 × (ω1 + 1) is mildly normal but not normal.
Moreover, using elementary submodels, it is proved in [4] that products of arbitrary
many ordinals are mildly normal. In [6], it is proved that for A,B ⊆ ω1, A × B is
normal if and only if A or B is non-stationary or A ∩ B is stationary in ω1. Since
there are disjoint stationay sets A and B in ω1, there is a non-normal product A×B
of two subspaces of ω1. On the other hand, A×B is mildly normal wherever A and
B are arbitrary subsets of ordinals, see [3]. In [3], a subspace of ω2

1 which is not
mildly normal is given and they asked whether every finite product of subspaces
of ordinals is mildly normal. On the other hand recently, it has been known that
strong zero-dimensionality behaves like mild normality in the realm of products of
ordinals. In particular, without using elementary submodels, a simultaneous proof
of strong zero-dimensionality and mild normality of products of arbitrary many
ordinals is given in [5]. Moreover in the same paper, it is proved that Σ-products
and σ-products of arbitrary many ordinals are both strongly zero-dimensional and
mildly normal. In [1], they proved that finite products of subspaces of ordinals are
strongly zero-dimensional. Of course, they first proved it for two products and then
extended for finite products.

In this paper, we characterize the mild normality of finite products of subspaces
of ω1 in terms of stationarity. Moreover, we show that there exist 3 subspaces of
ω1 whose product is not mildly normal.
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We call a sequence ⟨Ak : k < n⟩ of subsets of ω1 with 2 ≤ n < ω a stationary
chain if Ak−1 ∩ Ak is stationary in ω1 for every 0 < k < n. A family {Ak : k ∈ N}
of subsets of ω1 is well-partitioned if for every 1-1 function w : n −→ N with
2 ≤ n < ω, if ⟨Aw(k) : k < n⟩ is a stationary chain, then

∩
k<n Aw(k) is stationary

in ω1. Note that if |N | ≤ 2, then such a family {Ak : k ∈ N} is well-partitioned
moreover that if {Ak : k ∈ N} is well-partitioned then {Ak : k ∈ N ′} is well-
partitioned for every N ′ ⊆ N and {Ak ∩ [0, p(k)] : k ∈ N} is also well-partitioned
for every p ∈ (ω1 + 1)N .

We prove the theorem below.

THEOREM 1.1. The finite product space Πk∈NAk of non-empty subspaces of ω1

is mildly normal if and only if the family {Ak : k ∈ N} is well-partitioned.

2. Preliminaries

We identify an ordinal α with the set of all ordinals less than α. We do not
distinguish natural numbers from finite ordinals. Hence a natural number n is the
set {0, 1, . . . , n − 1}. A sequence s of finite length n is a function of domain n, so
s = ⟨s(0), s(1), . . . , s(n−1)⟩. In particular, An denotes the set of all functions from
{0, 1, . . . , n − 1} into A. For each sequence s, lh(s) denotes the length of s, and
ran(s) denotes the set {s(i) : i < lh(s)}.

Throughout the paper, each ordinal α is considered to be a space with the order-
topology. For X ⊆ ω1, Lim(X) denotes the set {α < ω1 : α = sup(X ∩ α)} (i.e.,
the set of all cluster points of X in ω1), where sup ∅ = −∞ and −∞ is considered
as the immediate predecessor of the ordinal 0 for notational conveniences. More-
over Succ(X), Lim and Succ denote the sets X \ Lim(X), Lim(ω1) and Succ(ω1)
respectively. Observe that Lim(X) is club (closed and unbounded) whenever X is
unbounded in ω1. Note that if X is not stationary, then X is covered by a pairwise
disjoint family of bounded (in ω1) clopen sets of X.

α≤n denotes the set
∪

k≤n αk. Let A be a set of sequences of ordinals less than
ω1. We use the following notations.

· A|< = {s ∈ A : ∀k0, k1 < lh(s)(k0 < k1 → s(k0) < s(k1))},
· A|≤ = {s ∈ A : ∀k0, k1 < lh(s)(k0 < k1 → s(k0) ≤ s(k1))},

A function c : ω1 −→ ω1 is said to be normal if it is strictly increasing, cofinal,
and continuous. Note that if c is a normal function on ω1, then ran(c) is a club
set in ω1 and conversely that the increasing enumeration c of a club set C as
C = {c(α) : α < ω1} is normal. Let c be a normal function, N a finite set and
τ : N −→ m a function, where m < ω. We define a function prc

τ : ωm
1 −→ ωN

1 ,
functions ∂c

k : ωN
1 −→ ω1 for each k ∈ N , moreover we define subsets A|cτ,< and

A|cτ,≤ of A, where A ⊆ ωN
1 , as follows.

· prc
τ (y)(k) = c(y(τ(k))) for each y ∈ ωm

1 and k ∈ N ,
· ∂c

k(x) = min{ξ < ω1 : x(k) ≤ c(ξ)} for each k ∈ N and x ∈ ωN
1 ,

· A|cτ,< = {s ∈ A : ∀k0, k1 ∈ N(τ(k0) < τ(k1) → ∂c
k0

(s) < ∂c
k1

(s))},
· A|cτ,≤ = {s ∈ A : ∀k0, k1 ∈ N(τ(k0) < τ(k1) → ∂c

k0
(s) ≤ ∂c

k1
(s))}.

If c is identity on ω1, then we omit c and write prτ (y), ∂k, ...etc. Observe that prc
τ ,

and ∂c
k are continuous and that for each k1, k2 ∈ N , {x ∈ ωN

1 : ∂c
k1

(x) < ∂c
k2

(x)} is
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open, and {x ∈ ωN
1 : ∂c

k1
(x) ≤ ∂c

k2
(x)} is closed in ωN

1 . So A|cτ,< is an open set in
A and A|cτ,≤ is a closed set in A. For convenience, let c(α − 1) = −∞ if α = 0.

3. Stationary open sets

DEFINITION 3.1. Let m < ω. We say that X ⊆ ωm
1 is stationary (in ωm

1 ) if
X ∩ Cm ̸= ∅ for every club set C ⊆ ω1. A function f : X −→ (ω1 ∪ {−∞})m is
called a regressive function if f(x)(j) < x(j) for every x ∈ X and j < m. T ⊆ ω≤m

1

is called a tree in ωm
1 if t ¹ j ∈ T for each t ∈ T and j < lh(t). Let Lvj(T )

(Lv<j(T ), Lv≤j(T )) denote the set of all elements t ∈ T of height j (< j,≤ j
respectively), that is lh(t) = j (< j,≤ j respectively). A tree in ωm

1 is called an m-
stationary tree (m-cofinal tree) if ∅ ∈ T and {α : t̂ ⟨α⟩ ∈ T} is stationary (cofinal)
in ω1 for every t ∈ Lv<m(T ).

LEMMA 3.2. Let m < ω. If X ⊆ (ωm
1 )|< is stationary in ωm

1 and f : X −→
(ω1 ∪ {−∞})m is a regressive function, then there exist an m-stationary tree T
in ωm

1 and a function g : Lv<m(T ) −→ ω1 ∪ {−∞} such that Lvm(T ) ⊆ X and
f(t)(j) = g(t ¹ j) for every t ∈ Lvm(T ) and j < m.

Proof. Proofs of this lemma are seen in [1] and [2]. For reader’s convenience, we give
here a sketch of the proof. Put Xm = X and fm = f . Assume that j < m, Xj+1 ⊆
(ωj+1

1 )|< is stationary in ωj+1
1 and fj+1 is a regressive function of domain Xj+1.

Put Xj = {s ∈ (ωj
1)|< : {α < ω1 : ŝ ⟨α⟩ ∈ Xj+1} is stationary in ω1}. Then Xj is

stationary in ωj
1 by the normality of the club filter. By the Pressing Down Lemma

for ω1 and completeness of the club filter, we can pick fj(s) ∈ Πj′<j(s(j′)∪{−∞})
and g(s) < ω1, for each s ∈ Xj , such that A(s) = {α < ω1 : ŝ ⟨α⟩ ∈ Xj+1 and
fj+1(ŝ ⟨α⟩) = fj(s)̂ ⟨g(s)⟩} is stationary in ω1. T = {s ∈ ω≤m

1 : s(j) ∈ A(s ¹ j) for
each j < lh(s)} satisfies the required condition. ¤

LEMMA 3.3. Let X be a subspace of ωn
1 , where n < ω, P = {Pi : i ∈ I} a countable

family of open sets of X such that Pi|≤ is stationary in ωn
1 for each i ∈ I. If T is

an n-cofinal tree on ω1 such that Lvn(T ) ⊆ X, then
∩

i∈I Pi ∩ Lvn(T ) ̸= ∅.

Proof. Fix i ∈ I. Since

ωn
1 |≤ =

∪
{prτ (ωm

1 |<) : m ≤ n, τ : n −→ m is a non-decreasing, onto map },

we can pick an mi ≤ n and a non-decreasing, onto map τi : n −→ mi such that
Pi∩prτi

(ωmi
1 |<) is stationary. Put Yi = (pr−1

τi
(Pi))|<, then Yi is a stationary subset

of ωmi
1 . Since Pi is open, there is a regressive function fi : Yi −→ (ω1 ∪ {−∞})mi

such that X ∩ Πk<n(fi(y)(τi(k)), y(τi(k))] ⊆ Pi for every y ∈ Yi. By Lemma
3.2, there are an mi-stationary tree Ui in ωmi

1 and a function gi : Lv<mi(Ui) −→
ω1∪{−∞} such that Lvmi(Ui) ⊆ Yi and fi(u)(j) = gi(u ¹ j) for each u ∈ Lvmi(Ui)
and j < mi.

We define inductively t ∈ Lvn(T ) and ui ∈ Lvmi Ui for each i ∈ I as follows.
Set t ¹ 0 = ui ¹ 0 = ∅. Assume that k < n and that t ¹ k ∈ T and ui ¹ τi(k) ∈
Ui for every i ∈ I are determined. Pick t(k) such that (t ¹ k)̂ ⟨t(k)⟩ ∈ T and
gi(ui ¹ τi(k)) < t(k) for all i ∈ I. For each i ∈ I satisfying k = max τ−1

i ({τi(k)}),
pick ui(τi(k)) such that (ui ¹ τi(k))̂ ⟨ui(τi(k))⟩ ∈ Ui and t(k′) ≤ ui(τi(k)) for all
k′ ∈ τ−1

i ({τi(k)}).



4 YASUSHI HIRATA AND NOBUYUKI KEMOTO

It follows from t ∈ Lvn(T ) that t ∈ X. For each i ∈ I and k < n, fi(ui)(τi(k)) =
gi(ui ¹ τi(k)) < t(k) ≤ ui(τi(k)). t ∈ X ∩ Πk<n(fi(ui)(τi(k)), ui(τi(k))] ⊆ Pi

because of ui ∈ Lvmi(Ui). Hence t ∈
∩

i∈I Pi ∩ Lvn(T ). ¤

LEMMA 3.4. Let ⟨Ak : k < n⟩ be a stationary chain with 2 ≤ n < ω such that∩
k<n Ak is non-stationary in ω1. Then A = Πk<nAk is not mildly normal.

Proof. Let C be a club set disjoint from
∩

k<n Ak and c : ω1 −→ ω1 the increasing
enumeration of C. Define non-decreasing, onto mappings τ−

0 : n −→ m0 and
τ−
1 : n −→ m1 with m0, m1 ≤ n by, for each 0 < k < n,

τ−
0 (k − 1) < τ−

0 (k) iff k is odd,

τ−
1 (k − 1) < τ−

1 (k) iff k is even.

For each i ∈ 2 = {0, 1} and j < mi, put τi(k) = k if (τ−
i )−1({j}) = {k} and put

τi(k − 1) = k, τi(k) = k − 1 if (τ−
i )−1({j}) = {k − 1, k}. Then τi : n −→ n is 1-1

onto. Put Ui = A|cτi,< and Fi = A|cτi,≤. Since Ui is open and Fi is closed, cl Ui is
regular closed in A and clUi ⊆ Fi.

Claim 1. cl U0 ∩ clU1 = ∅

Proof. Assume that x ∈ cl U0∩cl U1. If 0 < k < n is odd, then τ−
0 (k−1) < τ−

0 (k)
and τ−

1 (k − 1) = τ−
1 (k), so τ0(k − 1) < τ0(k) and τ1(k − 1) > τ1(k). Thus by

x ∈ F0∩F1, we have ∂c
k−1(x) ≤ ∂c

k(x) and ∂c
k−1(x) ≥ ∂c

k(x), hence ∂c
k−1(x) = ∂c

k(x).
If 0 < k < n is even, then similarly we have ∂c

k−1(x) = ∂c
k(x). Therefore there

exists a ξ < ω1 such that ∂c
k(x) = ξ for all k < n. Since x ∈ A = Πk<nAk,

x(k) ≤ c(∂c
k(x)) = c(ξ) for each k < n, and c(ξ) /∈

∩
k<n Ak, we have x(k) < c(ξ)

for some k < n. It follows from the minimality of ∂c
k(x) and the normality of c

that ξ ∈ Succ. Then A ∩ Πk<n(c(ξ − 1), c(ξ)], where ξ − 1 denotes the immediate
predecessor of ξ, is a neighborhood of x disjoint from U0. Thus x /∈ cl U0, a
contradiction.

Now we go back to the proof of the lemma. Since ⟨Ak : k < n⟩ is a stationary
chain, Ak−1 ∩ Ak is stationary in ω1 for every 0 < k < n. For i ∈ 2 and j < mi,
put Y ′

i,j = c−1(
∩
{Ak : k ∈ (τ−

i )−1({j})}), Yi,j = Y ′
i,j ∩ Lim(Y ′

i,j), and Yi =
(Πj<miYi,j)|<. Since Y ′

i,j is stationary in ω1, Yi,j is also stationary, hence Yi is
stationary in ωmi

1 . It follows from prc
τi

(Yi) ⊆ (cl Ui)|≤ that (cl Ui)|≤ is stationary
in ωn

1 . Obviously, there is an n-cofinal tree T in ωn
1 such that Lvn(T ) ⊆ A. By

Lemma 3.3, cl U0 and clU1 cannot be separated by disjoint open sets. ¤

Since if X × Y ̸= ∅ is mildly normal then so is X, now by Lemma 3.4, we have
one half of the proof of the main theorem.

LEMMA 3.5. If the finite product space Πk∈NAk of non-empty subspaces of ω1 is
mildly normal, then {Ak : k ∈ N} is well-partitioned.

4. Mildly normal products

In this section, we prove another half of the proof of the main theorem.

LEMMA 4.1. If a finite family A = {Ak : k ∈ N} of non-empty subspaces of ω1 is
well-partitioned, then the product space Πk∈NAk is mildly normal.
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Proof. For notational reasons, we assume N ∩ ω1 = ∅. We prove this lemma by
induction on n = |N |. Assume that this lemma holds for < n and let A = {Ak :
k ∈ N} be a well-partitioned family of non-empty subspaces of ω1 with |N | = n.

Let ≺ be the well-founded relation on (ω1 + 1)N defined by:

p′ ≺ p iff ∀k ∈ N(p′(k) ≤ p(k)) and ∃k ∈ N(p′(k) < p(k)).

Note that (ω1 + 1)N has the ≺-largest element p0 defined by p0(k) = ω1 for each
k ∈ N . Using ≺-induction on p ∈ (ω1 +1)N , we will prove that A(p) = Πk∈N (Ak ∩
[0, p(k)]) is mildly normal. Then the ≺-largest element witnesses the lemma.

Let p ∈ (ω1 + 1)N and assume that A(p′) is mildly normal for every p′ ≺ p. We
call a clopen subset B of A(p) bounded if B ⊆ A(p′) for some p′ ≺ p, moreover a
subset B of A(p) small if B is represented as the union of a locally finite family of
bounded clopen sets. Note that by the ≺-inductive assumption, every small clopen
subset of A(p) is mildly normal.

Set N0 = {k ∈ N : p(k) = ω1} and N1 = N \N0. We may assume A(p) ̸= ∅ and
N0 ̸= ∅, otherwise A(p) is metrizable (since regular, Lindelöf, and 2nd-countable).
In some special cases, we can immediately show the mild normality of A(p).

Case 1. There is k0 ∈ N1 such that p(k0) = 0.

Since A(p) is homeomorphic to Πk∈N\{k0}(Ak ∩ [0, p(k)]), use the inductive as-
sumption for n − 1.

Case 2. There is k0 ∈ N1 such that p(k0) = λ + 1 for some λ.

Since Ak0 is represented as the free union Ak0 = (Ak0 ∩ [0, λ])
⊕

(Ak0 ∩ {λ +
1}), A(p) is mildly normal (more precisely, the mild normality of Πk∈N\{k0}(Ak ∩
[0, p(k)]) × (Ak0 ∩ {λ + 1}) follows from the inductive assumption for n − 1).

Case 3. There is k0 ∈ N1 such that p(k0) ∈ Lim \Ak0 .

Fix a strictly increasing cofinal sequence ⟨λn : n ∈ ω⟩ in p(k0). Then Ak0 can be
represented as the free union Ak0 =

⊕
n∈ω(Ak0 ∩ (λn−1, λn]), where λ0−1 = −∞.

Therefore A(p) is small.

Case 4. There is k0 ∈ N0 such that Ak0 is non-stationary.

Since Ak0 is covered by bounded clopen sets in Ak0 , A(p) is small.

With the observation above, we may assume that
· N0 = {k ∈ N : p(k) = ω1} is non-empty,
· Ak is stationary for every k ∈ N0,
· p(k) is limit and p(k) ∈ Ak for every k ∈ N1 = N \ N0.

Set Stat = {N ′ ⊆ N0 :
∩

k∈N ′ Ak is stationary in ω1}. Let C be a club set
disjoint from

∪
{
∩

k∈N ′ Ak : N ′ ⊆ N0, N
′ /∈ Stat} and c : ω1 −→ ω1 the increasing

enumeration of C. For each r = {k0, k1} ∈ [N0]2 \ Stat and ξ ∈ r ∪ Succ, let

Frξ =


{s ∈ A(p) : ∂c

k0
(s) < ∂c

k1
(s)} if ξ = k0,

{s ∈ A(p) : ∂c
k0

(s) > ∂c
k1

(s)} if ξ = k1,
{s ∈ A(p) : ∂c

k0
(s) = ∂c

k1
(s) = ξ} if ξ ∈ Succ.

Claim 1. For each r ∈ [N0]2 \ Stat, Fr = {Frξ : ξ ∈ r ∪ Succ} is a discrete clopen
cover of A(p).
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Proof. Let r = {k0, k1} ∈ [N0]2 \ Stat. It is evident that Fr is disjoint and Frξ is
open in A(p) for each ξ ∈ r. Let ξ ∈ Succ and s0 ∈ Frξ. Then {s ∈ A(p) : ∀i ∈
2(c(ξ − 1) < s(ki) ≤ c(ξ))} is a neighborhood of s0 contained in Frξ, thus Frξ is
open. To show that Fr is cover, let s ∈ A(p) \ (Frk0 ∪ Frk1). Assume ξ = ∂c

k0
(s) =

∂c
k1

(s) ∈ Lim. Since c is normal, we have c(ξ) = s(k0) = s(k1) ∈ Ak0 ∩ Ak1 ∩ C, a
contradiction. Thus ξ ∈ Succ and s ∈ Frξ. This completes the proof of the claim.

Now set

H = {h ∈ Πr∈[N0]2\Stat(r ∪ Succ) : ∀r ∈ [N0]2 \ Stat(Frh(r) ̸= ∅)},

Fh =
∩

r∈[N0]2\Stat

Frh(r) for each h ∈ H , and F = {Fh : h ∈ H}.

By Claim 1 above, F is a discrete clopen cover of A(p). It suffices to show that Fh

is mildly normal for each h ∈ H. Set

H0 = {h ∈ H : ∃r ∈ [N0]2 \ Stat(h(r) ∈ Succ)} and H1 = H \ H0.

First let h ∈ H0 and take r ∈ [N0]2 \Stat with h(r) ∈ Succ. Then it follows from

Fh ⊆ Frh(r) ⊆ Πk∈N\r(Ak ∩ [0, p(k)]) × Πk∈r(Ak ∩ [0, c(h(r))])

that Fh is a small clopen set of A(p), thus Fh is mildly normal.
Next fix h ∈ H1. Note h(r) ∈ r for each r ∈ [N0]2 \ Stat.

Claim 2. There is an onto function τ : N0 −→ m for some m < ω such that
(1)

∩
k∈τ−1({j}) Ak is stationary for each j < m,

(2) Fh = (Πk∈N0Ak)|cτ,< × Πk∈N1(Ak ∩ [0, p(k)]).

Proof. Define a binary relation ▹ on N0 by:

k0 ▹ k1 iff {k0, k1} ∈ [N0]2 \ Stat and h({k0, k1}) = k0.

Then note that either k0 ▹k1 or k1 ▹k0 iff {k0, k1} ∈ [N0]2 \Stat. Fix s ∈ Fh and let
k0, k1 ∈ N0 be satisfying k0 ▹ k1. By h({k0, k1}) = k0, we have s ∈ Fh ⊆ F{k0,k1}k0 .
Therefore ∂c

k0
(s) < ∂c

k1
(s), this shows that ▹ is a well-founded relation on N0. Let

τ : N0 −→ m be the rank function of the well-founded set ⟨N0, ▹⟩. Evidently
m < ω because N0 is finite. We will show that τ is the desired one. Let j < m
and w : n0 −→ τ−1({j}) be 1-1 and onto, where n0 = |τ−1({j})|. For every k with
0 < k < n0, by τ(w(k−1)) = τ(w(k)) = j, we have that neither w(k−1)▹w(k) nor
w(k)▹w(k−1) iff {w(k−1), w(k)} ∈ Stat iff Aw(k−1)∩Aw(k) is stationary. Therefore
⟨Aw(k) : k < n0⟩ is stationary chain (if 2 ≤ n0), thus

∩
k∈τ−1({j}) Ak =

∩
k<n0

Aw(k)

is stationary by the well-partitionedness of A.

Fact 1. Let 0 < j < m. Then for every k0 ∈ τ−1({j − 1}) and k1 ∈ τ−1({j}),
{k0, k1} ∈ [N0]2 \ Stat and k0 ▹ k1 hold.

Proof. If once we prove {k0, k1} ∈ [N0]2 \ Stat, then we have k0 ▹ k1 or k1 ▹ k0.
However since τ(k0) = j − 1 < j = τ(k1), k1 ▹ k0 does not hold, so we have k0 ▹ k1.

Now assume {k0, k1} ∈ Stat. Since τ is a rank function and τ(k1) = j, there is
k2 ∈ τ−1({j − 1}) with k2 ▹ k1. It follows from {k0, k1} ∈ Stat and {k1, k2} /∈ Stat
that k0, k1 and k2 are distinct. Since by (1) Ak0 ∩ Ak2 ⊇

∩
k∈τ−1({j−1}) Ak is

stationary, we have {k0, k2} ∈ Stat. Therefore ⟨Ak2 , Ak0 , Ak1⟩ is a stationary chain,
so Ak2 ∩Ak0 ∩Ak1 is stationary by the well-partitionedness. On the other hand by
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{k1, k2} /∈ Stat, we have Ak2 ∩ Ak0 ∩ Ak1 is not stationary, a contradiction. This
completes the proof of fact.

To prove (2), first let s ∈ (Πk∈N0Ak)|cτ,< × Πk∈N1(Ak ∩ [0, p(k)]). Now fix
r = {k0, k1} ∈ [N0]2 \ Stat. We may assume h(r) = k0. Then we have k0 ▹ k1

so τ(k0) < τ(k1). By s ∈ (Πk∈N0Ak)|cτ,< ×Πk∈N1(Ak ∩ [0, p(k)]), we have ∂c
k0

(s) <

∂c
k1

(s). Therefore s ∈ Frk0 = Frh(r). Moving r ∈ [N0]2 \ Stat, we have s ∈ Fh.
Next let s ∈ Fh and k0, k1 ∈ N0 with τ(k0) < τ(k1), say j0 = τ(k0) and

j1 = τ(k1). Since τ is onto, for each j with j0 ≤ j ≤ j1, we can pick k′
j ∈ τ−1({j})

such that k′
j0

= k0 and k′
j1

= k1. Let j0 < j ≤ j1. It follows from the fact
above that {k′

j−1, k
′
j} ∈ [N0]2 \ Stat and k′

j−1 ▹ k′
j , so h({k′

j−1, k
′
j}) = k′

j−1. Since
s ∈ Fh ⊆ F{k′

j−1,k′
j}k′

j−1
, we have ∂c

k′
j−1

(s) < ∂c
k′

j
(s). Moving j with j0 < j ≤ j1, we

have ∂c
k0

(s) < ∂c
k1

(s). This shows s ∈ (Πk∈N0Ak)|cτ,< × Πk∈N1(Ak ∩ [0, p(k)]). This
completes the proof of Claim 2.

Set
X = (Πk∈N0Ak)|cτ,< and Z = Πk∈N1(Ak ∩ [0, p(k)]).

If we show that Fh = X ×Z is mildly normal, the proof of the lemma is complete.

Claim 3. X × Z is mildly normal.

Proof. Let U = {U0, U1} be a regular open cover of X × Z and z0 = p ¹ N1 ∈ Z.
We will show that X × Z \ Ui is contained in a small clopen set for some i ∈ 2.
Noting prτ : ωm

1 −→ ωN0
1 , it follows from τ−1({j}) ∈ Stat for each j < m that

pr−1
τ (X) is stationary in ωm

1 and pr−1
τ (X) ⊆ ωm

1 |<.
For each i ∈ 2, set Vi = {x ∈ X : ⟨x, z0⟩ ∈ Ui}. Then {V0, V1} is an open

cover of X. So we may assume that Y0 = pr−1
τ (V0) is stationary in ωm

1 . For
each y ∈ Y0, by ⟨prτ (y), z0⟩ ∈ U0, we can fix f0(y) ∈ Πj<m(y(j) ∪ {−∞}) and
f1(y) ∈ Πk∈N1(z0(k) ∪ {−∞}) such that

(X × Z) ∩ (Πk∈N0(f0(y)(τ(k)), y(τ(k))] × Πk∈N1(f1(y)(k), z0(k)]) ⊆ U0.

Since Πk∈N1(z0(k) ∪ {−∞}) is countable, there are a stationary set Y1 ⊆ Y0 in ωm
1

and z1 ∈ Πk∈N1(z0(k)∪{−∞}) such that f1(y) = z1 for each y ∈ Y1. Moreover since
f0 ¹ Y1 is regeressive on a stationary set Y1, by Lemma 3.2, there are a stationary
tree T in ωm

1 and a function g : Lv<m(T ) −→ ω1 ∪ {−∞} such that Lvm(T ) ⊆ Y1

and f0(t)(j) = g(t ¹ j) for every t ∈ Lvm(T ) and j < m.
Set

E = {ξ < ω1 : ∀t ∈ Lv<m T ∩ ξ≤m(g(t) < ξ ∈ Lim({α < ω1 : t̂ ⟨α⟩ ∈ T}))}
Then it is straightforward to show that E is club. Let

D = C ∩ E ∩
∩

k∈N0

Lim(Ak)

and let d : ω1 −→ ω1 be the increasing enumeration of D. Set X ′ = X∩(d(0), ω1)N0

and Z ′ = Z ∩ Πk∈N1(z1(k), z0(k)]. Then since X × Z − X ′ × Z ′ is a small clopen
set, it suffices to show that X ′ × Z ′ \ U0 is contained in a small clopen set.

For each j < m and x ∈ X, let

ν−
j (x) = min{∂d

k(x) : k ∈ τ−1({j})}, ν+
j (x) = max{∂d

k(x) : k ∈ τ−1({j})}.

Obviously, ν−
j and ν+

j are continuous.
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Let 0 < j < m. For each ξ ∈ Succ, let

Ljξ = {x ∈ X ′ : ξ = ν+
j−1(x) ≥ ν−

j (x)} × Z ′.

Note that this Ljξ is actually {x ∈ X ′ : ξ = ν+
j−1(x) = ν−

j (x)} × Z ′. Moreover, let

Lj∞ = {x ∈ X ′ : ν+
j−1(x) < ν−

j (x)} × Z ′.

Fact 1. For each j with 0 < j < m, Lj = {Ljξ : ξ ∈ Succ∪{∞}} is a discrete
clopen cover of X ′ × Z ′.

Proof. Evidently Lj is pairwise disjoint. To show that Lj covers X ′ × Z ′, let
⟨x, z⟩ ∈ X ′ × Z ′ \ Lj∞. Then ν+

j−1(x) ≥ ν−
j (x). Assume ξ = ν+

j−1(x) ∈ Lim, then
x(k0) = d(ξ) for some k0 ∈ τ−1({j − 1}). Moreover it follows from ν−

j (x) ≤ ξ

that x(k1) ≤ d(ξ) for some k1 ∈ τ−1({j}). Then x(k1) ≤ x(k0), therefore ∂c
k1

(x) ≤
∂c

k0
(x). But it follows from x ∈ X and τ(k0) < τ(k1) that ∂c

k0
(x) < ∂c

k1
(x), a

contradiction. Therefore ξ ∈ Succ and Lj covers X ′ × Z ′.
Lj∞ is open by continuity of ν−

j and ν+
j . Fix ξ ∈ Succ. To show that Ljξ is

open, let ⟨x, z⟩ ∈ Ljξ. Then there are k0 ∈ τ−1({j − 1}) and k1 ∈ τ−1({j}) such
that ∂d

k0
(x) = ξ and ∂d

k1
(x) ≤ ξ. Since ∂d

k(x) ≤ ξ for each k ∈ τ−1({j − 1}),

U = {y ∈ X ′ : d(ξ−1) < y(k0), y(k1) ≤ x(k1),∀k ∈ τ−1({j−1})(y(k) ≤ d(ξ))}×Z ′

is a neighborhood of ⟨x, z⟩ contained in Ljξ, thus Ljξ is open.

By the fact above, {Lφ : φ ∈ (Succ∪{∞})m\{0}} is a discrete clopen cover of
X ′ ×Z ′ where Lφ =

∩
0<j<m Ljφ(j). Let φ0 be the function on m \ {0} defined by

φ0(j) = ∞ for each j < m. Since Lφ is small for each φ ∈ (Succ∪{∞})m\{0}\{φ0},
the following fact completes the proof.

Fact 2. Lφ0 ⊆ U0.

Proof. Since U0 is regular open, it suffices to show Lφ0 ⊆ cl U0. Let ⟨x, z⟩ ∈ Lφ0

moreover let x′ ∈ (ω1 ∪ {−∞})N0 and z′ ∈ (ω1 ∪ {−∞})N1 satisfy x′(k) < x(k)
for each k ∈ N0 and z′(k) < z(k) for each k ∈ N1. We will show that U0 ∩
(Πk∈N0(x

′(k), x(k)]×Πk∈N1(z
′(k), z(k)]) ̸= ∅. Set e(j) = d(ν+

j (x)) for each j < m.
For convenience, let e(j − 1) = d(0) if j = 0.

Let j < m and k ∈ τ−1({j}). Then e(j−1) < x(k) ≤ e(j) since ν+
j−1(x) < ν−

j (x)
if 0 < j by ⟨x, z⟩ ∈ Lφ0 . e(j) ∈ D ⊆ Lim(Ak), so we can pick y(k) ∈ Ak such that
max{e(j − 1), x′(k)} < y(k) ≤ x(k) and y(k) < e(j).

Since d(0) ≤ e(j − 1) < y(k) for each k ∈ τ−1({j}) with j < m and y(k0) <
e(j − 1) < y(k1) for each k0 ∈ τ−1({j − 1}) and k1 ∈ τ−1({j}) with 0 < j < m, we
have y ∈ X ∩ Πk∈N0(x

′(k), x(k)]. It suffices to show ⟨y, z⟩ ∈ U0.
Now we will define t ∈ T by induction on j ≤ m as follows. Let j < m and assume

that t ¹ j ∈ T ∩ Πj′<je(j′) is already defined. It follows from e(j) ∈ D that e(j) ∈
Lim({α < ω1 : (t ¹ j)̂ ⟨α⟩ ∈ T}). Therefore by max{y(k) : k ∈ τ−1({j})} < e(j),
we can find t(j) with (t ¹ j)̂ ⟨t(j)⟩ ∈ T and max{y(k) : k ∈ τ−1({j})} ≤ t(j) < e(j).
Then for each j < m, it follows from t ¹ j ∈ Lvj(T )∩e(j−1)j and e(j−1) ∈ D ⊆ E
that for each k ∈ τ−1({j}),

g(t ¹ j) < e(j − 1) < y(k) ≤ t(j).

Thus by z ∈ Z ′, we have

⟨y, z⟩ ∈ (X × Z) ∩ (Πk∈N0(f0(t)(τ(k)), t(τ(k))] × Πk∈N1(f1(t)(k), z0(k)]) ⊆ U0.
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5. Applications

In this section, we apply the main theorem. Immediately we have:

COROLLARY 5.1. If {Ak : k ∈ N} is a finite family of subsets of ω1 with the
pairwise non-stationary intersection, then Πk∈NAk is mildly normal.

Now, we answer the question of [4] and [3].

COROLLARY 5.2. Let m and N be natural numbers with 2 ≤ m < N . Then there
is a family {Ak : k ∈ N} of subsets of ω1 satisfying:

(1) Πk∈rAk is mildly normal for each r ∈ [N ]m,
(2) Πk∈rAk is not mildly normal for each r ∈ [N ]m+1.

Proof. Enumerate [N ]m as [N ]m = {rj : j < K}, where K = N !
m!×(N−m)! . Let

B = {Bj : j < K} be a pairwise disjoint family of stationary sets in ω1. For each
k < N , set Ak =

∪
{Bj : k ∈ rj}.

It follows from Bj ⊆
∩

k∈rj
Ak that {Ak : k ∈ rj} is well-partitioned, this shows

(1).
Let r ∈ [N ]m+1. Note that {Ak : k ∈ r} has the pairwise stationary intersection.

Assume α ∈
∩

k∈r Ak. Then for each k ∈ r, we can find j(k) < K such that
k ∈ rj(k) and α ∈ Bj(k). Since B is pairwise disjoint, for some j < K, j(k) = j for
each k ∈ r. This means r ⊆ rj and contradicts |r| = m + 1 and |rj | = m, therefore∩

k∈r Ak = ∅. So {Ak : k ∈ r} is not well-partitioned, this shows (2). ¤
In particular, applying the corollary above for m = 2 and N = 3, we have:

COROLLARY 5.3. There are subspaces A,B and C of ω1 whose product A×B×C
is not mildly normal.

PROBLEM 5.4. Let {Ak : k ∈ ω} be a pairwise disjoint infinite family of stationary
sets in ω1. Then is the product Πk∈ωAk mildly normal?
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