
Mild Normality in Products of Ordinals

Lutfi N. H. Kalantan and Nobuyuki Kemoto

February 20, 2002

Abstract

A space is said to be mildly normal (or κ-normal ) if every disjoint
pair of regular closed sets are separated by disjoint open sets. In this
paper, we will show:

(1) There is a compact linearly ordered topological space Y such
that ω1 × Y is not mildly normal.

(2) A × B is mildly normal whenever A and B are subspaces of
ordinals.

(3) There is a subspace of ω2
1 which is not mildly normal.

(4) There is a closed subspace of ω1 × (ω1 + 1) which is not mildly
normal.

A space is said to be mildly normal (or κ-normal ) if every disjoint pair
of regular closed sets are separated by disjoint open sets. Normal spaces are
mildly normal and subspaces of linearly ordered toplogical spaces are normal.
Closed subspaces of normal spaces are also normal. It is well known that ω2

1

is normal but ω1× (ω1 +1) is not normal. Moreover it is known from [2] that
A × B is not normal whenever A and B are disjoint stationary sets in ω1 .
But as is shown as a corollary of Theorem 5 below, strangely, ω1 × (ω1 + 1)
is mildly normal (the authors do not know whether someone have already
mentioned this result or not). A. V. Arkhangel’skĭı [1] asked if all subspaces
of ω2

1 are mildly normal, and if closed subspaces of ω1 × (ω1 + 1) are mildly
normal. In this paper, we will show:

(1) There is a compact linearly ordered topological space Y such that
ω1 × Y is not mildly normal.
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(2) A×B is mildly normal whenever A and B are subspaces of ordinals.

(3) There is a subspace of ω2
1 which is not mildly normal.

(4) There is a closed subspace of ω1 × (ω1 +1) which is not mildly normal.

Let X ⊂ (ρ + 1) × (σ + 1) for some suitably large ordinals ρ and σ . In
general, the letters µ and ν will stand for limit ordinals with µ ≤ ρ and
ν ≤ σ . For each A ⊂ ρ + 1 and B ⊂ σ + 1 put

XA = A × (σ + 1) ∩ X, XB = (ρ + 1) × B ∩ X,

and
XB

A = XA ∩ XB.

cf µ denotes the cofinality of the ordinal µ . When cf µ ≥ ω1 , a subset S of µ
is called stationary in µ if it intersects all cub (i.e., closed and unbounded)
sets in µ . Moreover for each A ⊂ µ , Limµ(A) is the set {α < µ : α =
sup(A ∩ α)} , in other words, the set of all cluster points of A in µ . For
convenience, we consider sup ∅ = −1 and −1 is the immediate predecessor
of the ordinal 0. Therefore Limµ(A) is cub in µ whenever A is unbounded in
µ . We will simply denote Limµ(A) by Lim(A) if the situation is clear in its
context. In particular, assume that C is a cub set in µ with cf µ ≥ ω , then
Lim(C) ⊂ C . In this case, we define Succ(C) = C \ Lim(C), and pC(α) =
sup(C ∩ α) for each α ∈ C . Note that, for each α ∈ C , pC(α) ∈ C ∪ {−1} ,
and pC(α) < α iff α ∈ Succ(C). So pC(α) is the immediate predecessor
of α in C ∪ {−1} whenever α ∈ Succ(C). Moreover observe that µ \ C is
the union of the pairwise disjoint collection {(pC(α), α) : α ∈ Succ(C)} of
open intervals of µ and that µ \Lim(C) is the union of the pairwise disjoint
collection {(pC(α), α] : α ∈ Succ(C)} of clopen intervals of µ . For simplicity,
Lim and Succ stand for Lim(ω1) and Succ(ω1) respectively.

A strictly increasing function M : cf µ+1 → µ+1 is said to be a normal
function for µ if M(γ) = sup{M(γ′) : γ′ < γ} for each limit ordinal γ ≤ cf µ
and M(cf µ) = µ . Observe that, if cf µ ≥ ω1 , then two normal functions for
µ coincide on a cub set of cf µ . Note that a normal function for µ always
exists if cf µ ≥ ω . So we always fix a normal function M for each ordinal
µ with cf µ ≥ ω . Then M carries cf µ + 1 homeomorphically to the range
ran M of M and ran M is closed in µ + 1. Note that for all S ⊂ µ with
cf µ ≥ ω1 , S is stationary in µ if and only if M−1(S) is stationary in cf µ .
For convenience, we define M(−1) = −1. Moreover for a cub set C ⊂ cf µ ,
define mC : µ+1 → C∪{cf µ} by mC(α) = min{γ ∈ C∪{cf µ} : α ≤ M(γ)}
for each α ≤ µ . Then they are straightforward to show that α = M(mC(α))
whenever mC(α) ∈ Lim(C) and that M(pC(mC(α))) < α ≤ M(mC(α))
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whenever mC(α) ∈ Succ(C). Similarly for a normal function N on a limit
ordinal ν and a cub set D in cf ν , define nD : ν + 1 → D ∪ {cf ν} by
nD(β) = min{δ ∈ D ∪ {cf ν} : β ≤ N(δ)} for each β ≤ ν .

As is shown as a corollary of Theorem 5 below, ω1 × (ω1 + 1) is mildly
normal. In this respect, first we note that the mild normality is not pro-
ductive in general, even if these spaces are in the class of linearly ordered
spaces.

Example 1. There is a compact linerarly ordered space Y such that ω1×Y
is not mildly normal.

Let {yn : n ∈ ω} be a countably infinite set such that {yn : n ∈ ω} is
disjoint from ω1 + 1. Let Y = (ω1 + 1) ∪ {yn : n ∈ ω} . Define a linear
order ≺ on Y as follows. For each n < m < ω , ω1 ≺ ym ≺ yn , and
≺ on ω1 + 1 is the same as the usual order on ω1 + 1. Consider Y as a
linearly ordered topological space whose toplogy is induced by ≺ . Then Y
is compact, because Y is the union of the two compact subspaces ω1 +1 and
{ω1}∪{yn : n ∈ ω} ∼= ω +1. Let Z = ω1 ×Y , F (0) = {⟨α, α⟩ : α < ω1} and
F (1) = ω1×({ω1}∪{yn : n ∈ ω}). Then F (0) = ClZ{⟨α, α⟩ : α ∈ Succ} and
F (1) = ClZ(ω1 ×{yn : n ∈ ω}), so they are disjoint regular closed sets in Z .
Let U be an open set in Z with F (0) ⊂ U . For each α < ω1 , fix f(α) < α
such that (f(α), α]2 ⊂ U . Applying the Pressing Down Lemma(PDL), we
find α0 < ω1 such that (α0, ω1)

2 ⊂ U . Take α < ω1 with α0 < α . Then it is
straightforward to show ⟨α, ω1⟩ ∈ ClZ U ∩ F (1). So Z is not mildly normal.

Next we will show that A × B is mildly normal whenever A and B are
subspaces of ordinals, that is, A and B are in the class of subspaces of well-
ordered spaces. To do this, we need several preparations. In our discussion,
for each limit ordinals µ and ν , we fix normal functions M and N for µ
and ν respectively. For each cub sets C and D in cf µ and cf ν , define mC

and nD as above.

Lemma 2. Let µ ∈ A ⊂ µ + 1, ν ∈ B ⊂ ν + 1, κ = cf µ = cf ν ≥ ω1 and
X = A × B \ {⟨µ, ν⟩}. Assume that there is a cub set C in κ such that

C ∩ M−1(A) ∩ N−1(B) = ∅. Then X = {X(N(pC(γ)),N(γ)]
(M(pC(γ)),M(γ)] : γ ∈ Succ(C)}

is a discrete collection of clopen subspaces of X and
∪

X = {⟨α, β⟩ ∈ X :
mC(α) = nC(β)}. Moreover Y = {⟨α, β⟩ ∈ X : mC(α) < nC(β)} and
Z = {⟨α, β⟩ ∈ X : mC(α) > nC(β)} are clopen in X .

Proof. First we will show that X is discrete. Let ⟨α, β⟩ ∈ X . If α = µ , then

since ⟨µ, ν⟩ /∈ X , we have β < µ , hence U = X
[0,N(nC(β))]
(M(nC(β)),µ] is a neighborhood
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of ⟨α, β⟩ . Let γ ∈ Succ(C). If γ ≤ nC(β), then M(γ) ≤ M(nC(β)), so

U∩X
(N(pC(γ)),N(γ)]
(M(pC(γ)),M(γ)] = ∅ . If nC(β) < γ , then by nC(β) ∈ C , we have nC(β) ≤

pC(γ) and therefore N(nC(β)) ≤ N(pC(γ)). So U ∩ X
(N(pC(γ)),N(γ)]
(M(pC(γ)),M(γ)] = ∅ .

This witnesses the discreteness of X at ⟨α, β⟩ with α = µ . Similarly we
can show the discreteness of X at ⟨α, β⟩ with β = ν . So assume α < µ
and β < ν . Put γ = mC(α). Assume that γ ∈ Succ(C), then U =
X(M(pC(γ)),M(γ)] is a neighborhood of ⟨α, β⟩ which meets at most one member
of X . So let γ = mC(α) ∈ Lim(C). It follows from α = M(mC(α)) ∈ A
that γ = mC(α) ∈ M−1(A) ∩ C . Since C ∩ M−1(A) ∩ N−1(B) = ∅ , we
have γ /∈ N−1(B). If mC(α) = nC(β), then N(γ) = N(nC(β)) = β ∈ B ,
a contradiction. So we have mC(α) ̸= nC(β). If mC(α) < nC(β), then

U = X
(N(mC(α)),N(nC(β))]
[0,M(mC(α))] is a neighborhood of ⟨α, β⟩ which is disjoint from

each member of X . If mC(α) > nC(β), then U = X
[0,N(nC(β))]
(M(nC(β)),M(mC(α))] is

a neighborhood of ⟨α, β⟩ which is also disjoint from each member of X .
Therefore X is discrete in X and

∪
X is clopen in X .

Next we will show
∪

X = {⟨α, β⟩ ∈ X : mC(α) = nC(β)} . Let ⟨α, β⟩ ∈∪
X . Then ⟨α, β⟩ ∈ X

(N(pC(γ)),N(γ)]
(M(pC(γ)),M(γ)] for some γ ∈ Succ(C), so mC(α) =

nC(β) = γ . Now let ⟨α, β⟩ ∈ X and γ = mC(α) = nC(β). It follows
from ⟨µ, ν⟩ /∈ X that γ ∈ C . Assume γ ∈ Lim(C). Then M(γ) = α ∈
A and N(γ) = β ∈ B . Therefore γ ∈ Lim(C) ∩ M−1(A) ∩ N−1(B) ⊂
C ∩ M−1(A) ∩ N−1(B) = ∅ , a contradiction. Hence γ ∈ Succ(C) and

⟨α, β⟩ ∈ X
(N(pC(γ)),N(γ)]
(M(pC(γ)),M(γ)] ∈ X .

Finally, we will show that Y and Z are clopen in X . Since the proofs are
identical, we only show it for Y . Let ⟨α, β⟩ ∈ Y . Then X

(N(mC(α)),N(nC(β))]
[0,M(mC(α))]

is a neighborhood of ⟨α, β⟩ contained in Y , so Y is open. Let ⟨α, β⟩ /∈ Y .
If mC(α) = nC(β), then

∪
X is a neighborhood of ⟨α, β⟩ which is disjoint

from Y . If mC(α) > nC(β), then X
[0,N(nC(β))]
(M(nC(β)),M(mC(α))] is a neighborhood of

⟨α, β⟩ which is also disjoint from Y . Therefore Y is closed.

Lemma 3. Let A ⊂ µ, B ⊂ ν , κ = cf µ = cf ν ≥ ω1 and X = A × B .
Assume that X[0,µ′] and X [0,ν′] are mildly normal for each µ′ < µ and ν ′ < ν .
Then X is mildly normal.

Proof. If A is not stationary in µ , then by taking a cub set C ⊂ κ missing
M−1(A), X can be represented as the free union

X =
⊕

γ∈Succ(C)

X(M(pC(γ)),M(γ)]

of mildly normal clopen subspaces of X . So we may assume that A and
similarly B are stationary in µ and ν respectively. Let F (0) and F (1) be
disjoint regular closed sets in X .
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Case 1. M−1(A) ∩ N−1(B) is stationary in κ .

In this case, for each γ ∈ M−1(A) ∩ N−1(B) ∩ Lim(κ), fix i(γ) ∈ 2 and

f(γ) < γ such that X
(N(f(γ)),N(γ)]
(M(f(γ)),M(γ)] ∩ F (i(γ)) = ∅ . Then by the PDL, we

can find γ0 < κ and i0 ∈ 2 such that X
(N(γ0),ν)
(M(γ0),µ) ∩ F (i0) = ∅ . Since by the

assumption, X[0,M(γ0)] and X [0,N(γ0)] are mildly normal clopen subspaces,
F (0) and F (1) can be separated by disjoint open sets.

Case 2. M−1(A) ∩ N−1(B) is not stationary in κ .

Take a cub set C ⊂ Lim(κ) in κ such that C ∩ M−1(A) ∩ N−1(B) = ∅ .
Since X is a subspace of

(
A ∪ {µ}

)
×

(
B ∪ {ν}

)
\ {⟨µ, ν⟩} , by Lemma 2,

putting X = {X(N(pC(γ)),N(γ)]
(M(pC(γ)),M(γ)] : γ ∈ Succ(C)} ,

∪
X , Y = {⟨α, β⟩ ∈ X :

mC(α) < nC(β)} and Z = {⟨α, β⟩ ∈ X : mC(α) > nC(β)} are clopen in X
and X = Y

⊕
(
∪
X )

⊕
Z . Since by the assumption,

∪
X is mildly normal,

without loss of generality, it suffices to show that F (0) ∩ Y and F (1) ∩ Y
can be separated by disjoint open sets in Y .

Fix γ ∈ M−1(A)∩C . For each δ ∈ N−1(B)∩C∩(γ, κ), by ⟨M(γ), N(δ)⟩ ∈
Y , we can take i(γ, δ) ∈ 2, f(γ, δ) < γ and g(γ, δ) < δ with γ ≤ g(γ, δ)

such that Y
(N(g(γ,δ)),N(δ)]
(M(f(γ,δ)),M(γ)] ∩ F (i(γ, δ)) = ∅ . Since N−1(B) ∩ C ∩ (γ, κ) is

stationary in κ and |γ| ≤ γ < κ , applying the PDL, we find a stationary
set T (γ) ⊂ N−1(B) ∩ C ∩ (γ, κ) and i(γ) ∈ 2, f(γ) < γ and g(γ) < κ
such that i(γ, δ) = i(γ), f(γ, δ) = f(γ), g(γ, δ) = g(γ) for each δ ∈ T (γ).
Set g(γ) = 0 for each γ ∈ κ \ (M−1(A) ∩ C). Again applying the PDL to
M−1(A)∩C , find a stationary set S ⊂ M−1(A)∩C , i0 ∈ 2 and γ0 < κ such
that i(γ) = i0 and f(γ) = γ0 for each γ ∈ S . Then we have:

(∗) Y
(N(g(γ)),ν)
(M(γ0)),M(γ)] ∩ F (i0) = ∅ for each γ ∈ S.

Set C ′ = {γ < κ : ∀γ′ < γ(g(γ′) < γ)} and D = Lim(S ∩ C ′). Notice that
D ⊂ C by S ⊂ C .

Claim 1. Y{M(γ)} ∩ Int F (i0) = ∅ for each γ ∈ D .

Proof. Assume ⟨M(γ), β⟩ ∈ Y{M(γ)} ∩ Int F (i0) for some γ ∈ D and β .

Take γ′ < γ and β′ < β such that γ0 ≤ γ′ , N(γ) ≤ β′ and Y
(β′,β]
(M(γ′),M(γ)] ⊂

Int F (i0). By γ′ < γ ∈ D = Lim(S ∩ C ′), we can find γ′′ ∈ S ∩ C ′ with
γ′ < γ′′ < γ . It follows from γ′′ < γ ∈ D ⊂ C ′ that g(γ′′) < γ , so

N(g(γ′′)) < N(γ) ≤ β′ < β . Then ⟨M(γ′′), β⟩ ∈ Y
(N(g(γ′′)),ν)
(M(γ0),M(γ′′)] ∩ F (i0). This

contradicts (*).

Claim 2. Y{M(γ)} ∩ F (i0) = ∅ for each γ ∈ D .
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Proof. Assume ⟨M(γ), β⟩ ∈ Y{M(γ)} ∩ F (i0) for some γ ∈ D . Since

⟨M(γ), β⟩ ∈ F (i0) = Cl Int F (i0) and Y
(N(γ),β]
(M(γ0),M(γ)] is a neighborhood of

⟨M(γ), β⟩ , we can find ⟨α′, β′⟩ ∈ Y
(N(γ),β]
(M(γ0),M(γ)] ∩ Int F (i0). It follows from

Claim 1 that α′ /∈ M ′′D , where M ′′D denotes the range of D under M ,
so α′ < M(γ). By γ ∈ D = Lim(S ∩ C ′), we can fix γ′ ∈ S ∩ C ′ with
α′ < M(γ′) < M(γ). It follows from γ′ < γ ∈ D ⊂ C ′ that g(γ′) < γ , so

N(g(γ′)) < N(γ) < β′ . Then ⟨α′, β′⟩ ∈ Y
(N(g(γ′)),ν)
(M(γ0),M(γ′)] ∩ F (i0). This contra-

dicts (*).

Claim 3. Y(M(γ0),µ) ∩ F (i0) ⊂
∪

γ∈Succ(D) Y
(N(pD(γ)),N(γ)]
(M(pD(γ)),M(γ)] .

Proof. Let ⟨α, β⟩ ∈ Y(M(γ0),µ) ∩ F (i0). It follows from Claim 2 that α /∈
M ′′D . So there is γ ∈ Succ(D) with α ∈ (M(pD(γ)),M(γ)). By γ ∈ D =
Lim(S∩C ′) and α < M(γ), we can fix γ′ ∈ S∩C ′ with α < M(γ′) < M(γ).

So it follows from γ′ < γ ∈ C ′ that g(γ′) < γ . By (*), Y
(N(g(γ′)),ν)
(M(γ0),M(γ′)]∩F (i0) =

∅ . Moreover by ⟨α, β⟩ ∈ F (i0) and α ∈ (M(γ0),M(γ′)], we have β ≤
N(g(γ′)) < N(γ). It follows from ⟨α, β⟩ ∈ Y that pD(γ) < mC(α) < nC(β),

so N(pD(γ)) < N(mC(α)) ≤ β . Therefore ⟨α, β⟩ ∈ Y
(N(pD(γ)),N(γ)]
(M(pD(γ)),M(γ)] .

Since D ⊂ C and M−1(A) ∩ N−1(B) ∩ C = ∅ and Y
(N(pD(γ)),N(γ)]
(M(pD(γ)),M(γ)] ⊂

X[0,M(γ)] , by Lemma 2, Y = {Y (N(pD(γ)),N(γ)]
(M(pD(γ)),M(γ)] : γ ∈ Succ(D)} is a discrete

collection of clopen mildly normal subspaces in Y , so
∪

Y is also mildly
normal. Then since Y[0,M(γ0)] is mildly normal, using Claim 3, we can find
disjoint open sets which separate F (0) ∩ Y and F (1) ∩ Y . This completes
the proof of Lemma 3.

Lemma 4. Let A ⊂ µ, ν ∈ B ⊂ ν+1, κ = cf µ = cf ν ≥ ω1 and X = A×B .
Assume that X[0,µ′] and X [0,ν′] are mildly normal for each µ′ < µ and ν ′ < ν .
Then X is mildly normal.

Proof. As in the first paragraph of the proof of Lemma 3, we may that
assume A is stationary in µ . If B ∩ ν is bounded by β0 < ν , then X can
be represented as X = X [0,β0]

⊕
X{ν} . So we may also assume that B ∩ ν

is unbounded in ν .
Let F (0) and F (1) be disjoint regular closed sets in X .

Case 1. M−1(A) ∩ N−1(B) is stationary in κ .

As in Case 1 of Lemma 3, we can find γ0 < κ and i0 ∈ 2 such that
X

(N(γ0),ν)
(M(γ0),µ) ∩ F (i0) = ∅ .

Claim 0. X
(N(γ0),ν]
(M(γ0),µ) ∩ F (i0) = ∅ .
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Proof. Since B ∩ ν is unbounded in ν , we have Cl X
(N(γ0),ν)
(M(γ0),µ) = X

(N(γ0),ν]
(M(γ0),µ) .

Therefore X
(N(γ0),ν]
(M(γ0),µ) ∩ Int F (i0) = ∅ . But since X

(N(γ0),ν]
(M(γ0),µ) is clopen in X , we

have X
(N(γ0),ν]
(M(γ0),µ) ∩ F (i0) = X

(N(γ0),ν]
(M(γ0),µ) ∩ Cl Int F (i0) = ∅ .

Then in a usual way, F (0) and F (1) can be separated by disjoint open
sets.

Case 2. M−1(A) ∩ N−1(B) is not stationary in κ .

Take a cub set C ⊂ Lim(κ) in κ such that C ∩ M−1(A) ∩ N−1(B) = ∅ .

By Lemma 2, putting X = {X(N(pC(γ)),N(γ)]
(M(pC(γ)),M(γ)] : γ ∈ Succ(C)} ,

∪
X , Y =

{⟨α, β⟩ ∈ X : mC(α) < nC(β)} and Z = {⟨α, β⟩ ∈ X : mC(α) > nC(β)}
are clopen in X and X = Y

⊕
(
∪

X )
⊕

Z . Note that A × {ν} ⊂ Y and
Z ⊂ A× (B∩ν). Of course,

∪
X is mildly normal. Moreover as in the proof

of Case 2 of Lemma 3, we can similarly show that F (0) ∩ Z and F (1) ∩ Z
can be separated by disjoint open sets in Z . Therefore it suffices to show
that F (0) ∩ Y and F (1) ∩ Y can be separated by disjoint open sets in Y .

Fix γ ∈ M−1(A)∩C . By ⟨M(γ), ν⟩ ∈ Y , we can find i(γ) ∈ 2, f(γ) < γ

and g(γ) < κ with γ ≤ g(γ) such that Y
(N(g(γ)),ν]
(M(f(γ)),M(γ)] ∩ F (i(γ)) = ∅ . Set

g(γ) = 0 for each γ ∈ κ\(M−1(A)∩C). Applying the PDL, find a stationary
set S ⊂ M−1(A) ∩ C , i0 ∈ 2 and γ0 < κ such that i(γ) = i0 and f(γ) = γ0

for each γ ∈ S . Then we have:

(∗) Y
(N(g(γ)),ν]
(M(γ0)),M(γ)] ∩ F (i0) = ∅ for each γ ∈ S.

Set C ′ = {γ < κ : ∀γ′ < γ(g(γ′) < γ)} and D = Lim(S ∩ C ′). Notice that
D ⊂ C by S ⊂ C . The following Claims 1, 2 and 3 can be proved in a
similar way as in Claims 1, 2 and 3 of Lemma 3 respectively.

Claim 1. Y{M(γ)} ∩ Int F (i0) = ∅ for each γ ∈ D .

Claim 2. Y{M(γ)} ∩ F (i0) = ∅ for each γ ∈ D .

Claim 3. Y(M(γ0),µ) ∩ F (i0) ⊂
∪

γ∈Succ(D) Y
(N(pD(γ)),N(γ)]
(M(pD(γ)),M(γ)] .

Then as in the final paragraph of the proof of Lemma 3, we can find
disjoint open sets which separate F (0) ∩ Y and F (1) ∩ Y . This completes
the proof of Lemma 4.

Theorem 5. Let A and B be subspaces of ordinals. Then X = A × B is
mildly normal.

Proof. Assme that X = A × B is not mildly normal. Let

µ = min{α : X[0,α] is not mildly normal },
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ν = min{β : X
[0,β]
[0,µ] is not mildly normal }.

Then µ and ν are limit ordinals. Without loss of generality, we may assume
that A ⊂ µ+1, B ⊂ ν +1, X = A×B is not mildly normal but X[0,µ′] and
X [0,ν′] are mildly normal for each µ′ < µ and ν ′ < ν . Let F (0) and F (1) be
disjoint regular closed sets which cannot be separated by disjoint open sets.
We will consider several cases. In each case, we will derive a contradiction.

Case 1. µ ∈ A and ν ∈ B .

In this case, we may assume ⟨µ, ν⟩ /∈ F (0). Then we can take µ′ < µ and

ν ′ < ν with X
(ν′,ν]
(µ′,µ] ∩ F (0) = ∅ . Since X[0,µ′] and X [0,ν′] are mildly normal,

in a usual way, we can find disjoint open sets which separate F (0) and F (1),
a contradiction.

Case 2. µ /∈ A and ν /∈ B .

We have cf µ ≥ ω1 , otherwise X can be represented as the free union
X =

⊕
n∈ω X(M(n−1),M(n)] of mildly normal clopen subspaces, a contradiction.

Moreover as in the first paragraph of the proof of Lemma 3, A is stationary
in µ . Similarly cf ν ≥ ω1 and B is stationary in ν . It follows from Lemma
3 that cf µ ̸= cf ν , so we may assume cf µ < cf ν . Fix γ ∈ M−1(A) ∩
Lim(cf µ). For each δ ∈ N−1(B) ∩ Lim(cf ν), by ⟨M(γ), N(δ)⟩ ∈ X , we can

take i(γ, δ) ∈ 2, f(γ, δ) < γ and g(γ, δ) < δ such that X
(N(g(γ,δ)),N(δ)]
(M(f(γ,δ)),M(γ)] ∩

F (i(γ, δ)) = ∅ . Applying the PDL to N−1(B) ∩ Lim(cf ν), by |γ| < cf µ <
cf ν , we can find a stationary set T (γ) ⊂ N−1(B) ∩ Lim(cf ν) and i(γ) ∈ 2,
f(γ) < γ and g(γ) < cf ν such that i(γ, δ) = i(γ), f(γ, δ) = f(γ), g(γ, δ) =
g(γ) for each δ ∈ T (γ). Again applying the PDL to M−1(A) ∩ Lim(cf µ),
find a stationary set S ⊂ M−1(A) ∩ Lim(cf µ), i0 ∈ 2 and γ0 < cf µ such
that i(γ) = i0 and f(γ) = γ0 for each γ ∈ S . Let δ0 = sup{g(γ) : γ ∈ S} .

It follows from cf µ < cf ν that δ0 < cf ν . Then X
(N(γ0),ν)
(M(γ0),µ) is a clopen set

in X which does not meet F (i0). Moreover since X[0,M(γ0)] and X [0,N(δ0)]

are mildly normal, F (0) and F (1) can be separated by disjoint open sets, a
contradiction.

Case 3. µ ∈ A and ν /∈ B .

Since the proofs are identical, we only show the following case.

Case 4. µ /∈ A and ν ∈ B .

As in Case 2, we may assume that cf µ ≥ ω1 and A is stationary in cf µ .
Moreover as in the first paragraph of the proof of Lemma 4, we may assume
that B ∩ ν is unbounded in ν . By Lemma 4, we have cf µ ̸= cf ν . For each
γ ∈ M−1(A)∩Lim(cf µ), by ⟨M(γ), ν⟩ ∈ X = A×B , fix i(γ) ∈ 2, f(γ) < γ

and g(γ) < cf ν such that X
(N(g(γ)),ν]
(M(f(γ)),M(γ)] ∩ F (i(γ)) = ∅ .
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First assume cf ν < cf µ . Find a stationary set S ⊂ M−1(A)∩Lim(cf µ),
i0 ∈ 2, γ0 < cf µ and δ0 < cf ν such that i(γ) = i0 , f(γ) = γ0 and g(γ) = δ0

for each γ ∈ S .
Next assume cf ν > cf µ . Find a stationary set S ⊂ M−1(A)∩Lim(cf µ),

i0 ∈ 2 and γ0 < cf µ such that i(γ) = i0 and f(γ) = γ0 for each γ ∈ S .
Moreover let δ0 = sup{g(γ) : γ ∈ S} .

Then in either cases, we have X
(N(δ0),ν]
(M(γ0),µ) ∩F (i0) = ∅ . Since X[0,M(γ0)] and

X [0,N(δ0)] are mildly normal, F (0) and F (1) can be separated by disjoint
open sets, a contradiction.

This completes the proof of Theorem 5.

Next we answer the Arkhangel’skĭı’s question whether all subspaces of ω2
1

are mildly normal or not.

Example 6. There is a subspace of ω2
1 which is not mildly normal.

Our space is X = ω×ω1∪{ω}×Succ which is a subspace of (ω+1)×ω1 .
This space is also well known to be not normal, by showing that X{ω} and
XLim cannot be separated by disjoint open sets. But both X{ω} and XLim

are not regular closed in X .
Decompose ω into two infinite subsets A(0) and A(1), moreover decom-

pose Succ into two uncountable subsets B(0) and B(1). Since A(i) × B(i)
consists of isolated points, it is open in X . So F (i) = ClX(A(i) × B(i))
is a regular closed set. It is easy to verify that F (0) ∩ F (1) = ∅ and
{ω} × B(i) ⊂ F (i). Assume that F (0) and F (1) are separated by disjoint
open sets U(0) and U(1), respectively. Let n ∈ A(i) and β ∈ Lim(B(i)).
Then ⟨n, β⟩ ∈ {n} × Lim(B(i)) ⊂ ClX(A(i) × B(i)) = F (i) ⊂ U(i). So

fix g(n, β) < β such that X
(g(n,β),β]
{n} ⊂ U(i). Since Lim(B(i)) is station-

ary, by the PDL, there is g(n) < ω1 such that X
(g(n),ω1)
{n} ⊂ U(i). Pick

β0 > sup(
∪

i∈2{g(n) : n ∈ A(i)}) with β0 < ω1 . Then X
(β0,ω1)
{n} ⊂ U(i) if

n ∈ A(i).
On the other hand, pick β ∈ B(0) with β > β0 . Since ⟨ω, β⟩ ∈ {ω} ×

B(0) ⊂ F (0) ⊂ U(0), there is n0 ∈ ω such that X
{β}
(n0,ω] ⊂ U(0). Moreover

pick n ∈ A(1) with n0 < n . Then ⟨n, β⟩ ∈ X
{β}
(n0,ω] ∩ X

(β0,ω1)
{n} ⊂ U(0) ∩ U(1),

a contradiction.

Now we give here two examples of a closed subspace of a mildly normal
product of ordinals which is not mildly normal. By using 1, we have the
following:

Example 7. There is a closed subspace Z of the mildly normal space X =
ω1 × (ω1 + 1) × (ω + 1) which is not mildly normal.
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The “edge” Y = {ω1}×(ω+1)∪(ω1+1)×{ω} in the space (ω1+1)×(ω+1)
clearly closed in (ω1+1)×(ω+1) and homeomorphic to the space Y described
in Example 1. Therefore Z = ω1 × Y is a closed subspace of X which is
not mildly normal. We will give a direct proof that X is mildly normal. Let
F (0) and F (1) be disjoint regular closed subsets of X . For each α < ω1 ,
by ⟨α, α, ω⟩ ∈ X , we can find f(α) < α , n(α) < ω and i(α) ∈ 2 such that
(f(α), α] × (f(α), α] × (n(α), ω] ∩ F (i(α)) = ∅ . Applying the PDL, we find
α0 < ω1 , n0 < ω and i0 ∈ 2 such that (α0, ω1)× (α0, ω1)× (n0, ω]∩ F (i0) =
∅ . Since F (i0) is regular closed, we can show as in Claim 0 of Lemma
4, (α0, ω1) × (α0, ω1] × (n0, ω] ∩ F (i0) = ∅ . Since ω1 × (ω1 + 1) is mildly
normal, ω1 × (ω1 + 1) × [0, n0] =

⊕
n≤n0

ω1 × (ω1 + 1) × {n} is also mildly
normal. [0, α0] × (ω1 + 1) × (ω + 1) is normal because it is compact. Since
ω1 is normal countably compact and [0, α0] × (ω + 1) is metrizable, by [3],
ω1×[0, α0]×(ω+1) is normal. Since X is coverd by the four clopen subspaces
(α0, ω1)× (α0, ω1]× (n0, ω] , ω1 × (ω1 +1)× [0, n0] , [0, α0]× (ω1 +1)× (ω +1)
and ω1 × [0, α0] × (ω + 1), X is mildly normal.

Finally we answer the Arkhangel’skĭı’s question whether closed subspaces
of ω1 × (ω1 + 1) are mildly normal or not.

Example 8. There is a closed subspace X of ω1 × (ω1 + 1) which is not
mildly normal.

Let W =
∪

α∈Succ{α} × (α, ω1). Since W is open in ω1 × (ω1 + 1),
X = ω1×(ω1+1)\W is closed in ω1×(ω1+1). Let F (0) = {⟨α, α⟩ : α < ω1}
and F (1) = {⟨α, ω1⟩ : α < ω1} . Since F (0) = ClX{⟨α, α⟩ : α ∈ Succ} and
F (1) = ClX{⟨α, ω1⟩ : α ∈ Succ} , they are regular closed in X . Let U
be an open set with F (0) ⊂ U . By the PDL, there is α0 < ω1 such that

X
(α0,ω1)
(α0,ω1) ⊂ U . Take α ∈ Lim with α0 < α . It follows from {α}×(α, ω1) ⊂ U

that ⟨α, ω1⟩ ∈ ClX U ∩ F (1). Therefore X is not mildly normal.

Problem 9. Let Ai ’s be subspaces of ordinals, i < n . Is the finite product∏
i<n Ai mildly normal?
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