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All spaces are assumed to be a T1-space, i.e. each singleton is closed.

Definitions and basic facts. Subsets F0 and F1 in a space X are said to be
completely separated in X if there exists a continuous mapping f : X → I
such that Fi ⊂ f−1({i}) for each i ∈ 2 = {0, 1}, where I denotes the unit
interval [0, 1] in the reals R. A subset F in a space X is a zero-set (cozero-set)
if F = f−1({0}) (F = f−1((0, 1]), respectively) for some continuous mapping
f : X → I. Subsets F0 and F1 in a space X are said to be separated by
disjoint open sets in X if there are disjoint open sets U0 and U1 such that
Fi ⊂ Ui for each i ∈ 2. Completely separated sets are separated by disjoint
open sets, indeed U0 = f−1([0, 1

2 )) and U1 = f−1(( 1
2 , 1]) are such open sets.

A space X is called Tychonoff, completely regular or T3 1
2

if for each
pair of a point x ∈ X and a closed set F ⊂ X with x /∈ F , {x} and F are
completely separated, equivalently, the collection of all cozero-sets forms a base
for X. Tychonoff spaces are regular or T3 (i.e., such {x} and F are separated
by disjoint open sets), but not vice versa. The class of Tychonoff (as well as Ti,
i ≤ 3) spaces is closed under taking arbitrary products and subspaces. Here a
space is T2 or Hausdorff if each pair of distinct points are separated by disjoint
open sets.

A space is normal or T4 if disjoint closed sets are separated by disjoint open
sets. Note that disjoint closed sets in a normal space are completely separated
(Urysohn’s Lemma), so normal spaces are Tychonoff. Also note that closed
subspaces of a normal space is normal and C-embedded in X (Tieze-Urysohn’s
Lemma), where a subspace A of a space X is C-embedded in X if every
f ∈ C(A) can be extended to a mapping in C(X), and C(X) denotes the
collection of all continuous mappings of X to the reals R. Likewise, a subspace
A of a space X is C∗-embedded in X if every f ∈ C∗(A) can be extended
to a mapping in C∗(X), where C∗(X) denotes the collection of all continuous
mappings of X to the unit interval I. Note that C-embedded subspaces are
C∗-embedded.

A perfectly normal or T6 space is a perfect (i.e., closed sets are Gδ-sets)
and normal space. A perfectly normal space is a hereditarily normal (= T5)
space, that is, all subspaces are normal.

A collection F of subsets of a space X is discrete if for every point x ∈ X,
there is a neighborhood U of x such that |{F ∈ F : U ∩F 6= ∅}| ≤ 1. A space X
is called κ-collectionwise normal (κ-CWN for short), where κ is a cardinal,
if for every discrete collection of F with |F| ≤ κ, there is a pairwise disjoint
collection U = {U(F ) : F ∈ F} of open sets such that F ⊂ U(F ) for each
F ∈ F . It is not difficult to show “normal iff ω-CWN”, where ω is the smallest
infinite cardinal. A space is collectionwise normal (CWN for short) if it is
κ-CWN for any cardinal κ.

Of course, CWN spaces are normal. Compact Hausdorff (more generally
Lindelöf regular) spaces are CWN and hence normal, where compact (Lindelöf )
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means “every open cover has a finite (countable) subcover”. Moreover GO-
spaces (i.e., subspaces of a linerarly ordered topological space) are CWN, there-
fore subspaces of ordinal numbers with the usual order topology are CWN. In
particular, ω1 is hereditarily CWN, but not perfect. Indeed, the subset of all
limit ordinals in ω1 is closed but not Gδ. Most of definitions and basic results
of this article can be found in [E].

Tychonoff spaces. First observe that X = R \ {0} is not C∗-embedded in
R. Indeed, the continuous mapping f : X → I, defined by f(x) = 1 for x > 0
and f(x) = 0 for x < 0, cannot be extended over X as a continuous mapping.
Moreover we mention that a subset A of X is C∗-embedded in X iff any two
completely separated sets in A are completley separated in X (Urysohn’s exten-
sion theorem) and that a C∗-embedded subspace A of X is C-embedded in X
iff for every zero-set Z of X with A∩Z = ∅, A and Z are completely separated
in X. As will be mentioned below, there is a space with a C∗-embedded but
not C-embedded subspace.

Next, consider C(X) as a ring with pointwise operations. For every topolog-
ical space X we have a Tychonoff space Y by identifying points x, x′ in which
f(x) = f(x′) for every real-valued continuous mapping f on X. Then there is a
natural quotient map τ : X → Y so that every real-valued continuous mapping
on X is factored through τ .

The class of Tychonoff spaces has important roles when we discuss compacti-
fications ( a compactification of a space X is a compact space containing X as a
dense subspace). Let X be a Tychonoff space. Consider a collection F of contin-
uous mappings on X to the unit interval I such that {f−1((0, 1]) : f ∈ F} forms
a basis for X. Indeed, such a collection F exists because X is Tychonoff, e.g.
F = C∗(X) is such one. Furthermore one can take such an F with |F| = w(X),
the weight of X. Moreover if F is a such a collection and F ⊂ G, then G is also
such one. Consider the mapping FF : X →

∏
f∈F If , where If = I for each

f ∈ F , defined by FF (x) = 〈f(x) : f ∈ F〉. Then obviously the mapping FF is
an embedding of X into

∏
f∈F If = I |F|. By taking the closure ClFF (X) in I |F|,

one can obtain a (homeomorphic copy of) T2-compactification of X. Therefore
X is Tychonoff iff X has a T2-compactification (of the weight w(X)) iff X can
be embedded in a product space of (w(X)-many) copies of the the unit interval
I. Moreover taking F as F = C∗(X), one obtains the Stone-Čech compactifica-
tion βX = ClFC∗(X)(X) of X. By the construction, one can understand that
βX is characterized as a T2-compactification of X in which X is C∗-embedded,
indeed for a given f ∈ C∗(X), consider the mapping βf ∈ C∗(βX) defined by
βf(z) = πf (z) for each z ∈ βX = ClFC∗(X)(X), where πf :

∏
f∈F If → If is

the f -th projection. Furthermore βX can be characterized in such a way that
every continuous mapping f : X → K of X to a T2-compact space K can be
extended to a continuous mapping βf : βX → K, details of this theory are
given in [E]. Notice that X is normal iff every pair of disjoint closed sets have
disjoint closures in βX.

There is an analogous theory on realcompactifications of Tychonoff spaces,
where a space is called realcompact if it is homeomorphic to a closed subspace
of a product of copies of R. Replace, in the above argument, C∗(X) and I
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by C(X) and R respectively, and consider F as a subcollection of C(X) such
that {f−1((0,∞)) : f ∈ F} forms a basis for X. Then one obtains a real
compactification ClFF (X) ⊆ R|F|. In particular, ClFC(X)(X), denoted by υX,
is called the Hewitt realcompactification of the Tychonoff space X. Observe that
υX is chracterized as a realcompactification of X in which X is C-embedded. In
this sense, compactness and realcompactness are called I-compactness and R-
compactness respectively. There is also a more general theory of E-compactness
for a T2-space E, see [MN, Ch.12].

Now, we describe a normal space with a C∗-embedded but not C-embedded
subspace. Let βω be the Stone-Čech compactification of the discrete space ω,
p ∈ βω and X = ω ∪ {p}. Since ω ⊆ X ⊆ βω, ω is C∗-embedded in X. Note
that the mapping f : X → I, defined by f(n) = 1

n and f(p) = 0, witnesses that
the one point set {p} is a zero-set in X. But since ω is dense in X, ω and {p}
are not completely separated, thus ω is not C-embedded in X.

Wallman also constructed a T1-compactification wX of a T1-space X such
that every continuous mapping f : X → K of X to a T2-compact space K can
be extended to a continuous mapping wf : wX → K. He showed that wX is
T2 iff X is normal, in this case wX = βX.

Let X be a set. A mapping d : X ×X → R is called a pseudometric on X
if d(x, y) ≥ 0, d(x, x) = 0, d(x, y) = d(y, x) and d(x, y) + d(y, z) ≥ d(x, z) for
every points x, y, z. A pseudometric d is metric if d(x, y) = 0 implies x = y.
A collection P of pseudometrics on a set X is called a base for a uniformity on
X if (1) max{d0, d1} ∈ P whenever d0, d1 ∈ P (where max{d0, d1} ∈ P is the
pseudometric d defined by d(x, y) = max{d0(x, y), d1(x, y)}), and (2) for every
pair x, y of distinct points of X, there is d ∈ P such that d(x, y) > 0. Moreover
a base P for a uniformity is a uniformity if (3) a pseudometric e belongs to
P whenever, for every ε > 0, there are d ∈ P and δ > 0 so that d(x, y) ≤ δ
implies e(x, y) ≤ ε. Set Ud(x, ε) = {y : d(x, y) < ε}. Then a base for a
uniformity P induces the Tychonoff topology τP = {G ⊆ X : (∀x ∈ G)(∃d ∈
P )(∃ε > 0)(Ud(x, ε) ⊆ G)}. Note that for a given base for a uniformity P , P ′ =
{e : e is a pseudometric on X such that for every ε > 0, there are d ∈ P and
δ > 0 so that d(x, y) ≤ δ implies e(x, y) ≤ ε } is a uniformity and the topology
τP ′ coincides with τP . Observe that in the space 〈X, τP 〉, Ud(x, ε) is open for
every x ∈ X, ε > 0 and d ∈ P , and that every d ∈ P is continuous with respect
to the topology τP . On the other hand, for a given Tychonoff topological space
〈X, τ〉 and a finite subset F of C(X), dF (x, y) = max{|f(x) − f(y)| : f ∈ F}
defines a continuous (with respect to τ) pseudometric on X. Then it is not
difficult to show that P = {dF : F is a finite subset of C(X) } is a base for a
uniformity on the set X and τP = τ . Thus the topology of X can be induced
by a uniformity on X iff it is Tychonoff.

The function space Y X of all continuous mappings of X to a Tychonoff space
Y with the compact-open topology is Tychonoff. A compact-open topology is the
topology on Y X generated by the collection {M(A,U) : A is a finite subset of X
and U ∈ τ} as a subbase, where M(A,U) = {f ∈ Y X : f(A) ⊆ U} and τ is the

topology on Y . But note that the function space Y X with the compact-open
topology need not be normal even if Y is normal and X is a two points set.
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It is straightforward to show that the properties Ti, i = 4, 5, 6, are invari-
ants of closed mappings, i.e., if X has a property and f : X → Y is a closed
continuous and onto mapping, then Y also has the same property. But the
properties Ti, i = 2, 3, 3 1

2 , are not invariants of closed mappings. Indeed, take a
non-normal Tychonoff space X and disjoint closed sets F0 and F1 which cannot
be separated by disjoint open sets. Identify Fi to a point xi, i = 0, 1, then
one can obtain a closed mapping of the Tychonoff space X to a non-T2-space.
On the other hand, the properties Ti, i = 2, 3, 4, 5, 6, are invariants of perfect
mappings, where a perfect mapping is a closed mapping such that each point
inverse is compact. But T3 1

2
is not an invariant of perfect mappings.

Normality vs Ti(i ≤ 3 1
2). First we present two well-studied non-normal

Tychonoff spaces. One is the Niemytzki plane. This is a space constructed on
the upper half of the Euclidean plane with the topology: every point with the
second coordinate > 0 has the Euclidean neighborhood and every point p on
the x-axis has a neighborhood of the form {p} ∪D, where D is an open disc in
the upper half plane which is tangent to the x-axis at the point p. Then the
Niemytzki plane is Tychonoff and separable. Since the x-axis is a closed discrete
set of size continuum c, the Jone’s Lemma (1937)“No separable normal space
contain closed discrete subsets of size c” shows that the Niemytzki plane is not
normal. Another one is the Sorgenfrey square S2: the underlying set of the
Sorgenfrey line S is the reals R, S has a subbase of the form {[a, b) : a < b}, and
the Sorgenfrey square is the square S2 of the Sogenfrey line S. S is perfectly
normal, hereditarily separable and hereditarily Lindelöf, and Sω is perfect. But
{〈x, y〉 ∈ S2 : y = −x} ⊆ S2 is closed discrete, so the Jone’s Lemma shows that
S2 is not normal. On the other hand, Przymusinski [25] showed that assuming
the Martin’s Axiom (MA for short) and ω1 < c, if X ⊆ S and ω < |X| < c, then
X2 is normal but not CWN.

Hereafter, we assume that spaces are regular. There is a large literature on
the normality. One reason may be its incompleteness. For example, normality
does not behave like Ti’s, i ≤ 3 1

2 : (a) product spaces of normal spaces need
not be normal, (b) subspaces of normal spaces need not be normal. This can
be seen by considering the space X = (ω1 + 1) × ω1 :(a) disjoint closed sets
{ω1}×ω1 and {〈α, α〉 : α < ω1} of X cannot be separated by disjoint open sets,
and (b) X is a subspace of a compact space (ω1 + 1)2. But of course, every
closed subspace of a normal or CWN space is normal or CWN, respectively.

The relationships between normality and countable paracompactness (i.e.,
every countable open cover has a locally finite open refinement) are interesting
in the product theory. The detailed proofs of the below on normality of product
spaces and the discussion of related matters are found in [KV, Ch. 17, 18].

ω + 1 is homeomorphic to a convergent sequence with its limit point. So
it is considered as the simplest non-discrete topological space, moreover note
that it is compact and metrizable. In 1951, Dowker showed that X × (ω + 1)
(equivalently, X×I) is normal iff X is normal and countably paracompact. And
he posed a question whether every normal space is countably paracompact. This
proved to be a very hard problem, and remained open some twenty years untill
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Rudin produced a counterexample, thus settling it negatively. Now a normal but
not countably paracomapct space is called a Dowker space. For more detailed
discussion on Dowker spaces, we wish to refer the readers to other parts of the
Encyclopedia.

Normality of subspaces of ordinal products. Both ω2
1 and (ω1+1)2 are

countably paracompact and normal. But (ω1+1)×ω1 is countably paracompact
but not normal. Normality as well as other topological properies of subspaces of
ordinal products are interesting subjects. For subspaces A and B of ω1, A×B is
normal iff it is countably paracompact iff A is not stationary, B is not stationary
or A∩B is stationary [19]. In particular, A×B is neither normal nor countably
paracompact whenever A and B are disjoint stationary sets in ω1 (such A and
B exist, see [Ku, II 6.12]). On the other hand, every subspace of ω2

1 (more gen-
erally, ωn

1 for every n ∈ ω) is countably metacompact (i.e., every countable open
cover has a point-finite open refinement). Observe that countably paracom-
pact spaces are countably metacompact and that in normal spaces, countable
paracompactness and countable metacompactness are equivalent, thus normal
subspaces of ω2

1 are countably paracompact. It is unknown whether countably
paracompact subspaces of ω2

1 are normal in ZFC. Only known result is that
under the additional set theoretic assumption V = L, the answer is “yes” [20].

Discussing infinite products of copies of ω1 is also interesting. For example,
ωω

1 is normal but ωω1
1 is not. Also note that ωω1 is not normal. On the other

hand, ωκ
1 is countably compact (i.e., every countable open cover has a finite

subcover) for every infinite cardinal κ. Moreover there is a subspace of ωω
1 which

is not countably metacompact. It is also unknown whether normal subspaces
of ωω

1 are countably paracompact.
Now we mention that strong zero-dimensionality of subspaces of ordinal

products. A Tychonoff space X is strongly zero-dimensional if every completely
sparated sets F0 and F1 are separated by a clopen set, that is, there exists a
clopen set W such that F0 ⊆ W ⊆ X \ F1. Moreover a T1-space X is zero-
dimensional if for each pair of a point x ∈ X and a closed set F ⊆ X with
x /∈ F , {x} and F are separated by a clopen set, equivalently, the collection
of all clopen sets forms a base for X. Observe that zero-dimensional spaces
are Tychonoff and strongly zero-dimensional spaces are zero-dimensional. As is
well-known, the class of zero-dimensional spaces is closed under taking arbitrary
products and subspaces, but Wage [29] constructed a strongly zero-dimensional
space X such that X2 is normal but not strongly zero-dimensional. Since all
subspaces of an ordinal are strongly zero-dimensional, all subspaces of the square
of an ordinal are zero-dimensional. Recently Fleissner, Kemoto and Terasawa
[14] have shown that for subspaces A and B of ω1, A × B is strongly zero-
dimensional, and constructed a subspace of the product space (ω +1)× c of the
ordinal spaces ω + 1 and c which is not strongly zero-dimensional.

Normality in products. Let κ be a cardinal. A space is called κ-
paracompact if every open cover of size ≤ κ has a locally finite open refinement,
and a space is paracompact if it is κ-paracompact for each cardinal κ. Metrizable
spaces are paracompact and paracompact spaces are CWN, but as is witnessed
by (ω1 +1)×ω1, ω-paracompact (= countably paracompact) spaces need not be
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ω-CWN (= nomal) in general. It is not difficult to show that the product space
of a paracompact space with a compact space is also paracompact. In 1962,
Tamano established: (1) X is paracompact iff X × βX is normal iff X × αX
is normal for every compactification αX of X, (2) X is separable metrizable
iff X × αX is perfectly normal for some compactification αX of X, (3) X is
CWN iff F × βX is C∗-embedded in X × βX for every closed subspace F of
X. Afterwards, as an analogous result of the Dowker Theorem, Morita and
Kunen proved that for an infinite cardinal κ, X is normal and κ-paracompact
iff X × (κ + 1) is normal iff X × Iκ is normal iff X × 2κ is normal iff X × Y
is normal for each compact space Y with w(Y ) = κ, see [KV, Ch.18]. Since
the open cover {[0, α) : α < ω1} of ω1 witnesses that ω1 is not ω1-paracompact,
this result also shows the non-normality of ω1 × (ω1 + 1). Another parallel of
the Morita and Kunen’s result is the Alas [1] and Rudin’s [26] result that X is
countably paracompact κ-CWN iff X ×A(κ) is normal iff X × Y is normal for
some compact space Y with w(Y ) = κ, where A(κ) denotes the one point com-
pactification of the discrete space of size κ. Since ω1 is countably paracompact
and ω1-CWN, ω1×A(ω1) is normal. Here note that both ω1 + 1 and A(ω1) are
compact.

The product space X of a normal space and a non-discrete metric space
is normal iff X is countably paracompact [28]. Moreover, the product space
of a perfectly normal space and a metric space is normal. Another simple
result is that the product space of a countably compact normal space and a
metric space is normal. In 1964, Morita charaterized the normal space X in
which every product of X and an arbitrary metrizable space is normal. That
is, a space is a P -space if for every cardinal κ ≥ 1 and for every collection
{F (s) : s ∈

⋃
n∈ω κn} of closed sets such that F (s) ⊇ F (t) whenever s ⊆ t,

there exists a collection {U(s) : s ∈
⋃

n∈ω κn} of open sets with U(s) ⊇ F (s)
for each s, and

⋂
n∈ω F (f |n) = ∅ implies

⋂
n∈ω U(f |n) = ∅ for each f ∈ κω.

Observe that P-spaces are countably metacompact, therefore normal P-spaces
are countably paracompact. Morita asked whether any one of the following is
true: (1) if X × Y is normal for every metric space Y , then X is discrete, (2)
if X × Y is normal for every normal P-space Y , then X is metrizable, and (3)
if X × Y is normal for every countably paracompact normal space Y , then X
is metrizable and σ-locally compact. Atsuji [5] showed that the answer of (1) is
”yes” if there is a κ-Dowker space for each infinite cardinal κ, where a κ-Dowker
space is a normal space having an open cover {Uα : α < κ} which does not have
a closed cover {Fα : α < κ} such that Fα ⊆ Uα for each α < κ. Finally Rudin
[27] solved (1) affirmatively by showing that κ-Dowker spaces do exist. Chiba,
Przymusinski and Rudin [11] showed that assuming V = L , the answers to (2)
and (3) are “yes”. Finally Balogh [7] proved that the answer to (3) is “yes” in
ZFC.

Normality of a product space of a normal space with the irrationals P has
been also investigated. Historically, Michael constructed a normal space M , so
called Michael line [E,5.1.32], whose product space with P is not normal. M
is obtained from the reals R by isolating each irrational point. M is of weight
c, hereditarily paracompact but not Lindelöf. Moreover Mn is paracompact for
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every n ∈ ω but Mω is not normal. A Michael space is a Lindelöf space whose
product with P is not normal and the Michael problem is: is there a Michael
space in ZFC? The existence of a Michael space follows from ω1 = c [23] or MA
[2]. Lawrence [22] showed that Michael problem is equivalent to the existence
of a Lindelöf space and a separable completely metrizable space with a non-
normal product, and that it is not possible in ZFC to construct a Michael space
of weight ω1. Afterwards he proved that there is a ZFC example of a Lindelöf
space and a completely metrizable (but not separable) space whose product is
non-normal and weight ω1.

Spaces considered here are assumed to have at least two points and κ is an
infinite cardinal. It follows from the non-normality of ωω1 that if an infinite prod-
uct space X =

∏
α<κ Xα is normal, then all Xα’s, except for at most countably

many, are countably compact. Thus if an infinite product space X =
∏

α<κ Xα

of metric spaces is normal, then all Xα’s, except for at most countably many, are
compact. So in this sense, countable product spaces are essential for discussing
infinite products. Zenor and Nagami established that if all finite subproduct of
a product space X =

∏
n∈ω Xn are normal (i.e.,

∏
n∈F Xn is normal for each

finite subset F ⊆ ω), then X is normal iff it is countably paracompact. Aoki
[3] proved that if a product space X =

∏
α<κ Xα is κ-paracompact, then X is

normal iff all finite subproducts of X are normal. Moreover Bešlagic̀ [9] proved
that if X =

∏
α<κ Xα is normal, then it is κ-paracompact. Thus these results

extend the Zenor and Nagami’s one to uncountable products.
Collectionwise normality. Normal spaces are ω-CWN, but Bing con-

structed an example of a normal not ω1-CWN space. One of good articles on
collectionwise normality is Tall’s one [KV, Ch.15]. Moreover good articles on
covering property and metrization theory are [KV, Ch.9] and [KV, Ch.16]. Most
of results below are found in these articles.

Collectionwise normality has been studied in connection with metrization
theorems. Historically, Jones conjectured that normal Moore spaces are metriz-
able, where a space is Moore if it a has a sequence {Gn : n ∈ ω} of open covers
such that for each point x, {

⋃
{G ∈ Gn : x ∈ G} : n ∈ ω} forms a neighbor-

hood base at x. This conjecture was called the Normal Moore Space Conjecture
(NMSC for short). Observe that Moore spaces are first countable and sub-
paracompact (i.e., every open cover has a σ-discrete closed refinement), and
that metrizable spaces are paracompact, hence CWN, and Moore. Assuming
2ω < 2ω1 , Jones showed in 1937 that separable normal spaces have no uncount-
able closed discrete subspaces, and as a corollary, that separable normal Moore
spaces are metrizable. Afterwards, Bing established that a space is metrizable iff
it is a CWN Moore space. Therefore the problem on the NMSC was focused on
the difference between normality and collectionwise normality of Moore spaces.
In 1964, Heath showed that there is a separable normal non-metrizable Moore
space iff there exists an uncountable Q-set in the reals R, where E ⊂ R is a
Q-set if every subset E′ ⊂ E is Gδ in E. The “if” part of the Heath’s result was
shown by considering a subspace of the Niemytzki plane. Around 1967-1968,
Silver and Tall proved that MA + ω1 < c yields a non-metrizable separable
normal Moore space. So the existence of a separable normal non-metrizable
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Moore space is consitent with and independent of ZFC. For non-separable case,
the situation was more complicated. Nyikos [24] proved that the Product Mea-
sure Extension Axiom (PMEA for short, i.e., for every cardinal κ, the product
measure on 2κ extends to a c-additive full measure) implies that normal first
countable spaces are CWN, therefore normal Moore spaces are metrizable. It is
known that the consistency of PMEA follows from the existence of a strongly
compact cardinal and that the consistency of PMEA implies the existence of a
measurable cardinal. A remarkable result of this line is, by Fleissner [13], that
the statement “normal Moore spaces are metrizable” implies the consistency of
the existence of a measurable cardinal. In a sense, this completes the NMSC
problem. An interesting open problem is whether NMSC implies the statement
“normal first countable spaces are CWN”.

The problem whether normal locally compact spaces are collectionwise nor-
mal is also interesting. Arhangelskĭı [4] showed that locally compact metacom-
pact (i.e., every open cover has an point-finite open refinement) perfectly normal
spaces are paracompact. Paracompact spaces are subparacompact and meta-
compact, moreover subparacompact spaces and also metacompact spaces are
submetacompact (i.e., for every open cover U , there is a sequence {Un : n ∈ ω}
of open refinements of U such that for every point x, there is an n ∈ ω, such
that {U ∈ Un : x ∈ U} is finite). On the other hand, CWN submetacom-
pact spaces are paracompact. Then Watson [30] proved that V = L implies
that locally compact normal sapces are collectionwise normal with respect to
compact sets (i.e., every discrete collection of compact sets are separated by
disjoint open sets), hence locally compact submetacompact normal spaces are
paracompact. A best possible ZFC result might be that locally compact sub-
metacompact normal spaces are subparacompact [18]. Tall asked if there exists
a locally compact normal non-CWN space under various additional set theoret-
ical or topological assumptions. Then Daniels and Gruenhage [12] constructed
in the constructible universe L, a locally compact collectionwise Hausdorff per-
fectly normal non-CWN space. Afterwards, Balogh [6] gave an answer that in a
model adding super compact many random or Cohen reals to a model of ZFC,
locally compact normal spaces are CWN.

Hereditary normality (= T5) and perfect normality (= T6). Metriz-
able spaces are perfectly normal, perfectly normal spaces are hereditarily normal
and there is a hereditarily normal but not perfectly normal space. Evidently
subspaces of a hereditarily normal space are hereditarily normal, and it is not
difficult to show that subspaces of a perfectly normal space are also perfectly
normal. The Sorgenfrey square S2 witnesses that these properties are not pro-
ductive. Characterizations of these properties are well-known: (1) a space X
is hereditarily normal iff subsets F0 and F1 with ClF0 ∩ F1 = F0 ∩ ClF1 = ∅
are separated by disjoint open sets, (2) a space X is perfectly normal iff every
closed set is a zero-set.

If the product space X × Y is hereditarily normal, then the factor spaces X
and Y have stronger properties, that is, either X is perfectly normal or count-
able subsets of Y are closed discrete. This is due to Katětov [17]. In case
that both X and Y are compact, this means that both X and Y are perfectly
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normal. Another result of Katětov is: if X is compact and X3 is hereditarily
normal, then X is metrizable. Related to this, it is known that, if X is compact
and the diagonal {〈x, x〉 ∈ X × X : x ∈ X} is Gδ in X2, then X is metriz-
able. In particular, a compact space X is metrizable whenever X2 is perfectly
normal. Chaber proved that if X is countably compact and X2 is perfectly
normal, then X is compact hence metrizable. So one can ask whether, if X2

is hereditarily normal and X is compact, X is metrizable, and whether, if X2

is hereditarily normal and X is countably compact, X is compact. The former
was first asked by Katětov. For the latter, Bešlagić [10] constructed, assuming
♦, a countably compact non-compact space such that X2 is hereditarily normal.
For the Katětov’s problem, Nyikos and Gruenhage constructed a compact non-
metrizable space such that X2 is hereditarily normal assuming MA + ω1 < c,
or ω1 = c [15]. Recently Larson and Todorocevic [21] has shown a consistently
affirmative answer to the the Katětov’s problem. An interesrting open problem
is: if the product space X × Y of compact spaces X and Y is perfectly normal,
then is at least one of X and Y metrizable?

Non-normality of ωω1 yields that the product space of uncountably many
spaces having at least two points is not hereditarily normal. For perfect nor-
mality or hereditary normality of countable product spaces, the following are
known: (1) a countable product space is perfect iff its all finite subproducts are
perfect, (2) a countable product space is hereditarily normal iff it is perfectly
normal iff it is hereditarily countably compact.

Separation axioms of hyperspaces. In this paragraph, we assume no
separation axiom. For a topological space X, 2X denotes the collection of
all non-empty closed subsets of X. The Vietoris topology τV on 2X is gen-
erated by the collection {V (U0, ..., Un−1) : Ui’s are open in X} as a subbase,
where V (U0, ..., Un−1) = {F ∈ 2X : F ⊆

⋃
i<n Ui and, F ∩ Ui 6= ∅ for each i <

n}. The Fell topology τF on 2X is generated by the collection {W (U,K) :
U is open in X and K ⊆ X is compact} as a subbase, where W (U,K) = {F ∈
2X : F ∩ U 6= ∅, F ∩ K = ∅}. It follows from W (U,K) = V (U,X \ K) that
τF ⊆ τV . For the hyperspace 2X with the Vietoris topology: (1) if X is T1, then
2X is T1, (2) for T1-space X, 2X is T2 iff X is regular, (3) for T1-space X, 2X

is regular iff X is normal, (4) for T1-space X, 2X is normal iff X is compact T2,
see [E]. For the hyperspace 2X with the Fell topology: (1) 2X is regular iff 2X

is Tychonoff iff X is locally compact [8], (2) 2X is normal iff 2X is paracompact
iff 2X is Lindelöf iff X is locally compact Lindelöf [16],
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