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Abstract

We show that the product of finitely many subspaces of ordinals
is strongly zero-dimensional. In contrast, for each natural number n ,
there is a subspace of (ω + 1) × c of dimension n .

1 Introduction

All spaces are assumed to be completely regular and T1 .
A space X is said to be zero-dimensional if it has a base of clopen sets.

A space X is said to be strongly zero-dimensional if for every disjoint pair
of zero-sets Z0 and Z1 , there is a clopen set W with Z0 ⊂ W ⊂ X \ Z1 . In
this situation, we say that Z0 and Z1 are separated by a clopen set. It is
well-known that a space X is strongly zero-dimensional if and only if βX is
zero-dimensional, see [3, 7.1.17]. It is straightforward to verify that a space
X is normal and strongly zero-dimensional iff every pair of disjoint closed
sets of X are separated by a clopen set.

In [7], it was proved that for every subspace of the product space of two
ordinals, normality, collectionwise normality, and the shrinking property are
equivalent. While extending this equivalence to subspaces X of the product
of finitely many ordinals, the first author [5] found it convenient to first prove
that if X is normal, then X is strongly zero-dimensional. Moreover, it was
shown earlier (see [8]) that X ×Y is not normal when X and Y are disjoint
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stationary sets in ω1 . So it is natural to ask if this X × Y is strongly zero-
dimensional. More generally, since all subspaces of product spaces of ordinals
are zero-dimensional, it is also natural to ask if such subspaces are strongly
zero-dimensional.

We answer all these questions in the present paper.
First we generalize the notion of stationary sets in Section 2, and show a

Generalized Pressing Down Lemma (Theorem 3.2) in Section 3. One corol-
lary is that if κi , i < n , is an n-tuple of distinct, regular, uncountable
cardinals, then every continuous function φ :

∏
i<n κi → R is constant on a

final segment. Example 3.9 shows that this result is not true when the κi ’s
are not distinct. In Theorem 4.2, we show that after a small clopen set is
deleted from the domain, φ has finite range. (“Small” is defined precisely in
Definition 4.1).

Using Theorem 4.2, we prove that the product of finitely many subspaces
of ordinals is strongly zero-dimensional (Theorem 5.1), thus answering the
first question above in the affirmative.

In Section 6, however, we present a negative solution to the second ques-
tion. Namely, subspaces of the product of finitely many subspaces of ordinals
are not necessarily strongly zero-dimensional. More precisely, we prove that
for every natural number n , there is a subspace K of (ω + 1) × c such that
dim K = n (Theorem 6.9). An important step in proving that theorem is to
establish that for every maximal almost disjoint family R of subsets of ω ,
βΨ(R) is embedded in the remainder of such a subspace K (Theorem 6.1).
Here Ψ(R) is a so-called Ψ -space generated by R (see [3, 3.6.I] or [6, 5.I]).
Section 6 can be read independently of other sections.

2 Generalized Stationary Sets

We will use set theoretical notation described in [10, Chapter I]. For example,
0 denotes the empty set, an ordinal is the set of smaller ordinals, thus n =
{0, 1, ..., n − 1} for each natural number n .

For an n-tuple t = ⟨t0, . . . , tn−1⟩ and an n′ -tuple t′ = ⟨t′0, . . . , t′n′−1⟩ , t⌢t′

denotes the (n + n′)-tuple s = ⟨s0, . . . , sn+n′−1⟩ , where si = ti for i < n and
sn+i = t′i for i < n′ . The 0-tuple is considered as the empty sequence 0 = ∅
as usual. For an n-tuple t = ⟨t0, . . . , tn−1⟩ of subsets t0, . . . , tn−1 of ordinals,∏

t denotes the usual product t0 × · · · × tn−1 and ∇t = {x ∈
∏

t : x0 <
· · · < xn−1} its subspace.

For s ⊂ n , t ¹ s denotes the sub-tuple ⟨ti : i ∈ s⟩ of t . For A ⊂
∏

t ,
A ¹ s denotes the set {x ¹ s : x ∈ A} . Note A ¹ 0 = {0} if A ̸= ∅ . For
m ≤ n and x ∈

∏
i<m ti , A[x] denotes the set {y ∈

∏
m≤i<n ti : x⌢y ∈ A} .
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Observe that A[x] = A if m = 0 and A[x] = {0} if m = n and x ∈ A .
When m = 1 and α ∈ t0 , we write A[α] instead of A[⟨α⟩] .

For s ⊂ n , x ∈
∏

i∈s ti , A ⊂
∏

t and j /∈ s , we let

πx
j [A] = {aj : a ∈ A and a ¹ s = x}.

When s = 0, this is the usual projection πj[A] of A to the tj -axis.
Let x = ⟨x0, . . . , xn−1⟩, y = ⟨y0, . . . , yn−1⟩ be n-tuples of ordinals. If

xi < yi for each i < n , then we write x < y . We let x ≤ y have the
analogous meaning. The generalized intervals (x, y) =

∏
i<n(xi, yi) and

(x, y] =
∏

i<n(xi, yi] should be understood in terms of these orders. In Sec-
tions 4 and 5 we will write x ≺ y when x ≤ y and x ̸= y . All these relations
are well-founded on the class of all n-tuples of ordinals in the sense of [10,
III Definition 5.1].

For a subset S of an ordinal µ , let Limµ(S) = {γ < µ : sup(S ∩ γ) = γ} ,
in other words, Limµ(S) is the closed set of all cluster points of S in the
space µ . We will also use the symbol Succµ(S) = S \ Limµ(S). When the
situation is clear in its context, we simply write Lim S or Succ S instead
of Limµ(S) or Succµ(S), respectively. Observe that if cf µ ≥ ω1 and S is
unbounded in µ , then Lim S is cub (i.e., closed and unbounded) in µ .

Let Cα, α ∈ A ⊂ κ , be cub sets of an uncountable regular cardinal κ .
Its diagonal intersection is defined by

△α∈ACα =
{
β ∈ κ : (∀α ∈ A ∩ β)(β ∈ Cα)

}
.

Then △α∈ACα is a cub set in κ (see [10, II Lemma 6.14]).
As usual (see [10, II Definition 6.9]), a subset Y of an uncountable regular

cardinal κ is called stationary (or κ-stationary) iff it meets every cub subset
C of κ . The question arises how we should define κ-stationary set when
κ = ⟨κ0, . . . , κn−1⟩ is not just a cardinal but a finite-tuple of non-decreasing
uncountable regular cardinals. There are two ways to do this, namely,

• (
∏

-type stationary) Y meets every
∏

C ,

• (∇-type stationary) Y meets every ∇C ,

where C is an n-tuple of cub sets Ci of κi . When the κ is strictly increasing,
the two notions are equivalent (different filter bases generate the same filter)
and have a satisfactory theory. When κi = κi+1 for some i , however, the
notions are not equivalent. The prototypic result, “an open stationary set
contains a final segment”, has a useful generalization (Theorem 3.5) for the
notion ∇-type stationary. In contrast, there can be disjoint open

∏
-type

stationary sets – this is the essential idea of Example 3.9.
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In the present paper we will develop the theory of ∇-type stationary sets.
For expository reasons, we prefer to start with concepts equivalent to

∇-type stationarity. However, we soon prove (Proposition 2.4) that Y is
κ-stationary iff Y ∩ ∇Ci ̸= ∅ for every n-tuple C with Ci a cub subset of
κi . Here is our official definition.

Definition 2.1. Let κ = ⟨κ0, κ1, . . . , κn−1⟩ be an n-tuple of non-decreasing
uncountable regular cardinals.

Y ⊂
∏

κ is called κ-stationary if there is Z ⊂ Y such that, for all z ∈ Z

and i < n , the set πz—i
i [Z] = π

⟨z0,...,zi−1⟩
i [Z] is κi -stationary.

We call the set Z in the above pruned. Z is obviously itself κ-stationary.
Note that, if κ is an uncountable regular cardinal, “⟨κ⟩-stationary” and
“κ-stationary” are synonymous.

In the discussion of κ-stationary sets, it is often useful to use induction
on the length of the tuple κ .

Proposition 2.2. For an n-tuple κ = ⟨κ0, κ1, . . . , κn−1⟩ and Y ⊂
∏

κ, the
following are equivalent.

(1) Y is κ-stationary,

(2) there are a κ0 -stationary set K and, for each γ ∈ K , ⟨κ1, . . . , κn−1⟩-
stationary set Lγ such that {γ} × Lγ ⊂ Y for each γ ∈ K ,

(3) there are a ⟨κ0, . . . , κn−2⟩-stationary set S and, for each s ∈ S , a
κn−1 -stationary set Ts such that {s} × Ts ⊂ Y for each s ∈ S .

Proof. We show the equivalence of (1) and (2). The equivalence of (1) and
(3) is seen quite similarly.

We proceed by induction and suppose that (1) and (2) are shown to be
equivalent for κ of length ≤ (n − 1).

Let κ be of length n , and suppose Y is κ-stationary. Let Z ⊂ Y be
pruned and K = π0[Z] . Then K is κ0 -stationary. For each γ ∈ K , let

Lγ = Z[γ] . Then, for each ζ ∈ Lγ and 0 < i < n , π
⟨ζ1,...,ζi−1⟩
i [Lγ] =

π
⟨γ,ζ1,...,ζi−1⟩
i [Z] = π

({γ}⌢ζ)—i
i [Z] is κi -stationary. Hence, by the definition,

each Lγ is ⟨κ1, . . . , κn−1⟩-stationary.
Suppose that (2) holds. Then, by induction hypothesis, there is a set

Zγ ⊂ Lγ so that, for each z ∈ Zγ and 0 < i < n , π
⟨z1,...,zi−1⟩
i [Zγ] is κi -

stationary. This set is identical to π
⟨γ,z1,...,zi−1⟩
i [Z] where Z =

∪
γ∈K{γ}×Zγ .

Obviously Z ⊂ Y holds and hence, the induction is complete.

For convenience we will call singletons 0-stationary for the 0-tuple.
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Proposition 2.3. Let κ = ⟨κ0, . . . , κn−1⟩ be an n-tuple and Y κ-stationary.

(1) If Y ⊂ X , then X is also κ-stationary.

(2) If Y =
∪

α<λ Zα and λ < κ0 , then some Zα is κ-stationary.

(3) If Ci is cub in κi for each i < n, then Y ∩
∏

i<n Ci is also κ-
stationary. In particular, if s < κ is an n-tuple, then Y ∩ (s, κ)
is also κ-stationary.

(4) Y ∩∇κ is κ-stationary.

Proof. We prove this by induction on n . Suppose this is true for i-tuples for
all i < n . Let κ′ = ⟨κ1, . . . , κn−1⟩ , and take K and Lγ as in Proposition 2.2
(2). Then K is κ0 -stationary and each Lγ is κ′ -stationary.

(1) Obvious from the definition.
(2) For each γ ∈ K , let Zα,γ = Zα[γ] . Then Lγ ⊂

∪
α Zα,γ and hence,

by induction hypothesis, Zα,γ is κ′ -stationary for some α = α(γ). Since
K =

∪
α<λ{γ : α(γ) = α} is κ0 -stationary and λ < κ0 , there is a δ so

that {γ : α(γ) = δ} = H is κ0 -stationary ([10, II Lemma 6.8]). Then, by
definition, Zδ ⊃

∪
γ∈H{γ} × Zδ,γ is κ-stationary.

(3) For each γ ∈ K , Lγ ∩
∏

0<i<n Ci is κ′ -stationary, by induction hy-
pothesis, and {γ} × (Lγ ∩

∏
i<n Ci) ⊂ Y ∩

∏
i<n Ci holds.

(4) By induction hypothesis, for each γ ∈ K , there is a κ′ -stationary set
Yγ ⊂ Lγ such that t1 < · · · < tn−1 for each t = ⟨t1, . . . , tn−1⟩ ∈ Yγ . By (3),
Zγ = Yγ ∩ (γ, κ1)×κ2×· · ·×κn−1 is κ′ -stationary. Then Z =

∪
γ∈K{γ}×Zγ

is κ-stationary and contained in Y .

We have developed enough machinery to prove that official definition of
κ-stationary is equivalent to the motivating notion, ∇-type stationary.

Proposition 2.4. Y is κ-stationary iff Y ∩ ∇C ̸= ∅ for every n-tuple C
with Ci a cub subset of κi . Therefore the collection of all non-κ-stationary
subsets of

∏
κ forms a σ -complete ideal.

Proof. It suffices to show only the sufficiency part, the necessity part being
included in Proposition 2.3.

Assume the sufficiency part for i-tuples for all i < n and let κ′ =
⟨κ1, . . . , κn−1⟩ .

Suppose that Y is not κ-stationary. For each α ∈ π0[Y ] , let us consider
the subset Lα = Y [α] , and let K = {α : Lα is κ′-stationary} . Since K is not
κ0 -stationary by Proposition 2.2 (2), there is a cub set C0 disjoint from K .
For each α ∈ C0 , Lα is not κ′ -stationary. Then, by induction hypothesis,
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there is a cub set Cα,i ⊂ κi for each 0 < i < n such that Lα∩∇0<i<nCα,i = ∅ .
Let κ0 = · · · = κm−1 < κm . Then define Ci = △α∈C0Cα,i for 0 < i < m ,
and Ci =

∩
α∈C0

Cα,i for m ≤ i < n . Obviously each Ci is cub in κi .
To show Y ∩ ∇i<nCi = ∅ , suppose t = ⟨t0, . . . , tn−1⟩ ∈ Y ∩ ∇i<nCi .

Then ⟨t1, . . . , tn−1⟩ ∈ Lt0 ∩ ∇0<i<nCi . Thus t0 < ti ∈ Ci = △α∈C0Cα,i for
0 < i < m , and t0 < ti ∈ Ci =

∩
α∈C0

Cα,i for m ≤ i < n . This implies
that ti ∈ Ct0,i for 0 < i < n , and hence ⟨t1, . . . , tn−1⟩ ∈ Lt0 ∩ ∇0<i<nCt0,i , a
contradiction. Thus Y ∩∇i<nCi = ∅ .

Corollary 2.5. Let κ = ⟨κ0, . . . , κn−1⟩ be an n-tuple and Ai ⊂ κi for each
i < n. Then Y =

∏
i<n Ai is κ-stationary iff each Ai is κi -stationary.

3 Generalized Pressing Down Lemma

The usual Pressing Down Lemma [10, II Lemma 6.15] says that a function
f : S → κ defined on a stationary subset S of an uncountable regular
cardinal κ is constant on a stationary subset of S if f(α) < α for each α .
We now generalize this.

Definition 3.1. Let α = ⟨α0, . . . , αn−1⟩ be an n-tuple of ordinals, and
suppose that a function f sends x ∈

∏
α to f(x) ∈

∏
α .

We call f regressive if f(x) < x for all x ∈ dom f , and a stem function
if f(x)j = f(x′)j whenever x ¹ j = x′ ¹ j .

Observe that if f is a stem function then f(x)0 is constant, and that a
stem function defined on a set of 1-tuples is constant. Hence the n = 1 case
of the following theorem is the Pressing Down Lemma.

Theorem 3.2 (Generalized Pressing Down Lemma). Let κ be an n-
tuple, R a κ-stationary subset of

∏
κ, and f : R →

∏
κ regressive. Then

there is a κ-stationary subset Y of R so that f restricted to Y is a stem
function.

Proof. Assume this theorem for i-tuples for all i < n , and let us consider
κ = ⟨κ0, . . . , κn−1⟩ . Let κ′ = κ ¹ n − 1.

By Proposition 2.2 (3), there are a κ′ -stationary subset S , and κn−1 -
stationary sets Ts , s ∈ S , so that {s} × Ts ⊂ R .

For each s ∈ S and each τ ∈ Ts , note that the point f(s⌢τ) consists
of the first (n − 1) coordinates f1(s

⌢τ) and the last coordinate f2(s
⌢τ).

We have f1(s
⌢τ) < s and f2(s

⌢τ) < τ . Since |S| ≤ κn−2 , the set of all
f1(s

⌢τ) has cardinality < κn−1 . By Proposition 2.3(2) and the Pressing
Down Lemma applied to Ts , there are a stationary subset Ys of Ts , g(s) ∈

6



∏
κ′ and γs ∈ κn−1 such that f1(s

⌢τ) = g(s) and f2(s
⌢τ) = γs , that is,

f(s⌢τ) = g(s)⌢γs for all s ∈ S and τ ∈ Ys .
Apply the induction hypothesis to the regressive function g to get a

stationary subset Y ′ of S so that g restricted to Y ′ is a stem function. Let
Y =

∪
s∈Y ′{s} × Ys . To verify that f restricted to Y is a stem function, let

z , z′ ∈ Y . If z ¹ j = z′ ¹ j and j < n−1, then f(z)j = g(z ¹ n−1)j = g(z′ ¹
n− 1)j = f(z′)j . If z ¹ n− 1 = z′ ¹ n− 1 = s , then f(z)n−1 = γs = f(z′)n−1

holds.

A consequence of the Pressing Down Lemma is that a real-valued con-
tinuous function on a stationary subset of a regular uncountable cardinal is
constant on its tail (= its intersection with a final segment). We can general-
ize this result for a non-decreasing n-tuple of regular uncountable cardinals
(Theorem 3.7).

We begin with definitions.

Definition 3.3. Let κ = ⟨κ0, . . . , κn−1⟩ be an n-tuple. Let us say that an
n-tuple C = ⟨C0, . . . , Cn−1⟩ of cub sets Cj of κj is attuned to κ , or simply,
κ-attuned, if the following holds:

(1) Cj ⊂ Lim κj for all j < n ,

(2) if κj < κj+1 , then Cj+1 ⊂ (κj, κj+1),

(3) if κj = κj+1 , then Cj = Cj+1 .

Note that every n-tuple ⟨D0, . . . , Dn−1⟩ of cub sets can be attuned to
κ , that is, there is a κ-attuned tuple ⟨C0, . . . , Cn−1⟩ such that Cj ⊂ Dj for
each j . In fact, when κℓ−1 < κℓ = · · · = κm < κm+1 , let Cℓ = · · · = Cm =∩

ℓ≤j≤m Dj ∩ (κℓ−1, κℓ) ∩ Lim κℓ .

Definition 3.4. We say that an n-tuple x is entwined with another n-tuple
c if

c0 < x0 < c1 < · · · < cj < xj < cj+1 < · · · < cn−1 < xn−1.

Let κ be a non-decreasing n-tuple of uncountable regular cardinals, and
C be an attuned n-tuple of cubs. Then we let E(C) denote the collection
of all x ∈ ∇κ which are entwined with some c ∈

∏
C .

Observe that the set of x which are entwined with a specific c is an open
set. Hence E(C) is an open set. Further observe that, if κ0 < · · · < κn−1 ,
then x ∈ E(C) iff min Cj < xj for all j , that is, E(C) = (s, κ) is a final
segment where s = min(

∏
C) denotes the minimum of the set

∏
C in the

sense of the order ≤ .
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It is easily seen that the set E(C) is never empty. More precisely, by
taking Dj = Lim Cj for each j , we have E(C) ⊃ ∇D =

∏
D∩∇κ . Thus by

Proposition 2.3, for a κ-stationary set Y , Y ∩E(C) is always κ-stationary.

Theorem 3.5. Let κ be an n-tuple and U an open κ-stationary subset
of

∏
κ. Then there is an attuned n-tuple C of cub sets, so that E(C) is

contained in U .

Proof. Let f : U →
∏

κ be regressive so that for each u ∈ U , the half-open
interval (f(u), u] ⊂ U . By our definition and Theorem 3.2, there is a pruned
stationary subset Y of U so that f ¹ Y is a stem function. For each j < n ,
let Dj be the set of γ < κj satisfying: if y ∈ Y and y0, . . . , yj−1 < γ , then

(1) f(y)j < γ ,

(2) Lim
(
πy—j

j [Y ]
)
∋ γ .

Note that, because f ¹ Y is a stem function, to know f(y)j it suffices to
know y ¹ j ; in particular, we know the constant value f(y)0 at the start.
Also note that each Lim

(
πy—j

j [Y ]
)

is cub. Then Dj is a cub set of κj (see,
e.g., the proof of [10, II Lemma 6.13]). Let C be attuned to κ with Dj ⊃ Cj

for each j < n .
To verify the conclusion, let x ∈

∏
κ be entwined with c ∈

∏
C . By

induction on j < n , we shall define yj and verify that

f(y)j < cj < xj < yj < cj+1.

Let yj be the least element of π
⟨y0,...,yj−1⟩
j [Y ] greater than xj . This is

possible because π
⟨y0,...,yj−1⟩
j [Y ] = πz—j

j [Y ] for any z ∈ Y with z ¹ j =
⟨y0, . . . , yj−1⟩ , and is κj -stationary.

We verify the inequalities left to right. First, f(y)j < cj because of (1).
Second, cj < xj because x is entwined with c . Third, xj < yj by our choice
of yj . Finally, yj < cj+1 is seen in the following way. It is obvious if κj <
κj+1 . If κj = κj+1 , then (2) implies this because cj+1 ∈ Cj+1 = Cj ⊂ Dj .
Thus, we have verified that x ∈ (f(y), y] ⊂ U , as required.

Corollary 3.6. Let κ be a strictly increasing n-tuple and U an open κ-
stationary subset of

∏
κ. Then there is an s ∈ ∇κ so that the final segment

(s, κ) is contained in U .

Theorem 3.7. If κ is an n-tuple, and φ : Y → R is a continuous function
defined on a κ-stationary set Y , then there is a κ-attuned n-tuple C so that
φ is constant on E(C) ∩ Y .
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Proof. For each i ∈ ω , R is covered by countably many open sets B(i, k),
k ∈ ω , of diameter ≤ 1/(i + 1). By Proposition 2.3, for each i , there is a
ki such that φ←[B(i, ki)] is κ-stationary. Let U(i) be an open set of

∏
κ

in which φ←[B(i, ki)] = U(i) ∩ Y . Obviously, U(i) is κ-stationary, and
by Theorem 3.5, there is a κ-attuned n-tuple C(i) of cub sets such that
E(C(i)) ⊂ U(i).

Define Cj =
∩

i C(i)j . Then C = ⟨C0, . . . , Cn−1⟩ is attuned to κ and
E(C) ⊂

∩
i E(C(i)) ⊂

∩
i U(i). Thus we have E(C)∩Y ⊂

∩
i φ

←[B(i, ki)] =
φ←[∩

i B(i, ki)
]
. Since E(C)∩Y is κ-stationary and hence non-empty as we

have noted above,
∩

i B(i, ki) is a singleton. This means that φ ¹ E(C) ∩ Y
is constant.

In case the tuple κ is strictly increasing, we have

Corollary 3.8. If κ is a strictly increasing n-tuple and φ : Y → R is a
continuous function defined on a κ-stationary set Y , then there is an s ∈ ∇κ
so that φ is constant on the final segment (s, κ) ∩ Y of Y .

As Proposition 2.3 (4) shows, the essential part of κ-stationary set lies in
its intersection with ∇κ . The above set E(C) also lies in ∇κ . In particular,
if κ is strictly increasing, E(C) is a final segment itself and its complement is
seen to be small (i.e., related to smaller cardinals). If κi = κi+1 for some i <
n , however, the complement is not small enough and we must partition

∏
κ .

The partition is suggested by the following two examples. We will develop the
idea of partitioning in the next section. (The idea of partitioning ωn

1 appears
in [9], which also contains the equivalence of “inductively” stationary and
∇-type stationary for κ = ⟨ω1, . . . , ω1⟩).

Example 3.9. Let X = A0 × A1 , where each Ai is stationary in ω1 and
A0 ∩ A1 = {ξ + 1 : ξ ∈ ω1} , call it N . Let φ̂ : N → R have uncountable
range. Define φ : X → R by cases: φ(x0, x1) = 0 if x0 < x1 ; φ(x0, x1) = 1 if
x0 > x1 ; φ(x0, x1) = φ̂(ξ + 1) if x0 = x1 = ξ + 1. Now φ is continuous, but
is not constant on any final segment. That is, the conclusion of Corollary 3.8
fails for φ . Theorem 4.2 will give more information on this; we must be able
to discard the diagonal from a final segment and be satisfied with a finite
range.

Here is a space on which every real-valued continuous function is constant
on a final segment. The technique of applying the Pressing Down Lemma
on a subset of our space to obtain a a final segment of the whole space will
reappear in Lemma 4.4.
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Example 3.10. Let κ = ⟨ω1, ω1⟩ . Let X =
∏

κ = ω1 × ω1 . Let φ : X → R
be continuous. Define δ : ω1 → X by δ(ξ) = ⟨ξ, ξ⟩ . To prove that φ is
constant on a final segment of X , it suffices (by the proof of Theorem 3.7)
to assume that U is open in X and δ←[U ] is stationary, and then show that
U contains a final segment (s, κ) of X .

For each ξ such that δ(ξ) ∈ U , define f(ξ) < ξ so that ((f(ξ), ξ] ×
(f(ξ), ξ]) ⊂ U . By the Pressing Down Lemma, there is ζ so that f(ξ) = ζ
for a stationary set of ξ ’s. Now U contains the final segment (δ(ζ), κ).

4 Finite Range

Throughout this section, we fix α , an n-tuple of ordinals of uncountable
cofinality. For each i < n , let Ai be a stationary subset of αi , and define
the n-tuple κ via κi = cf αi . We fix the space X =

∏
i<n Ai .

The next notion “small” includes not only sets bounded in (at least) one
coordinate, but also sets like the diagonal in Example 3.9.

Definition 4.1. Let X ⊂
∏

α (=
∏

i<n αi ). We say that a clopen subset
V of X is bounded if V ⊂

∏
β for some n-tuple β ≺ α (i.e., β ≤ α but

β ̸= α). Moreover V is small if V is represented as the union of a locally
finite family of bounded clopen subsets of X .

Note that when n = 1, the complement of a small set contains a final
segment. So the next theorem is the promised generalization. We devote this
section to its proof.

Theorem 4.2. Let X =
∏

i<n Ai , where each Ai is stationary. Let φ :
X → R be continuous. Then there is a small clopen subset V of X such
that φ ¹ (X \ V ) has finite range.

The strategy of the proof is as follows. After more notation, we partition
the space X into a small clopen subset V ∗ and finitely many subspaces Xθ ,
θ ∈ Θ, and classify these subspaces. A first approximation to the desired
small set V is V ∗ together with the subspaces of Type 1. We prove that φ
is constant on “almost all” of each subspace of Type 2. Finally, we define V
and verify the conclusion of our theorem.

Let us establish more notation, also fixed throughout this section. For
each i , let Mi : cf αi = κi → αi be a strictly increasing continuous function
whose range is cofinal in αi . We call Mi normal functions. For each i < n , let
µi : αi → κi be the function defined by µi(γ) = min

{
β < κi : γ ≤ Mi(β)

}
.

Observe that µi almost is an inverse to Mi . In particular, µi

(
Mi(ξ)

)
=

ξ and γ ≤ Mi

(
µi(γ)

)
always hold, and γ = Mi

(
µi(γ)

)
holds whenever

10



µi(γ) ∈ Lim κi. Note that each µi is continuous. Therefore the product map
µ :

∏
α →

∏
κ defined by µ(x)i = µi(xi) is continuous.

For each i < n , set κ−
i = sup{κi′ : κi′ < κi} (by convention, sup ∅ = 0).

Then V ∗ = {x ∈ X : (∃i < n)(µ(x)i ≤ κ−
i )} is a small clopen set. We

consider the case where Ai = (κ−
i , κi) for each i < n to be very important,

and in this case we write Σ in place of X . In symbols,

Σ = {x ∈
∏

α : (∀i < n)(κ−
i < µ(x)i < κi)}.

The simplest case for general n is where αi = κi , the κi ’s are strictly in-
creasing, and µ is an identity function. In this case, Σ ⊂ ∇κ . In the general
case, it helps to discard V ∗ , or, equivalently, to work within Σ.

Let Θ be the family of functions θ from n onto some mθ , (necessarily
mθ ≤ n), which additionally satisfy

if κi < κi′ , then θ(i) < θ(i′).

We say that θ is coarser than θ′ , or θ′ is finer than θ , if θ(i) < θ(i′) implies
that θ′(i) < θ′(i′).

For example, when all the κ ’s are equal, then the constant 0 function is
the coarsest θ , the permutations are the finest θ ’s. At the other extreme,
if the κi ’s are distinct, then Θ has only one element: the permutation of n
which arranges the κi ’s in increasing order.

Now we can define the partition. For θ ∈ Θ, let

Xθ = {x ∈ X \ V ∗ : θ(i) < θ(i′) ⇐⇒ µ(x)i < µ(x)i′}.

Observe that X \ V ∗ =
∪
{Xθ : θ ∈ Θ} .

Next, we define the mθ -tuple κθ by κθ
θ(i) = κi . (So κθ is formed from κ

by possibly identifying some equal coordinates.) And we define, for x ∈ X
and j < mθ ,

µ−
θ (x)j = min{µ(x)i : θ(i) = j} and µ+

θ (x)j = max{µ(x)i : θ(i) = j}.

Then the maps µ−
θ , µ+

θ : X →
∏

κθ are continuous. By the definition, these
maps coincide on Xθ and give us a map µθ : Xθ → ∇κθ .

The next lemma basically repeats Theorems 3.5 with more notation and
a stronger conclusion. The prototype is Example 3.10 above. Note that it is
true for all X ⊂

∏
α , not just those of the form

∏
A . We need the following

notation to express this stronger conclusion in a general setting.

Definition 4.3. For C , a mθ -tuple of cub sets attuned to κθ , let Eθ(C) be
the set of x ∈ X such that there is c ∈

∏
C satisfying

c0 < µ−
θ (x)0 ≤ µ+

θ (x)0 < c1 < · · · < cmθ−1 < µ−
θ (x)mθ−1.

11



In this case we say that x is θ -entwined with c . Notice that Eθ(C) ⊂
Σ ∩ X because C is attuned. Observe that Eθ(D) ⊂ Eθ(C) if Dj ⊂ Cj for
all j < mθ . Note that the set of x ∈ X which are θ -entwined with a specific
c ∈

∏
C is an open subset of X ; hence Eθ(C) is open in X . If X = Σ, then

Eθ(C) is open in
∏

α .

Lemma 4.4. Let U be an open subset of X such that µθ[U ∩ Xθ] is a κθ -
stationary subset of ∇κθ . Then there is an attuned mθ -tuple C of cub sets
so that Eθ(C) is contained in U .

Proof. Let Y be the set of elements y of µθ[U ∩ Xθ] such that every co-
ordinate yj is a limit ordinal. By Proposition 2.3, Y is κθ -stationary. Be-
cause each yj is limit, there is a unique ỹ ∈ Xθ such that µθ(ỹ) = y .
Choose b(ỹ) < ỹ so that (b(ỹ), ỹ] ∩ X ⊂ U . Define f(y) ∈ ∇κθ via
f(y)j = µ+

θ

(
b(ỹ)

)
j
. Because each yj is a limit, f(y)j < yj . In other words,

f(y) < y and f is regressive.
Now we follow the proof of Theorem 3.5 closely. We point out only

differences. There is a pruned stationary subset Y ′ of Y so that f restricted
to Y ′ is a stem function. Find an attuned C to satisfy (1) and (2). Let
x be an arbitrary element of Eθ(C). Define yj to be the least element of

π
⟨y0,...,yj−1⟩
j [Y ′] greater than µ+

θ (x)j . Verify that f(y)j < µ−
θ (x)j ≤ µ+

θ (x)j <
yj for each j < mθ , which yields b(ỹ) < xi < ỹi for all i < n . We have
verified that x ∈ (b(ỹ), ỹ] ⊂ U , as required.

And this implies, as before (see Theorem 3.7),

Lemma 4.5. Let θ ∈ Θ satisfy µθ[Xθ] is κθ -stationary, and let ψ : X → R
be continuous. Then ψ is constant on Eθ(C) for some attuned mθ -tuple C
of cub sets.

Now we return to the proof of Theorem 4.2.
For a carefully chosen C , φ will be constant on Eθ(C). However, we

cannot ensure that Xθ \Eθ(C) is small. So we introduce a slightly larger set.

Definition 4.6. Let Eθ(C) be the set of x ∈ X such that there is c ∈
∏

C
satisfying

c0 < µ−
θ (x)0 ≤ µ+

θ (x)0 ≤ c1 < · · · ≤ cmθ−1 < µ−
θ (x)mθ−1.

We say that x is weakly θ -entwined with c .

Notice that Eθ(C) ⊂ Σ∩X because C is attuned. Observe that Eθ(D) ⊂
Eθ(C) if Dj ⊂ Cj for all j < mθ . Note that the set of x ∈ X which are

12



θ -entwined with a specific c ∈
∏

C is an open subset of X ; hence Eθ(C) is
open in X . If X = Σ, then Eθ(C) is open in

∏
α .

Let ζ be the coarsest element of Θ; in other words, κζ lists the coor-
dinates of κ in strictly increasing order. For example, when all the κi ’s
are equal, then ζ is constant 0 function and κζ is a 1-tuple. At the other
extreme, if the κi ’s are distinct, then ζ is the unique element of Θ.

For ℓ < mζ , let Sℓ be the collection of s ⊂ ζ←[{ℓ}] such that
∩

i∈s µi[Ai]

is not stationary in κζ
ℓ . Let S =

∪
ℓ Sℓ . We now classify the elements of the

partition.

Definition 4.7. We say that θ is Type 1 if θ←[{j}] ∈ S for some j < mθ .
We say that θ is Type 2 otherwise.

Since θ corresponds to subspace Xθ in a unique way, we can say Xθ is
Type 1 or 2 when θ is Type 1 or 2, respectively.

Note that by Corollary 2.5, µθ[Xθ] is κθ -stationary iff θ is Type 2. If θ′

is coarser than θ and θ is Type 1, then θ′ is Type 1.
The next lemma is where we use that X has the form

∏
i<n Ai .

Lemma 4.8. Let D = ⟨D0, . . . , Dmθ−1⟩ be a κθ -attuned tuple of cub sets
which additionally satisfies: for all i < n, Dθ(i) ⊂ M←

i [Lim Ai]. Then

Eθ(D) ⊂ ClX
(
Eθ(D)

)
.

Proof. Take y ∈ Eθ(D) arbitrarily and suppose that y is weakly θ -entwined
with c . Let

H = {i < n : θ(i) < mθ − 1 and µi(yi) = cθ(i)+1}

We claim that if i ∈ H , then κθ
θ(i) = κθ

θ(i)+1 . Indeed, if i ∈ H and κθ
θ(i) <

κθ
θ(i)+1 , then cθ(i)+1 ∈ Dθ(i)+1 ⊂ (κθ

θ(i), κ
θ
θ(i)+1) and cθ(i)+1 = µi(yi) < κθ

θ(i) ,

which is a contradiction. Thus we have κθ
θ(i) = κθ

θ(i)+1 . Since µi(yi) =

cθ(i)+1 ∈ Dθ(i)+1 = Dθ(i) ⊂ M←
i [Lim Ai] , we have yi = Mi(µi(yi)) ∈ Lim Ai .

Let (z, y] be an arbitrary neighborhood of y . We seek x ∈ (z, y] ∩ Eθ(D).
If i /∈ H , let xi = yi . If i ∈ H , choose xi ∈ Ai so that max{zi,Mi(cθ(i))} <
xi < yi . It is possible because Mi(cθ(i)) < Mi(µi(yi)) = yi . Now it is clear
that x ∈ (z, y] ∩ X , and routine to verify that x ∈ Eθ(D).

By Lemmas 4.5 and 4.8, we have

Lemma 4.9. Let θ be Type 2, and φ : X → R be continuous. Then φ is
constant on Eθ(C) for some C .

13



For each θ of Type 2, let us fix Cθ so that φ is constant on Eθ(C
θ). Let

E =
∪
{Eθ(C

θ) : θ is Type 2} . Then φ ¹ E has finite range. We must show
that X \ E is contained in a small clopen set.

Fix a κζ -attuned tuple ⟨G0, . . . , Gmζ−1⟩ of cub sets satisfying

(1) if θ is Type 2 and κθ
j = κζ

ℓ , then Gℓ ⊂ Cθ
j ,

(2) if s ∈ Sℓ , then Gℓ ∩
∩

i∈s µi[Ai] = ∅ .

Let V † = {x ∈ X : (∃i < n)(µ(x)i ≤ min Gζ(i))} . Then V † is a small clopen
set and V ∗ ⊂ V † .

For each s ∈ S , we will define a small clopen set Vs . Let s ∈ Sℓ . For
γ ∈ Gℓ , let γ+ be the least element of Gℓ greater than γ . If ξ /∈ Gℓ , then
either ξ < min Gℓ , or there is γ ∈ Gℓ such that γ < ξ < γ+ . Let

Vγ ={x ∈ X : γ < µ(x)i ≤ γ+ for all i ∈ s},

Vs =
∪

{Vγ : γ ∈ Gℓ}.

Lemma 4.10. For each s ∈ S , Vs is a small clopen set.

Proof. Fix s ∈ Sℓ . Observe that each Vγ is clopen. We must show that
{Vγ : γ ∈ Gℓ} is discrete. Towards that end, let x ∈ X be arbitrary. First
consider the case that µ(x)i /∈ Gℓ for some i ∈ s . If µ(x)i < min Gℓ , then
the clopen set V † ∋ x misses Vs . Otherwise, for some γ ∈ Gℓ , the clopen
set {y ∈ X : γ < µ(y)i ≤ γ+} ∋ x meets only Vγ .

Next consider the case that µ(x)i ∈ Gℓ for all i ∈ s . If µ(x)i = µ(x)i′ for
all i, i′ ∈ s , then µ(x)i ∈ Gℓ∩

∩
i∈s µi[Ai] = ∅ . So let µ(x)i < µ(x)i′ for some

i, i′ ∈ s . Then the clopen set {y ∈ X : µ(x)i < µ(y)i′ and µ(y)i ≤ µ(x)i}
contains x and misses Vs .

Set V = V † ∪
∪

s∈S Vs . We claim that V satisfies the conclusion of
Thorem 4.2. So we fix an arbitrary x ∈ X and prove that x ∈ V ∪ E . We
assume that x /∈ V ∗ . Define η ∈ Θ so that (informally) η(i) < η(i′) iff G
separates µ(x)i and µ(x)i′ . Formally, η(i) < η(i′) iff µ(x)i ≤ γ < µ(x)i′

for some γ ∈ Gζ(i) . If x ∈ Xθ , then η is coarser than (possibly, but not
necessarily, equal to) θ .

Lemma 4.11. If η is Type 1, then x ∈ V . If η is Type 2 and x /∈ V † , then
x ∈ E .

Proof. Assume that η is Type 1. By Definition 4.7, there are j , s , and ℓ so
that η←[{j}] = s ∈ Sℓ . From the definition of η , there is γ′ ∈ Gℓ so that
min{γ ∈ Gℓ : µ(x)i ≤ γ} are equal to γ′ for all i ∈ s . The assumption that
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γ′ ∈ Lim Gℓ together with (2) of the definition of Gℓ leads to a contradiction,
so γ′ = γ+ for some γ ∈ Gℓ . Then x ∈ Vγ ⊂ Vs ⊂ V .

Assume that η is Type 2 and x /∈ V † . We will show that x ∈ Eη(C
η).

We define c ∈
∏

Cη by cases. If j = 0 or if κη
j−1 < κη

j , then set cj = min Cη
j .

In this case, cj < µ−
η (x)j because x /∈ V † . If κη

j−1 = κη
j , let cj be the least

element of Cη
j greater than or equal to µ+

η (x)j−1 . In this case, cj < µ−
η (x)j ,

because by definition of η , there is γ ∈ Gℓ such that µ+
η (x)j−1 ≤ γ < µ−

η (x)j ,
and Gℓ ⊂ Cη

j . In both cases, µ+
η (x)j−1 ≤ cj is obvious. So x is weakly η -

entwined with c , and x ∈ Eη(C
η) ⊂ E .

Thus ends our proof of Theorem 4.2.
To end this section, we calculate the upper bound of

∣∣φ ¹ (X \ V )
∣∣ in

Theorem 4.2. For that we need to find a standard form of sets Eη(C
η) on

which φ ¹ (X \ V ) is constant.
Take any θ ∈ Θ. Since ζ is coarser than θ , there is, for each j < mθ ,

a unique ℓ < mζ such that κθ
j = κζ

ℓ and hence, we can define a κθ -attuned
tuple Dθ by Dθ

j = Gℓ .

Lemma 4.12. If η is coarser than θ , then Eθ(D
θ) ⊂ Eη(C

η).

Proof. For each k < mη , let j(k) = min θ
[
η←[{k}]

]
. Note that κθ

j(k) = κη
k .

Let x be weakly θ -entwined with d ∈
∏

Dθ and define ck = dj(k) for

k < mη . Since ζ is coarser than η , there is a unique ℓ < mζ so that κζ
ℓ = κη

k .
This implies ck = dj(k) ∈ Dθ

j(k) = Gℓ ⊂ Cη
k , and c = ⟨c0, . . . , cmη−1⟩ ∈

∏
Cη .

Let us see that x is weakly η -entwined with c . Let k < mη , η(i) = k
and θ(i) = j . Then j ∈ θ

[
η←[{k}]

]
implies j ≥ j(k), which further implies

ck = dj(k) ≤ dj < µ−
θ (x)j ≤ µ(x)i , and hence ck < µ−

η (x)k . When k <
mη − 1, observe that j + 1 ≤ j(k + 1) because η is coarser than θ . Then
µ(x)i ≤ µ+

θ (x)j ≤ dj+1 ≤ dj(k+1) = ck+1 , and hence µ+
η (x)k ≤ ck+1 . This

shows x ∈ Eη(C
η).

Corollary 4.13. Under the assumptions of Theorem 4.2, there is a small
clopen set V of X such that∣∣φ ¹ (X \ V )

∣∣ ≤ ∏
ℓ<mζ

(∣∣ζ←[{ℓ}]
∣∣!) ≤ n! .

Proof. By the proof of Lemma 4.11, the values of φ ¹ (X \ V ) are given by
constant values φ

[
Eη(C

η)
]
, where η is determined by x /∈ V † . Let θ(η) ∈ Θ

be a permutation finer than such η . Then, by Lemma 4.12, φ
[
Eη (Cη)

]
=

φ
[
Eθ(η)

(
Dθ(η)

)]
. Since there are at most

∏
ℓ<mζ

(∣∣ζ←[{ℓ}]
∣∣!)-many permu-

tations in Θ, we have
∣∣φ ¹ (X \ V )

∣∣ ≤ ∏
ℓ<mζ

(∣∣ζ←[{ℓ}]
∣∣!) ≤ n! .
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Let {Ai : i < n} be a pairwise disjoint collection of stationary sets in ω1 .
Then X =

∏
i<n Ai is the free union of Xθ ’s, where θ is a permutation on

n . So we can define a continuous map φ on X such that
∣∣φ ¹ (X \ V )

∣∣ = n!
for each small clopen set V .

5 Main Theorem

In this section, we state and prove

Theorem 5.1 (Main). The product of finitely many subspaces of ordinals
is strongly zero-dimensional. In other words, if Ai ⊂ αi for all i < n, then
X =

∏
i<n Ai is strongly zero-dimensional.

Proof. Here is our induction hypothesis. For a tuple α = ⟨α0, . . . , αn−1⟩ of
ordinals, let SZD(α) abbreviate “if Ai ⊂ αi for all i < n , then X =

∏
i<n Ai

is strongly zero-dimensional”.
We will prove SZD(α) for all finite-tuples of ordinals by induction on

the order ≺ .
Assuming SZD(β) for all β ≺ α , we will show SZD(α). Let Z0 and Z1

be disjoint zero-sets of X . By [6, 1.15], we may assume that Z0 = h←[
{0}

]
and Z1 = h←[

{1}
]

for some continuous function h : X → [0, 1].

Case 1. For some i < n , αi has the form β + 2, or cf αi = ω , or cf αi > ω
and Ai is not stationary in αi .

We shall show that X is the free sum of spaces known to be strongly
zero-dimensional by induction hypothesis, and hence is itself strongly zero-
dimensional.

Indeed, for notational convenience, we may assume i = 0. Let Y =∏
1≤i<n Ai .
The first case (α0 = β+2): We have X = (A0∩(β+1))×Y

⊕
(A0∩{β+

1})× Y and (A0 ∩{β + 1})× Y is homeomorphic to {0}× Y if β + 1 ∈ A0 .
The second case (cf α0 = ω ): Fix a normal function M : ω → α0 . Then

we have X =
⊕

n∈ω(A0∩(M(n−1),M(n)])×Y , where M(−1) is considered
as −1.

The third case (cf α0 > ω and A is not stationary in α0 ): Since A0 is not
stationary in α0 and cf α0 > ω , one can fix a normal function M : cf α0 → α0

such that ran M ∩A0 = ∅ . Then X =
⊕

γ<cf α0
(A0∩ (M(γ−1),M(γ)])×Y .

Case 2. For some i < n , αi has the form λ + 1, where λ is a limit ordinal.

For notational convenience, we may assume that i = 0. Moreover by
induction hypothesis, we may assume that λ ∈ A0 . Set Y =

∏
1≤i<n Ai and

X1 = {λ} × Y . Set h1 = h ¹ X1 .
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By the induction hypothesis, there is a clopen set W of Y so that
h←

1

[
[0, 1/3]

]
⊆ {λ} × W and h←

1

[
[2/3, 1]

]
⊂ {λ} × (Y \ W ).

Let X2 = (A0 \ {λ}) × W and h2 = h ¹ X2 . By induction hypothesis,
there is a clopen subset V2 of X2 such that h←

2

[
[0, 5/6]

]
⊂ V2 and h←

2 [{1}] ⊂
X2 \V2 . Analogously, by letting X3 = (A0 \{λ})×(Y \W ) and h3 = h ¹ X3 ,
one can find a clopen set V3 of X3 such that h←

3 [{0}] ⊂ V3 and h←
3 [{1}] ⊂

X3 \V3 . Then V = ({λ}×W )∪V2∪V3 obviously contains Z0 and is disjoint
from Z1 .

To show that V is open, let x ∈ V . Since V2 and V3 are open in X ,
it suffices to consider the case that x = ⟨λ, y⟩ ∈ {λ} × W . It follows from
h(x) < 2/3 < 5/6 that there are α < λ and a neighborhood U of y such
that U ⊂ W and ((α, λ]∩A0)×U ⊂ h←[

[0, 2/3)
]
. Then it is straightforward

to show that
(
α, λ] ∩ A0

)
× U ⊂ V , thus V is open in X . Similarly we can

show that X \ V is open in X , and hence V is clopen.

Case 3. For all i < n , cf αi > ω and Ai is stationary in αi .

We apply Theorem 4.2 to the function h and obtain a small clopen set
V so that h ¹ (X \ V ) has finite range. Note that W ∗ = Z0 ∩ (X \ V ) is
clopen in X .

By the definition of small, V =
∪
{Vλ : λ ∈ Λ} , where the induction

hypothesis applies to each Vλ . That is, for each λ , there is W 0
λ , clopen

in Vλ (hence clopen in X ) such that Z0 ∩ Vλ ⊂ W 0
λ ⊂ Vλ \ Z1 . Because

{Vλ : λ ∈ Λ} is locally finite in X , W 0 =
∪
{W 0

λ : λ ∈ Λ} is clopen in X .
Then W ∗ ∪ W 0 is the desired clopen set separating Z0 and Z1 .

6 Subspaces of the Product Space (ω + 1) × c

Which Are Not Strongly Zero-Dimensional

We begin by considering a MAD family R of subsets of ω . Here R is called
MAD (=maximal almost disjoint) if it is almost-disjoint ( |s ∩ s′| < ω for
distinct s, s′ ∈ R), and not contained properly in any other almost-disjoint
family. For such R , let Ψ(R) denote the space which is defined on the set
ω ∪ R and has the so-called Ψ -space topology, [6, 5.I], [3, 3.6.I]. That is, a
subset U of Ψ(R) is open iff

∀s ∈ R (s ∈ U ⇒ |s \ U | < ω).

Let L = {λ ∈ c : λ is a limit} , and let S = c\L . Note that |L| = |S| = c .
Since |R| × c ≈ c , the unindexed family can be indexed R = {sα : α ∈ S}
in such a way that, for each s ∈ R , |{α ∈ S : s = sα}| = c . With R thus
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indexed, we consider the subspace

K(R) = ω × L ∪
∪
α∈S

((
sα × {α}

)
∪

{
⟨ω, α⟩

})
of the product space (ω + 1) × c .

Theorem 6.1. For every MAD family R, βΨ(R) is embedded in K(R)∗ =
βK(R) \ K(R).

As noted in [11, Concluding remarks], where the symbol N ∪R denotes
our space Ψ(R), every first-countable separable compact space as well as
the space ω1 + 1 is homeomorphic to Ψ(R)∗ for some R . (Let us take this
opportunity to point out that extensions of this result, which were subse-
quently obtained by a few authors, remain mostly unpublished, and that
some of their zero-dimensional versions are found in [1]. However, [1] is writ-
ten in Boolean algebra terms, and, naturally, concerned with Banaschewski
compactification (i.e., maximal zero-dimensional compactification) of Ψ(R)
instead of [11]’s Stone-Čech one. Hence results of [1] and [11] overlap only
in the case that Ψ(R) is strongly zero-dimensional, or, equivalently, Ψ(R)∗

is zero-dimensional, see [11, Lemma 1.1]. See also the interesting paper [2].)
Therefore

Corollary 6.2. Every first-countable, separable, compact space is embedded
in K(R)∗ for some R.

Corollary 6.3. The space ω1 + 1 is embedded in K(R)∗ for some R.

Throughout the rest of this section we will fix R a MAD family indexed
by S in the special way described above. We will often write K or Ψ in
place of K(R) or Ψ(R), respectively, for simplicity’s sake.

For the proof of Theorem 6.1, we define in the space K = K(R)

Hα = (ω + 1) × (α, c) ∩ K, α < c

and in the space βK

Y =
∩
α<c

Clβ Hα , Y ′ = Y ∩ Clβ [{ω} × S] .

(Here and below Clβ denotes the closure in a Stone-Čech compactification.)
Obviously each Hα is a clopen subset of K . Being the intersection of compact
sets, Y and Y ′ are compact subspaces of K∗ .

The following well-known lemma, which is a consequence of the Pressing
Down Lemma, is central to our argument.
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Lemma 6.4. Let L ⊆ A ⊆ c. Then every continuous map f ∈ C(A) is
constant on A ∩ (λ, c) for some λ < c. Hence A∗ is a singleton.

Now Theorem 6.1 follows from

Proposition 6.5. Y and βΨ are homeomorphic.

We present two proofs of this fact. The first one gives a direct construction
of a homeomorphism Y → βΨ , while the alternate one shows that C(Y ) and
C(βΨ) are isomorphic.

Proof. In the sequel, for a Tychonoff space X , we will identify points of βX
with z -ultrafilters on X . Thus, for a zero-set Z of X and p ∈ βX , Z ∈ p
is equivalent to p ∈ Clβ Z , that is, {p} =

∩
Z∈p Clβ Z (cf. [6, 6.5(c)]). Note

that Hα ∈ u for every α and u ∈ Y .
First let π : K → Ψ be the natural continuous map defined by

π (⟨n, φ⟩) = n

π (⟨ω, α⟩) = sα .

Let π̃ : βK → βΨ be the unique continuous extension of π .
It suffices to see that π̃[Y ] = βΨ and that π̃ ¹ Y is one-to-one.
To see the former, take any point p ∈ βΨ \ ω . For any Z ∈ p , π←[Z] is

a zero set of K and Z meets R . By the careful indexing of points of R ,
we have that π←[Z] ∩ Hα is a non-empty zero-set of K for each α < c . Let
Zα denote this set. Since {Zα : α, Z} has the finite intersection property,
it is contained in a z -ultrafilter u . Obviously u belongs to Y . Since u ∈
Clβ Zα ⊆ Clβ π←[Z] , we have that π̃(u) ∈ π̃ [Clβ π←[Z]] = Clβ Z for any Z
and hence that π̃(u) = p .

Let us show that π̃ ¹ Y is one-to-one. Suppose that there are points
u0 ̸= u1 in Y so that π̃(u0) = π̃(u1) = p . Since u0 ̸= u1 , there are zero-sets
Zi ∈ ui for i = 0, 1 such that Z0 ∩ Z1 = ∅ . Then there is a continuous map
f : K → [0, 1] in which f← [{i}] = Zi .

By Lemma 6.4, for each n , there is an ordinal λn < c in which f ¹
{n} × (λn, c) ∩ K is constant. Let λ = sup{λn : n} . Then we have that
f ¹ {n} × (λ, c) ∩ K is constant for each n < ω .

Let Z ′
i = Zi ∩ Hλ .

We claim that π[Z ′
i] is a zero-set of Ψ . In fact, we can define a map

F : Ψ → [0, 1] by F (n) = the constant value of f ¹ {n} × (λ, c) ∩ K , and
F (s) = f (⟨ω, α⟩) when s = sα and α > λ . It is clear that F is well-defined
and continuous. And it is not too difficult either to see that π[Z ′

i] = F← [{i}] .
Now we are almost done. Since Z ′

i ∈ ui , we have that ui ∈ Clβ Z ′
i , that

p = π̃(ui) ∈ π̃[Clβ Z ′
i] = Clβ π[Z ′

i] , and hence that π[Z ′
i] ∈ p . Obviously p
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does not belong to ω , and π[Z ′
0]∩π[Z ′

1] ̸= ∅ . So take s from this intersection
and find points ⟨ω, a⟩ ∈ Z ′

0 and ⟨ω, b⟩ ∈ Z ′
1 in which s = sa = sb . Let

s = {kn : n < ω} . Then since a > λ and b > λ , f (⟨kn, a⟩) = f (⟨kn, b⟩) holds
for each n . However, we know that the sequences {⟨kn, a⟩}n and {⟨kn, b⟩}n

converge to ⟨ω, a⟩ and ⟨ω, b⟩ , respectively. Here is a contradiction, because
all this implies that 0 = f (⟨ω, a⟩) = f (⟨ω, b⟩) = 1.

Alternate Proof. For this approach, we need two results from the theory of
rings of continuous functions. First, C∗(X) ∼= C(βX); in words, the ring of
bounded, continuous real-valued functions on a space X is isomorphic to the
ring of continuous real-valued functions on the Stone-Čech compactification
of X [6, 6.6(b)]. Second, compact spaces X and Y are homeomorphic iff
C(X) and C(Y ) are isomorphic [6, 4.9].

Set Ω = (ω × c) ∩ K , and Ωn = {ξ ∈ c : ⟨n, ξ⟩ ∈ Ω} . Our first goal is to
show that C(βΨ) is isomorphic to Q , the subring of C∗(K) of functions f
for which there is f ◦ ∈ C∗(ω) satisfying

(1) for all n ∈ ω and all ξ ∈ Ωn f(n, ξ) = f ◦(n).

(2) for all s ∈ R lim{f◦(n) : n ∈ s} exists.

We know that f 7→ f ¹ Ψ is an isomorphism of C(βΨ) onto C∗(Ψ). When
we further restrict to ω , the map is injective (because ω is dense in Ψ ) but
not surjective. It is routine to check that the image of f 7→ f ¹ ω is

Q′ = {f ∈ C∗(ω) : (∀s ∈ R) lim{f(n) : n ∈ s} exists} .

Moreover, it is obvious that f 7→ f ◦ is an isomorphism of Q onto Q′ .
Because of condition (2), each f ∈ Q can by extended to f ′ ∈ C∗(K)

and then further to f ′′ ∈ C(βK). Clearly, η : Q → C(Y ) defined by
η(f) = f ′′ ¹ Y is a homomorphism; we must show that η is injective and
surjective.

Notice that for each n ∈ ω , Ωn is clopen in K . Hence β(Ωn) ∼= Clβ Ωn ;
so Clβ Ωn \ Ωn is a singleton {yn} . Because Ωn meets Hα for all α < c ,
this yn belongs to Y . Clearly, η(f)(yn) = f ′′(yn) = f◦(n) for all n ∈ ω and
f ∈ Q . Hence η is injective.

Fix g ∈ C(Y ). Because Y is closed in βK , normal, we can apply Tietze’s
Extension Theorem to extend g to g♭ ∈ C(βK). By Lemma 6.4, for each
n ∈ ω , there are tn and λn satisfying g♭ (⟨n, ξ⟩) = tn for all ξ ∈ Ωn ∩ (λn, c).
Set λ = sup{λn : n ∈ ω} . By the special indexing, for each s ∈ R , there is
δ > λ with sδ = s . By continuity, lim{tn : n ∈ s} = g♭ (⟨ω, δ⟩). Therefore
the function n 7→ tn is f ◦ for some f ∈ Q , and g♭ ¹ (Ω∩Hλ) = f ¹ (Ω∩Hλ).
Because Ω ∩Hλ is dense in Clβ Hλ , we conclude that f ′′ ¹ Y = g ; that is, η
is surjective.
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From the first proof, we see

Corollary 6.6. Y ′ is homeomorphic to Ψ ∗ .

It appears that Y ′ is the main part of the space βK and, accordingly, of
K . That is,

Proposition 6.7. Any compact subspace of βK is strongly zero-dimensional
if it is disjoint from Y ′ .

Proof. Let us take any compact subspace E ⊆ βK \ Y ′ . Since E and Y ′

are disjoint closed sets in a compact space βK , there is a continuous map
f : βK → [0, 1] so that Y ′ = f← [{0}] and E = f← [{1}] . Similarly to
the later part of the proof of Proposition 6.5, there is an ordinal λ in which
f ¹ {n} × (λ, c) ∩ K is constant = tn for each n ∈ ω .

We claim that limn→∞ tn = 0. Suppose to the contrary and choose its
subsequence {tin}n which converges to t ̸= 0. By the maximality of the
MAD family R , we can find s = {kn}n ∈ R which contains infinitely many
in . Let A = {α : s = sα} . Then A is cofinal in c . For each α ∈ A ,
we have that the sequence ⟨k, α⟩ , k ∈ sα , converges to ⟨ω, α⟩ , and hence
that f (⟨ω, α⟩) = t if α > λ . Therefore f should send the subset C =
{⟨ω, α⟩ : α ∈ A and λ < α} of K to t ̸= 0, and this contradicts with the
definition of Y ′ , because C meets Hα for each α < c .

Since limn→∞ tn = 0, we have that f (⟨ω, α⟩) = 0 for every α > λ , and
that there is an integer N such that tn < 1/3 for n > N .

Since K is dense in βK , E is contained in Clβ [f←(1/2, 1] ∩ K] , and the
latter set f←(1/2, 1]∩K is contained in the union of (ω +1)× [0, λ+1] and∪

n<N{n}× [0, c). Let U = (ω+1)× [0, λ+1]∩K and Gn = {n}× [0, c)∩K .
These are clopen sets of K and C∗ -embedded in it. Thus each of Clβ U and
Clβ Gn is equivalent, as an extention, to the Stone-Čech compactification of
U and Gn , respectively.

Since U consists of less-than-c many points, it has no continuous map
onto [0, 1]. This means that 0 = dim U = dim βU = dim Clβ U . And,
on the other hand, it is well-known that each Gn is normal and strongly
zero-dimensional, and hence that dim Clβ Gn = 0. Therefore E ⊆ Clβ U ∪∪

n<N Clβ Gn is strongly zero-dimensional.

We note the following Dowker-Morita’s Generalized Sum Theorem (see,
e.g., [3, Problem 7.4.11]): “Let X be a normal space and M its closed
subspace such that dim M ≤ n . If every closed set F ⊆ X disjoint from M
satisfies dim F ≤ n , then dim X ≤ n .” Then Proposition 6.7 assures us

Proposition 6.8. dim Y ′ = dim βK .
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Now Theorem 6.1, and Propositions 6.5 and 6.8 imply the following, which
establishes what we have intended in this section.

Theorem 6.9. For every non-negative integer n, we can choose R so that
dim βK(R) = n.

As we have pointed out in the last part of the proof of Proposition 6.7,
every space of cardinality < c is strongly zero-dimensional. Hence

Theorem 6.10. c is the minimum cardinal such that (ω + 1) × c is not
hereditarily strongly zero-dimensional.
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