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Abstract. The second author and Smith proved that the prod-
uct of two ordinals is hereditarily countably metacompact [5]. It
is natural to ask whether X × Y is countably metacompact for
every LOTS’ X and Y . We answer the problem negatively, in fact,
for every regular uncountable cardinal κ, we construct a heredi-
tarily paracompact LOTS Lκ such that Lκ × S is not countably
metacompact for any stationary set S in κ. Moreover we will find
a condition on a GO-space X in order that X × κ is countably
metacompact. As a corollary, we see that a subspace X of an ordi-
nal is paracompact iff X × Y is countably metacompact for every
GO-space Y .

A topological space X is said to be countably metacompact if each
countable open cover has a point finite open refinement. It is well-
known that every LOTS is hereditarily countably metacompact. The
second author and Smith proved that the product of two ordinals is
hereditarily countably metacompact [5]. It is natural to ask whether
X × Y is countably metacompact for every LOTS’ X and Y . We
answer the problem negatively, in fact, for every regular uncountable
cardinal κ, we construct a hereditarily paracompact LOTS Lκ such
that Lκ × S is not countably metacompact for any stationary set S in
κ. Moreover we will find a condition on a GO-space X in order that
X×κ is countably metacompact. As a corollary, we see that a subspace
X of an ordinal is paracompact iff X × Y is countably metacompact
for every GO-space Y .

Spaces mean regular topological spaces having at least two points.
Let < be a linear order on a set X. λ(<) denotes the usual order
topology, that is, the topology generated by

{(a,→) : a ∈ X} ∪ {(←, b) : b ∈ X}
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as a subbase, where (a,→) = {x ∈ X : a < x}, (a, b) = {x ∈ X : a <
x < b},..., etc. If necessary, we write <X and (a, b)X instead of < and
(a, b) respectively. A LOTS X means the triple ⟨X,<, λ(<)⟩. LOTS is
an abbreviation of “Linearly Ordered Topological Space”. As usual, we
consider an ordinal α as the set of smaller ordinals and as a LOTS with
the order ∈ (we identify it with <). Similarly a Generalized Ordered
space (GO-space) means the triple ⟨X,<, τ⟩, where τ is a topology on
X with λ(<) ⊂ τ which has a base consisting convex sets. Here recall
that a subset A is convex if (a, b) ⊂ A whenever a, b ∈ A with a < b.

It is well-known that:

• If X = ⟨X,<X , τ⟩ is a GO-space, then there is a compact LOTS
L = ⟨L,<L, λ(<L)⟩ with X ⊂ L and <X=<L�X such that the
compact space ⟨L, λ(<L)⟩ contains ⟨X, τ⟩ as a dense subspace,
where <L�X is the restricted order of <L to X. We say this
situation as “a GO space ⟨X,<X , τ⟩ has a linearly ordered com-
pactification ⟨L,<L, λ(<L)⟩” or more simply “a GO-space X
has a linearly ordered compactification L”.

Let us say that a linearly ordered set X has the Sorgenfrey topology
if at each a ∈ X, {(d, a]X : d ∈ [←, a)X} is a neighborhood base.
Obviously, a linearly ordered set with the Sorgenfrey topology is a
GO-space.

Let C be a subset of a regular uncountable cardinal κ. Define
pC(α) = sup(C ∩ α) for α < κ, Lim(C) = {α < κ : α = pC(α)}
and Succ(C) = C \Lim(C), where for convenience we consider that −1
is the immediate predecessor of the ordinal 0 and sup ∅ = −1. Note
that Lim(C) is the set of all cluster points of C in κ therefore it is
closed unbounded (club) in κ whenever C is unbounded in κ, also note
that Succ(C) is the set of isolated points in the subspace C.

First, we will prove the theorem below.

Theorem 1. Let κ be a regular uncountable cardinal. Then there is
a hereditarily paracompact GO-space Xκ with |Xκ| = 2<κ such that
Xκ×S is not countably metacompact for any stationary subset S of κ.

Proof. Recall that a subset of κ is stationary if it intersects with all
club subsets of κ. Let

L̄ = {u : u is a function on κ into [0, κ]}

be a linearly ordered set with the lexicographic order, that is,

u0 <L̄ u1 ⇔ u0 �µ = u1 �µ and u0(µ) < u1(µ) for some µ < κ,
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where u0, u1 ∈ L̄. For each µ < κ, put

L(µ) = {s : s is a function on µ into κ}.
For each s ∈ L(µ), define s̄ ∈ L̄ by

s̄(ξ) =

{
s(ξ) for each ξ ∈ µ,
κ for each ξ ∈ κ \ µ.

Let X =
∪

µ<κ L(µ) and consider the linear order <X on X such that

s0 <X s1 ⇔ s0 <L̄ s1

for each s0, s1 ∈ X, and equip X with the Sorgenfrey topology. We
will see that Xκ = X is required.

For each s ∈ X, lh(s) denotes the length of s, i.e. lh(s) = µ with
s ∈ L(µ). For each s ∈ X and ν with lh(s) < ν < κ, let

M(s, ν) = {t ∈ L(ν) : t � lh(s) = s},
and M(s) =

∪
ν∈(lh(s),κ)M(s, ν).

It is routine to check that |X| = 2<κ and three claims below hold.

Claim 1. For each s0, s1 ∈ X, s0 <X s1 holds iff one of the following
holds:

• s0 � ξ = s1 � ξ and s0(ξ) < s1(ξ) for some ξ < min{lh(s0), lh(s1)}.
• s0 ∈M(s1).

Claim 2. Let s ∈ X and t ∈M(s, lh(s) + 1). Then, t <X s and

(t, s]X = {s} ∪ {u ∈M(s) : t(lh(s)) < u(lh(s))}.

Claim 3. Let s ∈ X. Then

B(s) = {(t, s]X : t ∈M(s, lh(s) + 1)}
is a neighborhood base of s in X.

Claim 4. X is hereditarily paracompact.

Proof. Assume that a subspace Y of X is not paracompact. Then there
is a closed subspace of Y which is homeomorphic to a stationary set of
a regular uncountable cardinal θ, see [2]. There is an order preserving
or reverse order preserving homeomorphism φ : R → E from some
stationary subset R of θ onto some closed subset E of Y . We will
derive a contradiction.

First assume that φ is reverse order preserving. By stationarity of
R, there is an α ∈ R ∩ Lim(R). Since X has the Sorgenfrey topology,
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Y ∩ (←, φ(α)] is an open neighborhood of φ(α) which is disjoint from
{φ(β) : β ∈ R ∩ α} ⊂ (φ(α),→). This contradicts continuity.

Next assume that φ is order preserving. For each α ∈ R, put

ξα = min{ξ ∈ κ : φ(α)(ξ) ̸= φ(β)(ξ) for some β ∈ R ∩ (α, θ)},

βα = min{β ∈ R ∩ (α, θ) : φ(α)(ξα) ̸= φ(β)(ξα)}.
Because of φ(α) < φ(β) for every β ∈ R ∩ (α, θ), such ξα and βα are
well-defined. Moreover by the minimality of ξα, we see:

• φ(α) � ξα = φ(β) � ξα for every β ∈ R ∩ (α, θ),

• φ(α)(ξα) < φ(βα)(ξα) ≤ κ, therefore
• ξα < lh(φ(α)).

Claim 4-1. For each α, γ ∈ R, α < γ implies ξα ≤ ξγ.

Proof. Let α, γ ∈ R with α < γ. Since γ, βγ ∈ R ∩ (α, θ) and

φ(γ)(ξγ) < φ(βγ)(ξγ), φ(α)(ξγ) is different from either φ(γ)(ξγ) or

φ(βγ)(ξγ). Therefore by the minimality of ξα, we have ξα ≤ ξγ. �
Consider the stationary set R′ = {γ ∈ R : ∀α ∈ R ∩ γ(βα < γ)}.

Take γ ∈ R′ ∩ Lim(R′) and t ∈ M(φ(γ)). Then t <X φ(γ) and U =
(t, φ(γ)] ∩ Y is a neighborhood of φ(γ) in Y . Using the continuity
of φ with γ ∈ Lim(R′), pick α ∈ R′ ∩ γ with φ(α) ∈ U . Noting
ξα ≤ ξγ < lh(φ(γ)) and α < βα < γ, we have:

• φ(α) � ξα = φ(βα) � ξα = φ(γ) � ξα = φ(γ) � ξα = t � ξα,
• φ(α)(ξα) < φ(βα)(ξα) ≤ φ(γ)(ξα) = φ(γ)(ξα) = t(ξα).

Therefore φ(α) <X t, a contradiction. This completes the proof of
Claim 4. �

Let S be a stationary subset of κ, and Z = X × S. Put e(s) =
sup{s(ξ) : ξ < lh(s)} for each s ∈ X, and set

F = {⟨s, α⟩ ∈ Z : e(s) = α⟩}.

Claim 5. F is a discrete closed set in Z.

Proof. Let z = ⟨s, α⟩ ∈ Z. Take t ∈ M(s, lh(s) + 1) with α ≤ t(lh(s)).
Then, V = (t, s]X × (S ∩ [0, α]) is a neighborhood of z in Z with
V ∩ F ⊆ {⟨s, e(s)⟩} because of (t, s]X = {s} ∪ {u ∈ M(s) : t(lh(s)) <
u(lh(s))} ⊆ {s} ∪ {u ∈ X : e(u) > α}. �

Take a pairwise disjoint collection {Sn : n ∈ ω} of stationary subsets
of S, and put Fn = F ∩ (X ×Sn) for each n ∈ ω. Then F = {Fn : n ∈
ω} is a discrete collection of closed sets in Z.

Claim 6. Z is not countably metacompact.
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Proof. We would like to prove that Z is not countably metacompact.
Remark that in a countably metacompact space, every countable dis-
crete collection of closed sets has a point finite open expansion. Let
U = {Un : n ∈ ω} be an open expansion of F in Z, i.e. Un is open
in Z and Fn ⊂ Un for every n ∈ ω. To see that Z is not countably
metacompact, it suffices to show that U is not point finite.

We will define a strictly increasing sequence s = {s(ξ) : ξ < κ}
of ordinals in κ by induction on ξ ∈ κ. Assume that sξ = {s(ζ) :
ζ < ξ} ∈ L(ξ) with ξ < κ is already defined. Pick s(ξ) ∈ κ with
e(sξ) = sup{s(ζ) : ζ < ξ} < s(ξ) such that if 0 < ξ = e(sξ) ∈ Sn, then
M(sξ+1) × (S ∩ (γn(ξ), ξ]) ⊆ Un is satisfied for some γn(ξ) < ξ, where
sξ+1 = {s(ζ) : ζ ≤ ξ}. We can take such s(ξ) and γn(ξ). Actually,
if 0 < ξ = e(sξ) ∈ Sn, then ⟨sξ, ξ⟩ ∈ Fn ⊆ Un, so there are γn(ξ) < ξ
and tξ ∈M(sξ, ξ + 1) with (tξ, sξ]X × (S ∩ (γn(ξ), ξ]) ⊆ Un since B(sξ)
is a neighborhood base at sξ. We obtain a required s(ξ) by taking as
tξ(ξ) < s(ξ).

After finishing induction, we obtain a club set C = {ξ < κ : 0 < ξ =
e(sξ)} of κ. Let n ∈ ω. For each ξ ∈ Sn ∩ C, γn(ξ) < ξ is defined. By
the Pressing Down Lemma (PDL), there are γn < κ and a stationary
subset Tn of Sn ∩C such that γn(ξ) = γn for every ξ ∈ Tn. Take α ∈ S
such that γn < α for all n ∈ ω. For each n ∈ ω, take ξn ∈ Tn such that
α ≤ ξn. And take ξ ∈ κ such that ξn + 1 < ξ for all n ∈ ω.

Let z = ⟨sξ, α⟩. Then, z ∈ Z. Let n ∈ ω. Then, γn(ξn) = γn < α ≤
ξn, so α ∈ S∩(γn(ξn), ξn]. Since sξ ∈M(sξn+1), we have

z ∈M(sξn+1)× (S ∩ (γn(ξn), ξn]) ⊆ Un.

It has been seen z ∈
∩

n∈ω Un, which says that U is not point finite.
Thus Z is not countably metacompact. �

The proof of the theorem is complete. �

As is shown in the above theorem with S = κ, Remark 4.2 of [4]
is misstated. It is known that each GO-space X is contained in some
LOTS L as a closed subspace. The construction of the LOTS L for
a GO-space X discussed in [6, Definition 2.5] ensures that if X is
hereditarily paracompact, then L is also hereditarily paracompact with
|L| ≤ |X|. So we have:

Corollary 2. Let κ be a regular uncountable cardinal. Then there is a
hereditarily paracompact LOTS Lκ with |Lκ| = 2<κ such that Lκ×S is
not countably metacompact for any stationary subset S of κ.
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We now pose three questions which are raised by Theorem 1 and
Corollary 2. For the product space Lκ×S in Corollary 2, Lκ is hered-
itarily paracompact, but a stationary subset S is not paracompact.

Question 3. Is there a product X × Y of (hereditarily) paracompact
GO-spaces X and Y such that X × Y is not countably metacompact?

If either X or Y is a subspace of an ordinal, then the answer of the
question above is negative, see Corollary 11.

The product space Lκ × S in Corollary 2 is not normal. In fact, it
is known that if the product X × B of a GO-space X and a subspace
B of an ordinal is normal, then X × B has the shrinking property [3,
Corollary 8.16, 7.19, Theorem 7.11], in particular, X ×B is countably
metacompact. So it is natural to ask:

Question 4. Is there a normal product X ×Y of GO-spaces X and Y
such that X × Y is not countably metacompact?

It is well-known that a space is countably metacompact if and only
if each countable increasing open cover has a countable closed refine-
ment. And so the union of countably many countably metacompact
closed subspaces is also countably metacompact. In particular, the
product X × Y of countably metacompact spaces X and Y is count-
ably metacompact if either |X| ≤ ω or |Y | ≤ ω. On the other hand,
by applying Corollary 2 for κ = S = ω1, there is a product L × S
of LOTS’ with |L| = 2<ω1 = 2ω and |S| = ω1 which is not countably
metacompact. So by assuming the Continuum Hypothesis, we obtain
a product L× S of LOTS’ with |L| = |S| = ω1 which is not countably
metacompact.

Question 5. Is it derived only from ZFC that there are GO-spaces
X and Y with |X| = |Y | = ω1 such that X × Y is not countably
metacompact?

In Theorem 1, we found a product of two GO-spaces which is not
countably metacompact. On the other hand, we know that the product
of two subspaces of ordinals is countably metacompact, and we would
like to generalize this result. We suggest the intermediate concept,
countable 0-compactness (countable 1-compactness).

Definition 6. Let X = ⟨X,<, τ⟩ be a GO-space. We say that X is
countably 0-compact (countably 1-compact) if each strictly increasing
(decreasing) sequence, of length ω, by points in X has a cluster point
in X.
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Observe that a subspace of an ordinal is vacuously countably 1-
compact because there is no infinite strictly decreasing sequence. Also
observe that countable compactness of a GO-space is equivalent to
countable 0-compactness + countable 1-compactness.

We will show:

Theorem 7. If X is a countably 1-compact GO-space and Y is a GO-
space satisfying the both clauses (1) and (2), then Z = X×Y is count-
ably metacompact.

(1) either (1A) X is paracompact, or (1B) Y is countably 1-compact,
(2) either (2A) X is well-ordered, or (2B) Y is countably compact.

Remark 8. Even if L0 and L1 are compact LOTS’, L0 × L1 need not
be hereditarily countably metacompact. Because let X = Xκ and κ be
defined in Theorem 1. Then L0 = lX and L1 = κ + 1 are compact
LOTS’ but X×κ is not a countably metacompact subspace of L0×L1.

The following three corollaries are easy consequences of the theorem
above.

Corollary 9. If X is a subspace of an ordinal and Y is a countably
1-compact GO-space, then X × Y is countably metacompact.

Corollary 10. If X is a countably 1-compact GO-space and Y is a
countably compact GO-space, then X×Y is countably metacompact. In
particular, X×κ is countably metacompact whenever X is a countably
1-compact GO-space and κ is a regular uncountable cardinal.

Corollary 11. Let X be a subspace of an ordinal. If X is paracompact,
then X × Y is countably metacompact for every GO-space Y .

Remark 12. Let κ be a regular uncountable cardinal and Xκ the space
defined in Theorem 1. Considering X = κ and Y = Xκ, we see that
paracompactness in Corollary 11 cannot be removed. Also considering
X = Xκ and Y = κ, we see that the condition “Let X be a subspace of
an ordinal” cannot be weakened to “Let X be a GO-space” in Corollary
11.

In fact, applying Theorem 1, we see that the converse implication of
Corollary 11 is also true, because non-paracompact GO-space contains
a closed set which is homeomorphic to a stationary set in a regular
uncountable cardinal.

Corollary 13. Let X be a subspace of an ordinal. Then X is paracom-
pact if and only if X × Y is countably metacompact for every (heredi-
tarily paracompact) GO-space Y .
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Remark 14. The space X = Xκ in Theorem 1 is neither countably 0-
compact nor countably 1-compact. To see this, fix a strictly increasing
sequence {αn : n ∈ ω} in κ. Let define xn ∈ L(1) by xn(0) = αn,
moreover define yn ∈ L(n) by yn(m) = 0 for every m < n. Then it is
not hard to see that in X, {xn : n ∈ ω} is a strictly increasing sequence
without cluster points and {yn : n ∈ ω} is a strictly decreasing sequence
without cluster points.

All subspaces of an ordinal are countably 1-compact GO-spaces.
Therefore, the corollary below is immediately obtained from Corollary
9.

Corollary 15. [5] If X and Y are subspaces of ordinals, then X × Y
is countably metacompact.

Since the union of countably many countably metacompact closed
subspaces is also countably metacompact, Corollary 10 yields:

Corollary 16. If X is represented as the union of countably many
countably 1-compact closed GO-subspaces and κ is a regular uncount-
able cardinal, then X × κ is countably metacompact.

Remark 17. R denotes the real line with the usual order topology
and S denotes the Sorgenfrey line declaring that sets of type [x,→)
are open in S. Let X be either R or S. Moreover let Xn = [−n,→)
for every n ∈ ω and κ a regular uncountable cardinal. Obviously Xn

is countably 1-compact and closed in both cases. By the corollary
above, X × κ is countably metacompact (there are other approaches
to see this). However X is not countably 1-compact, so the converse
of Theorem 7 is false.

Question 18. Find a condition on a GO-space X that is equivalent to
countable metacompactness of X×κ, where κ is a regular uncountable
cardinal. Remark that normality of X × κ is characterized in terms of
lX, see [4, Theorem 4.3].

Question 19. Find conditions on GO-spaces X and Y that imply
hereditary countable metacompactness of X × Y .

To prove Theorem 7, we need some tools handling GO-spaces which
are appeared in [4]. For reader’s convenience, we give their abstracts
here.

At first, note that every subset A of a compact LOTS L has the least
upper bound supL A and the greatest lower bound infL A in L, where
supL ∅ = minL (= the smallest element of L) and infL ∅ = maxL (=
the largest element of L), see [1, Problem 3.12.3(a)].
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Definition 20. Let L be a compact LOTS and x ∈ L. A subset
A ⊂ (←, x)L is said to be 0-unbounded for x in L if for every y < x,
there is a ∈ A with y ≤ a. Similarly for a subset A ⊂ (x,→)L, “1-
unbounded for x” is defined. Now 0-cofinality 0- cfL x of x in L is
defined by:

0- cfL x = min{|A| : A is 0-unbounded for x in L.}.
Also 1- cfL x is defined. If there are no confusion, we write simply 0- cf x
and 1- cf x. Observe that

• if x is the smallest element of L, then 0- cf x = 0,
• if x has the immediate predecessor in L, then 0- cf x = 1,
• otherwise, then 0- cf x is a regular infinite cardinal.

Moreover, remark:

• When minL < x, ω ≤ 0- cf x iff supL(←, x)L = x iff x ∈ ClL(←
, x)L.

Let x ∈ L and κ = 0- cf x. Then we can take a sequence c : κ → L
which is strictly increasing and continuous as a function, and the range
{c(α) : α < κ} is a subset of (←, x)L which is 0-unbounded for x in L.
We call such c a 0-normal sequence for x in L. Similarly, a 1-normal
sequence for x in L is defined. Obviously, if L is a compact LOTS
such that 1- cf x is 0 or 1 for every x ∈ L, then the linearly ordered set
⟨L,<⟩ is well-ordered, that is, every non-empty subset A of L has the
<-smallest element.

In our discussion, we fix a linearly ordered compactification lX for
each GO-space X, apply these methods for L = lX, and consider 0-
cf lX a or 1-cf lX a for every a ∈ lX. We always fix a 0-normal sequence
(similarly 1-normal sequence) {a(α) : α < κ} for a, where κ = 0- cf a.
Observe that stationarity of {α < κ : a(α) ∈ X} does not depend on
the choices of 0-normal sequences whenever κ ≥ ω1, see [4, Lemma
3.3]. Therefore the following notion is well-defined.

Definition 21. Let a ∈ lX, where X is a GO-space. We say that X is
0-stationary at a if κ = 0- cf lX a is uncountable and {α < κ : a(α) ∈ X}
is stationary in κ, where {a(α) : α < κ} is a 0-normal sequence for a.
Note that if a GO-space X is paracompact, then X is not 0-stationary
at a for every a ∈ lX \X.

In particular, if X is a subspace of an ordinal, say X ⊂ [0, γ], with
the usual order, then we may consider that X is a GO-space and
lX = Cl[0,γ]X. Moreover in this case, for every a ∈ lX, obviously
1- cf a is 0 or 1, furthermore we can easily check that 0- cf a is equal to
cf a in the usual sense whenever a is a cluster point of X.
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Let a ∈ lX with κ = 0- cf a ≥ ω1, where X is a GO-space. If
{α < κ : a(α) ∈ X} is non-stationary in κ, then we can take a club set
C in κ such that {a(α) : α ∈ C} ⊂ lX \X. Then note that (←, a)∩X
can be represented as the disjoint sum

∪
α∈Succ(C)((a(pC(α)), a(α))∩X)

of open subspaces, where a(−1) =←.

Now let us prove Theorem 7. In the proof of this theorem, we fre-
quently use the fact that if Vλ is a point finite collection of subsets of
a space Z for every λ ∈ Λ and the collection {

∪
Vλ : λ ∈ Λ} is point

finite, then
∪

λ∈Λ Vλ is also point finite.

A proof of Theorem 7.

Proof. Let U be a countable open cover of Z. We will find a point finite
open refinement of U . There are 5 Claims (Claim 1–Claim 5) in the
proof of this theorem. The proof is analogous to the Heine-Borel proof
which uses the completeness of R to show that every open cover of the
unit interval [0, 1] has a finite subcover. Let us explain our plan. Define
the subset A of lX below. Claim 1 shows that A is not empty. Claim
2 is a technical result used in the hardest subcase of Claim 3. Claim
3 asserts supA ∈ A. Claim 4 asserts that if a ∈ A and a ̸= max lX
hold, then there is a∗ ∈ A with a < a∗. If X is well-ordered, then the
simplest case of Claim 4 suffices. The other cases of Claim 4 require the
assumption that Y is countably compact. Claim 5 puts the previous
claims together and concludes that max lX ∈ A, hence U has a point
finite open refinement, and X × Y is countably metacompact.

Set

A = {a′ ∈ lX : there is a point finite partial open refinement V of U
with ((←, a′] ∩X)× Y ⊂

∪
V}.

Note that A is an initial segment of lX, that is, if a′′ < a′ ∈ A then
a′′ ∈ A.

Claim 1. The following hold:

(1) for every x ∈ X, there is a point finite partial open refinement
V of U with {x} × Y ⊂

∪
V ,

(2) for every y ∈ Y , there is a point finite partial open refinement
V of U with X × {y} ⊂

∪
V .

Proof. (1): Since Y is countably metacompact, there is a point finite
open cover {V (U) : U ∈ U} of Y such that {x} × V (U) ⊂ U for every
U ∈ U . Then V = {(X × V (U)) ∩ U : U ∈ U} is as desired. (2) is
similar. �
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Claim 1 (1) implies min lX ∈ A, so A is not empty. Now we show:

Claim 2. Let a ∈ lX and b ∈ lY . Assume that (←, a) ⊂ A, X is
0-stationary at a and Y is 0-stationary at b. Then U has a point finite
partial open refinement which covers ((a∗, a) ∩ X) × ((b∗, b) ∩ Y ) for
some a∗ ∈ (←, a)lX and b∗ ∈ (←, b)lY .

Proof. Let λ = 0- cf a, µ = 0- cf b, S = {α ∈ λ : a(α) ∈ X} and
T = {β ∈ µ : b(β) ∈ Y }, where {a(α) : α < λ} and {b(β) : β < µ}
are 0-normal sequences for a and b respectively. By the assumption,
λ and µ are uncountable, moreover S and T are stationary in λ and
µ respectively. For each α ∈ S ∩ Lim(λ) and β ∈ T ∩ Lim(µ), take
U(α, β) ∈ U , f(α, β) < α, and g(α, β) < β with

((a(f(α, β)), a(α)] ∩X)× ((b(g(α, β)), b(β)] ∩ Y ) ⊂ U(α, β).

There are 3 small Claims (Claim 2-1 — Claim 2-3) in the proof of
Claim 2.

Claim 2-1. If λ ≤ µ, then there are U∗
0 ∈ U , a∗ ∈ (←, a)lX , S

∗ ⊂
S ∩ {α ∈ λ : a∗ < a(α)} which is stationary in λ, and a function
g∗ : S∗ → µ such that Z∗

0 ⊂ U∗
0 holds, where

Z∗
0 =

∪
α∈S∗

(((a∗, a(α)] ∩X)× ((b(g∗(α)), b) ∩ Y )) .

Proof. Let α ∈ S ∩ Lim(λ). By |U| ≤ ω < µ, |α| ≤ α < λ ≤ µ and
PDL, we can take U0(α) ∈ U , f0(α) < α, and g0(α) < µ such that

{β ∈ T ∩ Lim(µ) : U(α, β) = U0(α), f(α, β) = f0(α), g(α, β) = g0(α)}

is stationary in µ. By PDL again, we can take U∗
0 ∈ U and α∗ < λ

such that

S∗ := {α ∈ S ∩ Lim(λ) ∩ (α∗, λ) : U0(α) = U∗
0 , f0(α) = α∗}

is stationary in λ. By putting a∗ = a(α∗) and g∗ = g0 � S∗, we obtain
required U∗

0 , a
∗, S∗ and g∗. �

Similarly, we obtain the claim below.

Claim 2-2. If λ ≥ µ, then there are U∗
1 ∈ U , b∗ ∈ (←, b)lY , T

∗ ⊂
T ∩ {β ∈ µ : b∗ < b(β)} which is stationary in µ, and a function
f ∗ : T ∗ → λ such that Z∗

1 ⊂ U∗
1 , where

Z∗
1 =

∪
β∈T ∗

(((a(f ∗(β)), a) ∩X)× ((b∗, b(β)] ∩ Y )) .
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Claim 2-3. If λ = µ and S ∩ T is stationary in λ, then there are
U∗
0,1 ∈ U , a∗ ∈ (←, a)lX , and b∗ ∈ (←, b)lY such that Z∗

0,1 ⊂ U∗
0,1, where

Z∗
0,1 = (((a∗, a) ∩X)× ((b∗, b) ∩ Y )) .

Proof. By PDL, we can take U∗
0,1 ∈ U and α∗, β∗ < λ such that

{ξ ∈ S ∩ T ∩ Lim(λ) : U(ξ, ξ) = U∗
0,1, f(ξ, ξ) = α∗, g(ξ, ξ) = β∗}

is stationary in λ. By putting a∗ = a(α∗) and b∗ = b(β∗), we obtain
required U∗

0,1, a
∗ and b∗. �

We return to the proof of Claim 2. There are four cases.

Case 2-1. λ < µ.

In this case, let b∗ = suplY {b(g∗(α)) : α ∈ S∗}. Then we have b∗ < b
because of |S∗| ≤ λ < µ. And V = {U∗

0} is a finite partial open
refinement of U covering ((a∗, a) ∩X)× ((b∗, b) ∩ Y ).

Case 2-2. λ > µ.

In this case, let a∗ = suplX{a(f ∗(β)) : β ∈ T ∗}. Then similarly
V = {U∗

1} is a finite partial open refinement of U covering ((a∗, a) ∩
X)× ((b∗, b) ∩ Y ).

Case 2-3. λ = µ and S ∩ T is stationary in λ.

In this case, V = {U∗
0,1} is a finite partial open refinement of U

covering ((a∗, a) ∩X)× ((b∗, b) ∩ Y ).

Case 2-4. λ = µ and S ∩ T is not stationary in λ.

In this case, take a club set C ⊂ Lim(S∗) ∩ Lim(T ∗) \ (S ∩ T ) in λ
such that

• g∗(α′) < β holds for every β ∈ C and α′ ∈ S∗ ∩ β,
• f ∗(β′) < α holds for every α ∈ C and β′ ∈ T ∗ ∩ α.

For each α ∈ Succ(C), let

Z∗∗
0,α = ((a(pC(α)), a(α)) ∩X)× ((←, b(α)) ∩ Y ) ,

Z∗∗
1,α = ((←, a(α)) ∩X)× ((b(pC(α)), b(α)) ∩ Y ) .

For each α ∈ Succ(C), it follows from a(α) ∈ (←, a)lX ⊂ A that
there are point finite partial open refinements V0,α and V1,α of U with
Z∗∗

0,α =
∪
V0,α and Z∗∗

1,α =
∪
V1,α. Since for i ∈ 2 = {0, 1}, Z∗∗

i =
{Z∗∗

i,α : α ∈ Succ(C)} is a pairwise disjoint collection of open sets in Z,
Vi =

∪
α∈Succ(C) Vi,α is a point finite partial open refinement of U with

Z∗∗
i =

∪
Vi, where Z∗∗

i =
∪
Z∗∗

i . Therefore V0∪V1∪{U∗
0 , U

∗
1} is a point

finite partial open refinement of U which covers Z∗∗
0 ∪ Z∗∗

1 ∪ Z∗
0 ∪ Z∗

1 .
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To see that Claim 2 holds in this case, it suffices to show that

((a∗, a) ∩X)× ((b∗, b) ∩ Y ) ⊂ Z∗∗
0 ∪ Z∗∗

1 ∪ Z∗
0 ∪ Z∗

1 .

Let ⟨x, y⟩ ∈ ((a∗, a) ∩ X) × ((b∗, b) ∩ Y ). Take the smallest α ∈ C
with x ≤ a(α) and the smallest β ∈ C with y ≤ b(β).

In case x < a(β): If y < b(β), then β ∈ Succ(C), b(pC(β)) < y <
b(β) and x < a(β) hold. Therefore

⟨x, y⟩ ∈ ((←, a(β)) ∩X)× (b(pC(β)), b(β)) ∩ Y ) = Z∗∗
1,β ⊂ Z∗∗

1 .

If y = b(β), then because of β ∈ C ⊂ Lim(S∗) and x < a(β) =
suplX{a(γ) : γ < β}, we find α′ ∈ S∗ ∩ β with x < a(α′). It follows
from β ∈ C that g∗(α′) < β. By a∗ < x < a(α′) and b(g∗(α′)) < b(β) =
y < b, we have

⟨x, y⟩ ∈ ((a∗, a(α′)] ∩X)× (b(g∗(α′)), b) ∩ Y ) ⊂ Z∗
0 .

In case y < b(α): In a similar way, we see that ⟨x, y⟩ ∈ Z∗∗
0,α ⊂ Z∗∗

0

holds if x < a(α), and ⟨x, y⟩ ∈ Z∗
1 holds if x = a(α).

Another case (that is, a(β) ≤ x and b(α) ≤ y) does not happen.
Otherwise, we have α ≥ β by a(α) ≥ x ≥ a(β), moreover we have
β ≥ α by b(β) ≥ y ≥ b(α), therefore we have α = β. It follows from
a(α) = a(β) = x ∈ X and b(α) = b(β) = y ∈ Y that α ∈ S and β ∈ T .
Because of α = β ∈ C, we have S ∩ T ∩ C ̸= ∅, a contradiction.

We see that V0∪V1∪{U∗
0 , U

∗
1} is a point finite partial open refinement

of U which covers ((a∗, a) ∩X)× ((b∗, b) ∩ Y ). The proof of Claim 2 is
complete. �

Before now, the both assumptions (1) and (2) of Theorem 7 have not
been required. The assumption (1) is only used in the following Claim.

Claim 3. Let a ∈ lX with (←, a)lX ⊂ A. Then U has a point finite
partial open refinement which covers ((←, a) ∩ X) × Y , consequently
by Claim 1 (1), a ∈ A.

Proof. Let a ∈ lX with (←, a)lX ⊂ A. And let λ = 0- cf a. Take a
0-normal sequence {a(α) : α < λ} for a in lX, and let S = {α ∈ λ :
a(α) ∈ X}. Note that {a(α) : α < λ} ⊂ (←, a) ⊂ A. There are six
Cases (Case 3-1 — Case 3-6) in the proof of Claim 3. Case 3-6 will not
happen under the assumption (1A).

Case 3-1. λ = 0.

In this case, we have (←, a) = ∅, so the empty family is a point finite
partial open refinement of U which covers ((←, a) ∩X)× Y = ∅.
Case 3-2. λ = 1.
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In this case, a′ = max(←, a)lX exists. It follows from a′ ∈ (←
, a) ⊂ A that U has a point finite partial open refinement which covers
((←, a) ∩X)× Y = ((←, a′] ∩X)× Y .

Case 3-3. λ = ω.

Let Xn = (a(n−1), a(n+1))∩X for every n ∈ ω, where a(−1) =←.
Note that {Xn×Y : n ∈ ω} is a point finite collection of open sets in Z
with ((←, a)∩X)×Y =

∪
n∈ω(Xn×Y ). By a(n+1) ∈ A, we can find

a point finite partial open refinement Vn of U with Xn × Y =
∪
Vn.

Then V =
∪

n∈ω Vn is a point finite partial open refinement of U with
((←, a) ∩X)× Y ⊂

∪
V.

Case 3-4. λ > ω and S is not stationary in λ.

Let C be a club set disjoint from S. For every α ∈ Succ(C), let Xα =
(a(pC(α)), a(α)) ∩X. By a(α) ∈ A, one can take a point finite partial
open refinement Vα of U with Xα×Y =

∪
Vα. Then V =

∪
α∈Succ(C) Vα

is a point finite partial open refinement of U with ((←, a) ∩X)× Y ⊂∪
V .

Case 3-5. λ > ω, S is stationary in λ and a ∈ X.

In this case, for b, b′ ∈ lY , define b ∼ b′ by either one of the following:

(i) b = b′,
(ii) b < b′ and there are α0 < λ and a point finite partial open

refinement V of U covering ((a(α0), a) ∩X)× ([b, b′] ∩ Y ),
(iii) b′ < b and there are α0 < λ and a point finite partial open

refinement V of U covering ((a(α0), a) ∩X)× ([b′, b] ∩ Y ),

Obviously ∼ is an equivalence relation on lY and each equivalence
class is convex in lY . Let E be the collection of all equivalence classes
meeting Y , that is, E = {E ∈ lY /∼ : E ∩ Y ̸= ∅}.

Claim 3-1. E ∩ Y is open in Y for every E ∈ E .

Proof. Let b ∈ E ∩ Y . It follows from ⟨a, b⟩ ∈ X × Y that (X ∩
(a(α0), a])×J ⊂ U0 holds for some U0 ∈ U , α0 < λ and an open convex
set J in Y with b ∈ J . For each y ∈ J , α0 and V = {U0} witness b ∼ y.
Therefore J is a neighborhood of b contained in E ∩ Y . �

Claim 3-2. For every E ∈ E , there is a point finite partial open
refinement VE of U covering ((←, a) ∩X)× (E ∩ Y ).

Proof. Let E ∈ E , y ∈ E ∩ Y and b = suplY (E ∩ Y ). Fix, for each
α < λ, a point finite partial open refinement Vα of U covering ((←
, a(α)] ∩X)× Y .
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Claim 3-2-1. There is a point finite partial open refinement V ′ of U
covering ((←, a) ∩X)× ([y, b] ∩ Y ).

Proof. First assume b ∈ Y . Since b ∈ CllY (E ∩ Y ) and E ∩ Y is clopen
in Y , we have b ∈ E ∩ Y thus b ∼ y. Hence U has a point finite partial
open refinementW of U covering ((a(α0), a)∩X)×([y, b]∩Y ) for some
α0 < λ. Then V ′ = Vα0 ∪W is as desired.

Next assume b /∈ Y . Then 0- cf b ≥ ω. Let µ = 0- cf b and T =
{β ∈ µ : b(β) ∈ Y }, where {b(β) : β ∈ µ} is a 0-normal sequence
for b in lY . Take β∗ < µ with y < b(β∗). For every β ∈ µ with
β∗ ≤ β, using y ∼ b(β), fix α(β) < λ and a point finite partial open
refinementWβ of U covering ((a(α(β)), a)∩X)× ([y, b(β)]∩Y ). When
µ = ω, V ′ = {V ∩ [X × ((←, b(β∗ + 1)) ∩ Y )] : V ∈ Vα(β∗+1)∪Wβ∗+1}∪∪

β∗<β∈ω{V ∩ [X × ((b(β − 1), b(β + 1)) ∩ Y )] : V ∈ Vα(β+1) ∪ Wβ+1}
is as desired. When µ > ω and T is not stationary in µ, take a club
set D ⊂ (β∗, µ) in µ disjoint from T . Then V ′ =

∪
β∈Succ(D){V ∩

[X × ((b(pD(β)), b(β)) ∩ Y )] : V ∈ Vα(β) ∪ Wβ} is as desired. When
µ > ω and T is stationary in µ, by Claim 2, U has a point finite
partial open refinement V∗ covering ((a(α0), a) ∩X)× ((b(β0), b) ∩ Y )
for some α0 ∈ λ and β0 ∈ µ. We may take α0 as α(β0) < α0. Then
V ′ = Vα0 ∪Wβ0 ∪ V∗ is as desired. �

Let b′ = inf lY (E ∩ Y ). By a similar argument, we have:

Claim 3-2-2. There is a point finite partial open refinement V ′′ of U
covering ((←, a) ∩X)× ([b′, y] ∩ Y ).

Putting VE = V ′ ∪ V ′′, we see Claim 3-2. �

Now
∪

E∈E{V ∩[X × (E ∩ Y )] : V ∈ VE} is a point finite partial open
refinement of U covering ((←, a) ∩X)× Y . The Case 3-5 is complete.

Note that before now, we have not used the both assumptions (1) and
(2). If X is paracompact (=(1A)), in particular, X is not 0-stationary
at c for every c ∈ lX \X, then the following remaining case does not
happen. Therefore the proof of Claim 3 is complete in the case (1A).
We continue the proof of Claim 3 in the case (1B) that Y is countably
1-compact.

Case 3-6. λ > ω, S is stationary in λ and a /∈ X.

In this case, set

B = {b′ ∈ lY : there is a point finite partial open refinement V of U
with ((←, a) ∩X)× ((←, b′] ∩ Y ) ⊂

∪
V}.

Then B is also an initial segment of lY .
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Claim 3-3. Let b ∈ lY with (←, b)lY ⊂ B. Then U has a point
finite partial open refinement which covers ((←, a)∩X)× ((←, b)∩Y ),
consequently by Claim 1 (2), b ∈ B.

Proof. Let b ∈ lY with (←, b)lY ⊂ B. And let µ = 0- cf b. Take a
0-normal sequence {b(β) : β < µ} for b in lY , and let T = {β ∈ µ :
b(β) ∈ Y }. Note that {b(β) : β < µ} ⊂ (←, b) ⊂ B. There are five
Cases (Case 3-3-1 — Case 3-3-5) in the proof of Claim 3-3.

Case 3-3-1. µ = 0.
Case 3-3-2. µ = 1.
Case 3-3-3. µ = ω.
Case 3-3-4. µ > ω and T is not stationary in µ.

In the four cases above, we can take a point finite partial open re-
finement of U which covers ((←, a)∩X)× ((←, b)∩Y ) in a similar way
to Cases 3-1, 3-2, 3-3, 3-4 respectively.

Case 3-3-5. µ > ω and T is stationary in µ.

Take a∗ ∈ (←, a)lX and b∗ ∈ (←, b)lY as in Claim 2. Then U has
point finite partial open refinements

• covering ((←, a∗] ∩X)× Y by a∗ ∈ (←, a)lX ⊂ A,
• covering ((←, a) ∩X)× ((←, b∗] ∩ Y ) by b∗ ∈ (←, b)lY ⊂ B,
• and covering ((a∗, a) ∩X)× ((b∗, b) ∩ Y ) by Claim 2.

Hence, U has a point finite partial open refinement which covers
((←, a) ∩X)× ((←, b) ∩ Y ). The proof of Claim 3-3 is complete. �

Still in Case 3-6, we prove:

Claim 3-4. If b ∈ B and b < max lY hold, then there is b∗ ∈ B with
b < b∗.

Proof. Let b ∈ B with b<max lY . We show the only one claim below
in the proof of Claim 3-4, where we first require the assumption (1B)
that Y is countably 1-compact.

Claim 3-4-1. U has a point finite partial open refinement which covers
((a∗, a) ∩X)× ((b, b∗) ∩ Y ) for some a∗ ∈ (←, a)lX and b∗ ∈ (b,→)lY .

Proof. Let µ = 1- cf b. Take a 1-normal sequence {b(β) : β < µ} for b
in lY , and let T = {β ∈ µ : b(β) ∈ Y }. By b<max lY , we have µ ̸= 0.
There are three cases in the proof of Claim 3-4-1.

Case 3-4-1-1. µ = 1.
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In this case, b∗ = min(b,→)lY exists, and we have (b, b∗) = ∅. The
empty family is a point finite partial open refinement of U which covers
((a∗, a) ∩X)× ((b, b∗) ∩ Y ) = ∅ for any a∗ ∈ (←, a)lX .

Case 3-4-1-2. µ = ω.

In this case, by the assumption (1B), we see b ∈ Y . For every
α ∈ S ∩ Lim(λ), by ⟨a(α), b⟩ ∈ Z, take U(α) ∈ U , f(α) < α and
g(α) < µ such that

((a(f(α)), a(α)] ∩X)× ([b, b(g(α))) ∩ Y ) ⊂ U(α).

Applying PDL, we can find U ∈ U , α0 < λ and β0 < µ such that

{α ∈ S ∩ Lim(λ) : U(α) = U, f(α) = α0, g(α) = β0}

is stationary in λ. By putting a∗ = a(α0) and b∗ = b(β0), {U} is a point
finite partial open refinement of U covering ((a∗, a)∩X)× ((b, b∗)∩Y ).

Case 3-4-1-3. µ > ω.

In this case, for each β ∈ µ with cf β = ω, since 1- cf b(β) = ω, we
have b(β) ∈ Y by the assumption (1B). Hence, {β ∈ µ : cf β = ω}
is contained in T thus T is stationary in µ. By an analogous result
of Claim 2, we see that U has a point finite partial open refinement
which covers ((a∗, a) ∩ X) × ((b, b∗) ∩ Y ) for some a∗ ∈ (←, a)lX and
b∗ ∈ (b,→)lY .

The proof of Claim 3-4-1 is complete. �

We return to the proof of Claim 3-4. Take a∗ ∈ (←, a)lX and
b∗ ∈ (b,→)lY as in Claim 3-4-1. Then U has point finite partial open
refinements

• covering ((←, a) ∩X)× ((←, b] ∩ Y ) by b ∈ B,
• covering ((←, a∗] ∩X)× Y by a∗ ∈ (←, a)lX ⊂ A,
• covering ((a∗, a) ∩X)× ((b, b∗) ∩ Y ) by Claim 3-4-1,
• and covering X × {b∗}, if b∗ ∈ Y , by Claim 1 (2).

Therefore U has a point finite partial open refinement which covers
((←, a) ∩ X) × ((←, b∗] ∩ Y ). That is, b∗ ∈ B holds. And we have
b < b∗. The proof of Claim 3-4 is complete. �

Claim 3-5. max lY ∈ B.

Proof. Let b = suplY B. Then (←, b)lY ⊂ B. By Claim 3-3, we have
b ∈ B. If b < max lY , then by Claim 3-4, there is a b∗ ∈ B with b < b∗.
This contradicts that b = suplY B. Hence, max lY = b ∈ B holds. �
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Now by Claim 3-5, we have max lY ∈ B. It follows from Y =
(←,max lY ]∩Y that U has a point finite partial open refinement which
covers

((←, a) ∩X)× ((←,max lY ] ∩ Y ) = ((←, a) ∩X)× Y.

Case 3-6 is finished and the proof of Claim 3 is complete. �
Note that still now, we have not used the assumption (2). This

assumption is only used in the following claim.

Claim 4. If a ∈ A and a < max lX hold, then there is a∗ ∈ A with
a < a∗.

Proof. Let a ∈ A and a < max lX. We show the claim below.

Claim 4-1. U has a point finite partial open refinement which covers
((a, a∗) ∩X)× Y for some a∗ ∈ (a,→)lX .

Proof. Let λ = 1- cf a. Take a 1-normal sequence {a(α) : α < λ} for
a in lX, and let S = {α ∈ λ : a(α) ∈ X}. By a < max lX, we have
λ ̸= 0. We consider some cases in the proof of Claim 4-1.

Case 4-1-1. λ = 1.

In this case, a∗ = min(a,→)lX exists, thus (a, a∗) = ∅. The empty
family is a point finite partial open refinement of U which covers
((a, a∗) ∩X)× Y .

If X is well-ordered, then the remaining cases do not happen. There-
fore the proof of Claim 4-1 is complete in the case (2A). We continue
the proof of Claim 4-1 in the case (2B) that Y is countably compact.
Assuming countable compactness of Y , we generally show:

Claim 4-1-1. If c ∈ lX and 1- cf c = ω, then there are a∗ ∈ (c,→)lX
and a finite subfamily U∗ of U such that ([c, a∗) ∩X)× Y ⊂

∪
U∗.

Proof. Let c ∈ lX with 1- cf c = ω. By countable 1-compactness of X,
we have c ∈ X. Take a 1-normal sequence {c(k) : k ∈ ω} for c in lX.
For each k ∈ ω and U ∈ U , let

Vk(U) =
∪
{V ⊂ Y : V is open in Y, ([c, c(k)) ∩X)× V ⊂ U}.

Then {Vk(U) : k ∈ ω} is increasing for every U ∈ U and {Vk(U) :
k ∈ ω, U ∈ U} is a countable open cover of Y . Since Y is countably
compact(=(2B)), there are m ∈ ω and a finite subfamily U∗ of U
such that Y =

∪
U∈U∗ Vm(U). Then a∗ = c(m) and U∗ satisfy the

required condition. Actually, let ⟨x, y⟩ ∈ ([c, a∗)∩X)× Y . Then there
is U ∈ U∗ with y ∈ Vm(U). Therefore y ∈ V for some open set V
in Y with ([c, c(m)) ∩ X) × V ⊂ U . By c ≤ x < a∗ = c(m), we have
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⟨x, y⟩ ∈ ([c, c(m))∩X)×V ⊂ U ⊂
∪
U∗. Hence, ([c, a∗)∩X)×Y ⊂

∪
U∗

holds. �
We continue the remaining two cases assuming (2B).

Case 4-1-2. λ = ω.

In this case, by applying Claim 4-1-1 for a, we obtain a∗ ∈ (a,→)lX
and a finite subfamily U∗ of U such that ([a, a∗)∩X)×Y ⊂

∪
U∗ holds.

In particular, U∗ is a point finite partial open refinement of U .
Case 4-1-3. λ > ω.

For each α ∈ λ with cf α = ω, because of 1- cf a(α) = ω and Claim
4-1-1, there are a∗(α) ∈ (a(α),→)lX and a finite subfamily U∗(α) such
that ([a(α), a∗(α))∩X)×Y ⊂

∪
U∗(α). Take f(α) < α with a(f(α)) ≤

a∗(α). By PDL, we can take α0 < λ and a finite subfamily U∗ of U
such that

{α ∈ λ : cf(α) = ω,U∗(α) = U∗, f(α) = α0}
is stationary in λ. Put a∗ = a(α0). Then U∗ is a point finite partial
open refinement of U which covers ((a, a∗) ∩X)× Y .

The proof of Claim 4-1 is complete. �
We return to the proof of Claim 4. Let a∗ ∈ (a,→)lX be as in Claim

4-1. Then U has point finite partial open refinements

• covering ((←, a] ∩X)× Y by a ∈ A,
• covering ((a, a∗) ∩X)× Y by Claim 4-1,
• and covering {a∗} × Y , if a∗ ∈ X, by Claim 1 (1).

Therefore U has a point finite partial open refinement which covers
((←, a∗] ∩ X) × Y . That is a∗ ∈ A holds. And we have a < a∗. The
proof of Claim 4 is complete. �

In the rest of the proof, we only use Claims 3 and 4 as well as Claims
1 and 2, but not assumptions (1) and (2) themselves.

Claim 5. max lX ∈ A.

Proof. Let a = suplX A. Then (←, a)lX ⊂ A. By Claim 3, we have
a ∈ A. If a < max lX, then by Claim 4, there is a∗ ∈ A with a < a∗.
This contradicts that a = suplX A. Hence, max lX = a ∈ A holds. �

We return to the theorem. By Claim 5, we have max lX ∈ A. It
follows from X = (←,max lX] ∩X that U has a point finite (partial)
open refinement which covers

((←,max lX] ∩X)× Y = X × Y.
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Hence, X × Y is countably metacompact. The proof of the theorem is
complete. �

Applying some claims in the proof of Theorem 7, we obtain the
corollary below.

Corollary 22. Let X be a GO-space, and Y a space. And assume that
X and Y are countably compact. Then X × Y is countably metacom-
pact.

Proof. Let U be a countable open cover of X × Y . Let x ∈ lX. Since
Y is countably metacompact, we can apply Claim 1 (1), and obtain a
point finite partial open refinement V2(x) of U such that (X ∩ {x})×
Y ⊂

∪
V2(x). Since X is countably 1-compact and Y is countably

compact, we can apply Claim 4-1, and obtain a point finite partial
open refinement V1(x) of U such that (X ∩ (x, x∗)) × Y ⊂

∪
V1(x)

for some x∗ ∈ (x,→]. Since X is also countably 0-compact and Y is
countably compact, and by symmetry, we obtain a point finite partial
open refinement V0(x) of U such that (X ∩ (x∗, x))× Y ⊂

∪
V0(x) for

some x∗ ∈ [←, x). By putting P (x) = (x∗, x
∗) and V(x) =

∪
i∈3 Vi(x),

we obtain a neighborhood P (x) of x in lX and a point finite partial
open refinement V(x) of U such that (X ∩ P (x)) × Y ⊂

∪
V(x). By

compactness of lX, we obtain a finite subset M of lX such that lX =∪
x∈M P (x). By putting V =

∪
x∈M V(x), we obtain a point finite open

refinement V of U . Hence, X × Y is countably metacompact. �
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