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Abstract. This paper deals with a question which is stated by quite simple definitions.

A sequence {xn} in a space X is called a β-sequence if every subsequence of it has a cluster
point in X. The closure of the sequence {xn} means the closure of {xn : n ∈ ω} in X.
Here we consider the question when a β-sequence has compact closure. We give several

answers to this question.

1. Introduction

Throughout this paper, all spaces are assumed to be Hausdorff .
A sequence in a space X is a function φ from ω into X, which is denoted by {xn} if

φ(n) = xn for each n ∈ ω, where ω is the first infinite ordinal. For a subspace A in X,
we denote by ClA the closure of A in X.

For a sequence {xn} in a space X, the closure of {xn} means the closure of its range
in X, that is, Cl{xn : n ∈ ω}.

Let us begin with the following simple definitions, which is a key of this paper.

Definition 1. A sequence {xn} in a space X is called a β-sequence if every subsequence
of it has a cluster point in X.

Remark. Recall that a space X is called e-countably compact with respect to a dense
subset D if every sequence in D has a cluster point in X (see [S]). Using this term, a
sequence is a β-sequence iff its closure is e-countably compact with respect to its range.

It is well known that a space X is countably compact iff every sequence in X is a
β-sequence. However, the concept of β-sequences is rather motivated by the definitions
of many generalized metric spaces such as M -spaces, w∆-spaces, Σ-spaces, β-spaces,
q-spaces and so on. In fact, they are defined by the following form:

(∗) If there is y ∈ X such that xn and y have some relation ∼n (depending on n)
for each n ∈ ω, then {xn} has a cluster point in X.

As one example, recall that a space X is called a w∆-space if there is a sequence {Un}
of open covers of X such that if xn ∈ St(y,Un) for each n ∈ ω, then {xn} has a cluster
point in X. Where xn ∈ St(y,Un) is an example of the relation ∼n of xn and y. In this
case, assuming that each Un refines Un−1, the sequence {xn} is a β-sequence. In fact,
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in almost all such generalized metric spaces, we may assume without loss of generality
that {xn} is a β-sequence in X (also see Proposition 4.1 below for the case of β-spaces).

Obviously, every sequence {xn} with (countably) compact closure is a β-sequence in
a space X. Then it is natural to consider when the converse is true. In fact, we come
up with the following question.

Question. When does a β-sequence {xn} in a space X have compact closure?

Of course, it is not true without any condition. Because the space X = βω r
{p}, where p ∈ βω r ω, is countably compact, separable and non-compact (see [E,
Example 3.10.18]). On the other hand, it is not difficult to see that it is true under the
paracompactness of X (see [Y1] or Corollary 2.9 below).

In Section 2, we observe that every β-sequences has pseudocompact closure. In
Section 3, we give some equivalent conditions to compact closure of β-sequences. In
Section 4, we immediately apply the previous results to the argument when β-spaces
are strong β-spaces, as dealt with in [Y1]. In Section 5, we show that β-sequences with
countable closure are expressed by fairly concrete forms. In Sections 6, we give some
examples in the negative aspects for β-sequences.

2. Closure of β-sequences

Recall that a space X is feebly compact if every locally finite collection of open sets
in X is at most finite.

The following is pointed out by the referee.

Proposition 2.1. Every β-sequence in a space X has feebly compact closure.

Proof. Assume the contrary. Let {xn} be a β-sequence with not feebly compact clo-
sure. There is an infinite countable locally finite collection {Vi : i ∈ ω} of open sets in
Cl{xn : n ∈ ω}. One can take an xni ∈ Vi for each i ∈ ω. Then {xni : i ∈ ω} is a discrete
closed set in X. This contradicts that {xni} has a cluster point in X. ¤

Since every feebly compact space is pseudocompact (the converse is also true if the
space is Tychonoff, as seen in [E, Theorem 3.10.22]), the above immediately yields

Corollary 2.2. Every β-sequence in a space X has pseudocompact closure.

Since a space is countably compact if it is normal and pseudocompact or if it is
countably paracompact and feebly compact, we also have

Corollary 2.3. If a space X is either normal or countably paracompact, then every
β-sequence in a space X has countably compact closure

Weiss [W] proved that every countably compact, perfectly normal space is compact
under Martin’s Axiom (MA) and 2ℵ0 > ℵ1. The combination of Corollary 2.3 and this
result immediately yield

Corollary 2.4. Assume MA and 2ℵ0 > ℵ1. Every β-sequence in a perfectly normal
space X has compact closure.
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3. β-sequences with compact closure

First, we give an auxiliary concept for closure of sequences.

Definition 2. For a sequence {xn} in a space X, the set of all cluster points of {xn},
that is,

∩
k∈ω Cl{xn : n ≥ k} is called the cluster of {xn}.

Proposition 3.1. Let {xn} be a sequence in a space X.

(1) If E and F be the closure and the cluster of {xn}, respectively, then E =
{xn : n ∈ ω} ∪ F holds.

(2) A β-sequence {xn} in X has compact closure if and only if it has compact cluster.

Proof. (1): This is easily seen.
(2): Let E and F be the closure and the cluster of {xn}, respectively. Since F is a

closed subset of E, if E is compact, then so is F . Assume that F is compact. Let U be
an open cover of E. There is a finite subcollection V of U with F ⊂

∪
V. It suffices to

show that |E r
∪
V| < ω. Assume the contrary. We can choose a subsequence {xni}

of {xn} with xni ̸∈
∪
V for each i ∈ ω. Since {xn} is a β-sequence in X, {xni} has a

cluster point y in F . However, by the choice of xni ’s, y is not in
∪
V. This contradicts

F ⊂
∪

V. ¤

Proposition 3.2. For a β-sequence {xn} in a regular space X, the following are equiv-
alent.

(a) {xn} has compact closure in X.
(b) {xn} has Lindelöf closure in X.
(c) {xn} has paracompact closure in X.
(d) {xn} has metaLindelöf closure in X.

Proof. The implications (a) → (b) → (c) → (d) are obvious.
(d) → (a): Without loss of generality, we may assume that the closure of {xn} is the

whole space X. Then X is separable. Recall the facts that every separable metaLindelöf
space is Lindelöf and that every regular Lindelöf space is normal. It follows Corollary
2.2 that X is pseudocompact. Recall the facts that every normal pseudocompact space
is countably compact and that every countably compact and Lindelöf space is compact.
Hence X is compact. ¤

This immediately yields the following special case, which will be discussed latter.

Corollary 3.3. If a β-sequence in a regular space X has countable closure, then it has
compact closure.

For a Tychonoff space X, we denote by βX the Stone-Čech compactification of X.

Theorem 3.4. For a β-sequence {xn} in a Tychonoff space X,
the following are equivalent.

(a) {xn} has compact closure in X.
(b) {xn} has realcompact closure in X.
(c) {xn} has realcompact cluster which is C∗-embedded in the closure.
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Proof. (a) → (b) and (a) → (c) are obvious. Since every realcompact pseudocompact
space is compact (see [E, Theorem 3.11.1]), (b) → (a) is obvious from Corollary 2.2.

(c) → (a): We may assume that the closure of {xn} is the whole space X. Let F
be the cluster of {xn}. It suffices to show from Proposition 3.1(2) that F is compact.
Assume the contrary. There is a point y ∈ βF rF . It follows from [E, Theorem 3.11.10]
that there is a continuous function f : βF → [0, 1] such that f(y) = 0 and f(x) > 0
for each x ∈ F . Since F is C∗-embedded in X, it follows from [E, Corollary 3.6.7]
that βF = ClβX F ⊂ βX. There is a continuous extension g : βX → [0, 1] of f . Then
g(y) = 0 and g(x) > 0 for each x ∈ F . Let Vi = {x ∈ βX : g(x) < 1/(i + 1)} for each
i ∈ ω. Since Vi is an open neighborhood of y in βX and {xn : n ∈ ω} is dense in βX,
each Vi contains infinitely many xn’s. So we can inductively choose a subsequence {xni}
of {xn} such that xni ∈ Vi for each i ∈ ω. Since {xn} is a β-sequence in X, {xni} has
a cluster point z in F . On the other hand, we have that

z ∈
∩
k∈ω

Cl {xni : i ≥ k} ⊂
∩
k∈ω

ClβX {xni : i ≥ k} ⊂
∩
k∈ω

ClβX Vk =
∩
k∈ω

Vk = g−1(0).

Hence we obtain z ∈ F ∩ g−1(0) = ∅. This is a contradiction. ¤
Theorem 3.5. If a space X is monotonically normal, then every β-sequence in X has
compact closure.

Proof. Assuming the separability of X, we show that X is compact. It suffices from
Proposition 3.2 that X is paracompact. Assume the contrary. It follows from Balogh-
Rudin’s result [BR, Theorem I] that there is a closed subspace F homeomorphic to
a stationary subset of an uncountable regular cardinal κ. Let D be the set of all
isolated points of F . Then D is a discrete subspace of X with cardinality κ. Note that
monotonical normality is hereditary with respect to any subspaces and that it implies
collectionwise normality. So X is hereditarily collectionwise normal. Since (XrClD)∪D
is collectionwise Hausdorff and X rClD is separable, the discrete subspace D of X is at
most countable (generally, every discrete subspace of a separable monotonically normal
space is countable). This contradicts |D| = κ > ω. ¤

4. β-spaces and strong β-spaces

Recall that a space X is called a β-space [H] if there is a function g : X×ω → Top(X),
where Top(X) denotes the topology of X, satisfying

(i) x ∈ g(x, n + 1) ⊂ g(x, n) for each x ∈ X and each n ∈ ω,
(ii) if y ∈

∩
n∈ω g(xn, n) for some y ∈ X, then {xn} has a cluster point.

Then we have the following after which we have named β-sequences.

Proposition 4.1 [Y1]. Let X be a β-space with a function g described above. If {xn} is
a sequence in X such that y ∈

∩
n∈ω g(xn, n) for some y ∈ X, then {xn} is a β-sequence

in X.

A space X is called a strong β-space [Y1] if there is a function g : X × ω → Top(X),
satisfying

(i) x ∈ g(x, n + 1) ⊂ g(x, n) for each x ∈ X and each n ∈ ω,
(ii) if y ∈

∩
n∈ω g(xn, n) for some y ∈ X, then {xn} has compact closure.
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Remark. The original definition of strong β-spaces is in terms of compact cluster of
{xn} in (ii). The equivalence is assured by Proposition 3.1(2).

The class of strong β-spaces is well behaved than that of β-spaces, for the former
is countably productive, and these two classes coincide under the assumption of para-
compactness (see [Y1]). Moreover, as is seen in [Y2], the property of strong β-spaces
plays an important role in the study of infinite products and Σ-products of paracompact
β-spaces.

Between β-spaces and strong β-spaces, it is natural to ask

Question*. When is a β-space strong β-space?

To tell the truth, the Question* is a background of Definitions 1 and the Question
in the Introduction. From our results mentioned above, we immediately obtain several
answers to the Question*.

Corollary 4.2. A β-space X is a strong β-space in each of the following cases:

(1) X is regular metaLindelöf.
(2) X is realcompact.
(3) X is normal and isocompact [Y1].
(4) X is countably paracompact and isocompact.
(5) X is monotonically normal.

However, we have not solved the following problem.

Problem. Is every regular submetacompact β-space a strong β-space?

Remark. Since every submetacompact space is isocompact, it follows from Corollary 4.2
(3) and (4) that the Problem is affirmative under the normality or countable paracom-
pactness of X.

5. β-Sequences with countable closure

By Corollary 3.3, we see that countable closure of β-sequences is a special case of
compact closure. Here we show such β-sequences can be expressed by fairly concrete
form. First, let us begin from β-sequences with finite cluster.

Proposition 5.1. Let m ∈ ω. A β-sequence {xn} in a space X has cluster consisting
of m + 1 points if and only if it is decomposed into m + 1 convergent subsequences with
different limit points.

Proof. Let {y0, · · · , ym} be the cluster of {xn}, where yi ̸= yj if i ̸= j. Choose pairwise
disjoint open sets U0, · · · , Um in X with yi ∈ Ui for each i ≤ m. Since {xn} is a β-
sequence, note that {n ∈ ω : xn ̸∈

∪
i≤m Ui} is at most finite. Let N0 = {n ∈ ω : xn ∈

U0 ∪ (X r
∪

i≤m Ui)} and let Ni = {n ∈ ω : xn ∈ Ui} for 1 ≤ i ≤ m. Then each
subsequence of {xn : n ∈ Ni} has the unique cluster point yi. Hence we have that
{xn : n ∈ ω} =

⊕
i≤m{xn : n ∈ Ni} and that {xn : n ∈ Ni} converges to yi for each

i ≤ m. The converse is easy to check. ¤
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Lemma 5.2. If {xn} is a β-sequence in a space X with the countable cluster F , then
{xn} has a subsequence converging to z for each z ∈ F .

Proof. Let F = {z, y0, y1, · · · }. For each i ∈ ω, there is an open neighborhood Vi of z in
X such that yj ̸∈ ClVi and Vi ⊂ Vj if j < i. By the choice of z, there is a subsequence
{xni} of {xn} such that xni ∈ Vi for each i ∈ ω. Since xni ∈ Vi ⊂ Vk if i ≥ k, it follows
that

∅ ̸=
∩
k∈ω

Cl {xni : i ≥ k} ⊂
( ∩
k∈ω

ClVk

)
∩ F = {z}.

Hence the subsequence {xni} has the unique cluster point z. Since every subsequence
of {xni} has the same cluster point z, it follows that {xni} converges to z. ¤

Theorem 5.3. Every non-trivial β-sequence with countable closure in a space X is
decomposed into non-trivial convergent subsequences with different limit points.

Proof. Let {xn} be a non-trivial β-sequence with the countable cluster F in X. By
Proposition 5.1, we may assume |F | = ω. Let F = {yi : i ∈ ω}, where yi ̸= yj if i ̸= j.
We construct a sequence {Ni} of infinite subsets in ω, satisfying for each i ∈ ω,

(i) Ni ∩ Nj = ∅ if i ̸= j,
(ii) {0, · · · , i} ⊂

∪
j≤i Nj ,

(iii) {xn : n ∈ Ni} converges to yi.
Assume that {Nj : j < i} has been constructed. It follows from Proposition 5.1 that the
set of all cluster points of {xn : n ∈

⊕
j<i Ni} is exactly {yj : j < i}. So yi is a cluster

point of {xn : ω r
∪

j<i Nj}. By Lemma 5.2, there is Ni ⊂ ω r
∪

i<j Nj with |Ni| = ω

and {xn : n ∈ Ni} converges to yi. Moreover, we may let i ∈ Ni if i ̸∈
∪

j<i Nj . Then
{Nj : j ≤ i} satisfies (i)–(iii) above. This implies that

⊕
i∈ω{xn : n ∈ Ni} is a desired

decomposition of {xn}. ¤

6. Examples

The following shows that the converse of Corollary 2.2 is not true.

Example 6.1. There is a Tychonoff space X which has a sequence {xn} with pseudo-
compact closure, but it is not a β-sequence.

Proof. There is a separable, pseudocompact, Tychonoff space X which is not countably
compact (see [E, Example 3.10.29]). Let D be a countable dense subset in X. Let E
be an infinite countable closed discrete subset in X. Let {xn} be the sequence obtained
by the enumeration of all points of D ∪ E. Since {xn : n ∈ ω} is also dense in X, the
closure of {xn} is the space X which is pseudocompact. Since {xn : n ∈ ω} contains E,
{xn} has a subsequence which has no cluster point in X. ¤

The following example shows that “paracompact closure” in Proposition 3.2 can be
replaced by neither “subparacompact closure” nor “paracompact cluster”, and that
“C∗-embedded” in Theorem 3.4(c) cannot be excluded.

Example 6.2. There is a locally compact, Moore space Ψ which has a β-sequence {xn}
with non-compact closure such that the cluster of {xn} is discrete and realcompact.



CERTAIN SEQUENCES WITH COMPACT CLOSURE 7

Proof. Let A be a maximal almost disjoint (mad) family of infinite subsets in ω with
|A| = 2ω (In fact, assign a convergent sequence {qr

n} of rational numbers with the limit
r for each irrational number r, let A′ be the set of all such {qr

n}’s, and take an mad
family A containing A′). Let Ψ = ω ∪ {pA : A ∈ A} as a set. We introduce a topology
of Ψ as follows;

(i) each point of ω is isolated in Ψ,
(ii)

{
{pA} ∪ (A r F ) : F is a finite subset of A

}
is a neighborhood base of pA for

each A ∈ A.
For example, the space Ψ is found in [vD, Section 11]. It is known that Ψ is a locally
compact Moore space (hence it is subparacompact).

Note that ω is a β-sequence in Ψ. In fact, take an infinite subset B in ω. In case of
B ∈ A: Then pB ∈ Ψ is a cluster point of B. In case of B /∈ A: Since A is maximal,
there is A0 ∈ A with |A0 ∩ B| = ω. Then pA0 is a cluster point of B. Identify {xn}
with ω. Since ω is dense in Ψ, the space Ψ is the closure of {xn}. Of course, Ψ is not
countably compact. Let D = {pA : A ∈ A}. By (i) and (ii), D is the cluster of {xn},
which is closed discrete in Ψ. Since |D| = 2ω and 2ω is a non-measurable cardinal, it
follows from [E, Exercise 3.11.D] that D is realcompact. ¤

It is natural from and Corollaries 2.2 and 2.3 and Theorem 3.5 to ask in what kinds of
normal spaces every β-sequence has compact closure. However, the following example
shows that some β-sequences do not have compact closure in even normal spaces with
fairly strong conditions.

Example 6.3. There is a sequentially compact, locally compact and normal space Y
which has a β-sequence with non-compact closure.

Proof. Let Y = ω ∪T be the space described in [vD, Example 7.1]. Then it is shown in
there that Y is a sequentially compact, locally compact and normal space which contains
ω as a dense subset. Since Y is countably compact, ω is a β-sequence in Y . Since ω is
dense in Y , Y is the closure of ω. However, since the closed set T in Y is homeomorphic
to some regular cardinal t ≥ ω1 (see [vD, Theorem 3.1]), Y is not compact. ¤
Remark. The above space Y = ω ∪ T is a strong β-space. In fact, we define the
function g : Y × ω → Top(Y ) such that g(m,n) = {m} for each (m,n) ∈ ω × ω and
g(T, n) = T r {0, · · · , n} for each (T, n) ∈ T × ω. Then it is easily seen that g is a
desired function.

Without the normality of Y , we have a more extreme example.

Example 6.4. There is a countably compact subspace X of ω∗(= βω r ω) which has
no infinite sequence with compact closure.

Proof. Let X be a countably compact subspace of ω∗ with |X| = c (for example, consider
the Novák’s example in [E, Example 3.10.19]). Let {xn} be an infinite sequence with
the compact closure E in X. Since E is infinite, it follows from [E, Theorem 3.1.14]
that |E| = 2c. This contradicts |E| ≤ |X| = c. ¤
Remark. If the above space X is dense in ω∗ such as [Y1, Example 3.6], it follows from
[Y1, Lemma 3.5] that X is not a strong β-space.
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By Corollary 2.4 and the following, we can see that it is independent from ZFC
whether every β-sequence has compact closure in a perfectly normal space.

Example 6.5. Under ♢, there is a perfect normal space X which has a β-sequence
with non-compact closure.

Proof. Consider the Ostaszewski line X in [O]. The space X can be constructed under
♢. Then X is a perfectly normal, countably compact S-space which is not compact
(also see [R, p.312]). Since X is separable, let {xn : n ∈ ω} be a countable dense set in
X. Then the sequence {xn} is a β-sequence in X with the non-compact closure X. ¤

The following shows that the converse of Theorem 5.3 is not true.

Example 6.6. There is a β-sequence {xn} in [0, 1] such that {xn} is decomposed into
countably many non-trivial convergent subsequences, but the closure of it is [0, 1].

Proof. Let {xn} be the sequence consisting of all rational numbers in [0, 1]. Since [0, 1]
is compact, {xn} is clearly a β-sequence in [0, 1]. Since {xn : n ∈ ω} is dense in [0, 1],
the closure of {xn} is [0, 1]. In a similar way as in the proof of Theorem 5.3, we can
inductively choose a sequence {Ni}∞i=1 of infinite subsets in ω, satisfying for each i ≥ 1,
Ni ∩ Nj = ∅ if i ̸= j, {0, · · · , i} ⊂

∪
j≤i Nj , {xn : n ∈ Ni} converges to 1/i. Then we

have {xn : n ∈ ω} =
⊕∞

i=1{xn : n ∈ Ni}. ¤

Acknowlegment

The authors would like to thank the referee for his helpful comments and suggestions.

References

[BR] Z. Balogh and M. E. Rudin, Monotone normality, Topology and Appl. 47 (1992), 115–127.

[vD] E. K. van Douwen, The integers and topology, Handbook of Set-theoretic Topology (K. Kunen
and J.E. Vaughan, eds), North-Holland, Amsterdam, 1984, pp. 111–167.

[E] R. Engelking, General Topology, Herdermann Verlag Berlin, 1989.

[H] R. E. Hodel, More spaces and w∆-spaces, Pacific J. Math. 38 (1971), 641–652.
[O] A. Ostaszewski, On countably compact, perfectly normal spaces, J. London Math. Soc. 14 (1976),

505–516.
[R] J. Roitman, Basic S and L, Handbook of Set-theoretic Topology (K. Kunen and J.E. Vaughan,

eds), North-Holland, Amsterdam, 1984, pp. 295–326.
[S] R. M. Stephenson, Symmetrizaqble spaces and separability, Topology Proc. 4 (1979), 589–599.
[W] W. Weiss, Countably compact spaces and Martin’s Axiom, Canad. J. Math. 30 (1978), 243–249.
[Y1] Y. Yajima, Strong β-spaces and their countable products, Houston J. Math. 33 (2007), 531–540.

[Y2] Y. Yajima, Normal covers of infinite products and normality of Σ-products, Topology and Appl.
154 (2007), 103–114.

Department of Mathematics, Oita University, Oita, 870-1192, Japan,
E-mail address: nkemoto@cc.oita-u.ac.jp

Department of Mathematics, Kanagawa University, Yokohama 221-8686, Japan
E-mail address: yajimy01@kanagawa-u.ac.jp


