CERTAIN SEQUENCES WITH COMPACT CLOSURE

Nobuyuki Kemoto and Yukinobu Yajima

Dedicated to the Memory of Professor Jan Pelant

ABSTRACT. This paper deals with a question which is stated by quite simple definitions. A sequence $\{x_n\}$ in a space X is called a β -sequence if every subsequence of it has a cluster point in X. The *closure* of the sequence $\{x_n\}$ means the closure of $\{x_n : n \in \omega\}$ in X. Here we consider the question when a β -sequence has compact closure. We give several answers to this question.

1. INTRODUCTION

Throughout this paper, all spaces are assumed to be *Hausdorff*.

A sequence in a space X is a function φ from ω into X, which is denoted by $\{x_n\}$ if $\varphi(n) = x_n$ for each $n \in \omega$, where ω is the first infinite ordinal. For a subspace A in X, we denote by Cl A the closure of A in X.

For a sequence $\{x_n\}$ in a space X, the *closure* of $\{x_n\}$ means the closure of its range in X, that is, $\operatorname{Cl}\{x_n : n \in \omega\}$.

Let us begin with the following simple definitions, which is a key of this paper.

Definition 1. A sequence $\{x_n\}$ in a space X is called a β -sequence if every subsequence of it has a cluster point in X.

Remark. Recall that a space X is called *e-countably compact* with respect to a dense subset D if every sequence in D has a cluster point in X (see [S]). Using this term, a sequence is a β -sequence iff its closure is e-countably compact with respect to its range.

It is well known that a space X is countably compact iff every sequence in X is a β -sequence. However, the concept of β -sequences is rather motivated by the definitions of many generalized metric spaces such as M-spaces, $w\Delta$ -spaces, Σ -spaces, β -spaces, q-spaces and so on. In fact, they are defined by the following form:

(*) If there is $y \in X$ such that x_n and y have some relation \sim_n (depending on n) for each $n \in \omega$, then $\{x_n\}$ has a cluster point in X.

As one example, recall that a space X is called a $w\Delta$ -space if there is a sequence $\{\mathcal{U}_n\}$ of open covers of X such that if $x_n \in \operatorname{St}(y, \mathcal{U}_n)$ for each $n \in \omega$, then $\{x_n\}$ has a cluster point in X. Where $x_n \in \operatorname{St}(y, \mathcal{U}_n)$ is an example of the relation \sim_n of x_n and y. In this case, assuming that each \mathcal{U}_n refines \mathcal{U}_{n-1} , the sequence $\{x_n\}$ is a β -sequence. In fact,

²⁰⁰⁰ AMS subject Classification. Primary 54A20, 54D30, Secondary 54D15, 54D20.

Key words and phrases: β -sequence, compact closure, countable closure, feebly compact.

in almost all such generalized metric spaces, we may assume without loss of generality that $\{x_n\}$ is a β -sequence in X (also see Proposition 4.1 below for the case of β -spaces).

Obviously, every sequence $\{x_n\}$ with (countably) compact closure is a β -sequence in a space X. Then it is natural to consider when the converse is true. In fact, we come up with the following question.

Question. When does a β -sequence $\{x_n\}$ in a space X have compact closure?

Of course, it is not true without any condition. Because the space $X = \beta \omega \setminus \{p\}$, where $p \in \beta \omega \setminus \omega$, is countably compact, separable and non-compact (see [E, Example 3.10.18]). On the other hand, it is not difficult to see that it is true under the paracompactness of X (see [Y1] or Corollary 2.9 below).

In Section 2, we observe that every β -sequences has pseudocompact closure. In Section 3, we give some equivalent conditions to compact closure of β -sequences. In Section 4, we immediately apply the previous results to the argument when β -spaces are strong β -spaces, as dealt with in [Y1]. In Section 5, we show that β -sequences with countable closure are expressed by fairly concrete forms. In Sections 6, we give some examples in the negative aspects for β -sequences.

2. Closure of β -sequences

Recall that a space X is *feebly compact* if every locally finite collection of open sets in X is at most finite.

The following is pointed out by the referee.

Proposition 2.1. Every β -sequence in a space X has feebly compact closure.

Proof. Assume the contrary. Let $\{x_n\}$ be a β -sequence with not feebly compact closure. There is an infinite countable locally finite collection $\{V_i: i \in \omega\}$ of open sets in $\operatorname{Cl}\{x_n: n \in \omega\}$. One can take an $x_{n_i} \in V_i$ for each $i \in \omega$. Then $\{x_{n_i}: i \in \omega\}$ is a discrete closed set in X. This contradicts that $\{x_{n_i}\}$ has a cluster point in X. \Box

Since every feebly compact space is pseudocompact (the converse is also true if the space is Tychonoff, as seen in [E, Theorem 3.10.22]), the above immediately yields

Corollary 2.2. Every β -sequence in a space X has pseudocompact closure.

Since a space is countably compact if it is normal and pseudocompact or if it is countably paracompact and feebly compact, we also have

Corollary 2.3. If a space X is either normal or countably paracompact, then every β -sequence in a space X has countably compact closure

Weiss [W] proved that every countably compact, perfectly normal space is compact under Martin's Axiom (MA) and $2^{\aleph_0} > \aleph_1$. The combination of Corollary 2.3 and this result immediately yield

Corollary 2.4. Assume MA and $2^{\aleph_0} > \aleph_1$. Every β -sequence in a perfectly normal space X has compact closure.

3. β -sequences with compact closure

First, we give an auxiliary concept for closure of sequences.

Definition 2. For a sequence $\{x_n\}$ in a space X, the set of all cluster points of $\{x_n\}$, that is, $\bigcap_{k \in \omega} \operatorname{Cl}\{x_n : n \ge k\}$ is called the *cluster* of $\{x_n\}$.

Proposition 3.1. Let $\{x_n\}$ be a sequence in a space X.

- (1) If E and F be the closure and the cluster of $\{x_n\}$, respectively, then $E = \{x_n : n \in \omega\} \cup F$ holds.
- (2) A β -sequence $\{x_n\}$ in X has compact closure if and only if it has compact cluster.

Proof. (1): This is easily seen.

(2): Let E and F be the closure and the cluster of $\{x_n\}$, respectively. Since F is a closed subset of E, if E is compact, then so is F. Assume that F is compact. Let \mathcal{U} be an open cover of E. There is a finite subcollection \mathcal{V} of \mathcal{U} with $F \subset \bigcup \mathcal{V}$. It suffices to show that $|E \setminus \bigcup \mathcal{V}| < \omega$. Assume the contrary. We can choose a subsequence $\{x_{n_i}\}$ of $\{x_n\}$ with $x_{n_i} \notin \bigcup \mathcal{V}$ for each $i \in \omega$. Since $\{x_n\}$ is a β -sequence in X, $\{x_{n_i}\}$ has a cluster point y in F. However, by the choice of x_{n_i} 's, y is not in $\bigcup \mathcal{V}$. This contradicts $F \subset \bigcup \mathcal{V}$. \Box

Proposition 3.2. For a β -sequence $\{x_n\}$ in a regular space X, the following are equivalent.

- (a) $\{x_n\}$ has compact closure in X.
- (b) $\{x_n\}$ has Lindelöf closure in X.
- (c) $\{x_n\}$ has paracompact closure in X.
- (d) $\{x_n\}$ has metaLindelöf closure in X.

Proof. The implications (a) \rightarrow (b) \rightarrow (c) \rightarrow (d) are obvious.

 $(d) \rightarrow (a)$: Without loss of generality, we may assume that the closure of $\{x_n\}$ is the whole space X. Then X is separable. Recall the facts that every separable metaLindelöf space is Lindelöf and that every regular Lindelöf space is normal. It follows Corollary 2.2 that X is pseudocompact. Recall the facts that every normal pseudocompact space is countably compact and that every countably compact and Lindelöf space is compact. Hence X is compact. \Box

This immediately yields the following special case, which will be discussed latter.

Corollary 3.3. If a β -sequence in a regular space X has countable closure, then it has compact closure.

For a Tychonoff space X, we denote by βX the Stone-Čech compactification of X.

Theorem 3.4. For a β -sequence $\{x_n\}$ in a Tychonoff space X,

the following are equivalent.

- (a) $\{x_n\}$ has compact closure in X.
- (b) $\{x_n\}$ has realcompact closure in X.
- (c) $\{x_n\}$ has realcompact cluster which is C^{*}-embedded in the closure.

Proof. (a) \rightarrow (b) and (a) \rightarrow (c) are obvious. Since every realcompact pseudocompact space is compact (see [E, Theorem 3.11.1]), (b) \rightarrow (a) is obvious from Corollary 2.2.

(c) \rightarrow (a): We may assume that the closure of $\{x_n\}$ is the whole space X. Let F be the cluster of $\{x_n\}$. It suffices to show from Proposition 3.1(2) that F is compact. Assume the contrary. There is a point $y \in \beta F \smallsetminus F$. It follows from [E, Theorem 3.11.10] that there is a continuous function $f: \beta F \rightarrow [0,1]$ such that f(y) = 0 and f(x) > 0 for each $x \in F$. Since F is C^* -embedded in X, it follows from [E, Corollary 3.6.7] that $\beta F = \operatorname{Cl}_{\beta X} F \subset \beta X$. There is a continuous extension $g: \beta X \rightarrow [0,1]$ of f. Then g(y) = 0 and g(x) > 0 for each $x \in F$. Let $V_i = \{x \in \beta X : g(x) < 1/(i+1)\}$ for each $i \in \omega$. Since V_i is an open neighborhood of y in βX and $\{x_n: n \in \omega\}$ is dense in βX , each V_i contains infinitely many x_n 's. So we can inductively choose a subsequence $\{x_{n_i}\}$ of $\{x_n\}$ such that $x_{n_i} \in V_i$ for each $i \in \omega$. Since $\{x_n\}$ is a β -sequence in X, $\{x_{n_i}\}$ has a cluster point z in F. On the other hand, we have that

$$z \in \bigcap_{k \in \omega} \operatorname{Cl} \{ x_{n_i} \colon i \ge k \} \subset \bigcap_{k \in \omega} \operatorname{Cl}_{\beta X} \{ x_{n_i} \colon i \ge k \} \subset \bigcap_{k \in \omega} \operatorname{Cl}_{\beta X} V_k = \bigcap_{k \in \omega} V_k = g^{-1}(0).$$

Hence we obtain $z \in F \cap g^{-1}(0) = \emptyset$. This is a contradiction. \Box

Theorem 3.5. If a space X is monotonically normal, then every β -sequence in X has compact closure.

Proof. Assuming the separability of X, we show that X is compact. It suffices from Proposition 3.2 that X is paracompact. Assume the contrary. It follows from Balogh-Rudin's result [BR, Theorem I] that there is a closed subspace F homeomorphic to a stationary subset of an uncountable regular cardinal κ . Let D be the set of all isolated points of F. Then D is a discrete subspace of X with cardinality κ . Note that monotonical normality is hereditary with respect to any subspaces and that it implies collectionwise normality. So X is hereditarily collectionwise normal. Since $(X \setminus Cl D) \cup D$ is collectionwise Hausdorff and $X \setminus Cl D$ is separable, the discrete subspace D of X is at most countable (generally, every discrete subspace of a separable monotonically normal space is countable). This contradicts $|D| = \kappa > \omega$. \Box

4. β -spaces and strong β -spaces

Recall that a space X is called a β -space [H] if there is a function $g: X \times \omega \to \text{Top}(X)$, where Top(X) denotes the topology of X, satisfying

- (i) $x \in g(x, n+1) \subset g(x, n)$ for each $x \in X$ and each $n \in \omega$,
- (ii) if $y \in \bigcap_{n \in \omega} g(x_n, n)$ for some $y \in X$, then $\{x_n\}$ has a cluster point.

Then we have the following after which we have named β -sequences.

Proposition 4.1 [Y1]. Let X be a β -space with a function g described above. If $\{x_n\}$ is a sequence in X such that $y \in \bigcap_{n \in \omega} g(x_n, n)$ for some $y \in X$, then $\{x_n\}$ is a β -sequence in X.

A space X is called a *strong* β -space [Y1] if there is a function $g: X \times \omega \to \text{Top}(X)$, satisfying

- (i) $x \in q(x, n+1) \subset q(x, n)$ for each $x \in X$ and each $n \in \omega$,
- (ii) if $y \in \bigcap_{n \in \omega} g(x_n, n)$ for some $y \in X$, then $\{x_n\}$ has compact closure.

Remark. The original definition of strong β -spaces is in terms of compact cluster of $\{x_n\}$ in (ii). The equivalence is assured by Proposition 3.1(2).

The class of strong β -spaces is well behaved than that of β -spaces, for the former is countably productive, and these two classes coincide under the assumption of paracompactness (see [Y1]). Moreover, as is seen in [Y2], the property of strong β -spaces plays an important role in the study of infinite products and Σ -products of paracompact β -spaces.

Between β -spaces and strong β -spaces, it is natural to ask

Question*. When is a β -space strong β -space?

To tell the truth, the Question^{*} is a background of Definitions 1 and the Question in the Introduction. From our results mentioned above, we immediately obtain several answers to the Question^{*}.

Corollary 4.2. A β -space X is a strong β -space in each of the following cases:

- (1) X is regular metaLindelöf.
- (2) X is realcompact.
- (3) X is normal and isocompact [Y1].
- (4) X is countably paracompact and isocompact.
- (5) X is monotonically normal.

However, we have not solved the following problem.

Problem. Is every regular submetacompact β -space a strong β -space?

Remark. Since every submetacompact space is isocompact, it follows from Corollary 4.2 (3) and (4) that the Problem is affirmative under the normality or countable paracompactness of X.

5. β -Sequences with countable closure

By Corollary 3.3, we see that countable closure of β -sequences is a special case of compact closure. Here we show such β -sequences can be expressed by fairly concrete form. First, let us begin from β -sequences with finite cluster.

Proposition 5.1. Let $m \in \omega$. A β -sequence $\{x_n\}$ in a space X has cluster consisting of m + 1 points if and only if it is decomposed into m + 1 convergent subsequences with different limit points.

Proof. Let $\{y_0, \dots, y_m\}$ be the cluster of $\{x_n\}$, where $y_i \neq y_j$ if $i \neq j$. Choose pairwise disjoint open sets U_0, \dots, U_m in X with $y_i \in U_i$ for each $i \leq m$. Since $\{x_n\}$ is a β sequence, note that $\{n \in \omega \colon x_n \notin \bigcup_{i \leq m} U_i\}$ is at most finite. Let $N_0 = \{n \in \omega \colon x_n \in U_0 \cup (X \setminus \bigcup_{i \leq m} U_i)\}$ and let $N_i = \{n \in \omega \colon x_n \in U_i\}$ for $1 \leq i \leq m$. Then each subsequence of $\{x_n \colon n \in N_i\}$ has the unique cluster point y_i . Hence we have that $\{x_n \colon n \in \omega\} = \bigoplus_{i \leq m} \{x_n \colon n \in N_i\}$ and that $\{x_n \colon n \in N_i\}$ converges to y_i for each $i \leq m$. The converse is easy to check. \Box **Lemma 5.2.** If $\{x_n\}$ is a β -sequence in a space X with the countable cluster F, then $\{x_n\}$ has a subsequence converging to z for each $z \in F$.

Proof. Let $F = \{z, y_0, y_1, \dots\}$. For each $i \in \omega$, there is an open neighborhood V_i of z in X such that $y_j \notin \operatorname{Cl} V_i$ and $V_i \subset V_j$ if j < i. By the choice of z, there is a subsequence $\{x_{n_i}\}$ of $\{x_n\}$ such that $x_{n_i} \in V_i$ for each $i \in \omega$. Since $x_{n_i} \in V_i \subset V_k$ if $i \geq k$, it follows that

$$\emptyset \neq \bigcap_{k \in \omega} \operatorname{Cl} \{ x_{n_i} \colon i \ge k \} \subset \left(\bigcap_{k \in \omega} \operatorname{Cl} V_k \right) \cap F = \{ z \}.$$

Hence the subsequence $\{x_{n_i}\}$ has the unique cluster point z. Since every subsequence of $\{x_{n_i}\}$ has the same cluster point z, it follows that $\{x_{n_i}\}$ converges to z. \Box

Theorem 5.3. Every non-trivial β -sequence with countable closure in a space X is decomposed into non-trivial convergent subsequences with different limit points.

Proof. Let $\{x_n\}$ be a non-trivial β -sequence with the countable cluster F in X. By Proposition 5.1, we may assume $|F| = \omega$. Let $F = \{y_i : i \in \omega\}$, where $y_i \neq y_j$ if $i \neq j$. We construct a sequence $\{N_i\}$ of infinite subsets in ω , satisfying for each $i \in \omega$,

- (i) $N_i \cap N_j = \emptyset$ if $i \neq j$,
- (ii) $\{0, \cdots, i\} \subset \bigcup_{j < i} N_j,$
- (iii) $\{x_n : n \in N_i\}$ converges to y_i .

Assume that $\{N_j: j < i\}$ has been constructed. It follows from Proposition 5.1 that the set of all cluster points of $\{x_n: n \in \bigoplus_{j < i} N_i\}$ is exactly $\{y_j: j < i\}$. So y_i is a cluster point of $\{x_n: \omega \setminus \bigcup_{j < i} N_j\}$. By Lemma 5.2, there is $N_i \subset \omega \setminus \bigcup_{i < j} N_j$ with $|N_i| = \omega$ and $\{x_n: n \in N_i\}$ converges to y_i . Moreover, we may let $i \in N_i$ if $i \notin \bigcup_{j < i} N_j$. Then $\{N_j: j \leq i\}$ satisfies (i)–(iii) above. This implies that $\bigoplus_{i \in \omega} \{x_n: n \in N_i\}$ is a desired decomposition of $\{x_n\}$. \Box

6. Examples

The following shows that the converse of Corollary 2.2 is not true.

Example 6.1. There is a Tychonoff space X which has a sequence $\{x_n\}$ with pseudocompact closure, but it is not a β -sequence.

Proof. There is a separable, pseudocompact, Tychonoff space X which is not countably compact (see [E, Example 3.10.29]). Let D be a countable dense subset in X. Let E be an infinite countable closed discrete subset in X. Let $\{x_n\}$ be the sequence obtained by the enumeration of all points of $D \cup E$. Since $\{x_n : n \in \omega\}$ is also dense in X, the closure of $\{x_n\}$ is the space X which is pseudocompact. Since $\{x_n : n \in \omega\}$ contains E, $\{x_n\}$ has a subsequence which has no cluster point in X. \Box

The following example shows that "paracompact closure" in Proposition 3.2 can be replaced by neither "subparacompact closure" nor "paracompact cluster", and that " C^* -embedded" in Theorem 3.4(c) cannot be excluded.

Example 6.2. There is a locally compact, Moore space Ψ which has a β -sequence $\{x_n\}$ with non-compact closure such that the cluster of $\{x_n\}$ is discrete and realcompact.

Proof. Let \mathcal{A} be a maximal almost disjoint (mad) family of infinite subsets in ω with $|\mathcal{A}| = 2^{\omega}$ (In fact, assign a convergent sequence $\{q_n^r\}$ of rational numbers with the limit r for each irrational number r, let \mathcal{A}' be the set of all such $\{q_n^r\}$'s, and take an mad family \mathcal{A} containing \mathcal{A}'). Let $\Psi = \omega \cup \{p_A \colon A \in \mathcal{A}\}$ as a set. We introduce a topology of Ψ as follows;

- (i) each point of ω is isolated in Ψ ,
- (ii) $\{\{p_A\} \cup (A \smallsetminus F): F \text{ is a finite subset of } A\}$ is a neighborhood base of p_A for each $A \in \mathcal{A}$.

For example, the space Ψ is found in [vD, Section 11]. It is known that Ψ is a locally compact Moore space (hence it is subparacompact).

Note that ω is a β -sequence in Ψ . In fact, take an infinite subset B in ω . In case of $B \in \mathcal{A}$: Then $p_B \in \Psi$ is a cluster point of B. In case of $B \notin \mathcal{A}$: Since \mathcal{A} is maximal, there is $A_0 \in \mathcal{A}$ with $|A_0 \cap B| = \omega$. Then p_{A_0} is a cluster point of B. Identify $\{x_n\}$ with ω . Since ω is dense in Ψ , the space Ψ is the closure of $\{x_n\}$. Of course, Ψ is not countably compact. Let $D = \{p_A : A \in \mathcal{A}\}$. By (i) and (ii), D is the cluster of $\{x_n\}$, which is closed discrete in Ψ . Since $|D| = 2^{\omega}$ and 2^{ω} is a non-measurable cardinal, it follows from [E, Exercise 3.11.D] that D is realcompact. \Box

It is natural from and Corollaries 2.2 and 2.3 and Theorem 3.5 to ask in what kinds of normal spaces every β -sequence has compact closure. However, the following example shows that some β -sequences do not have compact closure in even normal spaces with fairly strong conditions.

Example 6.3. There is a sequentially compact, locally compact and normal space Y which has a β -sequence with non-compact closure.

Proof. Let $Y = \omega \cup \mathcal{T}$ be the space described in [vD, Example 7.1]. Then it is shown in there that Y is a sequentially compact, locally compact and normal space which contains ω as a dense subset. Since Y is countably compact, ω is a β -sequence in Y. Since ω is dense in Y, Y is the closure of ω . However, since the closed set \mathcal{T} in Y is homeomorphic to some regular cardinal $\mathfrak{t} \geq \omega_1$ (see [vD, Theorem 3.1]), Y is not compact. \Box

Remark. The above space $Y = \omega \cup \mathcal{T}$ is a strong β -space. In fact, we define the function $g: Y \times \omega \to \operatorname{Top}(Y)$ such that $g(m,n) = \{m\}$ for each $(m,n) \in \omega \times \omega$ and $g(T,n) = \mathcal{T} \setminus \{0, \dots, n\}$ for each $(T,n) \in \mathcal{T} \times \omega$. Then it is easily seen that g is a desired function.

Without the normality of Y, we have a more extreme example.

Example 6.4. There is a countably compact subspace X of $\omega^* (= \beta \omega \setminus \omega)$ which has no infinite sequence with compact closure.

Proof. Let X be a countably compact subspace of ω^* with $|X| = \mathfrak{c}$ (for example, consider the Novák's example in [E, Example 3.10.19]). Let $\{x_n\}$ be an infinite sequence with the compact closure E in X. Since E is infinite, it follows from [E, Theorem 3.1.14] that $|E| = 2^{\mathfrak{c}}$. This contradicts $|E| \leq |X| = \mathfrak{c}$. \Box

Remark. If the above space X is dense in ω^* such as [Y1, Example 3.6], it follows from [Y1, Lemma 3.5] that X is not a strong β -space.

By Corollary 2.4 and the following, we can see that it is independent from ZFC whether every β -sequence has compact closure in a perfectly normal space.

Example 6.5. Under \diamondsuit , there is a perfect normal space X which has a β -sequence with non-compact closure.

Proof. Consider the Ostaszewski line X in [O]. The space X can be constructed under \diamond . Then X is a perfectly normal, countably compact S-space which is not compact (also see [R, p.312]). Since X is separable, let $\{x_n : n \in \omega\}$ be a countable dense set in X. Then the sequence $\{x_n\}$ is a β -sequence in X with the non-compact closure X. \Box

The following shows that the converse of Theorem 5.3 is not true.

Example 6.6. There is a β -sequence $\{x_n\}$ in [0, 1] such that $\{x_n\}$ is decomposed into countably many non-trivial convergent subsequences, but the closure of it is [0, 1].

Proof. Let $\{x_n\}$ be the sequence consisting of all rational numbers in [0,1]. Since [0,1]is compact, $\{x_n\}$ is clearly a β -sequence in [0,1]. Since $\{x_n : n \in \omega\}$ is dense in [0,1], the closure of $\{x_n\}$ is [0,1]. In a similar way as in the proof of Theorem 5.3, we can inductively choose a sequence $\{N_i\}_{i=1}^{\infty}$ of infinite subsets in ω , satisfying for each $i \ge 1$, $N_i \cap N_j = \emptyset$ if $i \ne j$, $\{0, \dots, i\} \subset \bigcup_{j \le i} N_j$, $\{x_n : n \in N_i\}$ converges to 1/i. Then we have $\{x_n : n \in \omega\} = \bigoplus_{i=1}^{\infty} \{x_n : n \in N_i\}$. \Box

Acknowlegment

The authors would like to thank the referee for his helpful comments and suggestions.

References

- [BR] Z. Balogh and M. E. Rudin, Monotone normality, Topology and Appl. 47 (1992), 115–127.
- [vD] E. K. van Douwen, The integers and topology, Handbook of Set-theoretic Topology (K. Kunen and J.E. Vaughan, eds), North-Holland, Amsterdam, 1984, pp. 111–167.
- [E] R. Engelking, *General Topology*, Herdermann Verlag Berlin, 1989.
- [H] R. E. Hodel, More spaces and $w\Delta$ -spaces, Pacific J. Math. **38** (1971), 641–652.
- [O] A. Ostaszewski, On countably compact, perfectly normal spaces, J. London Math. Soc. 14 (1976), 505–516.
- [R] J. Roitman, Basic S and L, Handbook of Set-theoretic Topology (K. Kunen and J.E. Vaughan, eds), North-Holland, Amsterdam, 1984, pp. 295–326.
- [S] R. M. Stephenson, Symmetrizapple spaces and separability, Topology Proc. 4 (1979), 589–599.
- [W] W. Weiss, Countably compact spaces and Martin's Axiom, Canad. J. Math. 30 (1978), 243–249.
- [Y1] Y. Yajima, Strong β -spaces and their countable products, Houston J. Math. **33** (2007), 531–540.
- [Y2] Y. Yajima, Normal covers of infinite products and normality of Σ-products, Topology and Appl. 154 (2007), 103–114.

DEPARTMENT OF MATHEMATICS, OITA UNIVERSITY, OITA, 870-1192, JAPAN, *E-mail address*: nkemoto@cc.oita-u.ac.jp

Department of Mathematics, Kanagawa University, Yokohama 221-8686, Japan E-mail address: yajimy01@kanagawa-u.ac.jp