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Abstract. Let A and B be subspaces of an ordinal. It is proved that the product A×B is
countably paracompact if and only if it is rectangular. Before this main result, we discuss

several covering properties of products with one ordinal factor. In particular, for every
paracompact space X, it is proved that the product X × A is paracompact if so is A.

1. Introduction

All spaces are assumed to be T1. However, all paracompact spaces are assumed to
be Hausdorff. For a set S, we denote by |S| the cardinality of S. The letter λ stands
for an ordinal.

Let X be a space. Recall that U is a cozero-set in X if there is a continuous function
f : X → [0, 1] such that U = {x ∈ X : f(x) > 0}. We say that G is a cozero cover of X
if G is a cover of X such that each member of G is a cozero-set in X.

Let X × Y be a product space. A subset of the form U × V in X × Y is called
a rectangle. A cover G of X × Y is rectangular if each member of G is a rectangle in
X × Y . The product X × Y is said to be rectangular if every finite (or binary) cozero
cover of X×Y has a σ-locally finite rectangular cozero refinement. Pasynkov [9] proved
a remarkable result as the product theorem in dimension theory:

(I) Let X and Y be Tychonoff spaces. If the product X × Y is rectangular, then
dimX × Y ≤ dimX + dimY .

Let A and B be subspaces of an ordinal. That is, A and B are subspaces of an
infinite ordinal λ with the usual order topology. The study of the product A × B was
essentially begun by Ohta, Tamano and the first author [3]. Subsequently, Fleissner,
Terasawa and the first author [1] proved that

(II) A × B is strongly zero-dimensional, that is, dim A × B = 0.
From (I) and (II), it is natural to raise the question:
(Q*) Is A × B always rectangular?
If it was true, (II) would be an immediate consequence of (I). However, (Q*) has a

negative answer when A and B are disjoint stationary subsets of ω1 (see Remark 1 to
Corollary 4.4). So we are led to refine the question:

(Q) What are equivalent conditions for A × B to be rectangular?
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The main purpose of this paper is to give a complete answer to this question. Namely,
we prove that

(III) A × B is rectangular iff A × B is countably paracompact.
We also give topological characterizations for normality and countable paracompactness
of A × B. From these characterizations, we can see a quite delicate difference between
normality and countable paracompactness of the products of ordinals (see Theorem 4.1
and Corollary 4.2). Moreover, from the difference, we can immeditately see that no
A × B is a Dowker space (see Corollary 4.3).

The proof of our main result (III) might be not short and quite technical for the
readers who are not familiar to these arguments. So, before we state this, we like to
look into an intermediate world between those of general products and ordinal products.
That is, we discuss some covering properties of products of a general space X and an
ordinal factor A. Since the proofs here are rather short, they might make the readers
be familiar to deal with subspaces of ordinals.

So the purpose of the next two sections is to generalize the results for covering
properties of A×B to the products X×A, where X is mainly a generalized paracompact
space. In fact, in Section 2, one is to prove that X ×A is paracompact iff X and A are
paracompact. Another will be used in the proof of the main theorem. In Section 3, we
show the equivalence of orthocompactness and weak suborthocompactness of X × A.

2. Paracompactness of products with one ordinal factor

Let λ be a limit ordinal. A subset A of λ is unbounded (resp., bounded) in λ if for
each α ∈ A, there is β ∈ A with β > α (resp., A ⊂ α for some α < µ). We denote
by cf(λ) the cofinality of λ. Let cf(λ) ≥ ω1. A subset A of λ is stationary in λ if it
intersects all closed and unbounded (abbreviated by cub) sets in λ.

Let us begin two fundamental lemmas, which will be frequently used in our proofs.

Lemma 2.1 (PDL). Let cf(λ) > ω and let S be a stationary subset in λ. If f(α) < α
for each α ∈ S, then there are T ⊂ S and α0 ∈ S such that T is stationary in λ with
|T | = cf(λ) and f(α) < α0 for each α ∈ T .

Lemma 2.2. Let A ⊂ λ. Assume that cf(λ) ≤ ω or that cf(λ) > ω and A is non-
stationary in λ. Then A is represented as the topological sum

⊕
γ∈cf(λ) Bγ such that

each Bγ is bounded in λ.

An open cover U of a space X is a weak δθ-cover if we can represent as U =
∪

n∈ω Un

such that for each x ∈ X, there is m ∈ ω with 0 < ord(x,Um) ≤ ω. where recall
ord(x,Um) = |{U ∈ Um : x ∈ U}|. In particular, every σ-point-finite open cover of X is
a weak δθ-cover.

Lemma 2.3. Let S ⊂ λ + 1, where cf(λ) > ω. Let S be stationary in λ or λ ∈ S. If U
is a weak δθ-cover of S, then there are U0 ∈ U and α0 ∈ S∩λ such that (α0, λ]∩S ⊂ U0.

Proof. Since it is obvious in case of λ ∈ S, we may assume that S is a stationary subset in
λ. Let U =

∪
n∈ω Un such that for each α ∈ S, there is nα ∈ ω with 0 < ord(α,Unα) ≤ ω.

Let Sn = {α ∈ S : 0 < ord(α,Un) ≤ ω} for each n ∈ ω. Since S =
∪

n∈ω Sn, there is
m ∈ ω such that Sm is stationary in λ. Take a Uα ∈ Um with α ∈ Uα for each α ∈ Sm.
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Assume that Uα is not stationary in λ for each α ∈ Sm. For each α ∈ Sm, take a cub
set Fα (in λ) disjoint from Uα, and find an f(α) < α with (f(α), α]∩S ⊂ Uα. By PDL,
there are a stationary set T in λ and an α∗ ∈ Sm such that T ⊂ Sm∩(α∗, λ) and f(α) <
α∗ for each α ∈ T . Let γ < ω1. Assume that we have already taken {αβ : β < γ} ⊂ T
such that β < β′ implies αβ < αβ′ . Since

∩
β<γ Fαβ

is a cub set in λ, we can find an
αγ ∈ T ∩ (

∩
β<γ Fαβ

) with αγ > supβ<γ αβ . Thus we have constructed {αβ : β < ω1} ⊂
T . Let β < γ < ω1. Since αγ ∈ Fαβ

, we have αγ ̸∈ Uαβ
. Since αγ ∈ Uαγ , Uαβ

and Uαγ

are different. On the other hand, we have α∗ ∈
∩

β<ω1
(f(αβ), αβ ] ∩ S ⊂

∩
β<ω1

Uαβ
.

Since α∗ ∈ Sm, observe ord(α∗,Um) ≤ ω. This is a contradiction. Hence there is some
U0 ∈ Um which is stationary in λ. Since U0 is open in S, it is easily seen by PDL again
that there is α0 ∈ S such that (α0, λ) ∩ S ⊂ U0. ¤

Note that a product space X×Y is paracompact and rectangular iff every open cover
of X × Y has a σ-locally finite rectangular cozero refinement.

Theorem 2.4. If X is a paracompact space and A is a paracompact subspace of an
ordinal, then the product X × A is paracompact and rectangular.

Proof. Let A ⊂ λ + 1. Assume the contrary. Let

λ′ = min{µ ≤ λ : There is a paracompact A′ ⊂ µ + 1 such that

X × A′ is not either paracompact or rectangular}.

Replace these λ′ and A′ with λ and A, respectively, over again. Then we may assume
without loss of generality that X × A is not either paracompact or rectangular, and
that

(∗) X × B is paracompact and rectangular for each paracompact B ⊂ A with
supB < λ.

Case 1. Assume that λ ̸∈ A and cf(λ) ≤ ω, or that λ ̸∈ A, cf(λ) > ω and A is
non-stationary in λ.

By Lemma 2.2, we can represent as A =
⊕

γ∈cf(λ) Bγ , where sup Bγ < λ for each
γ ∈ cf(λ). Then {X × Bγ : γ ∈ cf(λ)} is a discrete rectangular clopen cover of X × A.
By (∗), each X × Bγ is paracompact and rectangular. Hence so is X × A. This is a
contradiction.

Case 2. Assume that λ ̸∈ A, cf(λ) > ω and A is stationary in λ, or that λ ∈ A.
There is an open cover O of X × A which has no σ-locally finite rectangular cozero

refinement. We may let O = {Uξ × Vξ : ξ ∈ ∆}, where each Uξ × Vξ denotes an open
rectangle in X × A. Let

Ξ = {ξ ∈ ∆: (αξ, λ] ∩ A ⊂ Vξ for some αξ ∈ A ∩ λ}.

Claim. {Uξ : ξ ∈ Ξ} is an open cover of X.

Proof. Pick an x ∈ X. Let ∆x = {ξ ∈ ∆: x ∈ Uξ}. Then {Vξ : ξ ∈ ∆x} is an open
cover of A. Since A is paracompact, there is a locally finite open cover {V ∗

ξ : ξ ∈ ∆x}
of A such that V ∗

ξ ⊂ Vξ for each ξ ∈ ∆x. It follows from Lemma 2.3 that there are
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ξ0 ∈ ∆x and αξ0 ∈ A such that (αξ0 , λ] ∩ A ⊂ V ∗
ξ0

⊂ Vξ0 . This means that ξ0 ∈ Ξ with
x ∈ Uξ0 .

Since X is paracompact, there is a locally finite cozero cover {Wξ : ξ ∈ Ξ} of X such
that Wξ ⊂ Uξ for each ξ ∈ Ξ. Let Bξ = [0, αξ] ∩ A for each ξ ∈ Ξ. It follows from (∗)
that each O ¹ (X × Bξ) has a σ-locally finite rectangular cozero refinement Gξ. Now,
we let

G = {Wξ ×
(
(αξ, λ] ∩ A

)
: ξ ∈ Ξ} ∪

∪
{Gξ ¹ (Wξ × Bξ) : ξ ∈ Ξ}.

Then it is easily checked that G is a σ-locally finite rectangular cozero refinement of O.
This contradicts the choice of O. ¤
Remark. Pasynkov asked in [9, Question 1] whether a paracompact product X × Y
is rectangular. By Theorem 2.4, one cannot find a negative answer in the class of all
products with one ordinal factor.

Immediately, we have

Corollary 2.5 [4]. Let A and B be two subspace of an ordinal. Then the product A×B
is paracompact if and only if A and B are paracompact

Recall that an open cover O of a space X is normal if there is a sequence {Un} of open
covers of X such that Un+1 is a star-refinement of Un for each n ∈ ω, where U0 = O.
It is well known that a Hausdorff space X is paracompact iff every open cover of X is
normal.

Lemma 2.6. Every σ-point-finite open cover of a collectionwise normal and countably
paracompact space is normal.

It was independently proved in [6] and [7] that every point-finite open cover of a
collectionwise normal space is normal. Using this result, Lemma 2.6 is easily verified.

Theorem 2.7. Let X be a collectionwise normal and countably paracompact space with
dimX = 0. Let A be a subspace of an ordinal. Then every σ-point-finite rectangular
open cover of X × A has a discrete rectangular clopen refinement.

Proof. Let A ⊂ λ + 1. Assume the contrary. For convenience, we denote by (S) the
statement of our conclusion. Let

λ′ = min{µ ≤ λ : X × A′ does not satisfy (S) for some A′ ⊂ µ + 1}.

Replacing these λ′ and A′ with λ and A, respectively, we may assume that X ×A does
not satisfy (S), and that

(∗) X × B satisfies (S) for each B ⊂ A with supB < λ.
Case 1. Assume that λ ̸∈ A and cf(λ) ≤ ω, or that λ ̸∈ A, cf(λ) > ω and A is

non-stationary in λ.
By Lemma 2.2, we can represent as A =

⊕
γ∈cf(λ) Bγ , where sup Bγ < λ for each

γ ∈ cf(λ). It follows from (∗) that {X ×Bγ : γ ∈ cf(λ)} is a discrete rectangular clopen
cover of X × A such that each X × Bγ satisfies (S). Then it is easy to see that X × A
satisfies (S). This is a contradiction.
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Case 2. Assume that λ ̸∈ A, cf(λ) > ω and A is stationary in λ, or that λ ∈ A.
There is a σ-point-finite rectangular open cover O = {Uξ × Vξ : ξ ∈

∪
n∈ω ∆n} of

X × A which has no discrete rectangular clopen refinement, where {Uξ × Vξ : ξ ∈ ∆n}
is point-finite in X × A for each n ∈ ω. Let

Ξn = {ξ ∈ ∆n : (αξ, λ] ∩ A ⊂ Vξ for some αξ ∈ A ∩ λ}

for each n ∈ ω, and let U = {Uξ : ξ ∈ Ξn and n ∈ ω}. For each x ∈ X, since
O ¹ ({x}×A) is a σ-point-finite open cover of {x}×A, it follows from Lemma 2.3 that
there are αx ∈ A∩λ and ξx ∈

∪
n∈ω ∆n such that x ∈ Uξx and (αx, λ]∩A ⊂ Vξx . Hence

U covers X.

Claim. {Uξ : ξ ∈ Ξn} is point-finite in X for each n ∈ ω.

Proof. Assume that some {Uξ : ξ ∈ Ξn} is not point-finite at p ∈ X. There are an
infinite sequence {ξi} of distinct members of Ξn with p ∈

∩
i∈ω Uξi . For each i ∈ ω,

there is αi ∈ A∩λ such that (αi, λ]∩A ⊂ Vξi . Take β ∈ A with β > supi∈ω αi. Then we
have ⟨p, β⟩ ∈

∩
i∈ω Uξi × Vξi . This contradicts the point-finiteness of {Uξ × Vξ : ξ ∈ Ξn}

in X × A.
By the Claim, U is a σ-point-finite open cover of X. It follows from Lemma 2.6

that U is a normal cover of X. Since dimX = 0, there is a discrete clopen refinement
{Lη : η ∈ Ω} of U . For each η ∈ Ω, choose a ξ(η) ∈

∪
n∈ω Ξn with Lη ⊂ Uξ(η). For each

η ∈ Ω, let Bη = [0, αξ(η)]∩A. By (∗), X ×Bη is a clopen rectangle in X ×A, satisfying
(S). Since O ¹ (X × Bη) is a σ-point-finite rectangular open cover of X × Bη, there is
a discrete rectangular clopen refinement Dη of O ¹ (X × Bη). Now, we put

D = {Lη ×
(
(αξ(η), λ] ∩ A

)
: η ∈ Ω} ∪

∪
{Dη ¹ (Lη × Bη) : η ∈ Ω}.

Then it is easily verified that D is a discrete rectangular clopen refinement of O. This
contradicts the choice of O. ¤

Since a subspace A of an ordinal is a GO-space, it is collectionwise normal and
countably paracompact. Moreover, A is strongly zero-dimensional. So the following is
an immediate consequence of Theorem 2.7.

Corollary 2.8. Let A and B be two subspaces of an ordinal. Then every σ-point-finite
rectangular open cover of A × B has a discrete rectangular clopen refinement.

We will use Corollary 2.8 in the proof of our main theorem later.

3. Orthocompactness of products of one ordinal factor

A space X is weakly suborthocompact [4] if every open cover G of X has an open
refinement

∪
n∈ω Hn, satisfying for each x ∈ X, there is nx ∈ ω such that

∩
{H ∈

Hnx : x ∈ H} is open in X.
Let κ be an uncountable regular cardinal. A space X has orthocaliber κ at p ∈ X

[5] if for any collection U of open neighborhood of p in X with |U| = κ, there is a
subcollection V of U such that |V| = κ and p ∈ Int(

∩
V).
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Lemma 3.1. Let A ⊂ λ be stationary in λ, where cf(λ) > ω. If X × A is weakly
suborthocompact, then X has orthocaliber cf(λ) at each x ∈ X.

Proof. Note that there is a stationary subset A∗ of cf(λ) such that A∗ is homeomorphic
to a closed subspace of A. So we may assume that A is a stationary subset of the regular
cardinal cf(λ). Moreover, if A =

∪
n∈ω An, then some Am must be stationary in cf(λ).

So the proof can be obtained by modifying that of [5, Lemma 1.1]. The detail is left to
the readers. ¤

Let U be a collection of open sets in a space X. We say that U is interior-preserving
if

∩
V is open for every V ⊂ U . The following is easily seen.

Lemma 3.2. Let X be a space. Let Gξ be an interior-preserving collection of open sets
in X for each ξ ∈ Ξ. If {

∪
Gξ : ξ ∈ Ξ} is point-finite in X, then

∪
{Gξ : ξ ∈ Ξ} is

interior-preserving in X.

A space X is orthocompact (resp., suborthocompact) if every open cover U of X has
an interior-preserving open refinement V (resp., a sequence {Vn} of open covers of X,
satisfying for each x ∈ X, there is nx ∈ ω such that

∩
{V ∈ Vnx : x ∈ V } is open in X).

Theorem 3.3. Let X be a metacompact (resp., submetacompact) space and let A a
subspace of an ordinal. Then X × A is orthocompact (resp., suborthocompact) if and
only if it is weakly suborthocompact.

Proof. Let A ⊂ λ + 1. Assume the contrary. Let

λ′ = min{µ ≤ λ : There is A′ ⊂ µ + 1 such that X × A′

is weakly suborthocompact, but not orthocompact}.

Replace these λ′ and A′ with λ and A, respectively. We may assume that X × A is
weakly suborthocompact but not orthocompact, and that

(∗) X × B is orthocompact if it is weakly suborthocompact for each B ⊂ A with
supB < λ.

Case 1. Assume that λ ̸∈ A and cf(λ) ≤ ω, or that λ ̸∈ A, cf(λ) > ω and A is
non-stationary in λ.

By Lemma 2.2, we can easily get a contradiction in the similar way as the above.
Case 2. Assume that λ ̸∈ A, cf(λ) > ω and A is stationary in λ, or that λ ∈ A.
There is an open cover O of X × A such that O has no interior-preserving open

refinement. Pick a point p ∈ X. In the case of λ ̸∈ A: For each α ∈ A, there are an
open neighborhood Up of p in X and an f(α) < α such that Uα ×

(
(f(α), α]∩A

)
⊂ Oα

for some Oα ∈ O. By PDL, there are Sp ⊂ A and αp ∈ A such that Sp is stationary in
λ, |Sp| = cf(λ), Sp ∩ [0, αp] = ∅ and f(α) < αp for each α ∈ Sp. It follows Lemma 3.1
that there are an open neighborhood Vp of p in X and a Tp ⊂ Sp such that |Tp| = cf(λ)
and Vp ⊂ Int

(∩
α∈Tp

Uα

)
. Then we have that Vp ×

(
(αp, α] ∩ A

)
⊂ Oα ∈ O for each

α ∈ Tp and that
∪
{Vp ×

(
(αp, α] ∩ A

)
: α ∈ Tp} = Vp ×

(
(αp, λ] ∩ A

)
. In the case of

λ ∈ A: Since ⟨p, λ⟩ ∈ X × A, there are an open neighborhood Vp of p in X and an
αp < λ such that Vp ×

(
(αp, λ] ∩ A

)
⊂ Op for some Op ∈ O.
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Since X is metacompact, there is a point-finite open cover {Wp : p ∈ X} of X such
that Wp ⊂ Vp for each p ∈ X. Let Bp = [0, αp] ∩ A for each p ∈ X. It follows from (∗)
that X × Bp is orthocompact. So there is an interior-preserving open refinement Gp of
O ¹ (X × Bp). Here, we let

G = {Wp ×
(
(αp, α] ∩ A

)
: α ∈ Tp and p ∈ X} ∪

∪
{Gp ¹ (Wp × Bp) : p ∈ X}.

Then G is an interior-preserving open refinement of O. This is a contradiction.
The argument of parenthetic part is similar to the above. The detail is left to the

readers. ¤
Remark. For two subspace A and B of an ordinal, it was shown in [4] that the product
A × B is orthocompact iff it is weakly suborthocompact. However, we do not know
whether the metacompactness of X in Theorem 3.3 can be replaced by the orthocom-
pactness of X.

Lemma 3.4. Let A ⊂ λ + 1, where cf(λ) > ω. Let A be stationary in λ or λ ∈ A.
Assume that a space X has orthocaliber cf(λ) at p ∈ X. If O is an open set in X × A
with {p} × A ⊂ O, then there are an open neighborhood V of p in X and a β ∈ A such
that V ×

(
(β, λ] ∩ A

)
⊂ O.

Proof. The case of λ ∈ A is obvious. We may assume that A is a stationary subset of
λ. For each α ∈ A, there are an open neighborhood Uα of p in X and an f(α) < α
such that Uα ×

(
(f(α), α] ∩ A

)
⊂ O. By PDL, there are S ⊂ A and β ∈ A such that

S is stationary in λ, |S| = cf(λ), S ∩ [0, β] = ∅ and f(α) < β for each α ∈ S. Then
Uα ×

(
(β, α] ∩ A

)
⊂ O for each α ∈ S. By the assumption of X, there are T ⊂ S and

an open neighborhood V of p in X such that |T | = cf(λ) and V ⊂
∩

α∈T Uα. Hence we
have V ×

(
(β, λ] ∩ A

)
⊂ O. ¤

Note that a product space X × Y is normal and rectangular iff every binary open
cover of X × Y has a σ-locally finite rectangular cozero refinement.

Theorem 3.5. Let X be a paracompact space and A a subspace of an ordinal. If X×A
is orthocompact, then it is normal and rectangular.

Proof. Let A ⊂ λ + 1. Assume the contrary. Let

λ′ = min{µ ≤ λ : There is A′ ⊂ µ + 1 such that X × A′

is orthocompact, but not either normal or rectangular}.

Replace these λ′ and A′ with λ and A, respectively. We may assume that X × A is
orthocompact but not either normal or rectangular, and that

(∗) X × B is normal and rectangular if it is orthocompact for each B ⊂ A with
supB < λ.

Case 1. Assume that λ ̸∈ A and cf(λ) ≤ ω, or that λ ̸∈ A, cf(λ) > ω and A is
non-stationary in λ.

This case is similar to the above.



8 NOBUYUKI KEMOTO AND YUKINOBU YAJIMA

Case 2. Assume that λ ̸∈ A, cf(λ) > ω and A is stationary in λ, or that λ ∈ A.

Let O = {O0, O1} be any binary open cover of X × A. Pick a point p ∈ X. In the
case of λ ̸∈ A: By PDL, there are δ ∈ A and kp ∈ 2 such that {p} ×

(
(δ, λ] ∩A

)
⊂ Okp

.
Since X ×

(
(δ, λ] ∩ A

)
is orthocompact and (δ, λ] ∩ A is stationary in λ, it follows from

Lemmas 3.1 and 3.4 that there are an open neighborhood Vp of p in X and a βp ∈ A
such that Vp ×

(
(βp, λ] ∩ A

)
⊂ Okp . In the case of λ ∈ A: Obviously, there are such

Vp and βp. Since X is paracompact, there is a locally finite cozero cover {Wp : p ∈ X}
of X such that Wp ⊂ Vp for each p ∈ X. Let Bp = [0, βp] ∩ A for each p ∈ X. It
follows from (∗) that each X × Bp is normal and rectangular. So there is a σ-locally
finite rectangular cozero refinement Gp of O ¹ (X × Bp). Now, we let

G = {Wp ×
(
(βp, λ] ∩ A

)
: p ∈ X} ∪

∪
{Gp ¹ (Wp × Bp) : p ∈ X}.

Then G is a locally finite rectangular cozero refinement of O. Hence X × A is normal
and rectangular. This is a contradiction. ¤

Immediately, we have

Theorem 3.6 [5]. Let X be a paracompact space and κ a uncountable regular cardinal.
If X × κ is orthocompact, then it is normal and rectangular.

4. A main theorem and corollaries

In this section, we deal with the product A×B of two subspaces of an ordinal instead
of the product X × A in the previous sections. More special situations may yield more
curious results. The following main theorem of this paper illustrates this phenomena.

Theorem 4.1 (Main). Let A and B be two subspaces of an ordinal. Then the following
are equivalent.

(a) A × B is countably paracompact.
(b) A × B is rectangular.
(c) Every binary cozero cover of A×B has a discrete rectangular clopen refinement.

Remark. There is no implication, in general, between rectangularity and countable para-
compactness of a product space X × Y . In fact, for a Tychonoff space X which is not
countably paracompact, the product of the form X×{p} is rectangular but not countably
paracompact. On the other hand, it follows from [8, Theorem 1] that, for a countably
paracompact (and normal) space X which is not paracompact, there is a paracompact
space Y such that X × Y is countably paracompact (and normal) but not rectangular.

Corollary 4.2. Let A and B be two subspaces of an ordinal. Then the following are
equivalent.

(a) A × B is normal.
(b) Every binary open cover of A×B has a σ-locally finite rectangular open refine-

ment.
(c) Every binary open cover of A ×B has a discrete rectangular clopen refinement.
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Proof. (a) → (b): Since A × B is normal, every binary open cover O of A × B has a
binary cozero refinement (shrinking) G. It follows from [3, Theorems A and B] that
A × B is countably paracompact. By Theorem 4.1, A × B is rectangular. Hence G has
a desired refinement.

(b) → (c): This follows from Corollary 2.8.
(c) → (a): This is obvious. ¤

Comparing Theorem 4.1 and Corollary 4.2, we can see a delicate difference between
countable paracompactness and normality of A × B from the topological aspect. The
both results immediately yields

Corollary 4.3 [3]. Any product of two subspaces of an ordinal is not a Dowker space.

This is originally a consequence of [3, Theorems A and B]. However, the set-theoretic
conditions stated there seem to be too complicated.

As a particular case of them, the following is an immediate consequence of [3, The-
orem B and Corollary 3.3] and our Theorem 4.1.

Corollary 4.4. Let A,B ⊂ ω1. Then the following are equivalent.
(a) A × B is normal.
(b) A × B is countably paracompact.
(c) A × B is rectangular.
(d) A is non-stationary in ω1 or B is non-stationary in ω1 or A ∩ B is stationary

in ω1.

Remark 1. Let A and B be disjoint stationary subsets in ω1. It follows from Corollary
4.4 that A×B is not rectangular. The referee pointed out that the fact is also directly
shown by PDL. Since the verification is not difficult, it is left to the reader.

Remark 2. It follows Theorem 4.1 and Corollary 4.2 that normality of A × B implies
its rectangularity. However, the converse is not true. In fact, it is well known that
ω1 × (ω1 + 1) is not normal. On the other hand, since ω1 × (ω1 + 1) is countably
compact, it follows from Theorem 4.1 that ω1 × (ω1 + 1) is rectangular.

5. Preliminaries for the proofs

The letters µ and ν stand for limit ordinals with µ, ν ≤ λ for a sufficiently large
ordinal λ. For P, Q ⊂ λ + 1 = [0, λ] and X ⊂ (λ + 1)2 = [0, λ]2, we put XP =(
P × (λ + 1)

)
∩ X, XQ =

(
(λ + 1) × Q

)
∩ X and XQ

P = XP ∩ XQ = (P × Q) ∩ X.
Here, we always put X = A × B for two subspaces A and B in λ + 1. According to

this notation, for each P, Q ⊂ λ + 1, we define XP = (P ∩A)×B, XQ = A× (Q ∩B)
and XQ

P = (P ∩ A) × (Q ∩ B).
For each A ⊂ µ, Limµ(A) is the set {α < µ : α = sup(A ∩ α)}, in other words, the

set of all cluster points of A in µ. For convenience, we let sup ∅ = −1, where −1 is the
immediate predecessor of the ordinal 0. Obviously, Limµ(A) is cub in µ whenever A is
unbounded in µ. We use Lim(A) instead of Limµ(A) without the confusion.

Let C be a cub set in µ, where cf(µ) ≥ ω1. Clearly, Lim(C) ⊂ C. We put Succ(C) =
C r Lim(C), that is, Succ(C) means the set of all successors in C. Next, we put
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pC(α) = sup(C ∩ α) for each α ∈ C. Note that, for each α ∈ C, pC(α) ∈ C ∪ {−1}
and that pC(α) < α iff α ∈ Succ(C). So, for each α ∈ Succ(C), pC(α) is the immediate
predecessor of α in C ∪ {−1}.

A strictly increasing function M : cf(µ)+1 → µ+1 is said to be a normal function for
µ if M(γ) = sup{M(γ′) : γ′ < γ} for each limit ordinal γ ≤ cf(µ) and M(cf(µ)) = µ.
For convenience, we may define M(0) = 0. Note that we can always take a normal
function M for µ whenever cf(µ) ≥ ω. In particular, if µ is a regular cardinal, then we
can fix the identity map on µ + 1 as the normal function.

For the function M , we have

Fact 5.1. Let cf(µ) ≥ ω1. A normal function M for µ satisfies
(1) M is a homeomorphism from cf(µ) + 1 into µ + 1,
(2) M

(
[0, cf(µ))

)
is a cub set in µ,

(3) for two normal functions M and M ′ for µ, there is a cub set C in µ such that
M ¹ C = M ′ ¹ C.

(4) S is a stationary set in µ iff M−1(S) is stationary set in cf(µ)

Let µ and ν be limit ordinals with κ = cf(µ) = cf(ν) ≥ ω1. Let A ⊂ µ and B ⊂ ν.
We take two normal functions M and N for µ and ν, respectively. By Fact 5.1, we can
fix them. After this, we denote by M and N the fixed normal functions for µ and ν,
respectively.

It follows from Fact 5.1 (3) that the stationarity of M−1(A) ∩ N−1(B) in κ does
not depend on the choices of normal functions M and N . So we say that A and B
have stationary intersection (resp., non-stationary intersection) if M−1(A)∩N−1(B) is
stationary (resp., non-stationary) in κ for some (any) normal functions M and N .

Let M be a normal function for µ and let C be a cub set in cf(µ). Then we define
the map mC : µ + 1 → C ∪ {cf(µ)} by

mC(α) = min{γ ∈ C ∪ {cf(µ)} : α ≤ M(γ)}

for each α ≤ µ. For the M and the mC , we have

Fact 5.2. Let C be a cub set in cf(µ). Let mC be the map defined as above. Then
(1) mC is a continuous map,
(2) mC(α) ∈ Lim(C) or α ∈ M(C) implies M(mC(α)) = α,
(3) mC(α) ∈ Succ(C) implies M(pC(mC(α))) < α ≤ M(mC(α)),
(4) γ ∈ C implies mC(M(γ)) = γ,
(5) mC(µ) = cf(µ).

For the normal function N for a limit ordinal ν and a cub set D in cf(ν), we similarly
define nD : ν + 1 → D ∪ {cf(ν)} by nD(β) = min{δ ∈ D ∪ {cf(ν)} : β ≤ N(δ)} for each
β ≤ ν.

6. Proof of main theorem

Lemma 6.1. Let cf(µ) ≥ ω1 and cf(ν) ≥ ω1. Let A ⊂ µ and B ⊂ ν such that A and
B are stationary in µ and ν, respectively. If cf(µ) ̸= cf(ν) and G is a finite open cover
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of X = A×B, then there are α0 ∈ µ and β0 ∈ ν such that X
(β0,ν)
(α0,µ) is contained in some

member of G.

Proof. We may assume cf(µ) < cf(ν). For each γ ∈ M−1(A) ∩ Lim(cf(µ)) and each
δ ∈ N−1(B) ∩ Lim(cf(ν)), there are G(γ, δ) ∈ G, f(γ, δ) < γ and g(γ, δ) < δ such that

⟨M(γ), N(δ)⟩ ∈ X
(N(g(γ,δ)),N(δ)]
(M(f(γ,δ)),M(γ)] ⊂ G(γ, δ).

Since N−1(B)∩Lim(cf(ν)) is stationary in cf(ν) and γ < cf(µ) < cf(ν), it follows from
PDL that there are G(γ) ∈ G, f(γ) < γ and g(γ) < cf(ν) such that X

(N(g(γ)),ν)
(M(f(γ)),M(γ)] ⊂

G(γ). Since M−1(A) ∩ Lim(cf(µ)) is stationary in cf(µ), it follows from PDL again
that there are S ⊂ M−1(A) ∩ Lim(cf(µ)), γ0 < cf(µ) and G0 ∈ G such that S is
stationary in cf(µ) with γ > γ0, f(γ) < γ0 and G(γ) = G0 ∈ G for each γ ∈ S. By
|S| = cf(µ) < cf(ν), take a δ0 ∈ cf(ν) with δ0 > sup{g(γ) : γ ∈ S}. Then it is easily
verified that X

(N(δ0),ν)
(M(γ0),µ) ⊂ G0 ∈ G. ¤

Lemma 6.2. Let cf(µ) ≥ ω1. Let A ⊂ µ and ν ∈ B ⊂ ν + 1 such that A is stationary
in µ and B ∩ ν is unbounded in ν. If cf(µ) ̸= cf(ν) and G is a finite open cover of
X = A × B, then there are α0 ∈ µ and β0 ∈ ν such that X

(β0,ν]
(α0,µ) is contained in some

member of G.

Proof. For each γ ∈ M−1(A) ∩ Lim(cf(µ)), by ⟨M(γ), ν⟩ ∈ X, there are G(γ) ∈
G, f(γ) < γ and g(γ) < cf(ν) such that X

(N(g(γ)),ν]
(M(f(γ)),M(γ)] ⊂ G(γ). It follows from

PDL that there are S ⊂ M−1(A) ∩ Lim(cf(µ)), γ0 < cf(µ) and G0 ∈ G such that S is
stationary in cf(µ) with γ > γ0, f(γ) < γ0 and G(γ) = G0 ∈ G for each γ ∈ S.

In the case of cf(ν) < cf(µ); there are T ⊂ S and δ0 ∈ cf(ν) such that T is stationary
in cf(µ) with g(γ) = δ0 for each γ ∈ T . In the case of cf(µ) < cf(ν); take δ0 ∈ cf(ν) with
δ0 > sup{g(γ) : γ ∈ S}. In both cases, it is easily verified that X

(N(δ0),ν]
(M(γ0),µ) ⊂ G0. ¤

Lemma 6.3. Let κ = cf(µ) = cf(ν) ≥ ω1. Let A ⊂ µ and B ⊂ ν + 1. Let G be a finite
cozero cover of X = A × B. If A and B ∩ ν have stationary intersection, then there is
γ0 ∈ κ such that X

(N(γ0),ν]
(M(γ0),µ) is contained in some member of G.

Proof. For each γ ∈ M−1(A) ∩ N−1(B ∩ ν) ∩ Lim(κ), we choose G(γ) ∈ G containing
⟨M(γ), N(γ)⟩. Since G(γ) is open in X, there is f(γ) < γ such that X

(N(f(γ)),N(γ)]
(M(f(γ)),M(γ)] ⊂

G(γ). Since G is finite, it follows from PDL that there are S ⊂ M−1(A) ∩ N−1(B ∩
ν) ∩ Lim(κ), γ0 ∈ κ and G0 ∈ G such that S is stationary in κ with γ > γ0, f(γ) < γ0

and G(γ) = G0 for each γ ∈ S. Then we have X
(N(γ0),ν)
(M(γ0),µ) ⊂ G0 ∈ G. It is clear that

X
(N(γ0),ν)
(M(γ0),µ) = X

(N(γ0),ν]
(M(γ0),µ) ⊂ G0 whenever ν ̸∈ B. So we may let ν ∈ B.

Now, assume that X
(N(γ0),ν]
(M(γ0),µ) ̸⊂ G0. There is α0 ∈ A such that α0 > M(γ0) and

⟨α0, ν⟩ ̸∈ G0. Since G0 is a cozero-set in X, there is a sequence {Fn : n ∈ ω} of closed
sets in X whose union is G0. For each n ∈ ω, by ⟨α0, ν⟩ ̸∈ Fn, we find βn ∈ ν with
X

(βn,ν]
{α0} ∩ Fn = ∅. By cf(ν) ≥ ω1, we take βω ∈ B ∩ ν with βω > sup{βn : n ∈ ω}

and βω > N(γ0). Then, since ⟨α0, βω⟩ ̸∈
∪

n∈ω Fn = G0, it follows that ⟨α0, βω⟩ ∈
X

(N(γ0),ν)
(M(γ0),µ) r G0 ̸= ∅. This contradicts X

(N(γ0),ν)
(M(γ0),µ) ⊂ G0. ¤
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Lemma 6.4. Let cf(µ) ≥ ω1 and cf(ν) ≥ ω1. Let A ⊂ µ and B ⊂ ν such that A and B
are stationary in µ and ν, respectively. If G is a σ-locally finite rectangular open cover
of X = A×B, then there are α0 ∈ µ and β0 ∈ ν such that X

(β0,ν)
(α0,µ) is contained in some

member of G.

Proof. We may assume ω1 ≤ cf(µ) ≤ cf(ν). Let G =
∪

n∈ω Gn, where each Gn is locally
finite in X. For each G ∈ G and α ∈ A, let Vα(G) = {β ∈ B : ⟨α, β⟩ ∈ G}.

Take a γ ∈ M−1(A)∩Lim(cf(µ)). Since {VM(γ)(G) : G ∈ G} is a σ-locally finite open
cover of B, it follows from Lemma 2.3 that there are n(γ) ∈ ω and G(γ) ∈ Gn(γ) such
that VM(γ)(G(γ)) is stationary in ν. Since G(γ) is open in X and γ is a limit ordinal
with γ < cf(µ) ≤ cf(ν), it follows from PDL that there are f(γ) < γ and g(γ) < ν

such that X
(N(g(γ)),ν)
(M(f(γ)),M(γ)] ⊂ G(γ) ∈ Gn(γ). Since f is regressive, it follows from PDL

again that there are S ⊂ M−1(A) ∩ Lim(cf(µ)), γ0 ∈ cf(µ) and n0 ∈ ω such that S is
stationary in cf(µ) with γ > γ0, f(γ) < γ0 and n(γ) = n0 for each γ ∈ S. Then we
have X

(N(g(γ)),ν)
(M(γ0),M(γ)] ⊂ G(γ) ∈ Gn0 for each γ ∈ S.

Now, we introduce the equivalence relation ∼ on S defined by γ ∼ γ′ iff G(γ) = G(γ′).
We denote by S/ ∼ the set of ∼-equivalence classes of S. For each E ∈ S/ ∼, let
GE = G(γE) for some (any) γE ∈ E. Note that GE ̸= GE′ for any E,E′ ∈ S/ ∼ with
E ̸= E′.

Claim. S/ ∼ is finite.

Proof. Assume the contrary. There is a sequence {En : n ∈ ω} of distinct members
of S/ ∼. Pick a δn ∈ En for each n ∈ ω. Let ξ = min{δn : n ∈ ω}. Then we have
γ0 < ξ ≤ δn for each n ∈ ω. By cf(ν) ≥ ω1, there is η ∈ B with η > supn∈ω g(δn). Then
we have

⟨M(ξ), N(η)⟩ ∈ X
(N(g(δn)),ν)
(M(γ0),M(δn)] ⊂ G(δn) = GEn ∈ Gn0 .

for each n ∈ ω. However, since GEn ̸= GEn′ if n ̸= n′, this contradicts the local
finiteness of Gn0 in X.

By the Claim, there is E0 ∈ S/ ∼ such that E0 is stationary in cf(µ). Then we
have

∪
γ∈E0

X
(N(g(γ)),ν)
(M(γ0),M(γ)] ⊂

∪
γ∈E0

G(γ) = GE0 ∈ Gn0 . Let ρ = minE0 (∈ E0 ⊂ S).
Since GE0 is a rectangle, we can let GE0 = G′

E0
× G′′

E0
. It suffices to show that

X
(N(g(ρ)),ν)
(M(ρ),µ) ⊂ GE0 ∈ G. Pick any ⟨α, β⟩ ∈ X

(N(g(ρ)),ν)
(M(ρ),µ) . Take ζ ∈ E0 with M(ζ) > α,

and take β1 ∈ B with β1 > N(g(ζ)). Since ρ ≤ ζ and M(γ0) < M(ρ) < α < M(ζ), we
have

⟨α, β1⟩ ∈ X
(N(g(ζ)),ν)
(M(ρ),M(ζ)] ⊂ X

(N(g(ζ)),ν)
(M(γ0),M(ζ)] ⊂ GE0 = G′

E0
× G′′

E0
.

Hence we have α ∈ G′
E0

. On the other hand, we have

⟨M(ρ), β⟩ ∈ X
(N(g(ρ)),ν)
(M(γ0),M(ρ)] ⊂ GE0 = G′

E0
× G′′

E0
.

Hence we have β ∈ G′′
E0

. Therefore, we obtain ⟨α, β⟩ ∈ G′
E0

× G′′
E0

= GE0 . ¤
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Lemma 6.5. Let cf(µ) ≥ ω1. Let A ⊂ µ and ν ∈ B ⊂ ν + 1 such that A is stationary
in µ and B ∩ ν is unbounded in ν. If G is a σ-locally finite rectangular open cover of
X = A × B, then there are α0 ∈ µ and β0 ∈ ν such that X

(β0,ν]
(α0,µ) is contained in some

member of G.

Proof. Let G =
∪

n∈ω Gn, where each Gn is locally finite in X. Take an α ∈ A. By
⟨α, ν⟩ ∈ X, there are n(α) ∈ ω and G(α) ∈ Gn(α) with ⟨α, ν⟩ ∈ G(α). Since G(α) is
open in X, there are f(α) < α and g(α) < ν such that X

(g(α),ν]
(f(α),α] ⊂ G(α) ∈ Gn(α). Since

cf(µ) ≥ ω1, it follows from PDL that there are S ⊂ A, α0 ∈ µ and n0 ∈ ω such that S
is stationary in µ with α > α0, f(α) < α0 and n(α) = n0 for each α ∈ S. Then we have
X

(g(α),ν]
(α0,α] ⊂ X

(g(α),ν]
(f(α),α] ⊂ G(α) ∈ Gn0 for each α ∈ S.

Case 1. Assume cf(ν) ≥ ω1. We introduce the same equivalence relation ∼ on S as
above, that is, α ∼ α′ iff G(α) = G(α′). We similarly denote by S/ ∼ the set of ∼-
equivalence classes of S. Since B∩ν is unbounded in ν and cf(ν) ≥ ω1, we can conclude
that S/ ∼ is finite (by the same argument as in the proof of the Claim above). Take a
stationary subset E0 in µ with E0 ∈ S/ ∼. Let α1 = min E0 and take a β1 ∈ B∩ ν with
β1 > g(α1). Let GE0 = G(α1). In the similar way as in the proof of Lemma 6.4, it is
verified that X

(β1,ν]
(α1,µ) ⊂ GE0 ∈ Gn0 .

Case 2. Assume cf(ν) ≤ ω. There is a cofinal sequence {ζn : n ∈ ω} in B ∩ ν. There
are S0 ⊂ S and m ∈ ω such that S0 is stationary in µ with g(α) < ζm for each α ∈ S0.
Let α2 = min S0. Since α2 ∈ S0 and α2 > α0, we have ⟨α2, ζm⟩ ∈ X

(g(α),ν]
(α0,α] ⊂ G(α) ∈ Gn0

for each α ∈ S0. Since Gn0 is locally finite in X, there are T ⊂ S0 and G0 ∈ Gn0 such
that T is stationary in µ with G(α) = G0 and α > α2 for each α ∈ T . Then it is easily
seen that X

(ζm,ν]
(α2,µ) ⊂ G0 ∈ Gn0 . ¤

Recall the two functions mC and nC in the previous section. Moreover, recall the
following which is a key for these functions.

Lemma 6.6 [2]. Let κ = cf(µ) = cf(ν) ≥ ω1. Let A ⊂ µ and B ⊂ ν + 1. If there is a
cub set C in κ such that C ∩ M−1(A) ∩ M−1(B) = ∅, then

Y = {⟨α, β⟩ ∈ A × B : mC(α) < nC(β)}
is clopen in A × B.

Making use of this, we obtain

Lemma 6.7. Let κ = cf(µ) = cf(ν) ≥ ω1. Let A ⊂ µ and B ⊂ ν + 1 such that A and
B ∩ ν have non-stationary intersection. Assume one of the following cases:

(a) A is stationary in µ, ν ̸∈ B and B is stationary in ν.
(b) A is stationary in µ, ν ∈ B and B ∩ ν is unbounded in ν.

Then A × B is not rectangular.

Proof. Let X = A × B. Assume that X is rectangular. By the assumption, there is a
cub set C in κ such that C ∩ M−1(A) ∩ N−1(B) = ∅. Let Y be the clopen set in X,
described in Lemma 6.6. Since {Y,X r Y } is a binary disjoint clopen cover of X, there
is a σ-locally finite rectangular open cover G of X such that G ⊂ Y or G ∩ Y = ∅ for
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each G ∈ G. It follows from Lemmas 6.4 and 6.5 that there are γ0 ∈ κ and G0 ∈ G such
that X

(N(γ0),ν]
(M(γ0),µ) ⊂ G0.

The case (a): Since M−1(A)∩C and N−1(B)∩C are stationary in κ, we can take some
γ1 ∈ M−1(A)∩C and δ1 ∈ N−1(B)∩C with γ0 < γ1 < δ1. Clearly, M(γ0) < M(γ1) and
N(γ0) < N(δ1). It follows from Fact 5.2 (4) that mC(M(γ1)) = γ1 < δ1 = nC(N(δ1)).
Then we have

⟨M(γ1), N(δ1)⟩ ∈ X
(N(γ0),ν)
(M(γ0),µ) ∩ Y ⊂ G0 ∩ Y ̸= ∅ .

On the other hand, we take δ2 ∈ N−1(B)∩C and γ2 ∈ M−1(A)∩C with γ0 < δ2 < γ2.
Similarly, we have M(γ0) < M(γ2), N(γ0) < N(δ2) and nC(N(δ2)) = δ2 < γ2 =
mC(M(γ2)). Hence we have

⟨M(γ2), N(δ2)⟩ ∈ X
(N(γ0),ν)
(M(γ0),µ) r Y ⊂ G0 r Y ̸= ∅ .

This is a contradiction.
The case (b): Since M−1(A) ∩ C is stationary in κ, we take γ1 ∈ M−1(A) ∩ C with

γ0 < γ1. It follows from γ1 ∈ C and Fact 5.2 (4),(5) that mC(M(γ1)) = γ1 < cf(µ) =
cf(ν) = nC(ν). Hence we have

⟨M(γ1), ν⟩ ∈ X
(N(γ0),ν]
(M(γ0),µ) ∩ Y ⊂ G0 ∩ Y ̸= ∅ .

On the other hand, since B ∩ ν is unbounded in ν, we take β2 ∈ B ∩ ν with N(γ0) < β2

and take γ2 ∈ M−1(A) ∩ C with nC(β2) < γ2. Since γ2 ∈ C and γ0 < nC(β2) < γ2, we
have M(γ0) < M(γ2) and nC(β2) < γ2 = mC(M(γ2)). Hence we have

⟨M(γ2), β2⟩ ∈ X
(N(γ0),ν)
(M(γ0),µ) r Y ⊂ G0 r Y ̸= ∅ .

This is a contradiction. ¤
Theorem 6.8. Let λ be an ordinal. Let A and B be two subspaces of λ + 1. Then
A × B is rectangular if and only if, for each µ, ν ≤ λ with κ = cf(µ) = cf(ν) ≥ ω1 such
that A ∩ µ and B ∩ ν have non-stationary intersection, the following clauses hold:

(1) If µ /∈ A and ν /∈ B, then A∩µ is non-stationary in µ or B∩ν is non-stationary
in ν.

(2) If µ /∈ A and ν ∈ B, then A∩µ is non-stationary in µ or B ∩ ν is bounded in ν.
(3) If µ ∈ A and ν /∈ B, then A∩µ is bounded in µ or B ∩ ν is non-stationary in ν.

Proof. The “only if” part: Assume that A × B is rectangular. Take any µ, ν ≤ λ with
κ = cf(µ) = cf(ν) ≥ ω1 such that A ∩ µ and B ∩ ν have non-stationary intersection.

Let µ /∈ A and ν /∈ B. Since X = (A∩ [0, µ])× (B ∩ [0, ν]) is rectangular, by Lemma
6.7 (a), A ∩ µ is non-stationary in µ or B ∩ ν is non-stationary in ν. So the clause (1)
is true. Similarly, it follows from Lemma 6.7 (b) that the clauses (2) and (3) are true.
The “if” part: Assume that A × B is not rectangular. Let

µ = min{ξ ≤ λ : (A ∩ [0, ξ]) × B is not rectangular },
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ν = min{η ≤ λ : (A ∩ [0, µ]) × (B ∩ [0, η]) is not rectangular },

X = (A ∩ [0, µ]) × (B ∩ [0, ν]).

Then X is not rectangular. However, by the minimality of µ and ν, X[0,α] and X [0,β]

are rectangular for each α < µ and β < ν. Obviously, µ and ν are limit ordinals.
Case 1. Assume that µ ̸∈ A and cf(µ) ≤ ω, or assume that µ ̸∈ A with cf(µ) ≥ ω1

and A ∩ µ is non-stationary in µ. It follows from Lemma 2.2 and the minimality of
µ that X can be represented as the topological sum

⊕
{Xγ : γ ∈ cf(µ)} of its clopen

rectangles such that each Xγ is rectangular. This implies that X is rectangular, which
is a contradiction.

Since X is not rectangular, there is a finite cozero cover G of X such that G has no
σ-locally finite rectangular open refinement. It suffices to show the following statement:

(∗) There are α0 ∈ µ, β0 ∈ ν and G0 ∈ G such that X
(β0,ν]
(α0,µ] ⊂ G0.

In fact, since X[0,α0] and X [0,β0] are rectangular, it is easy to find a σ-locally finite
rectangular open refinement H of G such that H contains X

(β0,ν]
(α0,µ]. This is a contradiction.

Now, we assume that the statement (∗) is not true.
Case 2. Assume that ⟨µ, ν⟩ ∈ X. Take G0 ∈ G with ⟨µ, ν⟩ ∈ G0. The openness of G0

in X gives us a contradiction.
Case 3. Assume that µ ̸∈ A and ν ̸∈ B with cf(µ) ≥ ω1 and cf(ν) ≥ ω1 and that

A ∩ µ and B ∩ ν are stationary in µ and ν, respectively. It follows from Lemma 6.1
that cf(µ) = cf(ν). By the clause (1), A ∩ µ and B ∩ ν have stationary intersection.
However, Lemma 6.3 gives us a contradiction.

Case 4. Assume that µ ̸∈ A with cf(µ) ≥ ω1 and ν ∈ B and that A ∩ µ is stationary
in µ and B ∩ ν is unbounded in ν. This case is similar to Case 3, using Lemma 6.2 and
the clause (2) instead of Lemma 6.1 and the clause (1), respectively.

Case 5. Assume that µ ̸∈ A with cf(µ) ≥ ω1 and ν ∈ B and that A ∩ µ is stationary
in µ and B ∩ ν is bounded in ν. By Lemma 2.3, there are G0 ∈ G and α0 ∈ µ such that
((α0, µ) ∩ A) × {ν} = X

{ν}
(α0,µ) ⊂ G0 ∩ (A × {ν}). Take β0 ∈ ν with B ∩ ν ⊂ β0. Then

we have X
(β0,ν]
(α0,µ) = X

(β0,ν]
(α0,µ] ⊂ G0.

Other cases are similar to one of the five cases above. ¤
Proof of Theorem 4.1. It should be noted that the equivalent condition in Theorem 6.8
is exactly the same as that of [3, Theorem B (i)]. This means that the implication (a)
⇐⇒ (b) holds. Moreover, the implication (b) ⇒ (c) follows from Corollary 2.8 and the
converse is obvious. Thus Theorem 4.1 has been proved. ¤
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