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C∗-EMBEDDED DENSE SUBSETS OF

z-NEIGHBORHOOD-SUBLINEAR SPACES ARE

P -EMBEDDED

YASUSHI HIRATA, NOBUYUKI KEMOTO, AND HARUTO OHTA

Abstract. We de�ne a concept of z-neighborhood-sublinear space
and point out that

• every �rst-countable Tychono� space and every generalized
ordered space is z-neighborhood-sublinear,

• subspaces and �nite products of z-neighborhood-sublinear
spaces are z-neighborhood-sublinear.

As a main theorem, we prove that every C∗-embedded dense subset
of a z-neighborhood-sublinear space is P -embedded.

In [7], the �rst author and Y. Yajima proved that for all sub-
spaces A,B of an ordinal, if a closed subset F of A × B is C∗-
embedded in A × B, then F is P -embedded in A × B. We can
remove closedness from the assumption by applying the main the-
orem.

1. Introdution

Let R be the real line, and I the unit interval, i.e. I = [0, 1] ⊂ R.
A subset E in a space X is said to be C∗-embedded (respectively, C-
embedded) in X if every continuous function from E into I (resp. R)
is continuously extended over X. A subset E in X is said to be P -
embedded in X if every continuous function from E into Z is continuously
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extended over X whenever Z is a Banach space. Obviously, the following
implication holds.

P -embedding ⇒ C-embedding ⇒ C∗-embedding

Let W be a subset of a linearly ordered set X = (X,<). We say that
W is left-closed if (←, b] = {x ∈ X : x ≤ b} ⊂W for every b ∈W . We say
that W is right-closed if [a,→) = {x ∈ X : a ≤ x} ⊂W for every a ∈W .
We call W a convex set if (a, b) = {x ∈ X : a < x < b} ⊂ W for every
a, b ∈W with a < b.

A linearly ordered topological space (abbreviated LOTS) is a linearly
ordered set (X,<) with the open interval topology, i.e.

{(a, b) : a ∈ X ∪ {←}, b ∈ X ∪ {→}, a < b}

is a base. A generalized ordered space (abbreviated GO-space) is a triple
X = (X,<, τ) such that (X,<) is a linearly ordered set and τ is a Haus-
dor� topology on X that has a base of convex sets.

With no mention, each ordinal µ is considered to be the LOTS with
respect to the usual order < of ordinals, where µ is identi�ed with the set
{α : α is an ordinal, α < µ}. Such space µ is called an ordinal space.

Obviously, every subspace of a GO-space is also a GO-space. The
following implication holds.

ordinal space ⇒ LOTS ⇒ GO-space ⇒ monotonically normal
⇒ collectionwise normal ⇒ normal

In the present paper, we will de�ne the concepts of neighborhood-linear
space, neighborhood-sublinear space, and z-neighborhood-sublinear space.
For them, the following implication holds.

�rst-countable
⇓

ordinal space ⇒ Tychono� +
neighborhood-linear ⇒ neighborhood-linear

⇓ ⇓ ⇓

GO-space ⇒ z-neighborhood
-sublinear ⇒ neighborhood

-sublinear

The class of (z-)neighborhood-sublinear spaces has the following nice
properties.

• Every subspace of a (z-)neighborhood-sublinear space is also
(z-)neighborhood-sublinear.
• Every �nite product of (z-)neighborhood-sublinear spaces is also
(z-)neighborhood-sublinear.
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As a main theorem, we will prove that every C∗-embedded dense subset
of a z-neighborhood-sublinear space is P -embedded.

All spaces are assumed to be Hausdor� topological spaces.

2. Neighborhood-sublinear spaces

De�nition 2.1. We say that a family D of sets is linear if D ⊂ D′ or
D′ ⊂ D holds for each D,D′ ∈ D. For a family V of sets, we call a
subfamily D of V a generator of V if for each V ∈ V, there is a D ∈ D
with D ⊂ V .

Let X be a space with p ∈ X. A generator of the neighborhood �lter
NbdX(p) = {V ⊂ X : p ∈ IntXV } at p is called a neighborhood base. We
say thatX is neighborhood-linear at p if there is a linear neighborhood base
at p. We say that a space X is neighborhood-linear if it is neighborhood-
linear at each point p ∈ X. The same property has already been de�ned
and studied by Sheldon Davis in 1978, and such a space is called a lob-
space there [2].

The following fact is trivial.

Fact 2.2. Every �rst-countable space is neighborhood-linear. Every ordi-
nal space is neighborhood-linear.

Example 2.3. A LOTS which is not neighborhood-linear: Let ≺ be the
linear order on the set X = ω1 + ω such that α ≺ β holds if either
α < β < ω1+ω with α ≤ ω1 or ω1 < β < α, where < is the usual order of
ordinals. Then the LOTS X = (X,≺) is not neighborhood-linear at ω1.

Proof. Assume that there is a linear neighborhood base D at ω1 for X.
For each n ∈ ω \ {0}, we can take a Dn ∈ D with Dn ⊂ (←, ω1 + n)≺.
There are γn ∈ ω1 and ln ∈ ω \ {0} with (γn, ω1 + ln)≺ ⊂ Dn. Take an
α ∈ ω1 such that γn < α for every n ∈ ω \{0}. We can take a D ∈ D with
D ⊂ (α,→)≺. Take γ ∈ ω1 and l ∈ ω\{0} with (γ, ω1+l)≺ ⊂ D. And take
an n ∈ ω with l < n. Since D is linear, D ⊂ Dn or Dn ⊂ D must hold.
ButD ̸⊂ Dn by ω1+n ∈ (γ, ω1+l)≺ ⊂ D and ω1+n /∈ (←, ω1+n)≺ ⊃ Dn.
And Dn ̸⊂ D by α ∈ (γn, ω1 + ln)≺ ⊂ Dn and α /∈ (α,→)≺ ⊃ D. It is
contradiction. □

Fact 2.4. If Y is a neighborhood-linear space, then each subspace X of
Y is neighborhood-linear.

Proof. Let p ∈ X ⊂ Y and take a linear neighborhood base D at p for Y .
Then D ↾ X = {D ∩X : D ∈ D} is a linear neighborhood base at p for
X. □

The following example is mentioned in Brian Scott's paper [14].
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Example 2.5 ([14]). The product of neighborhood-linear spaces which
is not neighborhood-linear: The ordinal spaces ω1 + 1 and ω + 1 are
neighborhood-linear, but the product (ω1+1)×(ω+1) is not neighborhood-
linear at ⟨ω1, ω⟩.

Proof. Let X be the LOTS in Example 2.3. We obtain a topological
embedding e of X into Y = (ω1 + 1) × (ω + 1) by letting e(α) = ⟨α, ω⟩
for each α ∈ ω1 + 1 and e(ω1 + n) = ⟨ω1, n⟩ for each n ∈ ω \ {0}. By the
proof of Fact 2.4, Y is not neighborhood-linear at ⟨ω1, ω⟩ = e(ω1). □

De�nition 2.6. We say that a family D of sets is sublinear if D =∪
k∈S Dk for some �nite collection {Dk : k ∈ S} of linear subfamilies

of D. For a family V of subsets of a set X, we call a subfamily D of V a
subgenerator of V (on X) if for each V ∈ V, there is a �nite subfamily D′
of D such that

∩
D′ ⊂ V . Here we consider that

∩
∅ = X.

Let X be a space with p ∈ X. A subgenerator of the neighborhood
�iter at p is called a neighborhood subbase. We say that X is neighborhood-
sublinear at p if there is a sublinear neighborhood subbase at p. We say
that a space X is neighborhood-sublinear if it is neighborhood-sublinear
at each point p ∈ X.

These spaces are closely related to the globular spaces which are de�ned
by Brian Scott. See [14] for details.

Fact 2.7. Every GO-space is neighborhood-sublinear.

Proof. Let X be a GO-space with p ∈ X. Let Nbd←X (p) and Nbd→X (p) be
the neighborhood �lters of (←, p] and [p,→), respectively, i.e.

Nbd←X (p) = {V ⊂ X : (←, p] ⊂ IntXV },

Nbd→X (p) = {V ⊂ X : [p,→) ⊂ IntXV }.
Let D← = {D ∈ Nbd←X (p) : D is left-closed} and D→ = {D ∈ Nbd→X (p) :
D is right-closed}. It is routine to check that the family of left-closed
(resp. right-closed) subsets of X is linear. In particular, D← and D→ are
linear.

Let D = D←∪D→. Obviously, D is a sublinear family of neighborhoods
of p in X. Let V be a neighborhood of p in X. Then there is an open
convex set W with p ∈ W ⊂ V . Let D← =

∪
b∈W (←, b] and D→ =∪

a∈W [a,→). Then they are open in X, and we have D← ∈ D← and
D→ ∈ D→. If x ∈ D← ∩D→, then there are a, b ∈W with a ≤ x ≤ b. It
follows that x ∈ [a, b] ⊂W ⊂ V sinceW is a convex set, so D←∩D→ ⊂ V
holds. Hence, D is a neighborhood subbase at p, and so it witnesses that
X is neighborhood-sublinear at p. □

Similarly to Fact 2.4, we see:
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Fact 2.8. If Y is a neighborhood-sublinear space, then each subspace X
of Y is neighborhood-sublinear.

Fact 2.9. Every �nite product of neighborhood-sublinear spaces is also
neighborhood-sublinear.

Proof. A proof is straightforward. Let {X(j) : j ∈ J} be a �nite collection
of spaces, and X =

∏
j∈J X(j). Let p ∈ X. For each j ∈ J , let πj : X →

X(j) be the projection, and take a neighborhood subbase D(j) at πj(p)
for X(j). It is well-known that D = {πj

−1[D] : j ∈ J,D ∈ D(j)} is a
neighborhood subbase at p for X.

We would like to show that X is neighborhod-sublinear at p by as-
suming that X(j) is neighborhood-sublinear at πj(p) for each j ∈ J . In
the argument above, we may assume that D(j) is sublinear. It su�ces to
show that D is sublinear. For each j ∈ J , take a �nite collection {Dk(j) :
k ∈ S(j)} of linear subfamilies of D(j) with D(j) =

∪
k∈S(j)Dk(j). Let

S = {⟨j, k⟩ : j ∈ J, k ∈ S(j)}, and D⟨j,k⟩ = {πj
−1[D] : D ∈ Dk(j)} for

each ⟨j, k⟩ ∈ S. Obviously, S is a �nite set, D⟨j,k⟩ is a linear subfamily
of D for each ⟨j, k⟩ ∈ S, and D =

∪
⟨j,k⟩∈S D⟨j,k⟩ holds. Hence, D is

sublinear. □
From three facts above, we have:

Corollary 2.10. Every subspace of a �nite product of GO-spaces is
neighborhood-sublinear.

3. z-neighborhood-sublinear spaces

A space X is said to be monotonically normal [6] if there is a function
G which assigns to each ordered pair (A,U) of a closed set A and an open
set U with A ⊂ U , an open set G(A,U) such that

(a) A ⊂ G(A,U) ⊂ ClXG(A,U) ⊂ U ,
(b) if A ⊂ B and U ⊂ V , then G(A,U) ⊂ G(B, V ).

Lemma 3.1 ([15, Lemma 2.1]). If X is a monotonically normal space,
then to each ordered pair (A,U), where A is a closed set and U is an open
set in X with A ⊂ U , we can assign a continuous function fA,U : X → I
such that fA,U (x) = 0 for every x ∈ A, fA,U = 1 for every x ∈ X \U , and
such that if A ⊂ B and U ⊂ V , then fA,U (x) ≥ fB,V (x) for all x ∈ X.

De�nition 3.2. Let V be a family of sets. We call the cardinal

λ = min{|D| : D is a generator of V}
the downward co�nality of V. If D = {Dξ : ξ ∈ λ} is a generator of V
and Dξ ⊊ Dζ for each ζ < ξ < λ, then we call D a strictly descending
generator of V.
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Lemma 3.3 (folklore). Let λ be the downward co�nality of a family V of
sets. Assume that V has a linear generator. Then

(1) λ = 0, λ = 1 or λ is a regular in�nite cardinal.
(2) For each generator D′ of V, there is a strictly descending generator
D = {Dξ : ξ ∈ λ} of V such that D ⊂ D′.

We give here a sketch of a proof for readers convenience.

Proof. Take generators L and M of V such that L is linear and M =
{Mα : α ∈ λ}. Let D′ be an arbitrary generator of V. By induction on
α ∈ λ, we can take Dα ∈ D′ such that Dα ⊂ Mα and Dα ⊊ Dβ for
each β < α < λ. Let α ∈ λ and assume that Dβ ∈ D′ is de�ned for
every β < α. We can take a required Dα in this way: Take an Lβ ∈ L
with Lβ ⊂ Dβ for each β < α. Take a Vα ∈ V such that Lβ ̸⊂ Vα

for all β < α. Take L′α, L
′′
α ∈ L with L′α ⊂ Vα and L′′α ⊂ Mα. And

take Dα ∈ D′ such that Dα ⊂ L′α in case L′α ⊂ L′′α, and Dα ⊂ L′′α in
case L′′α ⊂ L′α. After �nishing induction, we obtain a strictly descending
generator D = {Dξ : ξ ∈ λ} of V such that D ⊂ D′. And (1) is obtained
by the minimality of λ. □

By Lemma 3.3, it is easily seen that if a countable space is neighborhood-
sublinear, then it has a countable base. We cannot replace `GO-space'
in Fact 2.7 with `monotonically normal space'. Let βω denote the �ech-
Stone compacti�cation of a countably in�nite discrete space ω.

Example 3.4. A monotonically normal space which is not neighborhood-
sublinear: Let Y = ω∪{p} by taking a p ∈ βω\ω. Then it is monotonically
normal, hereditarily paracompact, but not neighborhood-sublinear at p.

Proof. Since Y does not have a countable neighborhood base at p, it is
not neighborhood-sublinear at p. □

A subset V (respectively, D) of a space X is called a cozero-set (resp.
zero-set) if there is a continuous function f : X → I such that

V = {x ∈ X : f(x) > 0} (resp. D = {x ∈ X : f(x) = 0}).

For a Tychono� space, there is a neighborhood base by zero-sets at
each point, so the following fact is obtained by using Lemma 3.3 (2).

Fact 3.5. A Tychono� space is neighborhood-linear if and only if it has
a linear neighborhood base by zero-sets at each point.

It does not seem so easy to obtain a fact like Fact 3.5 for neighborhood-
sublinear spaces without additional assumptions.
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De�nition 3.6. Let X be a space with p ∈ X. We say that X is z-
neighborhood-sublinear at p if there is a sublinear neighborhood subbase
at p by zero-sets. We say that a space X is z-neighborhood-sublinear if it
is z-neighborhood-sublinear at each point p ∈ X.

Problem 3.7. Is there a Tychono� space which is neighborhood-sublinear,
but not z-neighborhood-sublinear?

The following easy fact will be used with no mention.

Fact 3.8. Let X be a space with p ∈ X.

(1) For each �nite collection {Dk : k ∈ S} of non-empty linear fami-
lies of neighborhoods of p in X, the union

∪
k∈S Dk is a neighbor-

hood subbase at p if and only if for each neighborhood V of p in
X, there is a Dk ∈ Dk, for each k ∈ S, such that

∩
k∈S Dk ⊂ V .

(2) A space X is (z-)neighborhood-sublinear at p if and only if there
is a �nite collection {Dk : k ∈ S} of non-empty linear families
such that

∪
k∈S Dk is a neighborhood subbase at p (by zero-sets).

Proof. The `if' parts are trivial. We show the `only if' parts.
(1) Assume that D :=

∪
k∈S Dk is a neighborhood subbase at p. Let

V be a neighborhood of p in X. Then there is a �nite subfamily D′ of
D such that

∩
D′ ⊂ V . Since D′k := D′ ∩ Dk is a �nite subfamily of a

non-empty linear family Dk, for each k ∈ S, we can take a Dk ∈ Dk such
that Dk ⊂ D′ for all D′ ∈ D′k. If D′ ∈ D′, then D′ ∈ D =

∪
k∈S Dk,

so D′ ∈ D′ ∩ Dk′ = D′k′ for some k′ ∈ S, and so
∩

k∈S Dk ⊂ Dk′ ⊂ D′.
Hence,

∩
k∈S Dk ⊂

∩
D′ ⊂ V .

(2) Assume that X is (z-)neighborhood-sublinear at p. By the de�nion,
there is a sublinear neighborhood subbase D at p (by zero-sets). And D is
expressed as a �nite union D =

∪
k∈S′ Dk of linear families Dk. By letting

S = {k ∈ S′ : Dk ̸= ∅}, we can express D as a �nite union D =
∪

k∈S Dk

of non-empty linear families. □

Fact 3.9. A monotonically normal space is neighborhood-sublinear if and
only if it is z-neighborhood-sublinear.

Proof. Let X be a monotonically normal space with p ∈ X. Let the con-
tinuous functions fA,U : X → I be as in Lemma 3.1. Assume that X is
neighborhood-sublinear at p. Then there is a �nite collection {Dk : k ∈ S}
of non-empty linear families such that D =

∪
k∈S Dk is a neighborhood

subbase at p. De�ne a zero-set z(D) in X for each D ∈ D by putting
z(D) = {x ∈ X : f{p},IntXD(x) ≤ 1/2}. Then z(D) is a neighbor-
hood of p in X with z(D) ⊂ IntXD ⊂ D since f{p},IntXD(p) = 0 and
f{p},IntXD(x) = 1 for every x ∈ X \ IntXD. If D,D′ ∈ D with D ⊂ D′,
then f{p},IntXD(x) ≥ f{p},IntXD′(x) holds for every x ∈ X, so we have
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z(D) ⊂ z(D′). Therefore z[Dk] := {z(D) : D ∈ Dk} is linear for each
k ∈ S, and so

∪
k∈S z[Dk] is a sublinear neighborhood subbase at p by

zero-sets. Hence, X is z-neighborhood-sublinear at p. □

Since GO-spaces are monotonically normal, the following fact is imme-
diately obtained from Fact 2.7 and 3.9.

Fact 3.10. Every GO-space is z-neighborhood-sublinear.

Similarly to Fact 2.8, 2.9 and Corollary 2.10, we obtain the following
two facts and a corollary.

Fact 3.11. If Y is a z-neighborhood-sublinear space, then each subspace
X of Y is z-neighborhood-sublinear.

Fact 3.12. Every �nite product of z-neighborhood-sublinear spaces is z-
neighborhood-sublinear.

Corollary 3.13. Every subspace of a �nite product of GO-spaces is z-
neighborhood-sublinear.

Example 3.14. Let X be Rudin's ZFC Dowker space [13], i.e.

X = {x = ⟨xn : 0 < n < ω⟩ ∈ □0<n<ω(ωn + 1) :

∃m < ω ∀n(0 < n < ω → ω < cf xn ≤ ωm)}.

Then X is a z-neighborhood-sublinear space.

Proof. Let p = ⟨pn : 0 < n < ω⟩ ∈ X, and take an m < ω such that
ω < cf pn ≤ ωm for all n with 0 < n < ω. For each k with 0 < k ≤ m,
set Nk = {n ∈ ω \ {0} : cf pn = ωk}, and take an increasing co�nal
sequence {αn,ξ : ξ ∈ ωk} ⊂ pn for each n ∈ Nk. De�ne a linear family
Dk = {Dk,ξ : ξ ∈ ωk} of clopen sets of X by putting

Dk,ξ = {x = ⟨xn : 0 < n < ω⟩ ∈ X : xn ∈ (αn,ξ, pn] for every n ∈ Nk}

for each ξ ∈ ωk. Then D =
∪

0<k≤mDk is a sublinear neighborhood
subbase at p for X by clopen sets. Hence, X is z-neighborhood-sublinear
at p. □

4. Comparing C∗-embeddedings with P -embeddings

For a space X, let us consider the following conditions.
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(C*=P:subset): For each subset E in X,
if E is C∗-embedded in X, then E is P -embedded in X.

(C*=P:closed): For each closed subset F in X,
if F is C∗-embedded in X, then F is P -embedded in X.

(C*=P:dense): For each dense subset D in X,
if D is C∗-embedded in X, then D is P -embedded in X.

(C*=P:∀ → ∀): If every closed subset of X is C∗-embedded in X,
then every closed subset of X is P -embedded in X.

Obviously, the following implication holds.

(C*=P:subset) ⇒ (C*=P:closed) ⇒ (C*=P:∀ → ∀)
⇓

(C*=P:dense)

It is well-known as the Tietze-Urysohn Theorem that a space X is nor-
mal if and only if each closed subset of X is C∗-embedded (C-embedded)
in X. It is said to be essentially proved by Dowker [3] that a space
X is collectionwise normal if and only if each closed subset of X is P -
embedded in X. Hence, (C*=P:∀ → ∀) fails for a space X if and only
if X is normal, but not collectionwise normal. Bing's example of such
space is well-known, see [4, Example 5.1.23]. In [12], the third author
proved that the Niemytzki plane has the property (C*=P:closed). In the
same paper, he also gave some examples of spaces having C∗-embedded,
but not C-embedded closed subsets. Obviously, such spaces refute the
condition (C*=P:closed).

For a class X of spaces, let [C*=P:· · · ] denote the condition that ev-
ery X ∈ X satis�es the condition (C*=P:· · · ), where `· · · ' is `subset',
`closed', `dense' or `∀ → ∀'. Using the characterizations of normality and
collectionwise normality by Tietze-Urysohn and Dowker which are men-
tioned above, we see that the condition [C*=P:∀ → ∀] is equivalent to
the following condition [N=CWN].

[N=CWN]: For each X ∈ X ,
if X is normal, then X is collectionwise normal.

Some classes of spaces are known to have the property [N=CWN]. It
is natural to consider whether such classes also satisfy [C*=P:closed] or
[C*=P:subset].

It is obvious that any class of collectionwise normal spaces satis�es
[C*=P:closed], in particular [N=CWN]. However, some of such classes,
for instance the class of monotonically normal spaces or the class of para-
compact spaces, do not satisfy [C*=P:dense]. Actually, the countable
discrete space ω is C∗-embedded, but not C-embedded in ω∪{p} for any
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p ∈ βω \ ω, see [5, Problems 4M]. Obviously, ω ∪ {p} is monotonically
normal and hereditarily paracompact.

Let us consider the class {A × B : A,B are subspaces of an ordinal}.
This class has non-normal members, for instance ω1×(ω1+1). The second
and third author and K. Tamano proved in 1992 [9] that this class has
the property [N=CWN]. The �rst author and Y. Yajima proved in 2017
that this class also has the property [C*=P:closed].

Theorem 4.1 ([7]). Let A and B be subspaces of an ordinal. Then for
each closed subset F of A×B, if F is C∗-embedded in A×B, then F is
P -embedded in A×B.

Removing closedness from the assumption, we will show the following
generalization is true, as a corollary of the main theorem, which says that
the class {A × B : A,B are subspaces of an ordinal} has the property
[C*=P:subset].

Corollary 4.2. Let A and B be subspaces of an ordinal. Then for each
subset E of A×B, if E is C∗-embedded in A×B, then E is P -embedded
in A×B.

In fact, we will prove that the class of z-neighborhood-sublinear spaces
has the property [C*=P:dense] as a main theorem. By Corollary 3.13,
the class of subspaces of �nite products of GO-spaces has the prop-
erty [C*=P:dense]. Then we see that the conditions (C*=P:closed) and
(C*=P:subset) are equivalent for each subspace of a �nite product of GO-
spaces, see Corollary 5.3 in the next section. Obviously, this fact witnesses
that Corollary 4.2 is immediately obtained from Theorem 4.1.

The second author, T. Nogura, K. D. Smith and Y. Yajima proved in
[8] that the class {X : X ⊂ µ × µ for some ordinal µ} has the property
[N=CWN]. However, the second author and T. Usuba recently proved
that the property [C*=P:closed] fails for this class in some consistent
model of ZFC [10]. The authors do not know whether this class can
have the condition [C*=P:closed] in another consistent model of ZFC,
but if it is possible, then it must also have the property [C*=P:subset]
in the same model. Similarly, we can say that if the class {X × Y :
X and Y are GO-spaces} has the property [C*=P:closed], then it must
have the property [C*=P:subset] by our result though the authors do not
know whether this class has the property [N=CWN].

5. Basic facts for embeddings

Lemmas and corollaries stated in this section are already known or
easily obtained from known facts, so the readers who are familiar to C∗-
embeddings and P -embeddings may skip this section.
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Let X and Z be spaces, and E ⊂ X. The restriction of a function
g : X → Z on E is denoted by g ↾ E, i.e. g ↾ E : E → Z is the function
such that (g ↾ E)(x) = g(x) for every x ∈ E. When we said, in the
begining of introduction, that �every continuous function from E into Z
is continuously extended over X�, it means:

For each continuous function f : E → Z, there is a con-
tinuous function g : X → Z such that g ↾ E = f .

It is well-known that for all continuous mappings f0 : F → Z and
f1 : F → Z from a space F into a Hausdor� space Z, if f0 ↾ E = f1 ↾ E
for some dense subset E of F , then f0 = f1. From this fact, the following
lemma is easily obtained.

Lemma 5.1 (folklore). If a subset E of a space X is C∗-embedded in X,
then F = ClXE is C∗-embedded in X.

Recall notation (C*=P:· · · ) and [C*=P:· · · ] de�ned in the previous
section. The following lemma is easily obtained from Lemma 5.1.

Lemma 5.2. A space X has the property (C*=P:subset) if and only if X
has the property (C*=P:closed) and each closed subspace F of X which
is C∗-embedded in X satis�es the condition (C*=P:dense).

From this lemma, the following corollary is immediately obtained.

Corollary 5.3. Let X be a class of spaces such that

F ∈ X holds for each X ∈ X and for each closed subset
F of X.

If X satis�es the condition [C*=P:dense], then the conditions
(C*=P:closed) and (C*=P:subset) are equivalent for each X ∈ X .

The following two lemmas are known.

Lemma 5.4 (folklore). Let U = {Uλ : λ ∈ Λ} be a locally �nite collection
of cozero-sets in a space E. Then,

(1) the union
∪

λ∈Λ Uλ is a cozero-set in E.
(2) For each collection {Zλ : λ ∈ Λ} of zero-sets in E, if Zλ ⊂ Uλ for

every λ ∈ Λ, then the union
∪

λ∈Λ Zλ is a zero-set in E.
(3) If U covers E, then there are covers {Wλ : λ ∈ Λ} and {Zλ :

λ ∈ Λ} of E by cozero-sets and zero-sets, respectively, such that
Wλ ⊂ Zλ ⊂ Uλ for every λ ∈ Λ.

Lemma 5.5 (folklore). Let E be a subset of a space F , let Y be a cozero-
set in F , and let X = Y ∩ E. If E is C∗-embedded in F , then X is
C∗-embedded in Y .
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For a family V of subsets of a space Y and for X ⊂ Y , let V ↾ X denote
the restriction of V on X, i.e. V ↾ X = {V ∩X : V ∈ V}. By using cozero
covers, C∗-embedding and P -embedding are characterized as below.

Lemma 5.6 ([11, Lemma 2.1]). A non-empty subset X of a space Y is
C∗-embedded in Y if and only if for each �nite cozero cover U of X, there
is a �nite cozero cover V of Y such that V ↾ X re�nes U .

Lemma 5.7 (See [1, Theorem 14.7]). A non-empty subset X of a space
Y is P -embedded in Y if and only if for each locally �nite cozero cover U
of X, there is a locally �nite cozero cover V of Y such that V ↾ X re�nes
U .

The following lemma is useful when we would like to know whether a
space F has the property (C*=P:dense). The result of Lemme 5.8 and
6.2 seem to be known but since the authors could not �nd proofs in the
literature, the result will be given with the proofs.

Lemma 5.8. A dense subset E of a space F is P -embedded in F if and
only if E is C∗-embedded in F and {ClFU : U ∈ U} covers F for each
locally �nite cozero cover U of E.

Proof. The `only if' part: Let U be a locally �nite cozero cover of E. Take
a cozero cover V of F which is obtained by Lemma 5.7. For each V ∈ V,
take a U ∈ U with V ∩ E ⊂ U , then we have V ⊂ ClFU since E is dense
in F . Hence, {ClF (U) : U ∈ U} covers F .

The `if' part: Let U be a locally �nite cozero cover of E. Applying
Lemma 5.4 (3) twice, take covers Wi = {Wi(U) : U ∈ U} and Zi =
{Zi(U) : U ∈ U} of E by cozero-sets and zero-sets, respectively, for each
i ∈ 2 such that W1(U) ⊂ Z1(U) ⊂W0(U) ⊂ Z0(U) ⊂ U for every U ∈ U .
Applying Lemma 5.6, we obtain a binary cozero cover {V (U), V ′(U)} of F
for each U ∈ U such that V (U)∩E ⊂W0(U) and V ′(U)∩E ⊂ E \Z1(U).

For each �nite subfamily R of U , put P (R) = (
∩
R) \

∪
{Z0(U) :

U ∈ U \ R}. By Lemma 5.4 (2), P = {P (R) : R ⊂ U , |R| < ω} is a
locally �nite cozero cover of E. Applying Lemma 5.4 (3), take covers
Q = {Q(P ) : P ∈ P} and Y = {Y (P ) : P ∈ P} of E by cozero-sets and
zero-sets, respectively, such that Q(P ) ⊂ Y (P ) ⊂ P for every P ∈ P.
Applying Lemma 5.6, we obtain a binary cozero cover {L(P ), L′(P )} of
F for each P ∈ P such that L(P ) ∩ E ⊂ P and L′(P ) ∩ E ⊂ E \ Y (P ).

By the assumption, both {ClFW1 : W1 ∈ W1} and {ClFQ : Q ∈ Q}
cover F . If W1 ∈ W1, then by taking U ∈ U with W1 = W1(U), we
have ClFW1 ⊂ V (U) since V ′(U) ∩W1 ⊂ V ′(U) ∩ Z1(U) = ∅. If Q ∈ Q,
then by taking P ∈ P with Q = Q(P ), we have ClFQ ⊂ L(P ) since
L′(P ) ∩ Q ⊂ L′(P ) ∩ Y (P ) = ∅. Hence, both V = {V (U) : U ∈ U} and
L = {L(P ) : P ∈ P} are cozero covers of F .
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Let L ∈ L. Then there are a P ∈ P with L = L(P ) and a �nite
subfamily R of U with P = P (R). Let V ∈ V. Then there is a U ∈ U
with V = V (U). Assume that L ∩ V ̸= ∅. Then we can take an x ∈
L∩V ∩E since E is dense in F . By x ∈ V (U)∩E ⊂W0(U) ⊂ Z0(U) and
x ∈ L(P ) ∩ E ⊂ P = P (R), we have U ∈ R. Hence, {V ∈ V : L ∩ V ̸=
∅} ⊂ {V (U) : U ∈ R} is a �nite family. Since L is an open cover of F , we
see that V is a locally �nite cozero cover of F such that V ↾ E re�nes U .
By Lemma 5.7, it follows that E is P -embedded in F .

□

6. Refuting C∗-embeddedness in neighborhood-sublinear

spaces

De�nition 6.1. Let {λk : k ∈ S} be a �nite collection such that λk = 1
or λk is a regular in�nite cardinal for each k ∈ S. For d = ⟨dk : k ∈ S⟩ ∈∏

k∈S λk and t = ⟨tk : k ∈ S⟩ ∈
∏

k∈S λk, let d ≤ t denote that dk ≤ tk
for every k ∈ S. We say that a subset T of

∏
k∈S λk is co�nal in

∏
k∈S λk

if for each d ∈
∏

k∈S λk, there is a t ∈ T with d ≤ t.

Lemma 6.2. Let λ be a regular in�nite cardinal, and {λk : k ∈ S} a
�nite collection such that λk = 1 or λk is a regular in�nite cardinal for
each k ∈ S. Assume that λk ̸= λ for every k ∈ S. Then for each co�nal
subset T of

∏
k∈S λk and for each function h : T → λ, there is an η < λ

such that {t ∈ T : h(t) ≤ η} is co�nal in
∏

k∈S λk.

Proof. First we consider the case that λk > λ for every k ∈ S. Assume
that T [η] = {t ∈ T : h(t) ≤ η} is not co�nal in

∏
k∈S λk for any η < λ.

Then we can take d[η] ∈
∏

k∈S λk for each η < λ satisfying:
For each t ∈ T , if d[η] ≤ t, then h(t) > η.

Since λ < λk for every k ∈ S, we can take a t ∈ T such that d[η] ≤ t for
all η < λ. In particular, d[η] ≤ t holds for the η = h(t). By the de�nition
of d[η], it follows that h(t) > η. It is contradiction. Hence, T [η] is co�nal
in

∏
k∈Λ λk for some η < λ.

Next we consider the general case. Let S[−] = {k ∈ S : λk < λ} and
S[+] = {k ∈ S : λk > λ}. Then S = S[−] ∪ S[+] is a disjoint union. For
each d− ∈

∏
k∈S[−] λk, let

T [d−] = {t ↾ S[+] : t ∈ T, d− ≤ t ↾ S[−]}.
Then T [d−] is a co�nal subset of

∏
k∈S[+] λk. We can take a function

h[d−] : T [d−]→ λ such that
for each t+ ∈ T [d−], there is a t ∈ T with d− ≤ t ↾ S[−]
and t ↾ S[+] = t+ such that h[d−](t+) = h(t).

By the argument above, there is an η[d−] < λ such that
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{t+ ∈ T [d−] : h[d−](t+) ≤ η[d−]} is co�nal in
∏

k∈S[+] λk.

Since |
∏

k∈S[−] λk| < λ, we can take an η < λ such that η[d−] ≤ η for all
d− ∈

∏
k∈S[−] λk.

Let d ∈
∏

k∈S λk. Put d− = d ↾ S[−] and d+ = d ↾ S[+]. We obtain a
t+ ∈ T [d−] such that d+ ≤ t+ and h[d−](t+) ≤ η[d−] ≤ η. There is a t ∈ T
with d− ≤ t ↾ S[−] and t ↾ S[+] = t+ such that h(t) = h[d−](t+) ≤ η. For
such t, we have d ≤ t. Hence, {t ∈ T : h(t) ≤ η} is co�nal in

∏
k∈S λk. □

Lemma 6.3. Let λ be a regular in�nite cardinal, and {λk : k ∈ S} a �nite
collection such that λk = 1 or λk is a regular in�nite cardinal for each
k ∈ S. Then for each co�nal subset T of

∏
k∈S λk and for each function

h : T × λ → λ, there is a strictly increasing sequence {ξ(α) : α ∈ λ} ⊂ λ
such that

• ξ(0) = 0 and ξ(α) = sup{ξ(β) : β < α} for each limit ordinal
α < λ,
• for each d = ⟨dk : k ∈ S⟩ ∈

∏
k∈S λk and α ∈ λ, if dk ≤ α for

every k ∈ S with λk = λ, then there is a t ∈ T such that d ≤ t
and h(t, ξ(α)) ≤ ξ(α+ 1).

Proof. Let S[=] = {k ∈ S : λk = λ} and S[ ̸=] = {k ∈ S : λk ̸= λ}. Then
S = S[=]∪S[ ̸=] is a disjoint union. By induction on α ∈ λ, we will de�ne
a strictly increasing sequence {ξ(α) : α ∈ λ} ⊂ λ.

De�ne ξ(0) ∈ λ by putting ξ(0) = 0. If α ∈ λ is a limit ordinal and
ξ(β) ∈ λ is de�ned for each β < α, then de�ne ξ(α) ∈ λ by putting
ξ(α) = sup{ξ(β) : β < α}.

Let α ∈ λ and assume that ξ(α) ∈ λ is de�ned. We would like to de�ne
ξ(α+ 1) ∈ λ with ξ(α) < ξ(α+ 1). Set

T [α] = {t ↾ S[ ̸=] : t = ⟨tk : k ∈ S⟩ ∈ T, α ≤ tk for every k ∈ S[=]}.
Then T [α] is a co�nal subset of

∏
k∈S [̸=] λk.

We can take a function h[α] : T [α]→ λ such that
for each t[̸=] ∈ T [α], there is a t = ⟨tk : k ∈ S⟩ ∈ T
such that α ≤ tk for every k ∈ S[=], t ↾ S[ ̸=] = t[̸=] and
h[α](t[ ̸=]) = h(t, ξ(α)).

By applying Lemma 6.2, we can take a ξ(α+1) ∈ λ with ξ(α) < ξ(α+1)
such that

{t[ ̸=] ∈ T [α] : h[α](t[ ̸=]) ≤ ξ(α+1)} is co�nal in
∏

k∈S [̸=] λk.

After �nishing induction, we obtain a strictly increasing sequence
{ξ(α) : α ∈ λ} ⊂ λ. Let d = ⟨dk : k ∈ S⟩ ∈

∏
k∈S λk and α ∈ λ

such that dk ≤ α for every k ∈ S[=]. Then there is a t[ ̸=] ∈ T [α]
such that d ↾ S [̸=] ≤ t[ ̸=] and h[α](t[̸=]) ≤ ξ(α + 1). There is a
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t = ⟨tk : k ∈ S⟩ ∈
∏

k∈S λk such that α ≤ tk for every α ∈ S[=],
t ↾ S [̸=] = t[ ̸=] and h(t, ξ(α)) = h[α](t[ ̸=]) ≤ ξ(α+1). Then we have d ≤ t
since dk ≤ α ≤ tk for every k ∈ S[=] and d ↾ S [̸=] ≤ t[ ̸=] = t ↾ S [̸=]. □

Lemma 6.4. Let X be a subset of a neighborhood-sublinear space Y , and
p ∈ ClY (X). Assume that there are a linear family D of neighborhoods of
p in Y , and a locally �nite cozero cover U of X such that for each U ∈ U ,
there is a D ∈ D with D ∩ U = ∅. Then X is not C∗-embedded in Y .

Proof. Take a �nite collection {Dk : k ∈ S} of non-empty linear families
such that

∪
k∈S Dk is a neighborhood subbase at p for Y . Let λk and λ

be the downward co�nality of Dk, for each k ∈ S, and of D, respectively.
Since p ∈ ClY (X), we see that X ̸= ∅, U ̸= ∅, and so D ̸= ∅. We have

λ ̸= 0. Each D ∈ D is a neighborhood of p in Y , so D∩X ̸= ∅, D∩U ̸= ∅
for some U ∈ U , D′ ∩ U = ∅ for some D′ ∈ D, D ̸⊂ D′ for such D′, and
so {D} is not a generator of D. We have λ ̸= 1. Hence, λ must be an
in�nite regular cardinal.

Take strictly descending generators {Dk,ξ : ξ ∈ λk} of Dk, for each
k ∈ S, and {Dξ : ξ ∈ λ} of D, respectively.

Let t = ⟨tk : k ∈ S⟩ ∈
∏

k∈S λk and ξ ∈ λ. Then Dk,tk , for each
k ∈ S, and Dξ are neighborhoods of p ∈ ClY (X) in Y , so we can take an
x(t, ξ) ∈ X ∩ (

∩
k∈S Dk,tk)∩Dξ. Let U(t, ξ) = {U ∈ U : x(t, ξ) ∈ U}, then

it is a non-empty �nite subfamily of U . De�ne a function h : (
∏

k∈S λk)×
λ → λ by taking h(t, ξ) < λ, for each ⟨t, ξ⟩ ∈ (

∏
k∈S λk) × λ, such that

Dh(t,ξ)∩U = ∅ for all U ∈ U(t, ξ). Applying Lemma 6.3 for T =
∏

k∈S λk,
we obtain a strictly increasing sequence {ξ(α) : α ∈ λ} ⊂ λ satisfying:

For each d = ⟨dk : k ∈ S⟩ ∈
∏

k∈S λk and α ∈ λ, if dk ≤ α
for every k ∈ S with λk = λ, then there is a t ∈

∏
k∈S λk

such that d ≤ t and h(t, ξ(α)) ≤ ξ(α+ 1).
De�ne a function ρ : U → λ by putting

ρ(U) = min{α ∈ λ : Dξ(α+1) ∩ U = ∅}

for each U ∈ U . It follows that
for each t ∈

∏
k∈S λk and α ∈ λ, if h(t, ξ(α)) ≤ ξ(α+ 1),

then ρ(U) = α holds for all U ∈ U(t, ξ(α)).
Actually, Dξ(β+1) ∩ U ̸= ∅ for every β < α since x(t, ξ(α)) ∈ Dξ(α) ∩ U ⊂
Dξ(β+1) ∩ U by ξ(β + 1) ≤ ξ(α). And Dξ(α+1) ∩ U ⊂ Dh(t,ξ(α)) ∩ U = ∅
holds by the de�nition of h(t, ξ(α)) since h(t, ξ(α)) ≤ ξ(α+1) is assumed.
Hence, ρ(U) = α holds.

Take disjoint unbounded subsets A0, A1 of λ with λ = A0 ∪ A1. And
let Ui =

∪
{U ∈ U : ρ(U) ∈ Ai} for each i ∈ 2. It follows from Lemma 5.4

(1) that {U0, U1} is a binary cozero cover of X.
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Assume that X is C∗-embedded in Y . Then by Lemma 5.6, there
is a binary cozero cover {V0, V1} of Y such that Vi ∩ X ⊂ Ui for each
i ∈ 2. Take an i ∈ 2 with p ∈ Vi. Since

∪
k∈S Dk is a neighborhood

subbase at p for Y , we can take a d = ⟨dk : k ∈ S⟩ ∈
∏

k∈S λk such that∩
k∈S Dk,dk

⊂ Vi. Take j ∈ 2 with j ̸= i and α ∈ Aj such that dk ≤ α
for every k ∈ S with λk = λ. Then there is a t = ⟨tk : k ∈ S⟩ ∈

∏
k∈S λk

such that d ≤ t, i.e. dk ≤ tk for every k ∈ S, and h(t, ξ(α)) ≤ ξ(α + 1).
We have x(t, ξ(α)) ∈ X ∩

∩
k∈S Dk,tk ⊂ X ∩

∩
k∈S Dk,dk

⊂ Vi ∩X ⊂ Ui,
so x(t, ξ(α)) ∈ U for some U ∈ U with ρ(U) ∈ Ai. Since U ∈ U(t, ξ(α))
and h(t, ξ(α)) ≤ ξ(α + 1), we have ρ(U) = α ∈ Aj . It contradicts that
Ai ∩Aj = A0 ∩A1 = ∅. Hence, X is not C∗-embedded in Y . □

Lemma 6.4 does not remain valid if the space Y is not assumed to
be neighborhood-sublinear. Actually, let Y and p be the space and the
point of Example 3.4. Then X = ω, D = {{p} ∪ ω \ n : n ∈ ω} and
U = {{k} : k ∈ ω} satisfy the assumptions of the lemma, but X is C∗-
embedded in Y .

7. Main theorem

Let us prove the main theorem: the class of z-neighborhood-sublinear
spaces has the property [C*=P:dense].

Theorem 7.1 (main). Let E be a dense subset of a z-neighborhood-
sublinear space F . If E is C∗-embedded in F , then it is P -embedded
in F .

Proof. Let U be a locally �nite cozero cover of E. By Lemma 5.8, it
su�ces to show that {ClFU : U ∈ U} covers F . Assume that it does
not cover F . Then there is a p ∈ F \

∪
{ClFU : U ∈ U}. Take a

�nite collection {Dk : k ∈ S} of non-empty linear families such that∪
k∈S Dk is a neighborhood subbase at p for F by zero-sets. For each

U ∈ U , since F \ ClFU is a neighborhood of p in F , we can take a
⟨Dk(U) : k ∈ S⟩ ∈

∏
k∈S Dk with (

∩
k∈S Dk(U)) ∩ U = ∅. By Lemma

5.4 (1), we see that {
∪
{U \ Dk(U) : U ∈ U} : k ∈ S} is a �nite cozero

cover of E. Since E is assumed to be C∗-embedded in F , we obtain
by using Lemma 5.6 a �nite cozero cover {Vk : k ∈ S} of F such that
Vk∩E ⊂

∪
{U \Dk(U) : U ∈ U} for each k ∈ S. Take a k ∈ S with p ∈ Vk

and set Y = Vk, X = Y ∩E = Vk∩E and UX = {(U\Dk(U))∩X : U ∈ U}.
Then X is a subset of a neighborhood-sublinear space Y , and UX is a
locally �nite cozero cover of X. Since E is assumed to be dense in F ,
we have p ∈ ClY (X). Let D = {D ∩ Y : D ∈ Dk}. Then it is a linear
family of neighborhoods of p in Y . Obviously, D and UX satisfy that for
each U ∈ UX , there is a D ∈ D with D ∩ U = ∅. By Lemma 6.4, X is
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not C∗-embedded in Y . On the other hand, X is C∗-embedded in Y by
Lemma 5.5. It is contradiction. Hence, {ClFU : U ∈ U} covers F , and so
E is P -embedded in F . □

By Fact 3.11, Theorem 7.1 and Corollary 5.3, we obtain the following
corollary.

Corollary 7.2. Let X be a z-neighborhood-sublinear-space. Then the
following conditions are equivalent.

(C*=P:closed): For each closed subset F in X,
if F is C∗-embedded in X, then F is P -embedded in X.

(C*=P:subset): For each subset E in X,
if E is C∗-embedded in X, then E is P -embedded in X.

By Corollary 3.13, Theorem 7.1 and Corollary 7.2, we obtain the fol-
lowing corollary.

Corollary 7.3. Let X be a subspace of a �nite product of GO-spaces.
Then,

(1) X has the following property.
(C*=P:dense): For each dense subset D in X,

if D is C∗-embedded in X, then D is P -embedded in X.
(2) The following conditions are equivalent.

(C*=P:closed): For each closed subset F in X,
if F is C∗-embedded in X, then F is P -embedded in X.

(C*=P:subset): For each subset E in X,
if E is C∗-embedded in X, then E is P -embedded in X.

Now we see that Corollary 4.2 is obtained from Theorem 4.1.
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