
ON C-EMBEDDEDNESS OF HYPERSPACES

N. KEMOTO, Y. F. ORTIZ-CASTILLO, AND R. ROJAS-HERNÁNDEZ

Abstract. Let CL(X) and K(X) denote the hyperspaces of non-empty closed
and non-empty compact subsets of X, respectively, with the Vietoris topology.
In this paper we show that, given an ordinal number γ, the space K([0, γ)) is

C-embedded in CL([0, γ)) if and only if cof(γ) ̸= ω. Moreover we answer some
problems posed by the first author and Jun Terasawa.

1. introduction

Every space in this article is a Tychonoff space with more than one point. The
letters ξ, α and γ represent ordinal numbers.; ω is the first infinite cardinal, ω1

is the first uncountable cardinal and cof(ξ) is the cofinality of the ordinal ξ. If γ
is an ordinal number, let [0, γ) denote the ordinal space with the order topology.
R is the space of real numbers with its usual topology, I is the interval [0, 1] as a
subspace of R and N is the subspace of R constituted by the natural numbers. For
given two spaces X and Y , C(X,Y ) denotes the set of continuous functions from X
to Y ; if Y = R, we write C(X) for the set of continuous functions with real values
and C∗(X) for the set of bounded continuous functions with real values. Recall
that a subspace Y of X is C-embedded (C∗-embedded) in X if for every function
f ∈ C(Y ) (f ∈ C∗(Y )) there is a function F ∈ C(X) (F ∈ C∗(X)) with F � Y = f .
β(X) denotes the Stone-Čech compactification of the space X. Remember that
β(X) is characterized as the compactification of X such that X is C∗-embedded in
it.

For a topological space (X, T ), let CL(X) and K(X) denote the sets of non-
empty closed and compact subsets of X, respectively. Let CL(X) denotes the
hyperspace CL(X) with the Vietoris topology. K(X) is the set K(X) with the
topology of subspace of CL(X) respectively. For a given subset V of X, let

V + = {A ∈ CL(X) : A ⊆ V } and V − = {A ∈ CL(X) : A ∩ V ̸= ∅}.

Remember that, the Vietoris topology has the sets of the form V + and V − as a
subbase, where V is an open subset of X. For given subsets U1,. . . ,Un of X, we
define

⟨U1, . . . , Un⟩ = (
∪

1≤k≤n

Uk)
+ ∩ (

∩
1≤k≤n

U−
k ).

Then, the collection

{⟨U1, . . . , Un⟩ : n ∈ N, U1, . . . , Un ∈ T }
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constitutes a base for the Vietoris topology in CL(X). When U1,. . . ,Un are non-
empty open, we say that ⟨U1, . . . , Un⟩ is a basic open set in CL(X). Since the
greatest part of this work is about is the hyperspace of compact subsets, when
the context are clear we understand that the notations V +, V − and ⟨U1, . . . , Un⟩
represent (V +) ∩ K(X), (V −) ∩ K(X) and ⟨U1, . . . , Un⟩ ∩ K(X) respectively. For
those concepts which appear in this article without definition consult [4, 9].

The class of hyperspaces has been widely studied and continues to generate
significant results and problems. One of the beautiful and several problems studied
by John Ginsburg was to find conditions under which β

(
CL(X)

)
= CL

(
β(X)

)
. In

[2], Ginsburg obtained the following results:

Theorem 1.1. ([2]) The following hold:

(1) If β
(
CL(X)

)
= CL

(
β(X)

)
, then CL(X) is pseudocompact.

(2) Let CL(X)× CL(X) be pseudocompact. Then β
(
CL(X)

)
= CL

(
β(X)

)
.

By Ginsburg’s results, the following questions arise naturally.

Questions 1.2. Under which conditions of X, β
(
K(X)

)
= β

(
CL(X)

)
holds (equiv-

alently, K(X) is C∗-embedded in CL(X)) ?

In [1], the authors started the study of this problem. In particular they proved
that K(X) is not C∗-embedded in CL(X) when X is a non-compact metric space
or a σ-compact non-compact space. In particular, for every ordinal number γ, if
cof(γ) = ω then K([0, γ)) is not C∗-embedded in CL([0, γ)). In the same paper we
stated the following question.

Question 1.3. For which ordinal numbers γ, K([0, γ)) is C∗-embedded in CL([0, γ))?

Remark that in general, a pseudocompact subspace is C∗-embedded in a space
iff it is C-embedded in that. Also remark that K([0, γ)) is pseudocompact for each
γ with cof(γ) > ω. Our main result answers this last question.

Also remark the following results:

(a) ([6, Theorem 8]) If γ is a regular uncountable cardinal, then K([0, γ)) is
normal.

(b) ([8, Theorem 1]) CL(ω) is strongly 0-dimensional.
(c) ([8, Theorem 2]) K([0, γ)) is strongly 0-dimensional for every non-zero or-

dinal γ.

The proofs of (a) and (c) require elementary submodel techniques. In [6, 8] the
following asked:

Questions 1.4. ([6, 8]) Let X be a topological space.

(1) Is X ω-bounded if CL(X) is countably paracompact?
(2) Give a proof of (a) above without using elementary submodel techniques.
(3) Is CL([0, ω1)) strongly 0-dimensional?
(4) Give a proof of (c) above without using elementary submodels.

Here we remark that the following Ginsburg’s result immediately answers (1) neg-
atively.

Theorem 1.5. ([3]) Let X be a space and p ∈ N∗.

(1) X is p-compact iff CL(X) is p-compact, and
(2) X is ω-bounded iff CL(X) is ω-bounded.
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Because, a p-compact, non- ω-bounded space 1 is a required counter example. Also
we will consider other questions later.

2. On C-embeddedness of K([0, γ)) in CL([0, γ))

The first lemma below may be found in somewhere, but for the reader’s sake, we
give its proof. The second lemma below is the main and complex part of the con-
struction and requires elementary submodel techniques 2. However we refer several
definitions and claims in the proof of Theorem 2 in [8], because basic arguments
are similar.

Lemma 2.1. Let X be a dense subspace of Y and g : X −→ Z a continuous
function. Assume that for every y ∈ Y \X, there is a function gy : X ∪ {y} −→ Z
extending g such that gy is continuous at y in X ∪ {y}. Then the function G =∪

y∈Y \X gy : Y −→ Z is continuous extending g.

Proof. Of course, gy is continuous on X ∪ {y} for every y ∈ Y \X. To see that G
is continuous, let y ∈ Y and U an open set in Z with G(y) ∈ U . By the regularity
of Z, there is an open set U ′ in Z with G(y) ∈ U ′ ⊆ ClZ(U

′) ⊆ U . Now we have
two cases to consider:

In the case y ∈ X, since g(y) = G(y) ∈ U ′ and g is continuous on X, there is an
open set V in Y such that y ∈ V and g[V ∩ X] ⊆ U ′. Then G[V ∩ (X ∪ {y})] =
G[V ∩X] = g[V ∩X] ⊆ U ′.

In the case y /∈ X, since gy(y) = G(y) ∈ U ′ and gy is continuous on X ∪ {y},
there is an open set V in Y such that y ∈ V and gy[V ∩ (X ∪ {y})] ⊆ U ′. Then
G[V ∩ (X ∪ {y})] = gy[V ∩ (X ∪ {y})] ⊆ U ′.

In any case, we have an open set V in Y such that y ∈ V and G[V ∩(X∪{y})] ⊆
U ′. To prove that G[V ] ⊆ Cl(U ′), assume on the contrary that there is z ∈ V
with G(z) /∈ Cl(U ′). Then by G[V ∩ (X ∪ {y})] ⊆ U ′ and G(z) /∈ U ′, we have
z /∈ V ∩ (X ∪ {y}) therefore z ∈ Y \X. Since gz : X ∪ {z} −→ Z is continuous at
z, there is an open set V ′ in Y with z ∈ V ′ ⊆ V such that gz[V

′ ∩ (X ∪ {z})] ⊆
Z \ Cl(U ′). Since X is dense in Y , one can pick x ∈ V ′ ∩ X. Then we have
G(x) = g(x) = gz(x) /∈ Cl(U ′). On the other hand, by x ∈ V ′ ∩ X ⊆ V ∩ X, we
have G(x) ∈ G[V ∩ (X ∪ {y})] ⊆ U ′, a contradiction. This shows G[V ] ⊆ Cl(U ′).
Finally Cl(U ′) ⊆ U shows that G is continuous at y in Y . �

Lemma 2.2. Let γ be an ordinal number with cof(γ) > ω and let f : K([0, γ)) −→ I
be a continuous function. Then for each T ∈ CL([0, γ)) \ K([0, γ)), there is a
function fT : K([0, γ)) ∪ {T} −→ I extending f such that fT is continuous at T in
K([0, γ)) ∪ {T}.
Proof. Let X = K([0, γ)). Fix T ∈ CL([0, γ)) \ X and let XT = X ∪ {T}. First
we follow the proof Theorem 2 in [8], where we can find the proof of Claims 1− 4.
Let M be a countable elementary submodel of H(θ), where θ is large enough, such
that γ, f ∈ M . For each β < γ, let

u(β) = min([β, γ] ∩M).

Obviously we have:

1The existence of such spaces is well-known.
2In a previous version of this paper we include a proof without elementary submodels. The

referee note that both proofs are similar and recommend to leave just the elementary submodel’s
proof because it is more explicit. So, we do not ask for a proof without elementary submodels.
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(a) for each β < γ, β ≤ u(β) ∈ M ,

(b) for each β < γ, β ∈ M iff u(β) = β,

(c) if β′ < β < γ, then u(β′) ≤ u(β).

Moreover set

Z = {u(β) : β < γ}.
Then Z ⊆ [0, γ] ∩ M and u can be considered as a function on γ onto Z, i.e.,
u : γ → Z.

Claim 1. It follows from cof(γ) > ω that Z = [0, γ] ∩M , γ ∈ Z and [0, γ) ∩M is
bounded in [0, γ).

Give Z the order topology. Since Z is countable, by Claim 1, it is homeomorphic
to a successor ordinal < ω1. Therefore Z is compact, so is Y = K(Z) = CL(Z).
Now for every α ∈ Z, let

d(α) = sup{δ + 1 : δ ∈ [0, α) ∩ Z}.

Then d(α) = sup{δ+1 : δ ∈ [0, α)∩M} holds and d can be considered as a function
on Z into γ, that is, d : Z → γ. Obviously we have:

(d) for each α ∈ Z, d(α) ≤ α,

(e) if α′, α ∈ Z with α′ < α, then d(α′) ≤ d(α).

Claim 2. u : γ → Z and d : Z → γ are both continuous.

Claim 3. The functions u and d have the following properties:

(1) For every β < γ, d(u(β)) = sup{δ + 1 : δ ∈ β ∩M} ≤ β.

(2) For every α ∈ Z, u(d(α)) = α holds, i.e., u ◦ d is the identity map on Z.

(3) For every β < γ and α ∈ Z, if β < d(α), then u(β) < d(α) ≤ α.

(4) If β′ < β < γ, α ∈ Z and d(α) ∈ (β′, β], then α ∈ (u(β′), u(β)].

Consider the continuous functions ũ : X → Y and d̃ : Y → X defined by

ũ(F ) = u[F ], d̃(H) = d[H] for F ∈ X and H ∈ Y.

The following claim is Claim 6 in [8].

Claim 4. For every F ∈ X, f(F ) = f(d̃(ũ(F ))).

To finish the proof, we need further two claims. First note γ ∈ u[T ], because T
is cofinal in γ.

Claim 5. u[T ] is closed in Z, therefore u[T ] ∈ Y .

Proof of Claim 5. Let α ∈ Z \ u[T ]. It follows from α ∈ Z ⊆ M that u(α) = α /∈
u[T ], therefore α /∈ T . Moreover it follows from (2) in Claim 3 that u(d(α)) = α /∈
u[T ], thus we have d(α) /∈ T . Since T is closed and d(α) = sup{δ+1 : δ ∈ [0, α)∩M},
there is δ ∈ α ∩M such that (δ, d(α)] ∩ T = ∅.

First we show the fact (δ, α] ∩ T = ∅. To see this, assume on the contrary that
there is ξ ∈ (δ, α]∩T . Since (δ, d(α)]∩T = ∅ and α /∈ T , we have ξ ∈ (d(α), α)∩T .
Note by ξ ≤ α ∈ M that ξ ≤ u(ξ) ≤ α holds. Now it follows from α /∈ u[T ] and
ξ ∈ T that u(ξ) < α. Therefore by u(ξ) ∈ M , we have u(ξ) + 1 ≤ d(α). Then
d(α) < ξ ≤ u(ξ) < d(α) holds, a contradiction.
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Next we show (δ, α] ∩ u[T ] = ∅. To see this, let ξ ∈ T . By the fact above, we
have ξ ≤ δ or α < ξ. When ξ ≤ δ, we have by δ ∈ M , u(ξ) ≤ δ. When α < ξ,
we have α < ξ ≤ u(ξ). Thus in either cases, we have u(ξ) /∈ (δ, α], this shows
(δ, α] ∩ u[T ] = ∅.

Finally, it follows from α, δ ∈ Z with δ < α that (δ, α] ∩ Z is a neighborhood of
α disjoint from u[T ]. We see that u[T ] is closed in Z.

Now define ū : XT → Y by ū(F ) = u[F ] for every F ∈ XT . Obviously ū extends
the function ũ.

Claim 6. ū is continuous.

Proof of Claim 6. It suffices to see that ū is continuous at T in XT . To see
this, let U be a neighborhood of ū(T ) = u[T ] in Y . By Lemma 2 in [8], we may
assume that

U = ⟨(βn−1, αn−1] ∩ Z, (βn−2, αn−2] ∩ Z, . . . , (β0, α0] ∩ Z⟩Y ,
where βi, αi ∈ Z(i < n), such that

(1) α0 = maxu[T ] = γ and {αi : i < n} ⊆ u[T ],

(2) αi+1 ≤ βi < αi(i < n), where αn = −1.

Fact 1. T ∈ ⟨(βn−1, αn−1], (βn−2, αn−2], . . . , (β0, α0)⟩CL([0,γ)).

First let i < n. By u[T ] ∈ U , we have u[T ] ∩ ((βi, αi] ∩ Z) ̸= ∅. Pick ξ ∈ T with
βi < u(ξ) ≤ αi. Then we have βi < ξ ≤ u(ξ) ≤ αi because of αi, βi ∈ Z ⊆ M .
Thus T ∩ (βi, αi] ̸= ∅ for 1 ≤ i < n and T ∩ (β0, α0) ̸= ∅.

Next let ξ ∈ T . It follows from u[T ] ∈ U that there is i < n such that u(ξ) ∈
(βi, αi]∩Z. Then, as above, we have βi < ξ ≤ u(ξ) ≤ αi. Thus we have ξ ∈ (β0, α0)
in the case i = 0, and ξ ∈ (βi, αi] in the case 1 ≤ i < n. These arguments show
Fact 1.

By Fact 1, the set

W = ⟨(βn−1, αn−1], (βn−2, αn−2], . . . , (β0, α0)⟩CL([0,γ)) ∩XT

is a neighborhood of T in XT . The next fact completes the proof of Claim 6.

Fact 2. ū[W] ⊆ U .
Let F ∈ W. Since ū(T ) = u[T ] ∈ U , we may assume F ∈ X and we will show

ū(F ) ∈ U .
First let i < n. When i = 0, by F ∈ W, we can take ξ ∈ F ∩ (β0, α0). Then

β0 < ξ ≤ u(ξ) ≤ α0 = γ. When 1 ≤ i < n, we can take ξ ∈ F ∩ (βi, αi]. Then
βi < ξ ≤ u(ξ) ≤ αi. In either cases, u[F ] ∩ ((βi, αi] ∩ Z) ̸= ∅.

Next let ξ ∈ F . By F ∈ W, we have either ξ ∈ (β0, α0) or for some 1 ≤ i < n
ξ ∈ (βi, αi]. Then, as above, in either cases we have u(ξ) ∈ (βi, αi] ∩ Z.

These arguments show ū(F ) = u[F ] ∈ U .
In order to end the proof let fT : XT → I be the function defined by the

composition of the continuous functions ū, d̃ and f , i.e., fT = f ◦ d̃ ◦ ū. By Claim
4, for every F ∈ X

fT (F ) = f(d̃(ū(F ))) = f(d̃(ũ(F ))) = f(F ).

Therefore fT is a continuous extension of f over XT . �
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Now we establish our principal theorem.

Theorem 2.3. If γ is an ordinal with cof(γ) > ω, then K([0, γ)) is C-embedded in
CL([0, γ)).

Proof. Let f : K([0, γ)) −→ R be a continuous function. Since ([0, γ)) is pseu-
docompact, we can assume that f : K([0, γ)) → I. By Lemma 2.2, for every
T ∈ CL([0, γ)) \K([0, γ)), there is a function fT : K([0, γ))∪{T} −→ I extending f
such that fT is continuous at T in K([0, γ))∪{T}. Since fT |K([0,γ)) = f and K([0, γ))
is open in K([0, γ))∪{T}, then fT is continuous for each T ∈ CL([0, γ)) \K([0, γ)).
Define F =

∪
T∈CL([0,γ))\K([0,γ)) fT . Of course F : CL([0, γ)) −→ I is a well de-

fined function. By Lemma 2.1, F is a continuous function. Therefore K([0, γ)) is
C-embedded in CL([0, γ)). �

Corollary 2.4. Let γ be an ordinal number. Then the following are equivalent.

(1) K([0, γ)) is C-embedded in CL([0, γ)).
(2) K([0, γ)) is C∗-embedded in CL([0, γ)).
(3) cof(γ) ̸= ω

Proof. “(1) → (2)” is obvious and “(2) → (3)” is Corollary 3.16 in [1].
(3) → (1) : Assume that cofγ ̸= ω. If cof(γ) < ω then [0, γ) is compact and the

assertion is trivial. Suppose that cof(γ) > ω, then apply the theorem above. �

3. On Questions

Remember that a space X is strongly 0-dimensional iff the Stone-Čech compact-
ification β(X) is 0-dimensional. Therefore if X is a dense C∗-embedded subspace
of Y , then X is strongly 0-dimensional iff Y is strongly 0-dimensional. This fact,
(c) in Introduction and Corollary 2.4 immediately give an affirmative answer to
Question 1.4 (3):

Corollary 3.1. If γ is an ordinal with cof(γ) ̸= ω, then CL([0, γ)) is strongly
0-dimensional.

However the following still remains open:

Question 3.2. Is CL([0, γ)) strongly 0-dimensional if γ > ω and cof(γ) = ω?

Remark 3.3. (1) Ohta informed to the first author that the following two results
also show the corollary above:

(i) [9, Proposition 4.13.1] A space X is 0-dimensional if and only if K(X) is
0-dimensional.

(ii) [2] If X is normal and ω-bounded, then β(CL(X)) = CL(β(X)).

Because, if cof(γ) ̸= ω, then [0, γ) is normal and ω-bounded. Therefore by (ii)
β(CL([0, γ))) = CL(β([0, γ))) = CL([0, γ]) = K([0, γ]). Since [0, γ] is 0-dimensional,
by (i) so is K([0, γ]), therefore CL([0, γ)) is strongly 0-dimensional.

(2) Remark that Ohta’s approach does not use elementary submodel techniques.
As remarked above, there is also another proof of Theorem 2.3 (thus Corollary 2.4)
without using elementary submodel techniques. Therefore we may be considered as
getting a proof, which does not use elementary submodel techniques, of the strong
0-dimensionality of K([0, γ)) in the case cof(γ) ̸= ω, see Question 1.4 (4).
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The proof of Theorem 3.6 appeared in [7], which uses elementary submodel
techniques, can be directly translated to a proof without using such techniques as
follows. Also note that there is a roundabout way to translate it, see [5]. In order
to simplify the proof we introduce the following notation.

Notation 3.4. For subsets A and B of CL(X), let

A
⊎

B =


A if B = ∅,
B if A = ∅,
{A ∪B : A ∈ A, B ∈ B} otherwise.

Obviously the operation
⊎

on CL(X) is associative and commutative. Also we
have:

Lemma 3.5. Let X be a normal space.

(1) Let ⟨U1, . . . , Un⟩ and ⟨V1, . . . , Vm⟩ be basic open sets. Then

⟨U1, . . . , Un⟩
⊎

⟨V1, . . . , Vm⟩ = ⟨U1, . . . , Un, V1, . . . , Vm⟩

holds.
(2) For every pair of open sets U and V of CL(X), U

⊎
V is an open set of

CL(X).

Proof. (1) It is evident that

⟨U1, . . . , Un⟩
⊎

⟨V1, . . . , Vm⟩ ⊆ ⟨U1, . . . , Un, V1, . . . , Vm⟩ .

We will prove the other containment using induction on the number of open sets
of X comprising the right basic open set. Let n ∈ N and let U1, . . . , Un, V be
non-empty open sets of X. Take T ∈ ⟨U1, . . . , Un, V ⟩. If T ⊆

∪
1≤i≤n Ui, then fix

t ∈ T ∩V . So T = T ∪{t} ∈ ⟨U1, . . . , Un⟩
⊎
⟨V ⟩. Suppose T ∩ (X \

∪
1≤i≤n Ui) ̸= ∅.

Let F = T \
∪

1≤i≤n Ui. Since X is normal there is an open set W of X such

that F ⊆ W ⊆ Cl(W ) ⊆ V . Let T0 = T ∩ Cl(W ). Then T0 ∈ ⟨V ⟩. For each
i ≤ n, fix xn ∈ T ∩ Un. Then T1 = (T \ W ) ∪ {x1, . . . , xn} ∈ ⟨U1, . . . , Un⟩. So
T = T1 ∪ T0 ∈ ⟨U1, . . . , Un⟩

⊎
⟨V ⟩. This is the end of our first step. Suppose that

⟨U1, . . . , Un⟩
⊎

⟨V1, . . . , Vm⟩ = ⟨U1, . . . , Un, V1, . . . , Vm⟩

is true. Then for every non-empty open set Vm+1 of X,

⟨U1, . . . , Un⟩
⊎

⟨V1, . . . , Vm+1⟩ = ⟨U1, . . . , Un⟩
⊎

(⟨V1, . . . , Vm⟩
⊎

⟨Vm+1⟩) =

(⟨U1, . . . , Un⟩
⊎

⟨V1, . . . , Vm⟩)
⊎

⟨Vm+1⟩ = ⟨U1, . . . , Un, V1, . . . , Vm⟩
⊎

⟨Vm+1⟩

= ⟨U1, . . . , Un, V1, . . . , Vm+1⟩ .
(2) is a consequence of (1). �

Theorem 3.6. ([6, 7]) Let γ be a regular uncountable ordinal number. Then
K([0, γ)) is normal.

Proof. Suppose that K([0, γ)) is not normal. LetA and B be a couple of non-empty
disjoint closed sets of K([0, γ)) such that both can not be separated by disjoint open
sets of K([0, γ)). Since K([0, γ]) is normal, there is T ∈ K([0, γ]) \ K([0, γ)) such
that T ∈ ClK([0,γ])A ∩ ClK([0,γ])B. Obviously γ ∈ T .
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For every α < γ, fix a neighborhood base Vα at T∩[0, α] in K([0, α]) with |Vα| < γ
whenever T ∩ [0, α] ̸= ∅, where remark that the weight of the space K([0, α]) is less
than or equal to |α| when α is infinite.

If T ∩ [0, α] = ∅, then set Vα = {∅}.
Now fix α < γ. Since by the lemma above, for every U ∈ Vα, U

⊎
(α, γ]+ is a

neighborhood of T in K([0, γ]), we can fix

A(U , α) ∈ A ∩ (U
⊎

(α, γ]+), B(U , α) ∈ B ∩ (U
⊎

(α, γ]+).

Remark that A(U , β)’s and B(U , β)’s are bounded in γ, moreover Vβ ’s are of size
< γ, therefore

C = {α < γ : ∀β < α (sup(
∪

U∈Vβ

A(U , β) ∪
∪

U∈Vβ

B(U , β)) < α)}

is a closed unbounded set in [0, γ). Pick α ∈ C and set R = (T ∩ [0, α])∪{α}. Then
obviously R ∈ K([0, γ)). The following claim completes the proof.

Claim: R ∈ A ∩ B.
It suffices to see that

R ∈ ClK([0,γ])A ∩ ClK([0,γ])B.
Let W be a neighborhood of R in K([0, γ]). By [8, Lemma 2] and that α is the
largest element of R, we may assume W = U

⊎
(β, α]+ for some β < α and U ∈ Vβ .

Since A(U , β) ∈ U
⊎
(β, γ]+ and β < α ∈ C, we have supA(U , β) < α, therefore

A(U , β) ∈ (U
⊎

(β, α]+) ∩ A = W ∩A.

This proves R ∈ ClK([0,γ])A. Similarly we have R ∈ ClK([0,γ])B. �
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