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Abstract

Our aim in this paper is to deal with Sobolev embeddings for Riesz
potentials of variable order with functions in variable exponent Musielak-
Orlicz-Morrey spaces.

1 Introduction

The space introduced by Morrey [36] in 1938 has become a useful tool of the study

for the existence and regularity of partial differential equations. Variable exponent

spaces have been studied in many articles over the past decades, for a survey

see [15, 20, 45]. These investigations have dealt with the spaces themselves, e.g.

[10, 16, 19, 24], with related differential equations [2, 5, 12], and with applications

[1, 7, 44]. In the present paper, we aim to establish Sobolev embeddings for Riesz

potentials of variable order with functions in variable exponent Musielak-Orlicz-

Morrey spaces.

Let Rn denote the n-dimensional Euclidean space. We denote by B(x, r) the

open ball centered at x of radius r and denote by |E| the Lebesgue measure of

a measurable set E ⊂ Rn. In our discussions, the boundedness of the Hardy-

Littlewood maximal operator is a crucial tool as in Hedberg [23]. It is well known

that the maximal operator is bounded on the Lebesgue space Lp(Rn) if p > 1 (see

[47]). Chiarenza-Frasca [8] generalized the boundedness of the maximal operator

by replacing Lebesgue spaces by Morrey spaces Lp,ν(Rn), where Morrey space

Lp,ν(Rn) is a family of f ∈ L1
loc(R

n) satisfying the Morrey condition

sup
x∈Rn,r>0

rν

|B(x, r)|

∫
B(x,r)

|f(y)|pdy <∞
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for ν ≥ 0 (see also Nakai [38]). Further, the boundedness of the maximal operator

was also studied on Orlicz-Morrey spaces (see [39, 40, 41]). In [13], Diening showed

that the maximal operator was bounded on the variable exponent Lebesgue space

Lp(·)(Rn) if the variable exponent p, which is a constant outside a ball, satisfies the

locally log-Hölder condition and inf p > 1 (see condition (P2) in Section 2). Cruz-

Uribe-Fiorenza-Neugebauer [11] proved the boundedness of the maximal operator

on Lp(·)(Rn) when p satisfies the log-Hölder condition on Rn and inf p > 1 (see

condition (P3) in Section 2). In the case of bounded open sets, Almeida-Hasanov-

Samko [4] and Mizuta-Shimomura [33] studied the boundedness of the maximal

operator for the variable exponent Morrey spaces. Let G be a bounded open

set in Rn and dG = diam G. Further, for a nonnegative measurable function ω

on G× (0, dG) satisfying some conditions, Guliyev-Hasanov-Samko [17, 18] showed

that the maximal operator is bounded on the generalized variable exponent Morrey

space Lp(·),ω(G) (see Remark 3.2 below).

On the other hand, the maximal operator is bounded from Orlicz spaces L logL(G)

to L1(G), while the maximal operator is not bounded on L1(G). In the variable

exponent case, a variable exponent p with inf p = 1 may approach or attain 1 in

value, so that the boundedness of the maximal operator on the variable exponent

Orlicz space Lp(·)(logL)q(·)(G) has been investigated, e.g. [9, 29, 31]. Also, in the

case inf p > 1, the boundedness of the maximal operator was studied on the vari-

able exponent Orlicz space Lp(·)(logL)q(·)(Rn) (see [21, 25, 32]). For the variable

exponent Orlicz-Morrey spaces, we refer the reader to [28].

Our first task in this paper is to establish the boundedness of maximal operators

in the variable exponent Musielak-Orlicz-Morrey space LΦ,κ(Rn) (see Theorem

3.1), where p is a variable exponent satisfying the log-Hölder condition and inf p >

1, and Φ and κ are of the form Φ(x, t) = tp(x)φ(x, t) and κ(x, t) = tν(x)ψ(x, t)

(see Section 2 for the definition of Φ and κ). In the previous paper [28], the

authors gave the bounded sets version when Φ(x, r) = rp(x)(log(e + r))q(x) and

κ(x, r) = rν(x)(log(e+ 1/r))β(x). For the case inf p = 1, see Section 5.

For a measurable function α : Rn → (0, n), we consider the Riesz potential of

variable order α for a locally integrable function f on Rn defined by

Iα(x)f(x) =

∫
Rn

|x− y|α(x)−nf(y)dy.

One of important applications of the boundedness of the maximal operator is

Sobolev’s inequality; in the classical case,

∥Iαf∥Lp∗ (Rn) ≤ C∥f∥Lp(Rn)
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for f ∈ Lp(Rn), 0 < α < n and 1 < p < n/α. Sobolev’s inequality has been stud-

ied in many articles and settings. If f ∈ Lp,ν(Rn), then it is shown (see Adams

[3] and Peetre [43]) that Iαf satisfies Sobolev’s inequality whenever ν > αp, where

1 < p <∞. Mizuta-Shimomura [34] dealt with Sobolev’s embeddings for Riesz po-

tentials of functions in Orlicz spaces LΦ(G), where Φ(x, t) = tp(x)φ(x, t) and φ is a

monotone log-type function. The version for Orlicz-Morrey spaces was also studied

by Nakai [39]. Diening [14] has established embedding results for Riesz potentials

with functions in Lp(·)(Rn). See also [6]. In the case of bounded open sets, Almeida-

Hasanov-Samko [4] and Mizuta-Shimomura [33] studied Sobolev’s embeddings for

Riesz potentials of functions in the variable exponent Morrey spaces. Further, the

version for the generalized variable exponent Morrey space Lp(·),ω(G) was discussed

by Guliyev-Hasanov-Samko [17, 18].

When p = 1, the situation is a little different. O’Neil [42] showed that Iα is

bounded operator from L1(logL)1−α/n(G) to Ln/(n−α)(G) if 1−α/n > 0. Recently,

the authors [26] gave a result on Sobolev embeddings for Riesz potentials of func-

tions in L1,κ(G) with κ(r) = rν(log(2+1/r))β (see also [27, 46]). In [29], the authors

showed that Iαf satisfies Sobolev’s inequality with functions in Lp(·)(logL)q(·)(Rn).

For the variable exponent Orlicz-Morrey spaces, we refer to [28].

As an application of the boundedness of maximal functions, we shall give a

Morrey version of Sobolev inequality for Iα(x)f with functions f in LΦ,κ(Rn) if

inf p > 1 (see Theorem 4.1), as an extension of Adams [3], Almeida-Hasanov-

Samko [4], the authors [28], Mizuta-Shimomura [33] and O’Neil [42]. Further, we

deal with the case inf p = 1 in Section 5.

The structure of rest of this paper is as follows. The next section is for notation

and conventions used throughout the paper. In Section 3, we prove Theorem 3.1.

In Section 4, we prove Theorem 4.1 by Theorem 3.1 and Hedberg’s trick [23]. In

Section 5, we are concerned with Sobolev embeddings for Iα(x)f with functions f

in LΦ,κ(Rn) when inf p = 1, which extend the results by the authors [28].

2 Notation and conventions

Throughout this paper, let C denote various constants independent of the variables

in question. For non-negative functions f and g, we write f ∼ g if there exists

a constant C > 0 so that C−1g ≤ f ≤ Cg. For an integrable function u on a

measurable set E ⊂ Rn of positive measure, we define the integral mean over E

by

−
∫
E

u(x) dx =
1

|E|

∫
E

u(x) dx.
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We will introduce Musielak-Orlicz-Morrey spaces. We consider a function

Φ(x, t) : Rn×[0,∞) → [0,∞) satisfying the following conditions: Φ(x, t) is measur-

able on Rn for each t ≥ 0 and convex on [0,∞) for each x ∈ Rn, and Φ(x, 0) = 0.

Further we consider a function κ(x, r) : Rn × (0,∞) → (0,∞) satisfying the fol-

lowing condition:

(κ1) κ(x, t) ≤ Ctn for all x ∈ Rn and t ≥ 1.

We introduce Musielak-Orlicz-Morrey spaces LΦ,κ(Rn) by the family of all mea-

surable functions f with finite norm

∥f∥LΦ,κ(Rn) = inf

{
λ > 0 : sup

x∈Rn,r>0
κ(x, r)−

∫
B(x,r)

Φ(y, |f(y)|/λ) dy ≤ 1

}
.

Note that LΦ,κ(Rn) is a Banach space with respect to the norm ∥f∥LΦ,κ(Rn). Here

we may consider the fractional maximal operator defined by

MΦ,κf(x) = sup
r>0

κ(x, r)−
∫
B(x,r)

Φ(y, |f(y)|) dy.

Then it is worth to see by the doubling condition of Φ(y, ·) that

∥f∥LΦ,κ(Rn) ∼ ∥MΦ,κf∥L∞(Rn).

In this paper, we treat the following special Φ and κ.

Let p be a continuous function on Rn satisfying

(P1) 1 ≤ p− ≡ infx∈Rn p(x) ≤ p+ ≡ supx∈Rn p(x) <∞;

(P2) |p(x)− p(y)| ≤ C

log(e+ 1/|x− y|)
for all x, y ∈ Rn;

(P3) |p(x)− p(y)| ≤ C

log(e+ |x|)
for all x, y ∈ Rn with |y| ≥ |x|

2
.

If p satisfies (P2) and (P3), then p is said to satisfy the log-Hölder condition

on Rn. By (P3), p has a finite limit p(∞) at ∞ and

(P3′) |p(x)− p(∞)| ≤ C

log(e+ |x|)
for all x ∈ Rn.

We say that a function φ : Rn × (0,∞) → (0,∞) is of log-type if it satisfies

(φ0) φ(·, r) is measurable for all r > 0 and φ(x, ·) is continuous for a.e. x ∈ Rn,

(φ1) 0 < infx∈Rn φ(x, 1) ≤ supx∈Rn φ(x, 1) <∞,

(φ2) c−1
1 ≤ φ(x, r)

φ(x, s)
≤ c1 for all x ∈ Rn and 2−1s ≤ r ≤ 2s ,
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(φ3) c−1
2 ≤ φ(x, r)

φ(x, s)
≤ c2 for all x ∈ Rn and min{s, s2} ≤ r ≤ max{s, s2}.

If φ(x, r) is of log-type, then φ(x, 1/r) is also of log-type. Further, if ε > 0,

then rεφ(x, r) is uniformly quasi-increasing on (0,∞), that is,

(φ) rεφ(x, r) ≤ c3s
εφ(x, s) for all x ∈ Rn and 0 < r < s <∞

(see e.g. [27]).

Further we say that φ satisfies the log-Hölder condition if it satisfies

(φ4)
1

c4
≤ φ(x, r−1)

φ(y, r−1)
≤ c4 for all x, y ∈ Rn with |x− y| < r and r ≤ 1,

(φ5)
1

c5
≤ φ(x, t)

φ(y, t)
≤ c5 for all x, y ∈ Rn and max{(1+ |x|)−1, (1+ |y|)−1} ≤ t < 1.

The constants c1–c5 are independent of x ∈ Rn and r, s ∈ (0,∞).

For instance

φ1(x, t) :=
(
log(e+ t)

)q(x)
satisfies those conditions if q ∈ L∞(Rn) is non-negative and log log-Hölder contin-

uous, i.e.,

|q(x)− q(y)| ≤ C

log log(e2 + 1/|x− y|)
for all x, y ∈ Rn

(cf. [9]). Of course we may also add further logarithms, e.g.

φ2(x, t) :=
(
log(e+ t)

)q(x)(
log log(e2 + t)

)r(x)
,

etc. We also give another example which satisfies conditions above:

φ3(x, t) :=
(
log(e+ t)

)q1(x)( log(e+ 1/t)
)q2(x),

where q1 and q2 are in L∞(Rn) and satisfy

|q1(x)− q1(y)| ≤
C

log log(e2 + 1/|x− y|)
for all x, y ∈ Rn,

and

|q2(x)− q2(y)| ≤
C

log log(e2 + |x|)
for all x, y ∈ Rn with |y| ≥ |x|

2
.

The function φ3 also satisfies the condition (φ∞1) in Section 4.

For functions φ satisfying all the conditions (φ0)–(φ5), set

Φ(x, t) =

{
tp(x)φ(x, t), t > 0,

0, t = 0.

Suppose

5



(Φ1) t−1Φ(x, t) is uniformly quasi-increasing on (0,∞) for fixed x ∈ Rn.

Here note that if Φ(x, t) is convex for each x ∈ Rn, then (Φ1) holds, that is,

t−1Φ(x, t) in non-decreasing for each x ∈ Rn. Further, note that if p− > 1, then

(Φ1) is satisfied by (φ). It is useful to note that

Φ̄(x, t) =

∫ t

0

{
sup
0<r≤s

r−1Φ(x, r)

}
ds (2.1)

is convex and Φ̄(x, t/c) ≤ Φ(x, t) ≤ Φ̄(x, 2t) for some constant c > 0 by (Φ1). This

means that Φ is quasi-convex.

Given Φ as above, let LΦ(Rn) denote the set of all measurable functions f such

that ∥f∥LΦ(Rn) <∞, where

∥f∥LΦ(Rn) = inf

{
λ > 0 :

∫
Rn

Φ̄(y, |f(y)|/λ) dy ≤ 1

}
.

Then the variable exponent Musielak-Orlicz space LΦ(Rn) is complete with respect

to the norm ∥f∥LΦ(Rn) (cf [37]).

Next we define the variable exponent Musielak-Orlicz-Morrey space LΦ,κ(Rn).

For a measurable function ν on Rn satisfying

(ν1) 0 < ν− ≡ infx∈Rn ν(x) ≤ ν+ ≡ supx∈Rn ν(x) ≤ n

and a log-type function ψ(x, r) on Rn × (0,∞), that is, satisfying (φ0)–(φ3), set

κ(x, r) = rν(x)ψ(x, r).

Now, given Φ and κ as above, we denote by LΦ,κ(Rn) the family of all measur-

able functions f with finite norm

∥f∥LΦ,κ(Rn) = inf

{
λ > 0 : sup

x∈Rn,r>0
κ(x, r)−

∫
B(x,r)

Φ̄(y, |f(y)|/λ) dy ≤ 1

}
.

Remark 2.1. The conditions (κ1) and (ν1) are natural. In fact, if κ(x, r)/rn → ∞
for some x ∈ Rn as r → ∞ or 1/κ(x, r) → 0 for all x ∈ Rn as r → 0, then

LΦ,κ(Rn) = {0}.

Remark 2.2. The logarithms contained in the modulus of continuity of the ex-

ponent p are natural, because they represent a quite standard assumption on the

exponent in order to get the boundedness of the maximal operator (see [13]). Also,

the log log-Hölder condition is natural, e.g. see [30].
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3 Maximal functions

For a locally integrable function f on Rn, we consider the maximal function Mf

defined by

Mf(x) = sup
B

1

|B|

∫
B

|f(y)|dy,

where the supremum is taken over all balls B = B(x, r).

First we prove the boundedness of maximal operator in LΦ,κ(Rn), which gives

an extension of [4, 28, 41].

Theorem 3.1. Suppose p− > 1. Then there exists a constant C > 0 such that

∥Mf∥LΦ,κ(Rn) ≤ C∥f∥LΦ,κ(Rn).

In [28], we studied a bounded sets version of Theorem 3.1 when Φ(x, r) =

rp(x)(log(e+ r))q(x) and κ(x, r) = rν(x)(log(e+ 1/r))β(x).

The conclusion of Theorem 3.1 is equivalent to

∥MΦ,κ(Mf)∥L∞(Rn) ≤ C∥MΦ,κf∥L∞(Rn)

for some constant C > 0.

Remark 3.2. Guliyev-Hasanov-Samko [17, 18] treated the boundedness of the

maximal functions on a bounded domain G in the case when Φ(x, r) = rp(x). In

fact, in [17], setting ω(x, r) = κ(x, r)−1/p(x), they assume the condition∫ dG

r

ω(x, t)
dt

t
≤ Cω(x, r) for all x ∈ G and 0 < r < dG,

instead of our log-type conditions posed on ν and ψ.

When κ(x, r) = rn, we can prove the following result with a small change,

which is an extension of [11, 14, 25, 32].

Corollary 3.3. Suppose p− > 1. Then the operator M is bounded from LΦ(Rn)

to itself, that is, there exists a constant C > 0 such that

∥Mf∥LΦ(Rn) ≤ C∥f∥LΦ(Rn)

for all f ∈ LΦ(Rn).

For a proof of Theorem 3.1, we prepare some lemmas.

For a measurable function f on Rn and a ball B(x, r), let

I = I(x, r) = −
∫
B(x,r)

|f(y)| dy and J = J(x, r) = −
∫
B(x,r)

|g(y)| dy,

where g(y) = Φ(y, |f(y)|).
Let us begin with the following result.
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Lemma 3.4 (cf. [32, Lemma 2.6]). There exists a constant C > 0 such that

I ≤ CJ1/p(x)φ(x, J)−1/p(x) (3.1)

whenever f is a measurable function on Rn with ∥f∥LΦ,κ(Rn) ≤ 1 such that f ≥ 1

or f = 0 on Rn.

Proof. Let f be a nonnegative measurable function f on Rn with ∥f∥LΦ,κ(Rn) ≤ 1

such that f ≥ 1 or f = 0 on Rn. Then

κ(x, r)J ≤ C.

First suppose J ≥ 1; then κ(x, r) ≤ CJ−1 ≤ C, so that r is (uniformly)

bounded by (φ) and (ν1). Set k = cJ1/p(x)φ(x, J)−1/p(x), where c is chosen such

that k ≥ 1. Then we see from (φ) and (P1) that

k ≤ Cκ(x, r)−1/p(x)φ(x, 1/κ(x, r))−1/p(x) ≤ Cr−a

for some a > ν+/p−. Moreover, if y ∈ B(x, r), then note from (P2) that

k|p(x)−p(y)| ≤ kC/ log(e+1/|x−y|) ≤ (Cr−a)C/ log(e+1/r) ≤ C,

so that kp(x) ≤ Ckp(y); and by (φ3) and (φ4)

φ(x, k)

φ(y, k)
≤ C

φ(x, k1/a)

φ(y, k1/a)
≤ C,

since |x − y| < r ≤ Ck−1/a. Hence Φ(x, k) ≤ CΦ(y, k) for y ∈ B(x, r), so that it

follows from (Φ1) that

I ≤ k + C −
∫
B(x,r)

f(y)

(
f(y)−1Φ(y, f(y))

k−1Φ(y, k)

)
dy

≤ k + CkΦ(x, k)−1 −
∫
B(x,r)

g(y)dy

= k + CkΦ(x, k)−1J

≤ Ck

since Φ(x, k)−1 ≤ J−1 by (φ) and (P1).

If J ≤ 1, then, since f ≥ 1 or f = 0, we have by (Φ1) and (φ1)

I ≤ C −
∫
B(x,r)

g(y)dy

= CJ

≤ CJ1/p(x)φ(x, J)−1/p(x),

as required.
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Lemma 3.5. There exists a constant C > 0 such that

I ≤ C
{
J1/p(x)φ(x, J)−1/p(x) + (1 + |x|)−n

}
(3.2)

for all measurable functions f on Rn such that 0 ≤ f < 1 on Rn.

Proof. Let f be a measurable function on Rn such that 0 ≤ f < 1 on Rn. Write

f = fχ{y∈B(x,r)∩B(0,|x|/2):(1+|y|)−n−1≤f(y)<1} + fχ{y∈B(x,r)∩B(0,|x|/2):0≤f(y)<(1+|y|)−n−1}

+ fχ{y∈B(x,r)\B(0,|x|/2):(1+|x|/2)−n−1≤f(y)<1} + fχ{y∈B(x,r)\B(0,|x|/2):0≤f(y)<(1+|x|/2)−n−1}

= f1 + f2 + f3 + f4,

where χE denotes the characteristic function of E. Write

I = I1 + I2 + I3 + I4,

where Ij = −
∫
B(x,r)

fj(y)dy for j = 1, 2, 3, 4.

It is easy to see that I4 ≤ (1 + |x|)−n.

To estimate I1–I3, set k = J1/p(x)φ(x, J)−1/p(x).

Case 1 : (1 + |y|)−n−1 ≤ f(y) < 1 or f(y) = 0 for y ∈ B(0, |x|/2).
In this case, as in the proof of Lemma 3.4, note from (P3), (φ3) and (φ5) that

f(y)−|p(x)−p(y)| ≤ f(y)−C/ log(e+|y|) ≤ (1 + |y|)C/ log(e+|y|) ≤ C

and
φ(x, f(y))

φ(y, f(y))
≤ C

φ(x, f(y)1/(n+1))

φ(y, f(y)1/(n+1))
≤ C

for y ∈ B(0, |x|/2), so that Φ(x, f(y)) ≤ CΦ(y, f(y)) for y ∈ B(0, |x|/2). Hence

we have by (φ), (Φ1) and (P1)

I1 ≤ Cr−n

∫
B(x,r)∩B(0,|x|/2)

f(y)dy

≤ C

{
k + r−n

∫
B(x,r)∩B(0,|x|/2)

f(y)

(
f(y)−1Φ(x, f(y))

k−1Φ(x, k)

)
dy

}
≤ C

{
k + kΦ(x, k)−1 −

∫
B(x,r)

g(y)dy

}
= C

{
k + kΦ(x, k)−1J

}
≤ CJ1/p(x)φ(x, J)−1/p(x).

Case 2 : (1 + |x|)−n−1 ≤ f(y) < 1 or f(y) = 0 for y ∈ B(x, r) \B(0, |x|/2).
This case is treated in the same manner as Case 1.

Case 3 : 0 ≤ f(y) < (1 + |y|)−n−1 for y ∈ B(0, |x|/2).
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If 0 < r ≤ |x|/2, then
I2 ≤ C(1 + |x|)−n−1,

since |x| ∼ |y|. If r > |x|/2, then

I2 ≤ Cr−n

∫
B(0,3r)

f(y)dy ≤ C(1 + r)−n ≤ C(1 + |x|)−n,

so that

I2 ≤ C(1 + |x|)−n.

Now we obtain

I ≤ C
{
J1/p(x)φ(x, J)−1/p(x) + (1 + |x|)−n

}
and thus the proof is completed.

By Lemmas 3.4 and 3.5, we have

Corollary 3.6. There exists a constant C > 0 such that

I ≤ C
{
J1/p(x)φ(x, J)−1/p(x) + (1 + |x|)−n

}
,

whenever f is a measurable function on Rn with ∥f∥LΦ,κ(Rn) ≤ 1.

Lemma 3.7. Suppose p− > 1, and take p0 such that 1 < p0 < p−. Then there exists

a constant C > 0 such that

Φ(x,Mf(x)) ≤ C
[
{Mg0(x)}p0 + (1 + |x|)−A

]
,

whenever f is a measurable function on Rn with ∥f∥LΦ,κ(Rn) ≤ 1, where g0(y) =

Φ0(y, |f(y)|) = Φ(y, |f(y)|)1/p0 and A = np0.

Proof. Let f be a nonnegative measurable function on Rn with ∥f∥LΦ,κ(Rn) ≤ 1.

Write

f = fχ{y:f(y)≥1} + fχ{y:0≤f(y)<1} = f1 + f2.

Let 1 < p0 < p−. Since we see from (φ) and (φ1)

−
∫
B(x,r)

Φ(y, f1(y))
1/p0dy ≤ C −

∫
B(x,r)

Φ(y, f(y))dy ≤ Cκ(x, r)−1

for all x ∈ Rn and r > 0, applying Lemma 3.4 with p(x) and φ(x, r) replaced by

p(x)/p0 and φ(x, r)1/p0 , respectively, we obtain

Φ(x,Mf1(x)) ≤ C{Mg1(x)}p0 ,
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where g1(y) = Φ(y, f1(y))
1/p0 . Moreover, in view of Lemma 3.5, we have

Φ(x,Mf2(x)) ≤ C
[
{Mg2(x)}p0 + (1 + |x|)−A

]
for A = np0, where g2(y) = Φ(y, f2(y))

1/p0 . Thus it follows that

Φ(x,Mf(x)) ≤ C
[
{Mg0(x)}p0 + (1 + |x|)−A

]
,

where g0(y) = Φ(y, f(y))1/p0 , as required.

We need the following result in the constant case (see [38, Theorem 1]); for

this, note from (ν1) and (φ) that∫ ∞

r

κ(x, t)−1t−1dt ≤ Cκ(x, r)−1

for all x ∈ Rn and r > 0.

Lemma 3.8. Suppose p0 > 1. Let f be a measurable function on Rn satisfying

−
∫
B(x,r)

|f(y)|p0 dy ≤ κ(x, r)−1 (3.3)

for all x ∈ Rn and r > 0. Then there exists a constant C > 0 such that

−
∫
B(z,r)

{Mf(x)}p0 dx ≤ Cκ(z, r)−1

for all z ∈ Rn and r > 0, where the constant C is independent of f satisfying (3.3).

Now we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. Let f be a nonnegative measurable function on Rn such

that ∥f∥LΦ,κ(Rn) ≤ 1. Since κ(x, r)−1 → ∞ uniformly as r → 0 by (φ) and (ν1),

for z ∈ Rn and r > 0, by Lemmas 3.7 and 3.8 and (κ1), we find

−
∫
B(z,r)

Φ(x,Mf(x)) dx ≤ C −
∫
B(z,r)

[
{Mg0(x)}p0 + (1 + |x|)−A

]
dx

≤ C{κ(z, r)−1 + (1 + r)−n}

≤ Cκ(z, r)−1,

where g0(y) = Φ(y, f(y))1/p0 and A = np0 as in Lemma 3.7.
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4 Sobolev’s inequality

For a measurable function α : Rn → (0, n) satisfying

(α1) 0 < α− ≡ ess infx∈Rn α(x) ≤ ess supx∈Rn α(x) ≡ α+ < n,

we define the Riesz potential of variable order α for a locally integrable function f

on Rn by

Iα(x)f(x) =

∫
Rn

|x− y|α(x)−nf(y)dy.

As an application of the boundedness of maximal functions in LΦ,κ(Rn) and

Hedberg’s trick [23], we are going to establish the Morrey version of Sobolev’s type

inequality for Riesz potentials Iα(x)f of functions f ∈ LΦ,κ(Rn). For this purpose,

we need an auxiliary function φ∞ : (0,∞) → (0,∞) of log-type for which there

exists a constant c∞ > 1 such that

(φ∞1)
1

c∞
≤ φ(x, (1 + |x|)−1)

φ∞((1 + |x|)−1)
≤ c∞ for all x ∈ Rn;

one may take φ∞(t) = lim sup|y|→∞ φ(y, t) by (φ5).

For κ(x, r) = rν(x)ψ(x, r), assume further that

(ν2) ν is log-Hölder continuous at ∞, that is, there exists ν(∞) such that

|ν(x)− ν(∞)| ≤ C

log(e+ |x|)
for all x ∈ Rn.

Further we need

(να1) ess inf
x∈Rn

(ν(x)/p(x)− α(x)) > 0;

(να2) ess inf
x∈Rn\B(0,1)

(ν(x)/p(∞)− α(x)) > 0.

We consider the Sobolev exponent

1/p∗(x) = 1/p(x)− α(x)/ν(x) (4.1)

and the modular

Ψ(x, r) = {rφ(x, r)1/p(x)ψ(x, 1/r)α(x)/ν(x)}p∗(x). (4.2)

Theorem 4.1. Suppose p− > 1. Then there exists a constant C > 0 such that

−
∫
B(z,r)

Ψ(x, |Iα(x)f(x)|) dx ≤ Cκ(z, r)−1

whenever z ∈ Rn, r > 0 and ∥f∥LΦ,κ(Rn) ≤ 1.
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As in Remark 3.2, Theorem 4.1 was treated on bounded open sets by Guliyev-

Hasanov-Samko [17, 18] in the case when Φ(x, r) = rp(x). For the case when

Φ(x, r) = rp(x)(log(e + r))q(x) and κ(x, r) = rν(x)(log(e + 1/r))β(x), see [28]. For

related results, see also [3, 4, 8, 33, 35].

Corollary 4.2. Let Φ(r) = rp(log(e + r))q and κ(r) = rν(log(e + 1/r))β, where

1 < p <∞,−∞ < q <∞, 0 < ν ≤ n (if ν = n, then β = 0). Set 1/p∗ = 1/p−α/ν.
Then, for 0 < α < ν/p, there exists a constant C > 0 such that

−
∫
B(z,r)

Ψ(|Iαf(x)|) dx ≤ Cκ(r)−1

whenever z ∈ Rn, r > 0 and ∥f∥LΦ,κ(Rn) ≤ 1, where

Ψ(r) = {r(log(e+ r))q/p+βα/ν}p∗ .

Remark 4.3. Condition (να2) is needed, as was pointed out by Hästö [22].

For the proof of Theorem 4.1, let us begin with the following technical lemma.

Lemma 4.4 (cf. [28, Lemma 2.7]). Let τ be a real number and let λ : (0,∞) →
(0,∞) satisfy the doubling condition. Suppose h is a nonnegative measurable func-

tion on Rn such that ∫
B(0,r)

h(y)dy ≤ λ(r)

for all r > 0. Then there exist a constant C > 0 such that∫
B(0,r2)\B(0,r1)

|y|−τh(y)dy ≤ C

∫ 2r2

r1

t−τλ(t)
dt

t

whenever 0 < r1 ≤ r2 <∞.

Lemma 4.5. Let 0 < σ < np(∞)/ν(∞). Then there exists a constant C > 0 such

that

−
∫
B(x,r)

f(y)dy ≤ Cκ(x, r)−1/p(x)φ(x, 1/r)−1/p(x)

for all x ∈ Rn, 0 < r < 2(1 + |x|)σ and f ≥ 0 satisfying ∥f∥LΦ,κ(Rn) ≤ 1.

Proof. Let f be a nonnegative measurable function on Rn satisfying ∥f∥LΦ,κ(Rn) ≤
1. Then we have

J = −
∫
B(x,r)

Φ(y, f(y))dy ≤ Cκ(x, r)−1

for all r > 0. Noting from (P3’) and (ν2) that

(1 + r)p(x)/ν(x) ∼ (1 + r)p(∞)/ν(∞)
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for 0 < r < 2(1 + |x|)σ, we see from Corollary 3.6, (φ), (P1) and (ν1) that

−
∫
B(x,r)

f(y)dy ≤ C
{
J1/p(x)φ(x, J)−1/p(x) + (1 + |x|)−n

}
≤ C

{
κ(x, r)−1/p(x)φ(x, 1/κ(x, r))−1/p(x) + (1 + r)−n/σ

}
≤ Cκ(x, r)−1/p(x)φ(x, 1/r)−1/p(x),

as required.

Lemma 4.6. For σ as in Lemma 4.5, there exists a constant C > 0 such that∫
B(x,(1+|x|)σ)\B(x,δ)

|x− y|α(x)−nf(y)dy ≤ Cδα(x)κ(x, δ)−1/p(x)φ(x, δ−1)−1/p(x)

for all x ∈ Rn, δ > 0 and f ≥ 0 satisfying ∥f∥LΦ,κ(Rn) ≤ 1.

Proof. Let

η = ess inf
x∈Rn

(ν(x)/p(x)− α(x)).

Then η > 0 by (να1). By Lemmas 4.4 and 4.5, (P1) and (φ), we have for all

x ∈ Rn and δ > 0∫
B(x,(1+|x|)σ)\B(x,δ)

|x− y|α(x)−nf(y) dy

≤ C

∫ 2(1+|x|)σ

δ

tα(x)κ(x, t)−1/p(x)φ(x, 1/t)−1/p(x) dt

t

= C

∫ 2(1+|x|)σ

δ

tα(x)−ν(x)/p(x)+η/2ψ(x, t)−1/p(x)φ(x, 1/t)−1/p(x)t−η/2 dt

t

≤ Cδα(x)κ(x, δ)−1/p(x)φ(x, 1/δ)−1/p(x),

which completes the proof.

Lemma 4.7. For σ ≥ 1, there exists a constant C > 0 such that

−
∫
B(x,r)

f(y)dy ≤ Cκ(x, r)−1/p(∞)φ∞(1/r)−1/p(∞)

for all x ∈ Rn, r ≥ (1 + |x|)σ and f ≥ 0 satisfying ∥f∥LΦ,κ(Rn) ≤ 1.

Proof. Let f be a nonnegative measurable function on Rn satisfying ∥f∥LΦ,κ(Rn) ≤
1. Letting

k(y) = κ(x, 1 + |y|)−1/p(∞)φ∞(1/(1 + |y|))−1/p(∞),

we have by (Φ1)∫
B(x,r)

f(y)dy ≤
∫
B(0,2r)

k(y)dy + C

∫
B(x,r)

f(y)

(
f(y)−1Φ(y, f(y))

k(y)−1Φ(y, k(y))

)
dy
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for r ≥ (1 + |x|)σ. Since k(y) is bounded by (φ), (P1) and (ν1), we obtain by (φ),

(P1), (P3′) and (ν1)

k(y)−|p(∞)−p(y)| ≤ Ck(y)−C/ log(e+|y|) ≤ C

and
φ∞(k(y))

φ(y, k(y))
≤ C

φ∞((1 + |y|)−1)

φ(y, (1 + |y|)−1)
≤ C,

so that

Φ∞(k(y)) ≤ CΦ(y, k(y))

for y ∈ B(x, r), where Φ∞(t) = tp(∞)φ∞(t). Hence we find by (P1) and (φ)∫
B(0,2r)

k(y)dy ≤ Crnκ(x, r)−1/p(∞)φ∞(1/r)−1/p(∞)

since ν(x)/p(∞) ≤ ν+/p(∞) < n, and∫
B(x,r)

f(y)dy ≤ C

{
rnκ(x, r)−1/p(∞)φ∞(1/r)−1/p(∞)

+ κ(x, r)(p(∞)−1)/p(∞)φ∞(1/r)−1/p(∞)

∫
B(x,r)

Φ(y, f(y)) dy

}
≤ Crnκ(x, r)−1/p(∞)φ∞(1/r)−1/p(∞)

by (φ), (P1), (ν1) and 1 + |y| ≤ 3r, as required.

Lemma 4.8. For σ ≥ 1, there exists a constant C > 0 such that∫
Rn\B(x,(1+|x|)σ)

|x− y|α(x)−nf(y)dy

≤ C(1 + |x|)σα(x)κ(x, (1 + |x|)σ)−1/p(∞)φ(x, (1 + |x|)−1)−1/p(∞)

for all x ∈ Rn and f ≥ 0 satisfying ∥f∥LΦ,κ(Rn) ≤ 1.

Proof. Since

(1 + |x|)1/p(x) ∼ (1 + |x|)1/p(∞)

by (P3), it follows from Lemmas 4.4 and 4.7 (P1), (φ) and (να2) that∫
Rn\B(x,(1+|x|)σ)

|x− y|α(x)−nf(y)dy

≤ C

∫ ∞

(1+|x|)σ
tα(x)κ(x, t)−1/p(∞)φ∞(1/t)−1/p(∞)dt

t

≤ C(1 + |x|)σα(x)κ(x, (1 + |x|)σ)−1/p(∞)φ∞((1 + |x|)−σ)−1/p(∞).
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Now we are ready to prove Theorem 4.1.

Proof of Theorem 4.1. We may assume that f ≥ 0. Take σ, ς and ς ′ such that

n/ν(∞) < ς ′ < ς < σ < np(∞)/ν(∞). For δ > 0, write

Iα(x)f(x) ≤
∫
B(x,δ)

|x− y|α(x)−nf(y)dy +

∫
B(x,(1+|x|)σ)\B(x,δ)

|x− y|α(x)−nf(y)dy

+

∫
Rn\B(x,(1+|x|)σ)

|x− y|α(x)−nf(y)dy

= I1 + I2 + I3.

Note that

I1 ≤
∞∑
j=0

(2−j−1δ)α(x)−n

∫
B(x,2−jδ)\B(x,2−j−1δ)

f(y)dy ≤ Cδα(x)Mf(x).

Moreover, Lemmas 4.6 and 4.8 yield

I2 ≤ Cδα(x)κ(x, δ)−1/p(x)φ(x, 1/δ)−1/p(x)

and

I3 ≤ C(1 + |x|)−ςν(x)/p∗(x)

by (φ), (P1) and (ν1).

Hence we find

Iα(x)f(x) ≤ C
{
δα(x)Mf(x) + δα(x)κ(x, δ)−1/p(x)φ(x, 1/δ)−1/p(x) + (1 + |x|)−ςν(x)/p∗(x)

}
.

Now, letting

δ = {Mf(x)}−p(x)/ν(x)ψ(x,Mf(x))−1/ν(x)φ(x, 1/Mf(x))−1/ν(x),

we obtain from (φ), (P1) and (ν1)

Iα(x)f(x) ≤ C

[
{Mf(x)}p(x)/p∗(x)ψ(x, 1/Mf(x))−α(x)/ν(x)φ(x,Mf(x))−α(x)/ν(x)

+ (1 + |x|)−ςν(x)/p∗(x)

]
,

so that we have by (φ), (P1), (ν1) and (να1)

Ψ(x, Iα(x)f(x)) ≤ C
{
Φ(x,Mf(x)) + (1 + |x|)−ς′ν(x)

}
.

Here note from (P3′) that

−
∫
B(z,r)

(1 + |x|)−ς′ν(x) dx ≤ C −
∫
B(z,r)

(1 + |x|)−ς′ν(∞) dx

≤ Cκ(z, r)−1,
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since ς ′ν(∞) > n and (κ1). Hence it follows from Theorem 3.1 that

−
∫
B(z,r)

Ψ(x, Iα(x)f(x)) dx ≤ C

{
−
∫
B(z,r)

Φ(x,Mf(x)) dx+−
∫
B(z,r)

(1 + |x|)−ς′ν(x) dx

}
≤ Cκ(z, r)−1

for z ∈ Rn and r > 0, which completes the proof of Theorem 4.1.

5 Sobolev’s inequality in the case p− = 1

This section is concerned with Sobolev’s inequality when p− = 1. For this purpose,

we further need the following technical conditions:

(κφ1) κ(x, r)φ(x, 1/r) ≤ Crn for x ∈ Rn and r > 1;

(φ∞2) r−1Φ∞(r) is quasi-increasing on (0,∞), where Φ∞(r) = rp(∞)φ∞(r);

(κγ1) there is γ > 1 such that

−
∫
B(z,r)

κ(x, (1 + |x|))−1(log(e+ |x|))−γ dx ≤ Cκ(z, r)−1

for z ∈ Rn and r > 0.

Theorem 5.1. For γ as in (κγ1), there exists a constant C > 0 such that

−
∫
B(z,r)

Ψ(x, |Iα(x)f(x)|)(log(e+ |Iα(x)f(x)|+ |Iα(x)f(x)|−1))−γ dx ≤ Cκ(z, r)−1

whenever z ∈ Rn, r > 0 and ∥f∥LΦ,κ(Rn) ≤ 1.

For a proof of Theorem 5.1, we need the following result.

Lemma 5.2. Let γ > 1. Then there exists a constant C > 0 such that

−
∫
B(z,r)

Mg(x)(log(e+Mg(x) +Mg(x)−1))−γ dx ≤ Cκ(z, r)−1

for all z ∈ Rn, r > 0 and g ≥ 0 satisfying

−
∫
B(z,r)

g(y) dy ≤ κ(z, r)−1

for all z ∈ Rn and r > 0.
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Proof. For 1 < γ ≤ 2, we see that t(log(γ + t+1/t))−γ is increasing on (0,∞) and

t(log(e+ t+ 1/t))−γ ≤ C(γ)t(log(γ + t+ t−1))−γ.

Let z ∈ Rn and r > 0. We set

g = g0 + g1, g0 = gχB(z,2r).

Let

Ij =

∫
B(z,r)

Mgj(x)(log(γ +Mgj(x) +Mgj(x)
−1))−γ dx, j = 0, 1.

Then ∫
B(z,r)

Mg(x)(log(γ +Mg(x) +Mg(x)−1))−γ dx ≤ C(I0 + I1).

We have

I0 =

∫ ∞

0

λ(t) d(t(log(γ + t+ t−1))−γ),

where λ(t) = |{x ∈ B(z, 2r) : Mg0(x) > t}|. Here we note from [47, Theorem 1,

Chapter 1] that

λ(t) ≤ Ct−1

∫
{x∈B(z,2r):g0(x)>t/2}

g0(x) dx

for t > 0. Using Fubini’s theorem, we obtain

I0 =

∫ ∞

0

λ(t) d(t(log(γ + t+ t−1))−γ)

≤ C

∫
B(z,2r)

g0(x)

{∫ 2g0(x)

0

t−1d(t(log(γ + t+ t−1))−γ)

}
dx

≤ C

∫
B(z,2r)

g0(x) dx = C

∫
B(z,2r)

g(x) dx

≤ Crnκ(z, r)−1.

Next we see from (φ) that for x ∈ B(z, r)

Mg1(x) ≤ C sup
t≥r

t−n

∫
B(z,2t)

g(y) dy ≤ C sup
t≥r

κ(z, t)−1 ≤ Cκ(z, r)−1,

so that

I1 ≤
∫
B(z,r)

Mg1(x) dx ≤ Crnκ(z, r)−1.

Thus we obtain

−
∫
B(z,r)

Mg(x)(log(e+Mg(x) +Mg(x)−1))−γ dx ≤ Cκ(z, r)−1,

which proves the lemma.
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Remark 5.3. Theorem 5.1 and Lemma 5.2 don’t hold in case γ = 1 (see [29,

Remark 2]).

In fact, consider Φ(x, r) = rp(x), κ(r) = rn, 0 < α < n and p is an exponent of

the form

p(x) = 1 + c/ log(e+ |x|)

with c > 0. If f = 1 on B(0, 1) and f = 0 elsewhere, then∫
Rn\B(0,2)

Mf(x)p(x)(log(e+Mf(x)−1))−1dx = ∞

and ∫
Rn\B(0,2)

Iαf(x)
p∗(x)(log(e+ Iαf(x)

−1))−1dx = ∞,

where 1/p∗(x) = 1/p(x)− α/n.

To treat the case p− = 1, we modify some lemmas in Section 4.

Lemma 5.4. There exists a constant C > 0 such that

−
∫
B(x,r)

f(y)dy ≤ Cκ(x, r)−1/p(x)φ(x, 1/r)−1/p(x)

for all x ∈ Rn, 0 < r < 2(1 + |x|) and f ≥ 0 satisfying ∥f∥LΦ,κ(Rn) ≤ 1.

This is proved in the same manner as Lemma 4.5, by using condition (κφ1).

Lemma 5.4 yields the following result in the same manner as Lemma 4.6.

Lemma 5.5. There exists a constant C > 0 such that∫
B(x,1+|x|)\B(x,δ)

|x− y|α(x)−nf(y)dy ≤ Cδα(x)κ(x, δ)−1/p(x)φ(x, δ−1)−1/p(x)

for all x ∈ Rn, δ > 0 and f ≥ 0 satisfying ∥f∥LΦ,κ(Rn) ≤ 1.

We next establish the following result.

Lemma 5.6. There exists a constant C > 0 such that

−
∫
B(x,r)

f(y)dy ≤ Cκ(x, r)−1/p(∞)φ∞(1/r)−1/p(∞)

for all x ∈ Rn, r ≥ 1 + |x| and f ≥ 0 satisfying ∥f∥LΦ,κ(Rn) ≤ 1.

To show this, in the proof of Lemma 4.7, we replace k by k(y) = (1 + |y|)−λ

with λ > n, and then use (κφ1) and (φ∞2).

Finally we prepare the following lemma.

19



Lemma 5.7. There exists a constant C > 0 such that∫
Rn\B(x,1+|x|)

|x− y|α(x)−nf(y)dy

≤ C(1 + |x|)α(x)κ(x, 1 + |x|)−1/p(∞)φ((1 + |x|)−1)−1/p(∞)

for all x ∈ Rn and f ≥ 0 satisfying ∥f∥LΦ,κ(Rn) ≤ 1.

In fact, if p(∞) = 1, then we see from the proof of Lemma 4.8 that∫
Rn\B(x,1+|x|)

|x− y|α(x)−nf(y)dy

≤ C

∫ ∞

(1+|x|)
tα(x)κ(x, t)−1φ∞(1/t)−1dt

t

≤ C(1 + |x|)α(x)κ(x, (1 + |x|))−1φ∞((1 + |x|)−1)−1

by Lemma 5.6.

Now we are ready to prove Theorem 5.1.

Proof of Theorem 5.1. As in the proof of Theorem 4.1, we have by Lemmas 5.5

and 5.7

Iα(x)f(x) ≤ C
[
{Mf(x)}p(x)/p∗(x)φ(x,Mf(x))−α(x)/ν(x)ψ(x, 1/Mf(x))−α(x)/ν(x)

+ (1 + |x|)α(x)κ(x, 1 + |x|)−1/p(x)φ(x, (1 + |x|)−1)−1/p(x)
]
,

so that

Ψ(x, Iα(x)f(x))(log(e+ Iα(x)f(x) + Iα(x)f(x)
−1))−γ

≤ C
{
Φ(x,Mf(x))(log(e+Mf(x) +Mf(x)−1))−γ + κ(x, 1 + |x|)−1(log(e+ |x|))−γ

}
≤ C

{
Mg(x)(log(e+Mg(x) +Mg(x)−1))−γ + κ(x, 1 + |x|)−1(log(e+ |x|))−γ

}
by Corollary 3.6 and (κφ1), where g(y) = Φ(y, f(y)). Hence, we obtain by Lemma

5.2 and (κγ1)

−
∫
B(z,r)

Ψ(x, Iα(x)f(x))(log(e+ Iα(x)f(x) + Iα(x)f(x)
−1))−γ dx

≤ C

{
−
∫
B(z,r)

Mg(x)(log(e+Mg(x) +Mg(x)−1))−γ dx

+−
∫
B(z,r)

κ(x, 1 + |x|)−1(log(e+ |x|))−γ dx

}
≤ Cκ(z, r)−1

for z ∈ Rn and r > 0, which completes the proof of Theorem 5.1.
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