Spherical means of super-polyharmonic functions in the unit ball

Toshihide Futamura, Yoshihiro Mizuta and Takao Ohno

Abstract

For a super-polyharmonic function u on the unit ball satisfying a growth condition on spherical means, we study a growth property of the Riesz measure of u near the boundary.

1 Introduction and statement of result

Let \mathbf{R}^{n} denote the n-dimensional Euclidean space. We use the notation $B(x, r)$ to denote the open ball centered at x with radius r, whose boundary is written as $S(x, r)=$ $\partial B(x, r)$. In particular, \mathbf{B} denotes the unit ball $B(0,1)$.

For a Borel measurable function u on $S(0, r)$, letting $d S$ denote the surface area measure on $S(0, r)$, we define the spherical mean over $S(0, r)$ by

$$
M(u, r)=\frac{1}{\omega_{n} r^{n-1}} \int_{S(0, r)} u(x) d S(x)=f_{S(0, r)} u(x) d S(x)
$$

where ω_{n} denotes the surface area of the unit sphere $S(0,1)$.
Let m be a positive integer. Consider the Riesz kernel of order $2 m$ defined by $\mathcal{R}_{2 m}(x)= \begin{cases}\alpha_{n, m}(-1)^{\frac{2 m-n}{2}}|x|^{2 m-n} \log (1 /|x|) & \text { if } 2 m-n \text { is an even nonnegative integer, } \\ \alpha_{n, m}(-1)^{\max \left\{0, \frac{2 m-n+1}{2}\right\}}|x|^{2 m-n} & \text { otherwise, }\end{cases}$ where $\alpha_{n, m}$ is a positive constant chosen such that $(-\Delta)^{m} \mathcal{R}_{2 m}$ is the Dirac measure at the origin.

We say that a locally integrable function u on \mathbf{B} is super-polyharmonic of order m in \mathbf{B} if

[^0](1) $(-\Delta)^{m} u$ is a nonnegative measure on \mathbf{B}, that is,
$$
\int_{\mathbf{B}} u(x)(-\Delta)^{m} \varphi(x) d x \geq 0 \quad \text { for all nonnegative } \varphi \in C_{0}^{\infty}(\mathbf{B}) ;
$$
(2) u is lower semicontinuous in \mathbf{B};
(3) every point of \mathbf{B} is a Lebesgue point of u
(see [4] and [3]); $(-\Delta)^{m} u$ is referred to as the Riesz measure of u and denoted by μ_{u}.
Let u be super-polyharmonic of order m on \mathbf{B} with the associated Riesz measure μ_{u}. If $0<R<1$, then u is represented as
\[

$$
\begin{equation*}
u(x)=\int_{B(0, R)} \mathcal{R}_{2 m}(x-y) d \mu_{u}(y)+h_{R}(x) \tag{1.1}
\end{equation*}
$$

\]

for $x \in B(0, R)$, where h_{R} is a polyharmonic function on $B(0, R)$. This is referred to as the Riesz decomposition (see e.g. Armitage-Gardiner [1], Axler-Bourdon-Ramey [2], Hayman-Kennedy [5] and Mizuta [6]). With the aid of the Riesz decomposition, one can obtain a kind of the Poisson-Jensen formula, which assures a representation of $M(u, r)$ by use of the Riesz measure of u (see Lemma 2.1 below).

Our first aim in this note is to prove the following.
Theorem 1.1. Let h be a nonincreasing function on $(0,1)$ such that $\lim _{r \rightarrow+0} h(r)=\infty$ and let $h_{0} \geq 0$. Suppose that for all $0<b<1$, there exists a constant $A>0$ such that

$$
\begin{equation*}
h(b r) \leq b^{-h_{0}} h(r)+A \tag{1.2}
\end{equation*}
$$

for all $r \in(0,1)$. Let u be super-polyharmonic of order m in \mathbf{B} and $\mu_{u}=(-\Delta)^{m} u$. Suppose

$$
\begin{equation*}
M\left((-1)^{m} u, r\right) \leq A_{1}+A_{2} h(1-r) \tag{1.3}
\end{equation*}
$$

for $r \in(0,1)$, where $A_{1}, A_{2}>0$ are positive constants. Then
(1) $\limsup _{r \rightarrow 1-0}(1-r)^{2 m-1} h(1-r)^{-1} \mu_{u}(B(0, r))$

$$
\leq \frac{(2 m-2)!\omega_{n}}{(2 m-1)^{2 m-2}}\left(1+\frac{2 m-1}{h_{0}}\right)^{h_{0}+2 m-1} h_{0}^{2 m-1} A_{2}
$$

(2) If in addition h satisfies

$$
\begin{equation*}
\liminf _{r \rightarrow 1-0} h(1-r)^{-1} \int_{1 / 2}^{r}(r-t)^{2 m-2}(1-t)^{-2 m+1} h(1-t) d t \geq h_{0}^{-1} \tag{1.4}
\end{equation*}
$$

then

$$
\begin{equation*}
\liminf _{r \rightarrow 1-0}(1-r)^{2 m-1} h(1-r)^{-1} \mu_{u}(B(0, r)) \leq(2 m-2)!\omega_{n} h_{0} A_{2} \tag{1.5}
\end{equation*}
$$

Note here that

$$
\frac{(2 m-2)!\omega_{n}}{(2 m-1)^{2 m-2}}\left(1+\frac{2 m-1}{h_{0}}\right)^{h_{0}+2 m-1} h_{0}^{2 m-1} A_{2} \geq(2 m-2)!\omega_{n} h_{0} A_{2}
$$

This gives an extension of a result by Supper ([7, Corollary 1 and Theorem 2]), who treated subharmonic functions u on \mathbf{B} satisfying

$$
u(x) \leq A(1-|x|)^{-\gamma} .
$$

2 Fundamental lemma on spherical means

Since $\Delta^{k} \mathcal{R}_{2 m}(x)$ is radial, we write

$$
\Delta^{k} \mathcal{R}_{2 m}(r)=\Delta^{k} \mathcal{R}_{2 m}(x)
$$

when $r=|x|$.
Lemma 2.1. Let $0<r_{0}<1$. If u is super-polyharmonic of order m in \mathbf{B}, then there exist constants b_{j} (depending on r_{0}) such that

$$
\begin{aligned}
M(u, r)= & \int_{B(0, r) \backslash B\left(0, r_{0}\right)}\left(\sum_{j=0}^{m-1} a_{j}|y|^{2 j} \Delta^{j} \mathcal{R}_{2 m}(r)-\sum_{j=0}^{m-1} a_{j} r^{2 j} \Delta^{j} \mathcal{R}_{2 m}(y)\right) d \mu_{u}(y) \\
& +\int_{B\left(0, r_{0}\right)} \sum_{j=0}^{m-1} a_{j}|y|^{2 j} \Delta^{j} \mathcal{R}_{2 m}(r) d \mu_{u}(y)+\sum_{j=0}^{m-1} b_{j} r^{2 j}
\end{aligned}
$$

for $r_{0}<r<1$, where $a_{0}=1$ and

$$
a_{j}=\frac{1}{2^{j} j!n(n+2) \cdots(n+2 j-2)}
$$

for $j=1,2, \ldots, m-1$.
Proof. Let u be super-polyharmonic of order m on \mathbf{B} and $0<r_{0}<R<1$. As mentioned in (1.1), we have

$$
u(x)=\int_{B(0, R)} \mathcal{R}_{2 m}(x-y) d \mu_{u}(y)+h_{R}(x),
$$

for $x \in B(0, R)$, where h_{R} is a polyharmonic function on $B(0, R)$. Then we see that

$$
\begin{aligned}
u(x)= & \int_{B(0, R) \backslash B\left(0, r_{0}\right)}\left(\mathcal{R}_{2 m}(x-y)-\sum_{j=0}^{m-1} a_{j}|x|^{2 j} \Delta^{j} \mathcal{R}_{2 m}(y)\right) d \mu_{u}(y) \\
& +\int_{B\left(0, r_{0}\right)} \mathcal{R}_{2 m}(x-y) d \mu_{u}(y)+H_{R}(x)
\end{aligned}
$$

for $x \in B(0, R)$, where H_{R} is a polyharmonic function on $B(0, R)$ defined by

$$
H_{R}(x)=\sum_{j=0}^{m-1} a_{j}\left(\int_{B(0, R) \backslash B\left(0, r_{0}\right)} \Delta^{j} \mathcal{R}_{2 m}(y) d \mu_{u}(y)\right)|x|^{2 j}+h_{R}(x)
$$

If $r_{0}<r<R$, then

$$
\begin{aligned}
M(u, r)= & \int_{B(0, R) \backslash B\left(0, r_{0}\right)}\left(f_{S(0, r)}\left(\mathcal{R}_{2 m}(x-y)-\sum_{j=0}^{m-1} a_{j}|x|^{2 j} \Delta^{j} \mathcal{R}_{2 m}(y)\right) d S(x)\right) d \mu_{u}(y) \\
& +\int_{B\left(0, r_{0}\right)}\left(f_{S(0, r)} \mathcal{R}_{2 m}(x-y) d S(x)\right) d \mu_{u}(y)+M\left(H_{R}, r\right) \\
= & \int_{B(0, r) \backslash B\left(0, r_{0}\right)}\left(\sum_{j=0}^{m-1} a_{j}|y|^{2 j} \Delta^{j} \mathcal{R}_{2 m}(r)-\sum_{j=0}^{m-1} a_{j} r^{2 j} \Delta^{j} \mathcal{R}_{2 m}(y)\right) d \mu_{u}(y) \\
& +\int_{B\left(0, r_{0}\right)} \sum_{j=0}^{m-1} a_{j}|y|^{2 j} \Delta^{j} \mathcal{R}_{2 m}(r) d \mu_{u}(y)+\sum_{j=0}^{m-1} a_{j} \Delta^{j} H_{R}(0) r^{2 j}
\end{aligned}
$$

This implies that

$$
\sum_{j=0}^{m-1} a_{j} \Delta^{j} H_{R_{1}}(0) r^{2 j}=\sum_{j=0}^{m-1} a_{j} \Delta^{j} H_{R_{2}}(0) r^{2 j}
$$

whenever $r_{0}<r<R_{1}<R_{2}$, so that $a_{j} \Delta^{j} H_{R}(0)$ does not depend on R, and hence it is a constant b_{j} (depending on r_{0}).

Set

$$
g_{m}(t, r)=\sum_{j=0}^{m-1} a_{j} t^{2 j} \Delta^{j} \mathcal{R}_{2 m}(r)-\sum_{j=0}^{m-1} a_{j} r^{2 j} \Delta^{j} \mathcal{R}_{2 m}(t)
$$

REmARK 2.2. Let u be super-polyharmonic of order m on \mathbf{B} and $\mu_{u}=(-\Delta)^{m} u$. By Lemma 2.1 and integration by parts, we have

$$
\begin{aligned}
M(u, r) & =\int_{B(0, r) \backslash B\left(0, r_{0}\right)} g_{m}(|y|, r) d \mu_{u}(y)+O(1) \\
& =\int_{r_{0}}^{r} g_{m}(t, r) d \mu_{u}(B(0, t))+O(1) \\
& =\int_{r_{0}}^{r}\left(-\frac{\partial}{\partial t} g_{m}(t, r)\right) \mu_{u}(B(0, t)) d t+O(1)
\end{aligned}
$$

as $r \rightarrow 1-0$.
Lemma 2.3. The following hold:
(1) $(-1)^{m} g_{m}(t, r)$ is positive and decreasing as a function of t in $(0, r)$.
(2) $(-1)^{m-1} \frac{\partial}{\partial t} g_{m}(t, r) \geq \frac{r^{1-n}}{(2 m-2)!\omega_{n}}(r-t)^{2 m-2}$ for $0<t<r$.

Proof. For fixed $r>0$, set $g_{m}(t)=g_{m}(t, r)$. We prove this lemma by induction on m. In case $m=1$, we have

$$
g_{1}(t)= \begin{cases}\alpha_{2,1} \log (t / r) & \text { if } n=2, \\ \alpha_{n, 1}\left(r^{2-n}-t^{2-n}\right) & \text { if } n \geq 3,\end{cases}
$$

where $\alpha_{2,1}=\omega_{2}^{-1}$ and $\alpha_{n, 1}=\omega_{n}^{-1}(n-2)^{-1}$. Hence (1) and (2) hold for $m=1$.
Suppose that (1) and (2) hold for $m-1$ when $m \geq 2$. By the assumption on induction and $g_{m-1}(r)=0$, we have

$$
\begin{equation*}
(-1)^{m-1} g_{m-1}(t) \geq \int_{t}^{r} \frac{r^{1-n}}{(2 m-4)!\omega_{n}}(r-\rho)^{2 m-4} d \rho=\frac{r^{1-n}}{(2 m-3)!\omega_{n}}(r-t)^{2 m-3} \tag{2.1}
\end{equation*}
$$

for $0<t<r$. Noting that

$$
\Delta g_{m}(t)=-g_{m-1}(t)
$$

and

$$
\Delta g_{m}(t)=g_{m}^{\prime \prime}(t)+\frac{n-1}{t} g_{m}^{\prime}(t)=t^{1-n}\left(t^{n-1} g_{m}^{\prime}(t)\right)^{\prime}
$$

we have

$$
\begin{aligned}
(-1)^{m} g_{m}(t) & =(-1)^{m} \int_{t}^{r} s^{1-n}\left(\int_{s}^{r}\left(\rho^{n-1} g_{m}^{\prime}(\rho)\right)^{\prime} d \rho\right) d s \\
& =\int_{t}^{r} s^{1-n}\left(\int_{s}^{r} \rho^{n-1}(-1)^{m-1} g_{m-1}(\rho) d \rho\right) d s
\end{aligned}
$$

Hence (1) holds.
On the other hand, noting that

$$
(-1)^{m} g_{m}^{\prime}(t)=-t^{1-n} \int_{t}^{r} \rho^{n-1}(-1)^{m-1} g_{m-1}(\rho) d \rho
$$

we have by (2.1)

$$
\begin{aligned}
(-1)^{m-1} g_{m}^{\prime}(t) & =t^{1-n} \int_{t}^{r} \rho^{n-1}(-1)^{m-1} g_{m-1}(\rho) d \rho \\
& \geq t^{1-n} \int_{t}^{r} \rho^{n-1} \frac{r^{1-n}}{(2 m-3)!\omega_{n}}(r-\rho)^{2 m-3} d \rho \\
& \geq \frac{r^{1-n}}{(2 m-3)!\omega_{n}} \int_{t}^{r}(r-\rho)^{2 m-3} d \rho \\
& =\frac{r^{1-n}}{(2 m-2)!\omega_{n}}(r-t)^{2 m-2}
\end{aligned}
$$

which implies (2). Thus the lemma is obtained.

3 Proof of Theorem 1.1

First we show assertion (1). By Remark 2.2, we have

$$
M\left((-1)^{m} u, r\right)=\int_{r_{0}}^{r}\left((-1)^{m-1} \frac{\partial}{\partial t} g_{m}(t, r)\right) \mu_{u}(B(0, t)) d t+O(1) \quad \text { as } r \rightarrow 1-0
$$

For $a>0$, we find by Lemma 2.3 (2)

$$
\begin{aligned}
M\left((-1)^{m} u, r\right) & \geq \int_{r-a(1-r)}^{r}\left((-1)^{m-1} \frac{\partial}{\partial t} g_{m}(t, r)\right) \mu_{u}(B(0, t)) d t+O(1) \\
& \geq \mu_{u}(B(0, r-a(1-r))) \int_{r-a(1-r)}^{r}\left((-1)^{m-1} \frac{\partial}{\partial t} g_{m}(t, r)\right) d t+O(1) \\
& \geq \mu_{u}(B(0, r-a(1-r))) \int_{r-a(1-r)}^{r}\left(\frac{r^{1-n}}{(2 m-2)!\omega_{n}}(r-t)^{2 m-2}\right) d t+O(1) \\
& =\frac{r^{1-n}}{(2 m-1)!\omega_{n}} a^{2 m-1}(1-r)^{2 m-1} \mu_{u}(B(0, r-a(1-r)))+O(1)
\end{aligned}
$$

when $r-a(1-r)>r_{0}$, so that

$$
\limsup _{r \rightarrow 1-0}(1-r)^{2 m-1} h(1-r)^{-1} \mu_{u}(B(0, r-a(1-r))) \leq(2 m-1)!\omega_{n} a^{-2 m+1} A_{2}
$$

by (1.3). By change of variable $t=r-a(1-r)$, we obtain by (1.2)

$$
\limsup _{t \rightarrow 1-0}(1-t)^{2 m-1} h(1-t)^{-1} \mu_{u}(B(0, t)) \leq(2 m-1)!\omega_{n} a^{-2 m+1}(1+a)^{h_{0}+2 m-1} A_{2}
$$

Now, since $a^{-2 m+1}(1+a)^{h_{0}+2 m-1}$ attains its minimum at $a=\frac{2 m-1}{h_{0}}$, we obtain the result.
Next, we show assertion (2). By Remark 2.2 and Lemma 2.3 (2), we have

$$
M\left((-1)^{m} u, r\right) \geq \frac{1}{(2 m-2)!\omega_{n}} \int_{r_{0}}^{r}(r-t)^{2 m-2} \mu_{u}(B(0, t)) d t+O(1) \quad \text { as } r \rightarrow 1-0
$$

If there exist constants $A^{\prime}>(2 m-2)!\omega_{n} h_{0} A_{2}$ and $r_{0}>0$ such that $\mu_{u}(B(0, t))>$ $A^{\prime}(1-t)^{-2 m+1} h(1-t)$ for all $r_{0}<t<1$, then

$$
\begin{aligned}
& \frac{1}{(2 m-2)!\omega_{n}} h(1-r)^{-1} \int_{r_{0}}^{r}(r-t)^{2 m-2} \mu_{u}(B(0, t)) d t \\
> & \frac{A^{\prime}}{(2 m-2)!\omega_{n}} h(1-r)^{-1} \int_{r_{0}}^{r}(r-t)^{2 m-2}(1-t)^{-2 m+1} h(1-t) d t,
\end{aligned}
$$

which gives by (1.4)

$$
\liminf _{r \rightarrow 1-0} h(1-r)^{-1} M\left((-1)^{m} u, r\right) \geq \frac{A^{\prime}}{(2 m-2)!\omega_{n}} h_{0}^{-1}>A_{2}
$$

Thus a contradiction follows from (1.3).

4 Corollaries

In this section, we introduce some consequences of Theorem 1.1.
Corollary 4.1. Let u be super-polyharmonic in \mathbf{B} and $\mu_{u}=(-\Delta)^{m} u$. Suppose

$$
M\left((-1)^{m} u, r\right) \leq\left(\log \frac{e}{1-r}\right)^{\gamma}
$$

for $r \in(0,1)$, where $\gamma>0$ is a positive constant. Then
(i) $\limsup _{r \rightarrow 1-0}(1-r)^{2 m-1}\left(\log \frac{e}{1-r}\right)^{-\gamma} \mu_{u}(B(0, r)) \leq(2 m-1)!\omega_{n}$; and
(ii) $\liminf _{r \rightarrow 1-0}(1-r)^{2 m-1}\left(\log \frac{e}{1-r}\right)^{-\gamma} \mu_{u}(B(0, r))=0$.

Proof. First, we show statement (i). Let $h_{1}>0$. For all $0<b<1$, we can find a constant $A^{\prime}>0$ such that

$$
\begin{equation*}
\left(\log \frac{e}{b r}\right)^{\gamma} \leq b^{-h_{1}}\left(\log \frac{e}{r}\right)^{\gamma}+A^{\prime} \tag{4.1}
\end{equation*}
$$

whenever $r \in(0,1)$. Applying Theorem 1.1 with $A_{1}=0, A_{2}=1, h(r)=(\log (e / r))^{\gamma}, A=$ A^{\prime} and $h_{0}=h_{1}$, we obtain

$$
\begin{aligned}
& \limsup _{r \rightarrow 1-0}(1-r)^{2 m-1}\left(\log \frac{e}{1-r}\right)^{-\gamma} \mu_{u}(B(0, r)) \\
& \leq \frac{(2 m-2)!\omega_{n}}{(2 m-1)^{2 m-2}}\left(1+\frac{2 m-1}{h_{1}}\right)^{h_{1}+2 m-1} h_{1}^{2 m-1} \\
& \leq \frac{(2 m-2)!\omega_{n}}{(2 m-1)^{2 m-2}}\left(1+\frac{2 m-1}{h_{1}}\right)^{h_{1}}\left(h_{1}+2 m-1\right)^{2 m-1},
\end{aligned}
$$

which tends to $(2 m-1)!\omega_{n}$ as $h_{1} \rightarrow 0$.
Next, we show statement (ii). First note that

$$
\lim _{r \rightarrow 1-0}\left(\log \frac{e}{1-r}\right)^{-\gamma} \int_{1 / 2}^{r}(r-t)^{2 m-2}(1-t)^{-2 m+1}\left(\log \frac{e}{1-t}\right)^{\gamma} d t=\infty
$$

Applying Theorem 1.1 with $A_{1}=0, A_{2}=1, h(r)=(\log (e / r))^{\gamma}, A=A^{\prime}$ and $h_{0}=h_{1}$, we have

$$
\liminf _{r \rightarrow 1-0}(1-r)^{2 m-1}\left(\log \frac{e}{1-r}\right)^{-\gamma} \mu_{u}(B(0, r)) \leq(2 m-2)!\omega_{n} h_{1}
$$

which tends to 0 as $h_{1} \rightarrow 0$.
Corollary 4.2. Let u be super-polyharmonic in \mathbf{B} and $\mu_{u}=(-\Delta)^{m} u$. Suppose

$$
M\left((-1)^{m} u, r\right) \leq(1-r)^{-\gamma}
$$

for $r \in(0,1)$, where $\gamma>0$ is a positive constant. Then
(i) $\limsup _{r \rightarrow 1-0}(1-r)^{\gamma+2 m-1} \mu_{u}(B(0, r)) \leq \frac{(2 m-2)!\omega_{n}}{(2 m-1)^{2 m-2}}\left(1+\frac{2 m-1}{\gamma}\right)^{\gamma+2 m-1} \gamma^{2 m-1}$; and
(ii) $\liminf _{r \rightarrow 1-0}(1-r)^{\gamma+2 m-1} \mu_{u}(B(0, r)) \leq \omega_{n} \gamma_{m}$, where $\gamma_{m}=(\gamma+2 m-2)(\gamma+2 m-3) \cdots \gamma$.

For a proof, apply Theorem 1.1 with $h(r)=r^{-\gamma}$.
In the superharmonic case, Corollary 4.2 is reduced to the following.
Corollary 4.3. Let u be superharmonic in \mathbf{B} and $\mu_{u}=-\Delta u$. Suppose

$$
M(-u, r) \leq(1-r)^{-\gamma}
$$

for $r \in(0,1)$, where $\gamma>0$ is a positive constant. Then
(i) $\limsup _{r \rightarrow 1-0}(1-r)^{\gamma+1} \mu_{u}(B(0, r)) \leq \omega_{n}\left(1+\frac{1}{\gamma}\right)^{\gamma+1} \gamma$; and
(ii) $\liminf _{r \rightarrow 1-0}(1-r)^{\gamma+2 m-1} \mu_{u}(B(0, r)) \leq \omega_{n} \gamma$.

5 Best possibility of Theorem 1.1 for $m=1$

Here we discuss the best possibility of "lim sup" and "lim inf" in Theorem 1.1 for $m=1$.
Example 5.1. For $a>1$ and $\gamma>0$, we can find a measure μ satisfying
(i) $\limsup _{r \rightarrow 1-0}(1-r)^{\gamma+1} \mu(B(0, r))=1$,
(ii) $\liminf _{r \rightarrow 1-0}(1-r)^{\gamma+1} \mu(B(0, r))=a^{-\gamma-1}$ and
(iii) $\limsup _{r \rightarrow 1-0}(1-r)^{\gamma} \int_{0}^{r} \mu(B(0, t)) d t=\gamma^{-1}\left[\left\{\frac{(a-1)}{a\left(a^{\gamma}-1\right)}+1\right\} \frac{\gamma}{1+\gamma}\right]^{1+\gamma}$.

Set $a_{n}=1-a^{-n}$ and $b_{n}=a^{n(\gamma+1)}$. Define $\mu=\sum_{n=1}^{\infty}\left(b_{n}-b_{n-1}\right) \delta_{x_{n}}$, where $x_{n}=$ $\left(a_{n}, 0, \ldots, 0\right) \in \mathbf{B}$ and $b_{0}=0$.

For $a_{n}<r \leq a_{n+1}$, note that

$$
\mu(B(0, r))=b_{n}
$$

and

$$
\begin{aligned}
\int_{0}^{r} \mu(B(0, t)) d t & =\sum_{j=1}^{n-1} b_{j}\left(a_{j+1}-a_{j}\right)+\left(r-a_{n}\right) b_{n} \\
& =\sum_{j=1}^{n-1} \frac{a-1}{a} a^{j \gamma}+\left(r-a_{n}\right) b_{n} \\
& =C_{n}+\left(r-a_{n}\right) b_{n}
\end{aligned}
$$

where $C_{n}=\frac{(a-1)}{a\left(a^{\gamma}-1\right)}\left(a^{n \gamma}-a^{\gamma}\right)$. Hence we have

$$
(1-r)^{\gamma} \int_{0}^{r} \mu(B(0, t)) d t=\left\{C_{n}+\left(1-a_{n}\right) b_{n}\right\}(1-r)^{\gamma}-b_{n}(1-r)^{1+\gamma}
$$

which attains the maximum at

$$
-\left\{C_{n}+\left(1-a_{n}\right) b_{n}\right\} \gamma+b_{n}(1+\gamma)(1-r)=0
$$

or

$$
1-r=\left\{C_{n} / b_{n}+\left(1-a_{n}\right)\right\} \frac{\gamma}{1+\gamma} .
$$

Here note that $a_{n}<r \leq a_{n+1}$ for sufficient large n since

$$
\frac{1+\gamma-\gamma a}{\gamma a}<\frac{a-1}{a\left(a^{\gamma}-1\right)}<\frac{1}{\gamma}
$$

Hence

$$
\max _{a_{n}<r \leq a_{n+1}}(1-r)^{\gamma} \int_{0}^{r} \mu(B(0, t)) d t=b_{n} \gamma^{-1}\left[\left\{C_{n} / b_{n}+\left(1-a_{n}\right)\right\} \frac{\gamma}{1+\gamma}\right]^{1+\gamma}
$$

for sufficient large n. Since the right hand term in the above equality is increasing on n, the above equality gives

$$
\limsup _{r \rightarrow 1-0}(1-r)^{\gamma} \int_{0}^{r} \mu(B(0, t)) d t=\gamma^{-1}\left[\left\{\frac{(a-1)}{a\left(a^{\gamma}-1\right)}+1\right\} \frac{\gamma}{1+\gamma}\right]^{1+\gamma} .
$$

Further, we have

$$
\limsup _{r \rightarrow 1-0}(1-r)^{\gamma+1} \mu(B(0, r))=1
$$

and

$$
\liminf _{r \rightarrow 1-0}(1-r)^{\gamma+1} \mu(B(0, r))=a^{-\gamma-1}
$$

as required.
Now, we show the best possibility of Theorem 1.1 for $m=1$. Let μ be as in Example 5.1. For $0<A<1$ and $\gamma>0$, find $a>1$ such that

$$
\left\{\frac{(a-1)}{a\left(a^{\gamma}-1\right)}+1\right\}^{1+\gamma}=A^{-1}
$$

If we set $\nu=\omega_{n}\left(1+\frac{1}{\gamma}\right)^{1+\gamma} \gamma A \mu$, then
$\left(1^{\prime}\right) \limsup _{r \rightarrow 1-0}(1-r)^{\gamma+1} \nu(B(0, r))=\omega_{n}\left(1+\frac{1}{\gamma}\right)^{1+\gamma} \gamma A$;
$\left(2^{\prime}\right) \liminf _{r \rightarrow 1-0}(1-r)^{\gamma+1} \nu(B(0, r))=a^{-\gamma-1} \omega_{n}\left(1+\frac{1}{\gamma}\right)^{1+\gamma} \gamma A$; and
(3) $\limsup _{r \rightarrow 1-0}(1-r)^{\gamma} \int_{0}^{r} \nu(B(0, t)) d t=\omega_{n}$.

As a superharmonic function u whose Riesz measure is ν, we may consider the potential

$$
u(x)=\int_{\mathbf{B}} K_{1, L}(x, y) d \nu(y) ;
$$

see [3] for the definition of $K_{1, L}(x, y)$. With the aid of Remark 2.2, (3) gives
(4) $\limsup _{r \rightarrow 1-0}(1-r)^{\gamma} M(-u, r) \leq 1$.

By (1^{\prime}) and (4), if we let $A \rightarrow 1$, then we see that (i) of Corollary 4.3 is best possible. Further, by (2') and (4), if we let $a \rightarrow 1$ (and hence $A^{-1} \rightarrow\left(\frac{1}{\gamma}+1\right)^{1+\gamma}$), then we see that (ii) of Corollary 4.3 is best possible.

References

[1] D. H. Armitage and S. J. Gardiner, Classical Potential Theory, Springer, 2000.
[2] S. Axler, P. Bourdon and W. Ramey, Harmonic function theory, 2nd edition, Springer, New York, 2001.
[3] T. Futamura, K. Kitaura and Y. Mizuta, Riesz decomposition for superbiharmonic functions in the unit ball, Hokkaido Math. J. 4 (2009), 683-700.
[4] T. Futamura and Y. Mizuta, Isolated singularities of super-polyharmonic functions, Hokkaido. Math. J. 33 (2004), no. 3, 1-21.
[5] W. K. Hayman and P. B. Kennedy, Subharmonic functions, Vol. 1, Academic Press, London, 1976.
[6] Y. Mizuta, Potential theory in Euclidean spaces, Gakkōtosyo, Tokyo, 1996.
[7] R. Supper, Subharmonic functions in the unit ball, Positivity 9 (2005), no. 4, 645665.
[8] R. Supper, Spherical means of subharmonic functions, Commun. Math. Anal. 7 (2009), no. 1, 61-74.
[9] M. Tsuji, Potential theory in modern function theory, Maruzen Co., Ltd., Tokyo 1959.

Department of Mathematics
Daido University
Nagoya 457-8530, Japan
E-mail : futamura@daido-it.ac.jp
and
Department of Mechanical Systems Engineering
Hiroshima Institute of Technology
2-1-1 Miyake Saeki-ku Hiroshima 731-5193, Japan
E-mail : yoshihiromizuta3@gmail.com and
Faculty of Education and Welfare Science Oita University
Dannoharu Oita-city 870-1192, Japan
E-mail : t-ohno@oita-u.ac.jp

[^0]: 2000 Mathematics Subject Classification : Primary 31B30, 31B05, 31B15
 Key words and phrases : polyharmonic functions, super-polyharmonic functions, spherical means, Riesz decomposition, Riesz measure

