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Abstract

For a super-polyharmonic function u on the unit ball satisfying a growth con-
dition on spherical means, we study a growth property of the Riesz measure of u
near the boundary.

1 Introduction and statement of result

Let R"™ denote the n-dimensional Euclidean space. We use the notation B(z,r) to
denote the open ball centered at = with radius r, whose boundary is written as S(z,r) =
OB(z,r). In particular, B denotes the unit ball B(0,1).

For a Borel measurable function u on S(0,r), letting dS denote the surface area
measure on S(0,r), we define the spherical mean over S(0,r) by

M(u,r) = —— /S ) ds() = ][ () dS(z),

W 1" S(0,r)

where w,, denotes the surface area of the unit sphere S(0, 1).
Let m be a positive integer. Consider the Riesz kernel of order 2m defined by

2m—n

Qpm(—1)"2

O (— 1)mex{0, . |2 otherwise,

|z|*™ " log (1/|z]) if 2m — n is an even nonnegative integer,

Rgm(l’) = {

where a,, ,, is a positive constant chosen such that (—A)™Ry, is the Dirac measure at
the origin.

We say that a locally integrable function u on B is super-polyharmonic of order m
in B if
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(1) (=A)™u is a nonnegative measure on B, that is,

/ u(x)(=A)"p(x) de >0 for all nonnegative ¢ € C5°(B);
B

(2) u is lower semicontinuous in B;
(3) every point of B is a Lebesgue point of u

(see [4] and [3]); (—A)™u is referred to as the Riesz measure of u and denoted by .
Let u be super-polyharmonic of order m on B with the associated Riesz measure p,,.
If 0 < R < 1, then u is represented as

uw)= [ Ranlo = y) dualy) + (o) (L)
B(0,R)

for x € B(0, R), where hg is a polyharmonic function on B(0, R). This is referred to
as the Riesz decomposition (see e.g. Armitage-Gardiner [1], Axler-Bourdon-Ramey [2],
Hayman-Kennedy [5] and Mizuta [6]). With the aid of the Riesz decomposition, one can
obtain a kind of the Poisson-Jensen formula, which assures a representation of M (u, 1)
by use of the Riesz measure of u (see Lemma 2.1 below).

Our first aim in this note is to prove the following.

THEOREM 1.1. Let h be a nonincreasing function on (0,1) such that 111110 h(r) = oo and
r—
let ho > 0. Suppose that for all 0 < b < 1, there exists a constant A > 0 such that

h(br) < b~ "h(r) + A (1.2)

for all r € (0,1). Let u be super-polyharmonic of order m in B and p, = (—A)™u.

Suppose
M((=1)"u,r) < Ay + Ash(1 —1) (1.3)

forr € (0,1), where Ay, Ay > 0 are positive constants. Then

(1) limlsuop (1 =)™ th(l — ) (B(0,7))
r—1—
. | . ho+2m—1
< @m=2, [ 2m -1 B2 4,
(2m — 1)2m—2 ho
(2) If in addition h satisfies
lim inf A(1 — 7‘)_1/ (r —t)*™72(1 — )72 h(1 — t)dt > hy't, (1.4)
1

r—1-0 /2

then
liminf (1 —7)*" " h(1 — 7)), (B(0,7)) < (2m — 2)lw,hoAs. (1.5)

r—1—-0



Note here that

(2m — 2)lw,
(2m — 1)2m—2

2 . 1 ho+2m—1
(1 + mh ) h2m=1 Ay > (2m — 2)lwnhoAs.
0

This gives an extension of a result by Supper ([7, Corollary 1 and Theorem 2]), who
treated subharmonic functions v on B satisfying

u(r) < A1 — |z])77.

2 Fundamental lemma on spherical means
Since A*R,,, () is radial, we write

AFRy, (1) = AFRy,, ()
when r = |z|.

LEMMA 2.1. Let 0 < rg < 1. If u is super-polyharmonic of order m in B, then there
exist constants b; (depending on o) such that

m—1 m—1
M(u,r) = / D iy AR (r) = Y ar N Rom(y) | dpp(y)
B(0,r)\B(0,r0)

§=0 §=0
m—1 m—1

" / > ailyl? N Ram(r) dpa(y) + > byr®
B(0,ro) j=0 =0

forrg <r <1, where ag =1 and

1
C 2jiln(n4+2)--(n+25 —2)

a;

forj=1,2,....m—1.

Proof. Let u be super-polyharmonic of order m on B and 0 < ry < R < 1. As mentioned
in (1.1), we have

ulz) = / o Ranl =) Al ),

for x € B(0, R), where hp is a polyharmonic function on B(0, R). Then we see that

m—1
u(r) = / (Rgm(ﬂf —y) - ajlfﬂIQjNRgm(y)) dpi (y)
B(0,R)\B(0,r0)

J=0

+ / Rom(@ — y) djiu(y) + Ha(z),
B(O,’r‘o)



for x € B(0, R), where Hp, is a polyharmonic function on B(0, R) defined by

m—1

" ( / AR (1) duu<y>) 2% + ha(a).
—0 B(0,R)\B(0,r0)

J

If ro <r < R, then

Mw.r) = /B(O,R)\B(O,ro) (Jém,r) (RM(QE 9= Z il ]A]RQm(y)> dsm) )

j=0

- - ( [ Runta- y)ds<x>) dpaly) + M(Ha, )

1

m—1 m—
- / > iyl AR a7 A Rom(y) | dp(y)
B(0,r)\B(0,r0)

J=0 J=0

m—1

/ Z Y1 AR (1) dpta(y +ZaNHR
B(0,ro)

= Jj=

This implies that

m—1

m—1
Z CLjAjHRl (O)TQj = Z CLjAjHRZ (O)T’QJ
7=0 7=0

whenever ry < r < R; < Ry, so that ajAj Hgr(0) does not depend on R, and hence it is

a constant b; (depending on ryg). O
Set
m—1 m—1
gm(t,r) = Z at® ARy (1) — Z a; 7 N Rom (t).
j=0 Jj=0

REMARK 2.2. Let u be super-polyharmonic of order m on B and p, = (—A)™u. By
Lemma 2.1 and integration by parts, we have

M) = [ aml(31:7) diay) + O(1)
B(0,7)\B(0,ro)

N / gm(t,7)dpu(B(0,1)) + O(1)

- /( aatgm“ 7”>> pa(B(0,1) dt + O(1)

asr — 1—0.
LEMMA 2.3. The following hold:

(1) (=1)™gy(t,r) is positive and decreasing as a function of t in (0,7).



1-n

—(r — t)*m? 0<t .
om =2, (r—1t) forO<t<r

@) (1) >

Proof. For fixed r > 0, set ¢,,(t) = gm(t,r). We prove this lemma by induction on m.
In case m = 1, we have

a(t) = a1 log(t/r) %f n=2,
Qp 1 (r*™" — 2 if n > 3,

where ay; = wy ' and a,,; = w; ! (n —2)~1. Hence (1) and (2) hold for m = 1.
Suppose that (1) and (2) hold for m—1 when m > 2. By the assumption on induction
and g,,—1(r) = 0, we have

,rlfn 7417n

(=1)" g (t) > /tr m@“ —p)"tdp = m(T — )" (2.1)

for 0 < t < r. Noting that

and

we have
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Hence (1) holds.
On the other hand, noting that

(—1)7gh (1) = 1 / ) g () d.

we have by (2.1)

(—1)™ g () = / =1 g1 (0) dp
> o 2m—3 d
/rl " " 2m—3
1-n
_ r 2m—2
(2m — 2)lw, (r=1) ’
which implies (2). Thus the lemma is obtained. O



3 Proof of Theorem 1.1

First we show assertion (1). By Remark 2.2, we have

M((=1)"u,r) = /T ((—l)m_I%gm(t,r)) pu(B(0,t)) dt +O(1) asr—1—0.

For a > 0, we find by Lemma 2.3 (2)

—a

M) = [ (G0 St n) m(BO.1) de+ 00

> (B0 = a1 =) | (1)(<—1>m—1§gm<t,r>> dt + O(1)

> (B0, r —a(l—r))) /T - (ﬁ(r _ t)?m—Z) dt +0(1)
= ﬁagm‘l(l —)?" (B0, r —a(l — 1)) + O(1)

when 7 — a(1 —r) > ry, so that

timsup(1 1" h(1 = 1) (B0, 7~ all = 1)) < (2m = Dlsa Ay

r—1-0

by (1.3). By change of variable ¢t = r — a(1 — ), we obtain by (1.2)

limsup (1=~ h(1 =) pu(BO1)) < (2m = Dlwna (1 +0) 0214y,
t—1-0

Now, since a™ "+ (1 +a)"+2™ ! attains its minimum at @ = 271, we obtain the result.

Next, we show assertion (2). By Remark 2.2 and Lemma 2.3 (2), we have

M((=1)"u,r) > m /T(r —1)*" 20, (B(0,t)) dt + O(1)  asr —1-0.

T0

If there exist constants A" > (2m — 2)lw,hpAs and ro > 0 such that p,(B(0,t)) >
A'(1—t)2mFn(1 —¢) for all ry < t < 1, then

mh“ -7 /T(T — )™ 211,,(B(0,1)) dt
e Rl K e TR

which gives by (1.4)

A/
liminf A(1 — ) 'M((=1)"u,r) >

———hy' > Ay
r—1-0 2m —2)lw, ° ?

Thus a contradiction follows from (1.3).



4 Corollaries

In this section, we introduce some consequences of Theorem 1.1.

COROLLARY 4.1. Let u be super-polyharmonic in B and p, = (—A)™u. Suppose

O

forr € (0,1), where v > 0 is a positive constant. Then

e
1—r

(i) limsup (1 —r)*™! <log

r—1-0

)_7 tu(B(0,7)) < (2m — 1)lw,; and

e

r—1-0

(ii) liminf (1 —r)*"! (log . >_W pu(B(0,7)) = 0.

Proof. First, we show statement (i). Let hy > 0. For all 0 < b < 1, we can find a
constant A’ > 0 such that

(1og 5)7 <t (log ;)7 LA (4.1)

whenever r € (0,1). Applying Theorem 1.1 with A; =0, Ay = 1, h(r) = (log(e/r))" , A =
A’ and hy = hy, we obtain

-
limsup (1 —r)*™! (log . ‘ ) o (B(0,7))
r

r—1-0 -

(2m — 2)lw, 2m — 1\ omt
= (2m — 1)2m—2 hy !

(2m — 2)lw, om —1\™ 1
G St t N hy +2m—1
Som—nr2 U T (o 2m =17,

which tends to (2m — 1)lw,, as hy — 0.
Next, we show statement (ii). First note that

e - r e Y
lim | log / (r —t)*2(1 — t)"*™*! ( log dt = oo,
r—1-0 1—r 1/2 1—1

Applying Theorem 1.1 with A; =0, Ay = 1, h(r) = (log(e/r))”, A= A" and hy = hy, we
have

r—1-0

-
liminf(1 — r)*™! (log 1= r> pu(B(0,7)) < (2m — 2)lw,hy,

which tends to 0 as hy — 0. ]

COROLLARY 4.2. Let u be super-polyharmonic in B and p, = (—A)™u. Suppose
M((=1)"u,r) < (1—r)"

forr € (0,1), where v > 0 is a positive constant. Then

7



2m — 2)lw 2m — 1\
L 1— ~+2m—1 . B 0 < ( n 1 2m—1, d
O I e B = e (T o

(ii) liminf (1—7)""*""1 0, (B(0,7)) < WnYm, where ym = (y+2m—2)(y+2m—3) - - - 7.

r—1-0

For a proof, apply Theorem 1.1 with h(r) = 7.
In the superharmonic case, Corollary 4.2 is reduced to the following.

COROLLARY 4.3. Let u be superharmonic in B and pu, = —Au. Suppose
M(=u,r) < (1—7r)7"

forr € (0,1), where v > 0 is a positive constant. Then

Y1
(i) limsup (1 — )", (B(0,7)) < wy (1 + ;) v; and

r—1-0

(ii) liminf (1 — )" 1y, (B(0,7)) < wpy.

r—1-0

5 Best possibility of Theorem 1.1 for m =1

Here we discuss the best possibility of "lim sup” and ”lim inf” in Theorem 1.1 for m = 1.
EXAMPLE 5.1. For a > 1 and 7 > 0, we can find a measure p satisfying

(i) limsup (1 —7)" ' u(B(0,7)) =1,

r—1-0

(ii) liminf (1 — )" ' u(B(0,7)) = a?~" and

r—1-0

(iii) limsup (1 — r)V/Orﬂ(B(o,t)) dt =y H% + 1} 7 rﬂ.

r—1-0 L+ v

Set a, = 1 —a" and b, = a"O0*Y. Define p = > (by — by—1)0y,, where z,, =
(an,0,...,0) € B and by = 0.
For a,, < r < a,41, note that

p(B(0,7)) = by

and

[ utso.0) @t = Y bar @)+ 0= b

n—1




(CL — 1) (an'y

where Cn = m

—a”). Hence we have

(1-— r)”/ w(B(0,t) dt = {C,+ (1—a,)b,}(1—7r)"—0b,(1— r)”'y
0
which attains the maximum at

—{Ch + (1 —an)by}y + b, (1 4+7)(1 —7) =0,

or
i
1—r={C,/b,+ (1 —a,)}——-.
(Cufba+ (1 = 0}
Here note that a, < r < a,; for sufficient large n since
1 — -1 1
+ v —"a < a

va a(a”—1) v

Hence

max (1 —r) /OTM(B(OJ)) dt = by [{Cn/bn +(1- an)}L} o

an <r<an41 1 + Y

for sufficient large n. Since the right hand term in the above equality is increasing on n,
the above equality gives

limsup (1—r)’ /Oru(B(O,t)) it = ~! H% + 1} %} M.

Further, we have
limsup (1 — 7)™ u(B(0,r)) =1

r—1-0
and
liminf (1 —7)""u(B(0,7)) = a7,

r—1-0

as required.

Now, we show the best possibility of Theorem 1.1 for m = 1. Let u be as in Example
5.1. For 0 < A <1 and v > 0, find a > 1 such that

(a—1) a -1
— 41 = A"
Coenk
14y
If we set v = w, (1 + %) ~vApu, then

(1) limsup (1 — )" u(B(0,7)) = w, (1 + 1) 7WA;

r—1-0 Y



1\ 1+
(2) liminf (1 —r)"™v(B(0,7)) = a " 'w, <1 + —> vA; and
g

r—1-0

(3) limsup (1 —1r)” /0’“ v(B(0,t)) dt = w,,.

r—1-0

As a superharmonic function u whose Riesz measure is v, we may consider the po-
tential

ue) = [ Kialwg)iviy)
B
see [3] for the definition of K 1 (z,y). With the aid of Remark 2.2, (3) gives

(4) limsup (1 —r)"M(—u,r) < 1.

r—1-0

By (1') and (4), if we let A — 1, then we see that (i) of Corollary 4.3 is best possible.

14~
Further, by (2') and (4), if we let @ — 1 (and hence A™! — G + 1) ), then we see
that (ii) of Corollary 4.3 is best possible.
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