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Abstract

For a super-polyharmonic function u on the unit ball satisfying a growth con-
dition on spherical means, we study a growth property of the Riesz measure of u
near the boundary.

1 Introduction and statement of result

Let Rn denote the n-dimensional Euclidean space. We use the notation B(x, r) to
denote the open ball centered at x with radius r, whose boundary is written as S(x, r) =
∂B(x, r). In particular, B denotes the unit ball B(0, 1).

For a Borel measurable function u on S(0, r), letting dS denote the surface area
measure on S(0, r), we define the spherical mean over S(0, r) by

M(u, r) =
1

ωnrn−1

∫
S(0,r)

u(x) dS(x) = −
∫
S(0,r)

u(x) dS(x),

where ωn denotes the surface area of the unit sphere S(0, 1).
Let m be a positive integer. Consider the Riesz kernel of order 2m defined by

R2m(x) =

{
αn,m(−1)

2m−n
2 |x|2m−n log (1/|x|) if 2m− n is an even nonnegative integer,

αn,m(−1)max{0, 2m−n+1
2

}|x|2m−n otherwise,

where αn,m is a positive constant chosen such that (−∆)mR2m is the Dirac measure at
the origin.

We say that a locally integrable function u on B is super-polyharmonic of order m
in B if
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(1) (−∆)mu is a nonnegative measure on B, that is,∫
B

u(x)(−∆)mφ(x) dx ≥ 0 for all nonnegative φ ∈ C∞
0 (B);

(2) u is lower semicontinuous in B;

(3) every point of B is a Lebesgue point of u

(see [4] and [3]); (−∆)mu is referred to as the Riesz measure of u and denoted by µu.
Let u be super-polyharmonic of order m on B with the associated Riesz measure µu.

If 0 < R < 1, then u is represented as

u(x) =

∫
B(0,R)

R2m(x− y) dµu(y) + hR(x) (1.1)

for x ∈ B(0, R), where hR is a polyharmonic function on B(0, R). This is referred to
as the Riesz decomposition (see e.g. Armitage-Gardiner [1], Axler-Bourdon-Ramey [2],
Hayman-Kennedy [5] and Mizuta [6]). With the aid of the Riesz decomposition, one can
obtain a kind of the Poisson-Jensen formula, which assures a representation of M(u, r)
by use of the Riesz measure of u (see Lemma 2.1 below).

Our first aim in this note is to prove the following.

Theorem 1.1. Let h be a nonincreasing function on (0, 1) such that lim
r→+0

h(r) = ∞ and

let h0 ≥ 0. Suppose that for all 0 < b < 1, there exists a constant A > 0 such that

h(br) ≤ b−h0h(r) + A (1.2)

for all r ∈ (0, 1). Let u be super-polyharmonic of order m in B and µu = (−∆)mu.
Suppose

M((−1)mu, r) ≤ A1 + A2h(1− r) (1.3)

for r ∈ (0, 1), where A1, A2 > 0 are positive constants. Then

(1) lim sup
r→1−0

(1− r)2m−1h(1− r)−1µu(B(0, r))

≤ (2m− 2)!ωn

(2m− 1)2m−2

(
1 +

2m− 1

h0

)h0+2m−1

h2m−1
0 A2.

(2) If in addition h satisfies

lim inf
r→1−0

h(1− r)−1

∫ r

1/2

(r − t)2m−2(1− t)−2m+1h(1− t)dt ≥ h−1
0 , (1.4)

then
lim inf
r→1−0

(1− r)2m−1h(1− r)−1µu(B(0, r)) ≤ (2m− 2)!ωnh0A2. (1.5)
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Note here that

(2m− 2)!ωn

(2m− 1)2m−2

(
1 +

2m− 1

h0

)h0+2m−1

h2m−1
0 A2 ≥ (2m− 2)!ωnh0A2.

This gives an extension of a result by Supper ([7, Corollary 1 and Theorem 2]), who
treated subharmonic functions u on B satisfying

u(x) ≤ A(1− |x|)−γ.

2 Fundamental lemma on spherical means

Since ∆kR2m(x) is radial, we write

∆kR2m(r) = ∆kR2m(x)

when r = |x|.

Lemma 2.1. Let 0 < r0 < 1. If u is super-polyharmonic of order m in B, then there
exist constants bj (depending on r0) such that

M(u, r) =

∫
B(0,r)\B(0,r0)

(
m−1∑
j=0

aj|y|2j∆jR2m(r)−
m−1∑
j=0

ajr
2j∆jR2m(y)

)
dµu(y)

+

∫
B(0,r0)

m−1∑
j=0

aj|y|2j∆jR2m(r) dµu(y) +
m−1∑
j=0

bjr
2j

for r0 < r < 1, where a0 = 1 and

aj =
1

2jj!n(n+ 2) · · · (n+ 2j − 2)

for j = 1, 2, . . . ,m− 1.

Proof. Let u be super-polyharmonic of order m on B and 0 < r0 < R < 1. As mentioned
in (1.1), we have

u(x) =

∫
B(0,R)

R2m(x− y) dµu(y) + hR(x),

for x ∈ B(0, R), where hR is a polyharmonic function on B(0, R). Then we see that

u(x) =

∫
B(0,R)\B(0,r0)

(
R2m(x− y)−

m−1∑
j=0

aj|x|2j∆jR2m(y)

)
dµu(y)

+

∫
B(0,r0)

R2m(x− y) dµu(y) +HR(x),
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for x ∈ B(0, R), where HR is a polyharmonic function on B(0, R) defined by

HR(x) =
m−1∑
j=0

aj

(∫
B(0,R)\B(0,r0)

∆jR2m(y) dµu(y)

)
|x|2j + hR(x).

If r0 < r < R, then

M(u, r) =

∫
B(0,R)\B(0,r0)

(
−
∫
S(0,r)

(
R2m(x− y)−

m−1∑
j=0

aj|x|2j∆jR2m(y)

)
dS(x)

)
dµu(y)

+

∫
B(0,r0)

(
−
∫
S(0,r)

R2m(x− y)dS(x)

)
dµu(y) +M(HR, r)

=

∫
B(0,r)\B(0,r0)

(
m−1∑
j=0

aj|y|2j∆jR2m(r)−
m−1∑
j=0

ajr
2j∆jR2m(y)

)
dµu(y)

+

∫
B(0,r0)

m−1∑
j=0

aj|y|2j∆jR2m(r) dµu(y) +
m−1∑
j=0

aj∆
jHR(0)r

2j.

This implies that
m−1∑
j=0

aj∆
jHR1(0)r

2j =
m−1∑
j=0

aj∆
jHR2(0)r

2j

whenever r0 < r < R1 < R2, so that aj∆
jHR(0) does not depend on R, and hence it is

a constant bj (depending on r0).

Set

gm(t, r) =
m−1∑
j=0

ajt
2j∆jR2m(r)−

m−1∑
j=0

ajr
2j∆jR2m(t).

Remark 2.2. Let u be super-polyharmonic of order m on B and µu = (−∆)mu. By
Lemma 2.1 and integration by parts, we have

M(u, r) =

∫
B(0,r)\B(0,r0)

gm(|y|, r) dµu(y) +O(1)

=

∫ r

r0

gm(t, r)dµu(B(0, t)) +O(1)

=

∫ r

r0

(
− ∂

∂t
gm(t, r)

)
µu(B(0, t)) dt+O(1)

as r → 1− 0.

Lemma 2.3. The following hold:

(1) (−1)mgm(t, r) is positive and decreasing as a function of t in (0, r).
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(2) (−1)m−1 ∂

∂t
gm(t, r) ≥

r1−n

(2m− 2)!ωn

(r − t)2m−2 for 0 < t < r.

Proof. For fixed r > 0, set gm(t) = gm(t, r). We prove this lemma by induction on m.
In case m = 1, we have

g1(t) =

{
α2,1 log(t/r) if n = 2,
αn,1(r

2−n − t2−n) if n ≥ 3,

where α2,1 = ω−1
2 and αn,1 = ω−1

n (n− 2)−1. Hence (1) and (2) hold for m = 1.
Suppose that (1) and (2) hold for m−1 when m ≥ 2. By the assumption on induction

and gm−1(r) = 0, we have

(−1)m−1gm−1(t) ≥
∫ r

t

r1−n

(2m− 4)!ωn

(r − ρ)2m−4 dρ =
r1−n

(2m− 3)!ωn

(r − t)2m−3 (2.1)

for 0 < t < r. Noting that
∆gm(t) = −gm−1(t)

and

∆gm(t) = g′′m(t) +
n− 1

t
g′m(t) = t1−n

(
tn−1g′m(t)

)′
,

we have

(−1)mgm(t) = (−1)m
∫ r

t

s1−n

(∫ r

s

(
ρn−1g′m(ρ)

)′
dρ

)
ds

=

∫ r

t

s1−n

(∫ r

s

ρn−1(−1)m−1gm−1(ρ) dρ

)
ds.

Hence (1) holds.
On the other hand, noting that

(−1)mg′m(t) = −t1−n

∫ r

t

ρn−1(−1)m−1gm−1(ρ) dρ,

we have by (2.1)

(−1)m−1g′m(t) = t1−n

∫ r

t

ρn−1(−1)m−1gm−1(ρ) dρ

≥ t1−n

∫ r

t

ρn−1 r1−n

(2m− 3)!ωn

(r − ρ)2m−3 dρ

≥ r1−n

(2m− 3)!ωn

∫ r

t

(r − ρ)2m−3 dρ

=
r1−n

(2m− 2)!ωn

(r − t)2m−2,

which implies (2). Thus the lemma is obtained.
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3 Proof of Theorem 1.1

First we show assertion (1). By Remark 2.2, we have

M((−1)mu, r) =

∫ r

r0

(
(−1)m−1 ∂

∂t
gm(t, r)

)
µu(B(0, t)) dt+O(1) as r → 1− 0.

For a > 0, we find by Lemma 2.3 (2)

M((−1)mu, r) ≥
∫ r

r−a(1−r)

(
(−1)m−1 ∂

∂t
gm(t, r)

)
µu(B(0, t)) dt+O(1)

≥ µu(B(0, r − a(1− r)))

∫ r

r−a(1−r)

(
(−1)m−1 ∂

∂t
gm(t, r)

)
dt+O(1)

≥ µu(B(0, r − a(1− r)))

∫ r

r−a(1−r)

(
r1−n

(2m− 2)!ωn

(r − t)2m−2

)
dt+O(1)

=
r1−n

(2m− 1)!ωn

a2m−1(1− r)2m−1µu(B(0, r − a(1− r))) +O(1)

when r − a(1− r) > r0, so that

lim sup
r→1−0

(1− r)2m−1h(1− r)−1µu(B(0, r − a(1− r))) ≤ (2m− 1)!ωna
−2m+1A2

by (1.3). By change of variable t = r − a(1− r), we obtain by (1.2)

lim sup
t→1−0

(1− t)2m−1h(1− t)−1µu(B(0, t)) ≤ (2m− 1)!ωna
−2m+1(1 + a)h0+2m−1A2.

Now, since a−2m+1(1+a)h0+2m−1 attains its minimum at a = 2m−1
h0

, we obtain the result.
Next, we show assertion (2). By Remark 2.2 and Lemma 2.3 (2), we have

M((−1)mu, r) ≥ 1

(2m− 2)!ωn

∫ r

r0

(r − t)2m−2µu(B(0, t)) dt+O(1) as r → 1− 0.

If there exist constants A′ > (2m − 2)!ωnh0A2 and r0 > 0 such that µu(B(0, t)) >
A′(1− t)−2m+1h(1− t) for all r0 < t < 1, then

1

(2m− 2)!ωn

h(1− r)−1

∫ r

r0

(r − t)2m−2µu(B(0, t)) dt

>
A′

(2m− 2)!ωn

h(1− r)−1

∫ r

r0

(r − t)2m−2(1− t)−2m+1h(1− t) dt,

which gives by (1.4)

lim inf
r→1−0

h(1− r)−1M((−1)mu, r) ≥ A′

(2m− 2)!ωn

h−1
0 > A2.

Thus a contradiction follows from (1.3).
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4 Corollaries

In this section, we introduce some consequences of Theorem 1.1.

Corollary 4.1. Let u be super-polyharmonic in B and µu = (−∆)mu. Suppose

M((−1)mu, r) ≤
(
log

e

1− r

)γ

for r ∈ (0, 1), where γ > 0 is a positive constant. Then

(i) lim sup
r→1−0

(1− r)2m−1

(
log

e

1− r

)−γ

µu(B(0, r)) ≤ (2m− 1)!ωn; and

(ii) lim inf
r→1−0

(1− r)2m−1

(
log

e

1− r

)−γ

µu(B(0, r)) = 0.

Proof. First, we show statement (i). Let h1 > 0. For all 0 < b < 1, we can find a
constant A′ > 0 such that (

log
e

br

)γ
≤ b−h1

(
log

e

r

)γ
+ A′ (4.1)

whenever r ∈ (0, 1). Applying Theorem 1.1 with A1 = 0, A2 = 1, h(r) = (log(e/r))γ , A =
A′ and h0 = h1, we obtain

lim sup
r→1−0

(1− r)2m−1

(
log

e

1− r

)−γ

µu(B(0, r))

≤ (2m− 2)!ωn

(2m− 1)2m−2

(
1 +

2m− 1

h1

)h1+2m−1

h2m−1
1

≤ (2m− 2)!ωn

(2m− 1)2m−2

(
1 +

2m− 1

h1

)h1

(h1 + 2m− 1)2m−1 ,

which tends to (2m− 1)!ωn as h1 → 0.
Next, we show statement (ii). First note that

lim
r→1−0

(
log

e

1− r

)−γ ∫ r

1/2

(r − t)2m−2(1− t)−2m+1

(
log

e

1− t

)γ

dt = ∞.

Applying Theorem 1.1 with A1 = 0, A2 = 1, h(r) = (log(e/r))γ , A = A′ and h0 = h1, we
have

lim inf
r→1−0

(1− r)2m−1

(
log

e

1− r

)−γ

µu(B(0, r)) ≤ (2m− 2)!ωnh1,

which tends to 0 as h1 → 0.

Corollary 4.2. Let u be super-polyharmonic in B and µu = (−∆)mu. Suppose

M((−1)mu, r) ≤ (1− r)−γ

for r ∈ (0, 1), where γ > 0 is a positive constant. Then
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(i) lim sup
r→1−0

(1−r)γ+2m−1µu(B(0, r)) ≤ (2m− 2)!ωn

(2m− 1)2m−2

(
1 +

2m− 1

γ

)γ+2m−1

γ2m−1; and

(ii) lim inf
r→1−0

(1−r)γ+2m−1µu(B(0, r)) ≤ ωnγm, where γm = (γ+2m−2)(γ+2m−3) · · · γ.

For a proof, apply Theorem 1.1 with h(r) = r−γ.
In the superharmonic case, Corollary 4.2 is reduced to the following.

Corollary 4.3. Let u be superharmonic in B and µu = −∆u. Suppose

M(−u, r) ≤ (1− r)−γ

for r ∈ (0, 1), where γ > 0 is a positive constant. Then

(i) lim sup
r→1−0

(1− r)γ+1µu(B(0, r)) ≤ ωn

(
1 +

1

γ

)γ+1

γ; and

(ii) lim inf
r→1−0

(1− r)γ+2m−1µu(B(0, r)) ≤ ωnγ.

5 Best possibility of Theorem 1.1 for m = 1

Here we discuss the best possibility of ”lim sup” and ”lim inf” in Theorem 1.1 for m = 1.

Example 5.1. For a > 1 and γ > 0, we can find a measure µ satisfying

(i) lim sup
r→1−0

(1− r)γ+1µ(B(0, r)) = 1,

(ii) lim inf
r→1−0

(1− r)γ+1µ(B(0, r)) = a−γ−1 and

(iii) lim sup
r→1−0

(1− r)γ
∫ r

0

µ(B(0, t)) dt = γ−1

[{
(a− 1)

a(aγ − 1)
+ 1

}
γ

1 + γ

]1+γ

.

Set an = 1 − a−n and bn = an(γ+1). Define µ =
∑∞

n=1(bn − bn−1)δxn , where xn =
(an, 0, . . . , 0) ∈ B and b0 = 0.

For an < r ≤ an+1, note that

µ(B(0, r)) = bn

and ∫ r

0

µ(B(0, t)) dt =
n−1∑
j=1

bj(aj+1 − aj) + (r − an)bn

=
n−1∑
j=1

a− 1

a
ajγ + (r − an)bn

= Cn + (r − an)bn,
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where Cn =
(a− 1)

a(aγ − 1)
(anγ − aγ). Hence we have

(1− r)γ
∫ r

0

µ(B(0, t)) dt = {Cn + (1− an)bn}(1− r)γ − bn(1− r)1+γ

which attains the maximum at

−{Cn + (1− an)bn}γ + bn(1 + γ)(1− r) = 0,

or
1− r = {Cn/bn + (1− an)}

γ

1 + γ
.

Here note that an < r ≤ an+1 for sufficient large n since

1 + γ − γa

γa
<

a− 1

a(aγ − 1)
<

1

γ
.

Hence

max
an<r≤an+1

(1− r)γ
∫ r

0

µ(B(0, t)) dt = bnγ
−1

[
{Cn/bn + (1− an)}

γ

1 + γ

]1+γ

for sufficient large n. Since the right hand term in the above equality is increasing on n,
the above equality gives

lim sup
r→1−0

(1− r)γ
∫ r

0

µ(B(0, t)) dt = γ−1

[{
(a− 1)

a(aγ − 1)
+ 1

}
γ

1 + γ

]1+γ

.

Further, we have
lim sup
r→1−0

(1− r)γ+1µ(B(0, r)) = 1

and
lim inf
r→1−0

(1− r)γ+1µ(B(0, r)) = a−γ−1,

as required.

Now, we show the best possibility of Theorem 1.1 for m = 1. Let µ be as in Example
5.1. For 0 < A < 1 and γ > 0, find a > 1 such that{

(a− 1)

a(aγ − 1)
+ 1

}1+γ

= A−1.

If we set ν = ωn

(
1 + 1

γ

)1+γ

γAµ, then

(1′) lim sup
r→1−0

(1− r)γ+1ν(B(0, r)) = ωn

(
1 +

1

γ

)1+γ

γA;
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(2′) lim inf
r→1−0

(1− r)γ+1ν(B(0, r)) = a−γ−1ωn

(
1 +

1

γ

)1+γ

γA; and

(3) lim sup
r→1−0

(1− r)γ
∫ r

0

ν(B(0, t)) dt = ωn.

As a superharmonic function u whose Riesz measure is ν, we may consider the po-
tential

u(x) =

∫
B

K1,L(x, y)dν(y);

see [3] for the definition of K1,L(x, y). With the aid of Remark 2.2, (3) gives

(4) lim sup
r→1−0

(1− r)γM(−u, r) ≤ 1.

By (1′) and (4), if we let A → 1, then we see that (i) of Corollary 4.3 is best possible.

Further, by (2′) and (4), if we let a → 1 (and hence A−1 →
(

1
γ
+ 1
)1+γ

), then we see

that (ii) of Corollary 4.3 is best possible.

References

[1] D. H. Armitage and S. J. Gardiner, Classical Potential Theory, Springer, 2000.

[2] S. Axler, P. Bourdon and W. Ramey, Harmonic function theory, 2nd edition,
Springer, New York, 2001.

[3] T. Futamura, K. Kitaura and Y. Mizuta, Riesz decomposition for superbiharmonic
functions in the unit ball, Hokkaido Math. J. 4 (2009), 683–700.

[4] T. Futamura and Y. Mizuta, Isolated singularities of super-polyharmonic functions,
Hokkaido. Math. J. 33 (2004), no. 3, 1–21.

[5] W. K. Hayman and P. B. Kennedy, Subharmonic functions, Vol. 1, Academic Press,
London, 1976.

[6] Y. Mizuta, Potential theory in Euclidean spaces, Gakkōtosyo, Tokyo, 1996.
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