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Abstract

Our aim in this paper is to deal with Sobolev’s embeddings for Riesz
potentials of order α for functions f satisfying the Orlicz type condition∫

|f(y)|p(y)(log(c + |f(y)|))q(y)dy < ∞,

where p(·) and q(·) are variable exponents satisfying the log-Hölder condi-
tions.
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1 Introduction

The Sobolev space is a useful tool of the study for the existence and regularity
of solutions of partial differential equations. The famous Sobolev inequality says
that the Riesz potential Iαf of order α with f ∈ Lp(Rn) belongs to Lp∗(Rn) when
1 < p < ∞ and 1/p∗ = 1/p − α/n > 0. If f satisfies the Orlicz condition∫

|f(y)|p(log(e + |f(y)|))qdy < ∞,
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then it is known (see e.g. Cianchi [1]) that∫ (
|Iαf(x)|(log(e + |f(y)|))q/p

)p∗

dx < ∞.

When p = 1, the situation is a little different (see O’Neil [13]).
In the present paper, we aim to establish Sobolev’s inequality for Riesz poten-

tials of functions in the Orlicz spaces of variable exponent. In recent years, the
generalized Lebesgue spaces have attracted more and more attention, in connec-
tion with the study of elasticity, fluid mechanics and differential equations with
p(·)-growth; see for example Orlicz [14], Kováčik-Rákosńık [9], Edmunds-Rákosńık

[4] and R
◦
užička [15]. In the limiting case we are also concerned with exponential

integrabilities of Trudinger type and continuity for Riesz potentials.
For 0 < α < n, we define the Riesz potential of order α for a locally integrable

function f on Rn by

Iαf(x) =

∫
Rn

|x − y|α−nf(y)dy.

Here it is natural to assume that∫
Rn

(1 + |y|)α−n|f(y)|dy < ∞ (1.1)

(see [10, Theorem 1.1, Chapter 2]).
In this paper, following Cruz-Uribe and Fiorenza [2], we consider variable ex-

ponents p(·) and q(·) such that

|p(x) − p(y)| ≤ a

log(e + 1/|x − y|)
for all x, y ∈ Rn, (1.2)

|q(x) − q(y)| ≤ b

log(e + log(e + 1/|x − y|))
for all x, y ∈ Rn, (1.3)

1 ≤ p− ≡ inf
x∈Rn

p(x) ≤ sup
x∈Rn

p(x) ≡ p+ < ∞ (1.4)

and
−∞ < q− ≡ inf

x∈Rn
q(x) ≤ sup

x∈Rn

q(x) ≡ q+ < ∞ (1.5)

for a, b > 0. Moreover, suppose there exist ε0 > 0 and C > 0 such that

sp(x)−1(log(e + s))q(x)−ε0 ≤ Ctp(x)−1(log(e + t))q(x)−ε0 (1.6)

whenever 0 < s < t and x ∈ Rn. This is true if

K(p(x) − 1) + q(x) ≥ ε0

for some positive constant K.
Let G be a bounded Borel set in Rn. Let Φ(x, t) be a nonnegative function on

G × R such that
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(1) Φ(·, t) is measurable for each t.

(2) Φ(x, ·) is continuous and convex for each fixed x ∈ G.

Define the norm by

‖f‖Φ(·,·)(G) = inf

{
λ > 0 :

∫
G

Φ (x, |f(x)/λ|) dx ≤ 1

}
and denote by Φ(·, ·)(G) the space of all measurable functions f on G with ‖f‖Φ(·,·)(G) <
∞.

If p(x) < n/α, then we set

1/p∗(x) = 1/p(x) − α/n.

Define

Φ(x, t) = tp(x)(log(c + t))q(x),

Ψ(x, t) =
{
t(log(c + t))q(x)/p(x)

}p∗(x)

and

Ψ̃(x, t) =
{
t(log(c + t))q(x)/p(x)−p(x)/p∗(x)

}p∗(x)
,

where c ≥ e is chosen so that Φ(x, ·), Ψ(x, ·) Ψ̃(x, ·) are all convex on [0,∞).
For 0 < δ < n/α, divide G into four sets:

G1 = {x ∈ G : 1 ≤ p(x) < 1 + δ} ,

G2 = {x ∈ G : 1 + δ ≤ p(x) < n/α} ,

G3 = {x ∈ G : p(x) ≥ n/α and q(x) < p(x) − 1} ,

G4 = {x ∈ G : p(x) ≥ n/α and q(x) ≥ p(x) − 1} .

Denote by χE the characteristic function of a measurable set E.
Our main result is the following, which is an extension of Futamura-Mizuta [5],

Futamura-Mizuta-Shimomura [6] and Harjulehto-Hästö [7].

Theorem 1.1. Let p(·) and q(·) be as above. Then there exist constants c1, c2, c3, c4 >
0 such that∫

G

{
Ψ̃(x, Iαf1(x))χG1(x) + Ψ(x, c−1

1 γ1(x)−1Iαf2(x))χG2(x)

+ exp

(
Iαf3(x)p(x)/(p(x)−q(x)−1)

(c2γ3(x))p(x)/(p(x)−q(x)−1)

)
χG3(x)

+ exp

(
exp

(
Iαf4(x)p(x)/(p(x)−1)

c
p(x)/(p(x)−1)
3

))
χG4(x)

}
dx ≤ c4
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for all nonnegative measurable functions f on G with ‖f‖Φ(·,·)(G) ≤ 1, where fj =
fχGj

(j = 1, 2, 3, 4),

γ1(x) = p∗(x)(q(x)+p(x)−1)/p(x)(log p∗(x))q(x)/p(x)

and

γ3(x) = γ2(x)−(p(x)−1)/p(x)(log(1/γ2(x)))q(x)/p(x)

with γ2(x) = min{p(x) − q(x) − 1, 1/2}.

The proof is given by discussing the cases (i) 1 ≤ p(x) ≤ p+ < n/α (Section 2),
(ii) 1 < p− ≤ p(x) < n/α (Section 3), (iii) p− ≥ n/α, q(x) < p(x) − 1 (Section 4)
and (iv) p− ≥ n/α, q(x) ≥ p(x) − 1 (Section 5), separately.

In their paper[7], Harjulehto-Hästö gave an integrability result of Sobolev func-
tions by diving the domain of integration into countably many measurable sets.

With the aid of O’Neil [13], one sees that if f ∈ L1(G), then∫
G

|Iαf(x)|p∗(log(e + |Iαf(x)|))−βdx < ∞

when β > 1; this is not true when β = 1. Theorem 1.1 extends his result to
the valuable exponent case. In case p > 1, the maximal function is a crucial tool
by Hedberg’s trick (see Hedberg [8]). In case p− = 1, our strategy is to give an
estimate of Iαf by use of a logarithmic type potential∫

{y∈G:|x−y|−ε<f(y)}

(log(c + |x − y|−1))ε−1|x − y|−n(log(c + f(y)))−εg(y) dy,

which plays a role of maximal functions, where g(y) = Φ(y, f(y)). Thus our proof
is quite different from that of O’Neil [13].

In section 7, we are concerned with continuity of Riesz potentials when p(x) ≥
n/α and q(x) > p(x) − 1 for x ∈ Rn.

We define the logarithmic potential for a locally integrable function f on Rn

by

Inf(x) =

∫
Rn

(
log+(1/|x − y|)

)
f(y)dy,

where log+ r = max{0, log r}. Here it is natural to assume that∫
Rn

(log(e + |y|))|f(y)|dy < ∞ (1.7)

(see [10, Theorem 1.1, Chapter 2]).

Finally, in Section 8, we show the exponential integrability of logarithmic po-
tentials Inf .
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2 Variable exponents near 1

Throughout this paper, let C denote various positive constants independent of the
variables in question and C(a, b, · · · ) be a constant that depends on a, b, · · · .

Let us begin with Sobolev’s inequality for Riesz potentials of functions in
Φ(·, ·)(G) when 1 ≤ p(x) ≤ p+ < n/α, which gives an extension of O’Neil [13].

Theorem 2.1. Let p(·) and q(·) be as in the Introduction. Suppose

1 ≤ p(x) ≤ p+ < n/α

for x ∈ Rn. Then there exists a constant c1 > 0 such that

‖Iαf‖
eΨ(·,·)(G) ≤ c1‖f‖Φ(·,·)(G)

for all f ∈ Φ(·, ·)(G).

When p(x) = p = 1 and q(x) = ε0 > 0 for x ∈ Rn, Theorem 2.1 says that(∫
G

|Iαf(x)|p∗(log(e + |Iαf(x)|))ε0p∗−1dx

)1/p∗

≤ C

for all measurable functions f satisfying∫
G

|f(y)|(log(e + |f(y)|))ε0dy ≤ 1,

which is a consequence of O’Neil [13].
The case p− > 1 is treated in the next section, by use of maximal functions.

However the maximal operator fails to be bounded in Lp(·)(G) when p− = 1. To
show Theorem 2.1, we introduce the logarithmic type potential

J ≡
∫
{y∈G:|x−y|−ε<f(y)}

ρε−1(|x − y|)(log(c + f(y)))−εg(y) dy,

which plays a role of maximal functions; here g(y) = Φ(y, |f(y)|) and ρε−1(r) =
r−n(log(c + 1/r))ε−1 for 0 < ε < ε0/2 with ε0 in (1.6).

We use the notation B(x, r) to denote the open ball centered at x ∈ Rn of
radius r > 0.

Lemma 2.2. Let p(·) and q(·) be as in Theorem 2.1. Let f be a nonnegative
measurable function on G with ‖f‖Φ(·,·)(G) ≤ 1. If

δ = J−1/n(log(c + J))−p(x)/n,

then

I ≡
∫
{y∈G∩B(x,δ):|x−y|−ε<f(y)}

|x − y|α−n(log(c + 1/|x − y|))−ε(log(c + f(y)))εf(y) dy

≤ C{J1/p∗(x)(log(c + J))p(x)/p∗(x)−q(x)/p(x) + 1}.
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Proof. Let f be a nonnegative measurable function on G with ‖f‖Φ(·,·)(G) ≤ 1.
First consider the case when J ≥ 1. We have by (1.6) for k > 0

I ≤ k(log(c + k))ε

∫
{y∈G∩B(x,δ):|x−y|−ε<f(y)}

|x − y|α−n(log(c + 1/|x − y|))−εdy

+

∫
{y∈B(x,δ):|x−y|−ε<f(y)}

|x − y|α−n(log(c + 1/|x − y|))−ε(log(c + f(y)))εf(y)

× C

(
f(y)

k

)p(y)−1 (
log(c + f(y))

log(c + k)

)q(y)−2ε

dy

≤ C

{
k(log(c + k))εδα(log(c + 1/δ))−ε

+ δα(log(c + 1/δ))1−2ε

∫
{y∈B(x,δ):|x−y|−ε<f(y)}

ρε−1(|x − y|)(log(c + f(y)))−εg(y)

×
(

1

k

)p(y)−1 (
1

log(c + k)

)q(y)−2ε

dy

}
.

Set

k = J1/p(x)(log(c + J))−q(x)/p(x).

Since
log J

log(1/δ)
=

log J

log(J1/n(log(c + J))p(x)/n)
≤ C,

we see that if y ∈ B(x, δ), then

J−p(y) = J−p(y)+p(x)J−p(x) ≤ Ja/ log(1/δ)J−p(x) ≤ CJ−p(x)

and similarly

(log(c + J))p(y) ≤ (log(c + J))a/ log(1/δ)(log(c + J))p(x) ≤ C(log(c + J))p(x),

so that

k−p(y) ≤ CJ−1(log(c + J))q(x)

and

(log(c + k))−q(y) ≤ C(log(c + J))−q(x).

Consequently it follows that

I ≤ C
{
J1/p(x)(log(c + J))−q(x)/p(x)(log(c + J))εδα(log(c + 1/δ))−ε

+ δα(log(c + 1/δ))1−2εJ1/p(x)(log(c + J))−q(x)/p(x)+2ε
}

≤ CJ1/p(x)−α/n(log(c + J))−q(x)/p(x)−αp(x)/n+1.

In the case J ≤ 1, we set k = 1. The above considerations gives I ≤ C. Now the
result follows.
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Lemma 2.3. Let p(·) and q(·) be as in Theorem 2.1. Suppose p+ < n/α. Let f be
a nonnegative measurable function on G with ‖f‖Φ(·,·)(G) ≤ 1. Then∫

G\B(x,δ)

|x − y|α−nf(y)dy ≤ Cδα−n/p(x)(log(c + 1/δ))−q(x)/p(x)

for all x ∈ G and δ > 0.

Proof. Let f be a nonnegative measurable function on G with ‖f‖Φ(·,·)(G) ≤ 1. For
y ∈ G \ B(x, δ), set

N(x, y) = |x − y|−n/p(x)(log(c + |x − y|−1))−q(x)/p(x).

By conditions (1.2), (1.3) and (1.6), we see that∫
G\B(x,δ)

|x − y|α−nf(y)dy

≤
∫

G\B(x,δ)

|x − y|α−nN(x, y)dy

+ C

∫
G\B(x,δ)

|x − y|α−nf(y)

(
f(y)

N(x, y)

)p(y)−1 (
log(c + f(y))

log(c + N(x, y))

)q(y)

dy

≤ C

{
δα−n/p(x)(log(c + 1/δ))−q(x)/p(x)

+

∫
G\B(x,δ)

|x − y|α−n/p(x)(log(c + 1/|x − y|))−q(x)/p(x)g(y)dy

}
≤ Cδα−n/p(x)(log(c + 1/δ))−q(x)/p(x)

(
1 +

∫
G\B(x,δ)

g(y)dy

)
≤ Cδα−n/p(x)(log(c + 1/δ))−q(x)/p(x),

where g(y) = f(y)p(y)(log(c + f(y)))q(y), as required.

We denote by |E| the volume of E.

Proof of Theorem 2.1. Let f be a nonnegative measurable function on G with
‖f‖Φ(·,·)(G) ≤ 1. For

δ = J−1/n(log(c + J))−p(x)/n,

write

Iαf(x) =

∫
G∩B(x,δ)

|x − y|α−nf(y)dy +

∫
G\B(x,δ)

|x − y|α−nf(y)dy

= I1 + I2.

For 0 < ε < min{ε0/2, α}, set

J =

∫
{y∈G:|x−y|−ε<f(y)}

ρε−1(|x − y|)(log(c + f(y)))−εg(y) dy.
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In view of Lemma 2.2, we find

I1 ≤
∫

G∩B(x,δ)

|x − y|α−n−εdy

+

∫
{y∈B(x,δ):|x−y|−ε<f(y)}

|x − y|α−n (log(c + f(y)))ε

(log(c + |x − y|−ε))ε
f(y)dy

≤ C
{
1 + J1/p∗(x)(log(c + J))p(x)/p∗(x)−q(x)/p(x)

}
.

Moreover, Lemma 2.3 yields

I2 ≤ Cδα−n/p(x)(log(c + 1/δ))−q(x)/p(x),

so that

Iαf(x) ≤ C
{
1 + J1/p∗(x)(log(c + J))p(x)/p∗(x)−q(x)/p(x)

+δα−n/p(x)(log(c + 1/δ))−q(x)/p(x)
}

≤ C
{
1 + J1/p∗(x)(log(c + J))p(x)/p∗(x)−q(x)/p(x)

}
.

Hence we have ∫
G

Ψ̃(x, Iαf(x)) dx ≤ C

∫
G

(1 + J)dx.

By using Fubini’s theorem, we obtain∫
G

Ψ̃(x, Iαf(x)) dx

≤ C

{∫
G

(∫
{y∈G:|x−y|−ε<f(y)}

ρε−1(|x − y|)dx

)
(log(c + f(y)))−εg(y)dy + |G|

}
≤ C

{∫
G

g(y)dy + |G|
}

≤ C,

which completes the proof.

Remark 2.4. Let p(x) = p = 1 and

q(x) =
1

log(log(e + |x|−1))

for x ∈ B = B(0, 1). Here, note that q(·) satisfies the condition (1.3) since

1

log(log(1/t))
− 1

log(log(1/s))

=

∫ t−s

0

(log(log(1/(r + s))))−2(log(1/(r + s)))−1 dr

r + s

≤ C

∫ t−s

0

(log(log(1/r)))−2(log(1/r))−1dr

r

=
C

log(log(1/(t − s)))
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whenever 0 < s < t < 1/e. Set p∗ = n/(n − α). Then one can find f ∈ Φ(·, ·)(B)
such that ∫

B

|Iαf(x)|p∗(log(c + |Iαf(x)|))p∗q(x)−1 dx = ∞.

To show this, for 0 < γ < 1/p∗, let f be a nonnegative function on B such that

f(y) = |y|−n(log(c + 1/|y|))−1(log(c + log(c + 1/|y|)))−γ−1.

Then we have ∫
B

f(y)(log(c + f(y)))q(y) dy < ∞

and for x ∈ B

Iαf(x) ≥
∫

B(0,|x|/2)

|x − y|α−nf(y) dy

≥ C|x|α−n

∫
B(0,|x|/2)

|y|−n(log(c + 1/|y|))−1

×(log(c + log(c + 1/|y|)))−γ−1 dy

≥ C|x|α−n(log(c + log(c + 1/|x|)))−γ.

Hence it follows that∫
B

|Iαf(x)|p∗(log(c + |Iαf(x)|))p∗q(x)−1 dx

≥ C

∫
B

|x|−n(log(c + 1/|x|))−1(log(c + log(c + 1/|x|)))−γp∗ dx = ∞

when γ < 1/p∗.

3 Variable exponents near Sobolev’s exponent

Set
Ψ(x, t) =

{
t(log(c + t))q(x)/p(x)

}p∗(x)

and denote by Ψ(·, ·)(G) the family of all measurable functions f on G such that

‖f‖Ψ(·,·)(G) = inf

{
λ > 0 :

∫
G

Ψ (x, |f(x)/λ|) dx ≤ 1

}
< ∞.

Theorem 3.1. Let p(·) and q(·) be two variable exponents on Rn satisfying (1.2)−
(1.5) such that

1 < p− ≤ p(x) < n/α

for x ∈ G. Then there exists a constant c1 > 0 such that

‖γ1(·)−1Iαf‖Ψ(·,·)(G) ≤ c1‖f‖Φ(·,·)(G)

for all f ∈ Φ(·, ·)(G), where

γ1(x) = p∗(x)(q(x)+p(x)−1)/p(x)(log p∗(x))q(x)/p(x).
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The case supx∈G p(x) < n/α was shown in the authors [11, Theorem 2.8].

Remark 3.2. For 0 < δ < 1, we can find f ∈ Φ(·, ·)(G) such that∫
G

Ψ(x, γ1(·)−δIαf(x))dx = ∞

with q(x) = 0, so that the weight γ1(·)−1 in Theorem 3.1 is needed.
For this, consider

p(x) =
n

α
− 1

log(1/|x|)
for x ∈ B0 = B(0, 1/e) and

f(y) = |y|−α(log(1/|y|))−β

for y ∈ B0. If α/n < β < 1, then∫
B0

f(y)p(y)dy < ∞.

If x ∈ B0, then

Iαf(x) ≥
∫
{y∈B0:|y|≥|x|/2}

|x − y|α−nf(y)dy

≥ C

∫
{y∈B0:|y|≥|x|/2}

|y|−n(log(1/|y|))−βdy ≥ C(log(1/|x|))−β+1

when β < 1. Now take β such that α/n < β < 1 and

−δ(1 − α/n) − β + 1 > 0.

Since p∗(x) = (n/α)2 log(1/|x|) − n/α, there exists a constant c0 > 0 such that
γ1(x) ≤ C(log(1/|x|))1−α/n and p∗(x) > c0 log(1/|x|) for x ∈ B0. Hence we find∫

B0

Ψ(x, γ1(·)−δIαf(x))dx ≥ C

∫
B0

(log(1/|x|))p∗(x)(−δ(1−α/n)−β+1)dx

≥ C

∫
B0

(log(1/|x|))c0(−δ(1−α/n)−β+1) log(1/|x|)dx = ∞.

For a proof of Theorem 3.1, we prepare several results.

Lemma 3.3. Suppose 0 < a ≤ R0 and 0 ≤ b ≤ R0. Then there exists a constant
C(R0) > 0 such that∫ 1/2

δ

t−a(log(1/t))−b dt

t
≤ C(R0)a

−b−1δ−a(log(1/δ))−b

for all 0 < δ < 1/2.
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Proof. Note that ua(s) = s−a(log(1/s))−b attains a minimum value of ebb−bab at
s = e−b/a for 0 < s < 1. If 1/2 ≤ e−b/a, then ua is decreasing on (0, 1/2]. Hence

ua(t) ≤ ua(δ) for 0 < δ ≤ t < 1/2.

If e−b/a < 1/2, then ua is decreasing on (0, e−b/a] and increasing on [e−b/a, 1/2].
Hence, in the case e−b/a ≤ δ we have

ua(t) ≤
ua(1/2)

ua(e−b/a)
ua(δ) =

2a(log 2)−b

ebb−bab
ua(δ) for 0 < δ ≤ t < 1/2,

and, in the case 0 < δ < e−b/a we have

ua(t) ≤ ua(δ) for 0 < δ ≤ t < e−b/a,

ua(t) ≤
2a(log 2)−b

ebb−bab
ua(δ) for e−b/a ≤ t < 1/2.

Therefore, we obtain

ua(t) ≤ C(R0)a
−bua(δ) for 0 < δ ≤ t < 1/2, (3.1)

so that ∫ 1/2

δ

t−a(log(1/t))−b dt

t
≤ C(R0)(a/2)−bua/2(δ)

∫ 1/2

δ

t−a/2dt

t

≤ C(R0)2
b+1a−b−1δ−a(log(1/δ))−b

for all 0 < δ < 1/2, as required.

Lemma 3.4. Let p(·) and q(·) be as in Theorem 3.1. Let f be a nonnegative
measurable function on G with ‖f‖Φ(·,·)(G) ≤ 1. Then∫

G\B(x,δ)

|x − y|α−nf(y)dy ≤ Cγ1(x)δα−n/p(x)(log(1/δ))−q(x)/p(x)

for all x ∈ G and 0 < δ < 1/2.

Proof. Let f be a nonnegative measurable function on G with ‖f‖Φ(·,·)(G) ≤ 1.
First note that∫

G\B(x,p∗(x)−1/n)

|x − y|α−nf(y)dy ≤ p∗(x)1−α/n

∫
G

f(y)dy

≤ p∗(x)1−α/n

∫
G

{1 + g(y)}dy

≤ Cp∗(x)1−α/n

≤ Cp∗(x)1−1/p(x)

≤ Cγ1(x)
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since p∗(x)1/p∗(x) ≤ C, where g(y) = f(y)p(y)(log(c + f(y)))q(y) as before.
Setting η(x) = p∗(x)−1/p(x)(log p∗(x))q(x)/p(x) and N(x, y) = |x−y|−n/p(x)(log(1/|x−

y|))−q(x)/p(x), we have∫
B(x,p∗(x)−1/n)\B(x,δ)

|x − y|α−nf(y)dy

≤
∫

B(x,p∗(x)−1/n)\B(x,δ)

|x − y|α−n{η(x)N(x, y)}dy

+

∫
B(x,p∗(x)−1/n)\B(x,δ)

|x − y|α−nf(y)

×C

(
f(y)

η(x)N(x, y)

)p(y)−1 (
log(c + f(y))

log(c + η(x)N(x, y))

)q(y)

dy.

Here note that for y ∈ B(x, p∗(x)−1/n)

{η(x)N(x, y)}−p(y) ≤ Cη(x)−p(x)|x − y|n(log(1/|x − y|))q(x)

since
p∗(x)p(y) ≤ p∗(x)a/(log p∗(x)1/n)p∗(x)p(x) ≤ Cp∗(x)p(x)

and
η(x)−p(y) ≤ Cη(x)−p(x).

Further, noting that

log(c + st) ≤ C log(c + s) log(c + t) when s, t > 0, (3.2)

we obtain

{log(c + η(x)N(x, y))}−q(y) ≤ C(log p∗(x))q(y)(log(1/|x − y|))−q(y)

≤ C(log p∗(x))q(x)(log(1/|x − y|))−q(x)

for y ∈ B(x, p∗(x)−1/n). It follows from Lemma 3.3 and (3.1) that∫
B(x,p∗(x)−1/n)\B(x,δ)

|x − y|α−nf(y)dy

≤ C

{
η(x)(n/p(x) − α)−q(x)/p(x)−1δα−n/p(x)(log(1/δ))−q(x)/p(x)

+ η(x)1−p(x)(log p∗(x))q(x)

×
∫

B(x,p∗(x)−1/n)\B(x,δ)

|x − y|α−n/p(x)(log(1/|x − y|))−q(x)/p(x)g(y)dy

}
≤ C

{
γ1(x)δα−n/p(x)(log(1/δ))−q(x)/p(x) + η(x)1−p(x)(log p∗(x))q(x)

× (n/p(x) − α)−q(x)/p(x)δα−n/p(x)(log(1/δ))−q(x)/p(x)

∫
B(x,p∗(x)−1/n)\B(x,δ)

g(y)dy

}
≤ Cγ1(x)δα−n/p(x)(log(1/δ))−q(x)/p(x)

(
1 +

∫
B(x,p∗(x)−1/n)\B(x,δ)

g(y)dy

)
≤ Cγ1(x)δα−n/p(x)(log(1/δ))−q(x)/p(x),
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which proves the lemma.

For a locally integrable function f on G, we set

fB =
1

|B|

∫
B∩G

f(y) dy.

We consider the maximal function Mf defined by

Mf(x) = sup
B

|f |B,

where the supremum is taken over all balls B = B(x, r). Diening [3] was the first
who proved the local boundedness of maximal functions in the Lebesgue spaces of
variable exponents satisfying the log-Hölder condition. In our case, we need the
following result (see also D. Cruz-Uribe and A. Fiorenza [2]) :

Proposition 3.5 ([11, Theorem 2.7]). Let p(·) and q(·) be two variable exponents
on Rn satisfying (1.2) − (1.5) such that

p− > 1.

Let f be a nonnegative measurable function on G with ‖f‖Φ(·,·)(G) ≤ 1. Then∫
G

Φ(x,Mf(x))dx ≤ C.

Proof of Theorem 3.1. Let f be a nonnegative measurable function on G with
‖f‖Φ(·,·)(G) ≤ 1. Write

f = fχ{y∈G:f(y)<1} + fχ{y∈G:f(y)≥1} = f1 + f2.

Then Iαf1(x) ≤ C.
We have by Lemma 3.4

Iαf(x) =

∫
B(x,δ)

|x − y|α−nf(y)dy +

∫
G\B(x,δ)

|x − y|α−nf(y)dy

≤ C
{
δαMf(x) + γ1(x)δα−n/p(x)(log(1/δ))−q(x)/p(x)

}
for 0 < δ < 1/2. Here, considering

δ = C(γ1(x)−1Mf(x))−p(x)/n(log(γ1(x)−1Mf(x)))−q(x)/n

when γ1(x)−1Mf(x) ≥ 1, we find

Iαf(x) ≤ Cγ1(x)αp(x)/nMf(x)1−αp(x)/n(log(c + γ1(x)−1Mf(x)))−αq(x)/n.

If γ1(x)−1Mf(x) < 1, then

Iαf(x) ≤ C
{
Mf(x) + γ1(x)

}
≤ Cγ1(x).
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Hence it follows that

γ1(x)−1Iαf(x) ≤ C
{
(γ1(x)−1Mf(x))1−αp(x)/n(log(c + γ1(x)−1Mf(x)))−αq(x)/n + 1

}
≤ C

{
Mf(x)p(x)/p∗(x)(log(c + Mf(x)))−αq(x)/n + 1

}
since γ1(x)−1/p∗(x) ≤ C, so that{

c−1
1 γ1(x)−1Iαf(x)(log(c + γ1(x)−1Iαf(x)))q(x)/p(x)

}p∗(x) ≤ C {Φ(x,Mf(x)) + 1} .

By Proposition 3.5, we have∫
G

Ψ(x, c−1
1 γ1(x)−1Iαf(x))dx ≤ C

∫
G

{Φ(x,Mf(x)) + 1} dx ≤ C,

which completes the proof.

4 Trudinger’s exponential integrability

This section is concerned with the exponential integrability of Trudinger’s type.

Theorem 4.1. Let p(·) and q(·) be two variable exponents on Rn satisfying (1.2)−
(1.5) such that

p(x) ≥ n/α and q(x) < p(x) − 1

for x ∈ G. Then there exist constants c1, c2 > 0 such that∫
G

exp

(
Iαf(x)p(x)/(p(x)−q(x)−1)

(c1γ3(x))p(x)/(p(x)−q(x)−1)

)
dx ≤ c2

for all nonnegative measurable functions f on G with ‖f‖Φ(·,·)(G) ≤ 1, where

γ3(x) = γ2(x)−(p(x)−1)/p(x)(log(1/γ2(x)))q(x)/p(x)

with γ2(x) = min{p(x) − q(x) − 1, 1/2}.

Corollary 4.2. Let p(·) and q(·) be as in Theorem 4.1. Then there exists a
constant c3 > 0 such that∫

G

{
exp

(
Iαf(x)p(x)/(p(x)−q(x)−1)

(c3γ3(x))p(x)/(p(x)−q(x)−1)

)
− 1

}
dx ≤ 1

for all nonnegative measurable functions f on G with ‖f‖Φ(·,·)(G) ≤ 1.

Remark 4.3. For 0 < δ < 1, we can find f ∈ Φ(·, ·)(G) such that∫
B0

exp((γ3(x)−δIαf(x))p(x)/(p(x)−q(x)−1))dx = ∞.
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For this, consider

p(x) =
n

α
+

1

log(1/|x|)
for x ∈ B0 = B(0, 1/4) and

f(y) = |y|−α(log(1/|y|))−1(log log(1/|y|))−β

for y ∈ B0. If q(x) = p(x) − 1 − 1/ log log(1/|x|) and β > α/n, then∫
B0

f(y)p(y)(log f(y))q(y)dy < ∞.

If x ∈ B0, then, as in Remark 3.2, we find

Iαf(x) ≥ C(log log(1/|x|))−β+1

when β < 1. Now take β and ε > 0 such that α/n < β < 1 and

−δ(1 − α/n + ε) − β + 1 > 0.

Since

γ3(x) ≤ C(log log(1/|x|))1−α/n(log log log(1/|x|))(n−α)/n ≤ C(log log(1/|x|))1−α/n+ε

and
p(x)/(p(x) − q(x) − 1) > (n/α) log log(1/|x|),

we have ∫
B0

exp((γ3(x)−δIαf(x))p(x)/(p(x)−q(x)−1))dx

≥
∫

B0

exp((C log log(1/|x|))(−δ(1−α/n+ε)−β+1)(n/α) log log(1/|x|))dx = ∞.

Before proving Theorem 4.1, we prepare the following result.

Lemma 4.4. Let p(·) and q(·) be as in Theorem 4.1. Let f be a nonnegative
measurable function on G with ‖f‖Φ(·,·)(G) ≤ 1. Then∫

G\B(x,δ)

|x − y|α−nf(y)dy ≤ Cγ3(x) (log(1/δ))(p(x)−q(x)−1)/p(x)

for all x ∈ G and 0 < δ < 1/2.

Proof. Let f be a nonnegative measurable function on G with ‖f‖Φ(·,·)(G) ≤ 1.
First note that∫

G\B(x,γ2(x)1/n)

|x − y|α−nf(y)dy ≤ Cγ2(x)(α−n)/n ≤ Cγ2(x)−1+1/p(x).
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Setting η(x) = γ2(x)1/p(x)(log(1/γ2))
q(x)/p(x) and N(x, y) = |x−y|−n/p(x)(log(1/|x−

y|))−(q(x)+1)/p(x), we have∫
B(x,γ2(x)1/n)\B(x,δ)

|x − y|α−nf(y)dy

≤
∫

B(x,γ2(x)1/n)\B(x,δ)

|x − y|α−n{η(x)N(x, y)}dy

+

∫
B(x,γ2(x)1/n)\B(x,δ)

|x − y|α−nf(y)

×C

(
f(y)

η(x)N(x, y)

)p(y)−1 (
log(c + f(y))

log(c + η(x)N(x, y))

)q(y)

dy.

If y ∈ B(x, γ2(x)1/n), then γ2(x)−p(y) ≤ Cγ2(x)−p(x) , so that

η(x)−p(y) ≤ Cη(x)−p(x).

Hence

{η(x)N(x, y)}−p(y) ≤ Cη(x)−p(x)|x − y|n(log(1/|x − y|))q(x)+1

and by inequality (3.2)

{log(c + η(x)N(x, y))}−q(y) ≤ C(log(1/γ2(x)))q(x)(log(1/|x − y|))−q(x)

for y ∈ B(x, γ2(x)1/n). Consequently it follows from Lemma 3.3 that∫
B(x,γ2(x)1/n)\B(x,δ)

|x − y|α−nf(y)dy

≤ C

{
η(x)γ2(x)−1(log(1/δ))(p(x)−q(x)−1)/p(x) + η(x)−p(x)+1(log(1/γ2(x)))q(x)

×
∫

B(x,γ2(x)1/n)\B(x,δ)

|x − y|α−n/p(x)(log(1/|x − y|))(p(x)−q(x)−1)/p(x)g(y)dy

}
≤ Cγ3(x)(log(1/δ))(p(x)−q(x)−1)/p(x)

(
1 +

∫
B(x,γ2(x)1/n)\B(x,δ)

g(y)dy

)
≤ Cγ3(x)(log(1/δ))(p(x)−q(x)−1)/p(x),

where g(y) = f(y)p(y)(log(c + f(y)))q(y) as before.
Thus we have proved that∫

G\B(x,δ)

|x − y|α−nf(y)dy ≤ C
{
γ2(x)−1+1/p(x) + γ3(x)(log(1/δ))(p(x)−q(x)−1)/p(x)

}
≤ Cγ3(x)(log(1/δ))(p(x)−q(x)−1)/p(x)

for 0 < δ < 1/2, which gives the lemma.
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Proof of Theorem 4.1. Let f be a nonnegative measurable function on G with
‖f‖Φ(·,·)(G) ≤ 1. Then Lemma 4.4 gives

Iαf(x) ≤ C
{
δαMf(x) + γ3(x)(log(1/δ))(p(x)−q(x)−1)/p(x)

}
for 0 < δ < 1/2. Here, considering

δ = C(γ3(x)−1Mf(x))−1/α(log(γ3(x)−1Mf(x)))(p(x)−q(x)−1)/(αp(x))

when γ3(x)−1Mf(x) ≥ 1, we find

Iαf(x) ≤ C
{
γ3(x)(log(c + γ3(x)−1Mf(x)))(p(x)−q(x)−1)/p(x) + γ3(x)

}
≤ Cγ3(x)(log(c + Mf(x)))(p(x)−q(x)−1)/p(x).

Hence it follows that

c−1
1 γ3(x)−1Iαf(x) ≤ (log(c + Mf(x)))(p(x)−q(x)−1)/p(x),

so that

exp

(
Iαf(x)p(x)/(p(x)−q(x)−1)

(c1γ3(x))p(x)/(p(x)−q(x)−1)

)
≤ c + Mf(x) ≤ C{Φ(x,Mf(x)) + 1}.

By Proposition 3.5, we have∫
G

exp

(
Iαf(x)p(x)/(p(x)−q(x)−1)

(c1γ3(x))p(x)/(p(x)−q(x)−1)

)
dx ≤ C

(∫
G

Φ(x, Mf(x))dx + 1

)
≤ C,

as required.

5 Trudinger’s double exponential integrability

This section is devoted to the study of the double exponential integrability.

Theorem 5.1. Let p(·) and q(·) be two variable exponents on Rn satisfying (1.2)−
(1.5) such that

p(x) ≥ n/α and q(x) ≥ p(x) − 1

for x ∈ Rn. Then there exist constants c1, c2 > 0 such that∫
G

exp

(
exp

(
Iαf(x)p(x)/(p(x)−1)

c
p(x)/(p(x)−1)
1

))
dx ≤ c2

for all nonnegative measurable functions f on G with ‖f‖Φ(·,·)(G) ≤ 1.
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Lemma 5.2. Let p(·) and q(·) be as in Theorem 5.1 and let f be a nonnegative
measurable function on G with ‖f‖Φ(·,·)(G) ≤ 1. Then∫

G\B(x,δ)

|x − y|α−nf(y)dy ≤ C (log(log(1/δ)))(p(x)−1)/p(x)

for all x ∈ G and 0 < δ < 1/2.

Proof. Let f be a nonnegative measurable function on G with ‖f‖Φ(·,·)(G) ≤ 1.
First note that ∫

G\B(x,1/4)

|x − y|α−nf(y)dy ≤ C.

Next, setting N(x, y) = |x−y|−n/p(x)(log(1/|x−y|))−1(log(log(1/|x−y|)))−1/p(x),
we have∫

B(x,1/4)\B(x,δ)

|x − y|α−nf(y)dy

≤
∫

B(x,1/4)\B(x,δ)

|x − y|α−nN(x, y)dy

+

∫
B(x,1/4)\B(x,δ)

|x − y|α−nf(y)

(
f(y)

N(x, y)

)p(y)−1 (
log(c + f(y))

log(c + N(x, y))

)q(y)

dy

≤ C

{
(log(log(1/δ)))(p(x)−1)/p(x) +

∫
B(x,1/4)\B(x,δ)

|x − y|α−n/p(x)

× (log(1/|x − y|))p(x)−q(x)−1(log(log(1/|x − y|)))(p(x)−1)/p(x)g(y)dy

}
≤ C(log(log(1/δ)))(p(x)−1)/p(x),

where g(y) = f(y)p(y)(log(c + f(y)))q(y), as required.

Proof of Theorem 5.1. Let f be a nonnegative measurable function on G with
‖f‖Φ(·,·)(G) ≤ 1. Then Lemma 5.2 gives

Iαf(x) ≤ CδαMf(x) + C(log(log(1/δ)))(p(x)−1)/p(x)

for 0 < δ < 1/4. Here, considering

δ = CMf(x)−1/α(log(log(Mf(x))))(p(x)−1)/(αp(x))

when Mf(x) ≥ e2, we find

Iαf(x) ≤ C(log(c + log(c + Mf(x))))(p(x)−1)/p(x).

Hence it follows that

c−1
1 Iαf(x) ≤ (log(log(c + Mf(x))))(p(x)−1)/p(x),
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so that

exp

(
exp

(
Iαf(x)p(x)/(p(x)−1)

c
p(x)/(p(x)−1)
1

))
≤ C{Φ(x,Mf(x)) + 1}.

Now Proposition 3.5 yields∫
G

exp

(
exp

(
Iαf(x)p(x)/(p(x)−1)

c
p(x)/(p(x)−1)
1

))
dx ≤ C

(∫
G

Φ(x,Mf(x))dx + 1

)
≤ c2,

as required.

6 Proof of Theorem 1.1

Let f be a nonnegative measurable functions on G with ‖f‖Φ(·,·)(G) ≤ 1. Let
p1(x) = min{p(x), 1 + δ} for 0 < δ < n/α. Then Theorem 2.1 yields∫

G1

Ψ̃(x, Iαf1(x))dx ≤ C.

Letting p2(x) = max{p(x), 1 + δ}, we see by Theorem 3.1 that∫
G2

Ψ(x, c−1
1 γ1(x)−1Iαf2(x))dx ≤ C,

where c1 > 0 is in Theorem 3.1. Hence, in view of Theorems 4.1 and 5.1, Theorem
1.1 is proved.

7 Continuity of Riesz potentials

In this section we are concerned with continuity properties of Riesz potentials.

Theorem 7.1. Let p(·) and q(·) be two variable exponents on Rn satisfying (1.2)−
(1.5) such that

p(x) ≥ n/α and q(x) > p(x) − 1

for x ∈ Rn. If f is a nonnegative measurable function on G with ‖f‖Φ(·,·)(G) ≤ 1,
then Iαf(x) is continuous and

|Iαf(z) − Iαf(x)| ≤ Cγ5(x)(log(1/|z − x|))−(q(x)−p(x)+1)/p(x)

as z → x for each x ∈ G, where

γ5(x) = γ4(x)−(p(x)−1)/p(x)(log(1/γ4(x)))q(x)/p(x)

with γ4(x) = min{q(x) − p(x) + 1, 1/2}.
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Lemma 7.2. Let p(·) and q(·) be as in Theorem 7.1. Let f be a nonnegative
measurable function on G with ‖f‖Φ(·,·)(G) ≤ 1. Then∫

B(x,δ)

|x − y|α−nf(y)dy ≤ Cγ5(x, δ) (log(1/δ))−(q(x)−p(x)+1)/p(x)

for all x ∈ G and 0 < δ < 1/4, where

γ5(x, t) = γ4(x)−(p(x)−1)/p(x)−a/(p(x) log(1/t))

×(log(1/γ4(x)))q(x)/p(x)−aq(x)/(p(x) log(1/t))+b/ log(log(1/t)).

Proof. Let f be a nonnegative measurable function on G with ‖f‖Φ(·,·)(G) ≤ 1.
Setting η(x) = γ4(x)1/p(x)(log(1/γ4(x)))q(x)/p(x) and N(x, y) = |x−y|−n/p(x)(log(1/|x−

y|))−(q(x)+1)/p(x), we have∫
B(x,δ)

|x − y|α−nf(y)dy

≤
∫

B(x,δ)

|x − y|α−nη(x)N(x, y)dy

+

∫
B(x,δ)

|x − y|α−nf(y)

(
f(y)

η(x)N(x, y)

)p(y)−1 (
log(c + f(y))

log(c + η(x)N(x, y))

)q(y)

dy.

Note that

{η(x)N(x, y)}−p(y) ≤ η(x)−p(x)−a/ log(1/δ)|x − y|n(log(1/|x − y|))q(x)+1

and

{log(c + η(x)N(x, y))}−q(y) ≤ C(log(1/γ4(x)))q(x)+b/ log(log(1/δ))(log(1/|x − y|))−q(x)

for y ∈ B(x, δ). Consequently it follows that∫
B(x,δ)

|x − y|α−nf(y)dy

≤ C

{
η(x)γ4(x)−1(log(1/δ))−(q(x)−p(x)+1)/p(x)

+ η(x)−p(x)+1−a/ log(1/δ)(log(1/γ4(x)))q(x)+b/ log(log(1/δ))

×
∫

B(x,δ)

|x − y|α−n/p(x)(log(1/|x − y|))−(q(x)−p(x)+1)/p(x)g(y)dy

}
≤ Cγ5(x, δ)(log(1/δ))−(q(x)−p(x)+1)/p(x)

(
1 +

∫
B(x,δ)

g(y)dy

)
≤ Cγ5(x, δ)(log(1/δ))−(q(x)−p(x)+1)/p(x),

where g(y) = f(y)p(y)(log(c + f(y)))q(y), as required.
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Lemma 7.3. Let p(·) and q(·) be as in Theorem 7.1. Let f be a nonnegative
measurable function on G with ‖f‖Φ(·,·)(G) ≤ 1. Then∫

G\B(x,δ)

|x − y|α−n−1f(y)dy ≤ Cδ−1 (log(1/δ))−(q(x)−p(x)+1)/p(x)

for all x ∈ G and 0 < δ < 1/2.

Proof. Let f be a nonnegative measurable function on G with ‖f‖Φ(·,·)(G) ≤ 1.
First note that ∫

G\B(x,1/2)

|x − y|α−n−1f(y)dy ≤ C.

Setting N(x, y) = |x − y|−n/p(x)(log(1/|x − y|))−(q(x)+1)/p(x), we have∫
B(x,1/2)\B(x,δ)

|x − y|α−n−1f(y)dy

≤
∫

B(x,1/2)\B(x,δ)

|x − y|α−n−1N(x, y)dy

+

∫
B(x,1/2)\B(x,δ)

|x − y|α−n−1f(y)

(
f(y)

N(x, y)

)p(y)−1 (
log(c + f(y))

log(c + N(x, y))

)q(y)

dy.

Since

{N(x, y)}−p(y) ≤ C|x − y|n(log(1/|x − y|))q(x)+1

and

{log(c + N(x, y))}−q(y) ≤ C(log(1/|x − y|))−q(x)

for y ∈ B(x, 1/2), it follows from Lemma 3.3 that∫
B(x,1/2)\B(x,δ)

|x − y|α−n−1f(y)dy

≤ C

{
δ−1(log(1/δ))−(q(x)−p(x)+1)/p(x)

+

∫
B(x,1/2)\B(x,δ)

|x − y|α−n/p(x)−1(log(1/|x − y|))−(q(x)−p(x)+1)/p(x)g(y)dy

}
≤ Cδ−1(log(1/δ))−(q(x)−p(x)+1)/p(x)

(
1 +

∫
B(x,1/2)\B(x,δ)

g(y)dy

)
≤ Cδ−1(log(1/δ))−(q(x)−p(x)+1)/p(x),

where g(y) = f(y)p(y)(log(c + f(y)))q(y), as required.

Proof of Theorem 7.1. Let f be a nonnegative measurable function on G with
‖f‖Φ(·,·)(G) ≤ 1.
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Write

Iαf(x) − Iαf(z) =

∫
B(x,2|x−z|)

|x − y|α−nf(y)dy −
∫

B(x,2|x−z|)
|z − y|α−nf(y)dy

+

∫
G\B(x,2|x−z|)

(|x − y|α−n − |z − y|α−n)f(y)dy.

By Lemma 7.2, we have∫
B(x,2|x−z|)

|x − y|α−nf(y)dy ≤ Cγ5(x, 3|x − z|)(log(1/|z − x|))−(q(x)−p(x)+1)/p(x)

and∫
B(x,2|x−z|)

|z − y|α−nf(y)dy ≤
∫

B(z,3|x−z|)
|z − y|α−nf(y)dy

≤ Cγ5(z, 3|x − z|)(log(1/|z − x|))−(q(z)−p(z)+1)/p(z)

for 0 < |x− z| < 1/2. On the other hand, by the mean value theorem for analysis,
we have by Lemma 7.3∫

G\B(x,2|x−z|)
||x − y|α−n − |z − y|α−n|f(y)dy

≤ C|x − z|
∫

G\B(x,2|x−z|)
|x − y|α−n−1f(y)dy

≤ C(log(1/|z − x|))−(q(x)−p(x)+1)/p(x).

Now we establish

|Iαf(x) − Iαf(z)| ≤ C{γ5(x, 3|x − z|)(log(1/|z − x|))−(q(x)−p(x)+1)/p(x)

+γ5(z, 3|x − z|)(log(1/|z − x|))−(q(z)−p(z)+1)/p(z)}

for 0 < |x − z| < 1/4, which implies

|Iαf(z) − Iαf(x)| ≤ Cγ5(x)(log(1/|z − x|))−(q(x)−p(x)+1)/p(x)

as z → x for all x ∈ G.

8 Logarithmic potentials

In this section we discuss Sobolev’s theorem for logarithmic potentials.

Theorem 8.1. Let p(·) and q(·) be two variable exponents on Rn satisfying (1.3)
such that p(x) = 1 and

0 ≤ q(x) < 1

for x ∈ Rn. Then there exist constants c1, c2 > 0 such that∫
G

{
exp

(
(c1Inf(x))1/(1−q(x))

)
− 1

}
dx ≤ c2

for all nonnegative measurable functions f on G with ‖f‖Φ(·,·)(G) ≤ 1.
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To show this, we estimate Inf by the logarithmic potential

J =

∫
G

ρ−β(|x − y|)g(y) dy,

where ρ−β(r) = r−n(log(2+1/r))−β with β > 1 and g(y) = f(y)(log(e+ f(y)))q(y).

Lemma 8.2. Let p(·) and q(·) be as in Theorem 8.1. Let f be a nonnegative
measurable function on G with ‖f‖Φ(·,·)(G) ≤ 1. Then

F ≡
∫

B(x,δ)

ρ−β(|x − y|)f(y) dy ≤ CJ
{
(log(e + J))−q(x) + (log(e + 1/δ))−q(x)

}
for all x ∈ G and δ > 0.

Proof. Let f be a nonnegative measurable function on G with ‖f‖Φ(·,·)(G) ≤ 1. We
have for k > 0

F ≤ k

∫
G

ρ−β(|x − y|)dy +

∫
B(x,δ)

ρ−β(|x − y|)f(y)

(
log(e + f(y))

log(e + k)

)q(y)

dy.

If J ≤ δ−n, then we set
k = J(log(e + J))−q(x).

Since δ ≤ J−1/n, we see that

(log(e + k))−q(y) ≤ C(log(e + J))−q(x)

for y ∈ B(x, δ). Consequently it follows that

F ≤ CJ(log(e + J))−q(x).

If J > δ−n, then we set
k = δ−n(log(e + 1/δ))−q(x)

and obtain

F ≤ C
{
δ−n(log(e + 1/δ))−q(x) + (log(e + 1/δ))−q(x)J

}
≤ C(log(e + 1/δ))−q(x)J.

Now the result follows.

Lemma 8.3. Let p(·) and q(·) be as in Theorem 8.1. Let f be a nonnegative
measurable function on G with ‖f‖Φ(·,·)(G) ≤ 1. Then∫

G\B(x,δ)

log+(1/|x − y|)f(y)dy ≤ C(log(e + 1/δ))−q(x)+1

for all x ∈ G and δ > 0.
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Proof. Let f be a nonnegative measurable function on G with ‖f‖Φ(·,·)(G) ≤ 1. Let
0 < γ < n. For y ∈ G \ B(x, δ) and δ > 0, set

N(x, y) = |x − y|−γ.

By condition (1.3), we see that∫
G\B(x,δ)

log+(1/|x − y|)f(y)dy ≤
∫

G

log+(1/|x − y|)N(x, y)dy

+

∫
G\B(x,δ)

log+(1/|x − y|)f(y)

(
log(e + f(y))

log(e + N(x, y))

)q(y)

dy

≤ C

{
1 +

∫
G\B(x,δ)

(log(e + 1/|x − y|))−q(y)+1g(y)dy

}
≤ C

{
1 + (log(e + 1/δ))−q(x)+1

∫
G\B(x,δ)

g(y)dy

}
≤ C(log(e + 1/δ))−q(x)+1,

where g(y) = f(y)p(y)(log(e + f(y)))q(y), as required.

Proof of Theorem 8.1. Let f be a nonnegative measurable function on G with
‖f‖Φ(·,·)(G) ≤ 1. For x ∈ G and δ > 0, write

Inf(x) =

∫
B(x,δ)

log+(1/|x − y|)f(y)dy +

∫
G\B(x,δ)

log+(1/|x − y|)f(y)dy

= I1 + I2.

For β > 1, we infer from Lemma 8.2 that

I1 ≤ Cδn(log(e + 1/δ))1+β

∫
B(x,δ)

ρ−β(|x − y|)f(y)dy

≤ Cδn(log(e + 1/δ))1+βJ
{
(log(e + 1/δ))−q(x) + (log(e + J))−q(x)

}
.

Hence, in view of Lemma 8.3, we find

Inf(x) ≤ C
{
δn(log(e + 1/δ))1+βJ

{
(log(e + 1/δ))−q(x) + (log(e + J))−q(x)

}
+ (log(e + 1/δ))−q(x)+1

}
.

Now, considering δ = J−1/n(log(e + J))−β/n, we find

Inf(x) ≤ C(log(e + J))−q(x)+1,

so that
exp((c1Inf(x))1/(1−q(x))) ≤ e + J.

Integrating both sides over G gives∫
G

exp((c1Inf(x))1/(1−q(x))) dx ≤ c2,

which proves the required result.
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Theorem 8.4. Let p(·) and q(·) be two variable exponents on Rn satisfying (1.2)−
(1.5) such that

p(x) > 1 or q(x) ≥ 1

for all x ∈ G. If f is a nonnegative measurable function on G with ‖f‖Φ(·,·)(G) < ∞,
then Inf is continuous on G.

Proof. Let f be a nonnegative measurable function on G with ‖f‖Φ(·,·)(G) < ∞.
Then note that ∫

G

f(y)(log(e + f(y)))dy < ∞.

Hence, it follows from [10, Theorem 9.1, Section 5.9] that Inf is continuous on
G.

In the same manner as Lemmas 8.2 and 8.3 we can show that

Inf(z) − Inf(x) = o(|z − x|n(1−1/p(x))(log(1/|z − x|))γ)

as z → x, x ∈ G when p(x) < n′ and γ > 2 − (q(x) + 1)/p(x).
For further results, we refer the reader to the paper by Ohno ([12]).
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