Orlicz-Sobolev capacity of balls

T. Futamura, Y. Mizuta, T. Ohno and T. Shimomura

March 1, 2010

Abstract

Our aim in this note is to estimate the Orlicz-Sobolev capacity of balls.

1 Introduction and statement of results

For $0<\alpha<n$ and a locally integrable function f on \mathbf{R}^{n}, we define the Riesz potential $I_{\alpha} f$ of order α by

$$
I_{\alpha} f(x)=\int_{\mathbf{R}^{n}}|x-y|^{\alpha-n} f(y) d y
$$

In the present note, we treat functions f satisfying an Orlicz condition :

$$
\begin{equation*}
\int_{\mathbf{R}^{n}} \varphi_{p}(|f(y)|) d y<\infty \tag{1.1}
\end{equation*}
$$

Here $\varphi_{p}(r)$ is a positive nondecreasing function on the interval $(0, \infty)$ of the form

$$
\varphi_{p}(r)=r^{p} \varphi(r)
$$

where $p>1$ and $\varphi(r)$ is a positive monotone function on $(0, \infty)$ which is of logarithmic type; that is, there exists $c_{1}>0$ such that

$$
c_{1}^{-1} \varphi(r) \leq \varphi\left(r^{2}\right) \leq c_{1} \varphi(r) \quad \text { whenever } r>0
$$

We set

$$
\varphi_{p}(0)=0,
$$

because we will see from ($\varphi 4$) below that

$$
\lim _{r \rightarrow 0+} \varphi_{p}(r)=0
$$

see [14, p205]. For an open set $G \subset \mathbf{R}^{n}$, we denote by $L^{\varphi_{p}}(G)$ the family of all locally integrable functions g on G such that

$$
\int_{G} \varphi_{p}(|g(x)|) d x<\infty
$$

and define

$$
\|g\|_{\varphi_{p}, G}=\inf \left\{\lambda>0: \int_{G} \varphi_{p}(|g(x)| / \lambda) d x \leq 1\right\}
$$

This is a quasi-norm in $L^{\varphi_{p}}(G)$. For $E \subset G$, the $\left(\alpha, \varphi_{p}\right)$-capacity is defined by

$$
C_{\alpha, \varphi_{p}}(E ; G)=\inf \|f\|_{\varphi_{p}, G},
$$

where the infimum is taken over all functions f such that $f=0$ outside G and

$$
I_{\alpha} f(x) \geq 1 \quad \text { for all } x \in E
$$

(cf. Adams and Hedberg [1], Meyers [10], Ziemer [17] and the second author [11, 12]).

Our aim in the present note is to give an estimate of (α, φ_{p})-capacity of balls. We denote by $B(x, r)$ the open ball centered at x of radius r. For $R>0$, consider

$$
\tilde{\varphi}_{p}(r)=\int_{r}^{R}\left[t^{n-\alpha p} \varphi\left(t^{-1}\right)\right]^{-1 /(p-1)} d t / t
$$

As an extension of Adams and Hurri-Syrjänen [3, Theorem 2.11] and Joensuu [9, Corollary 6.3], we state our theorem in the following.

Theorem A. Suppose $p>1$ and

$$
\tilde{\varphi}_{p}(0)=\infty
$$

For $R>0$, there exists a constant $A>0$ such that

$$
A^{-1} \tilde{\varphi}_{p}(r)^{-(p-1) / p} \leq C_{\alpha, \varphi_{p}}(B(x, r) ; B(x, R)) \leq A \tilde{\varphi}_{p}(r)^{-(p-1) / p}
$$

whenever $0<r<R / 2$.
Recently Joensuu [9, Corollary 6.3] treated the case when φ is nondecreasing. His main idea was to use the rearrangement equivalent norm for $\|f\|_{\varphi_{p}, G}$ ([5, 7, 8]), as an extension of Adams and Hurri-Syrjänen [3, Theorem 2.11] in the case when $\varphi(t)=(\log (e+t))^{\beta}$ with $p=n / \alpha>1$ and $0 \leq \beta \leq p-1$. Our proof will be done straightforward from the definition of capacity, and several technical assumptions posed in [9] are removed.

Throughout this note, let A denote various constants independent of the variables in question and $A(a, b, \cdots)$ be a constant that depends on a, b, \cdots.

Remark 1.1. If $\tilde{\varphi}_{p}(0)<\infty$, then $C_{\alpha, \varphi_{p}}(\{0\} ; B(0, R))>0$. In this case $I_{\alpha} f$ is continuous when $f \in L^{\varphi_{p}}\left(\mathbf{R}^{n}\right)$ vanishes outside a compact set; for this fact, we refer the reader to the paper [14, 16].
Remark 1.2. We here introduce another capacity. For a set $E \subset \mathbf{R}^{n}$ and an open set $G \subset \mathbf{R}^{n}$, we define

$$
B_{\alpha, \varphi_{p}}(E ; G)=\inf \int_{G} \varphi_{p}(f(y)) d y
$$

where the infimum is taken over all nonnegative measurable functions f on \mathbf{R}^{n} such that $f=0$ outside G and $I_{\alpha} f(x) \geq 1$ for all $x \in E$. With the aid of Adams and Hurri-Syrjänen [3], Joensuu [7, 8, 9] and Mizuta [12, Section 8.3, Lemma 3.1], [11], one can find a constant $A>1$ such that

$$
A^{-1} \tilde{\varphi}_{p}(r)^{-(p-1)} \leq B_{\alpha, \varphi_{p}}(B(x, r) ; B(x, R)) \leq A \tilde{\varphi}_{p}(r)^{-(p-1)}
$$

for $0<r<R / 2$ and $x \in \mathbf{R}^{n}$. Hence, in view of Theorem A, there is a constant $A>1$ such that
$A^{-1} B_{\alpha, \varphi_{p}}(B(x, r) ; B(x, R))^{1 / p} \leq C_{\alpha, \varphi_{p}}(B(x, r) ; B(x, R)) \leq A B_{\alpha, \varphi_{p}}(B(x, r) ; B(x, R))^{1 / p}$ for $0<r<R / 2$ and $x \in \mathbf{R}^{n}$.

We write $f \sim g$ if there exists a constant A so that $A^{-1} g \leq f \leq A g$.
Example 1.3. For $n=\alpha p$, consider the function

$$
\varphi(t)=(\log (e+t))^{\beta} .
$$

If $\beta<p-1$, then

$$
\tilde{\varphi}_{p}(r) \sim(\log (e+1 / r))^{-\beta /(p-1)+1}
$$

for $0<r<1$. In this case

$$
C_{\alpha, \varphi_{p}}\left(B\left(x_{0}, r\right) ; B\left(x_{0}, R\right)\right) \sim(\log (e+1 / r))^{(\beta-p+1) / p}
$$

whenever $0<r<R / 2$ and $x_{0} \in \mathbf{R}^{n}$.
If $\beta=p-1$, then

$$
\tilde{\varphi}_{p}(r) \sim \log (e+(\log (e+1 / r)))
$$

for $0<r<1$. In this case

$$
C_{\alpha, \varphi_{p}}\left(B\left(x_{0}, r\right) ; B\left(x_{0}, R\right)\right) \sim(\log (e+(\log (e+1 / r))))^{-(p-1) / p}
$$

whenever $0<r<R / 2$ and $x_{0} \in \mathbf{R}^{n}$.
For further related results, see Aissaoui and A. Benkirane [4], Adams and Hurri-Syrjänen [2], Edmunds and Evans [6] and Mizuta and Shimomura [14, $15,16]$.

2 Proof of Theorem A

First we collect properties which follow from condition $(\varphi 1)$ (see [12], [14, Lemma 2.3], [13, Section 7]).
$(\varphi 2) \varphi$ satisfies the doubling condition, that is, there exists $c_{2}>1$ such that

$$
c_{2}^{-1} \varphi(r) \leq \varphi(2 r) \leq c_{2} \varphi(r) \quad \text { whenever } r>0
$$

($\varphi 3$) For each $\gamma>0$, there exists $c_{3}=c_{3}(\gamma) \geq 1$ such that

$$
c_{3}^{-1} \varphi(r) \leq \varphi\left(r^{\gamma}\right) \leq c_{3} \varphi(r) \quad \text { whenever } r>0
$$

($\varphi 4$) For each $\gamma>0$, there exists $c_{4}=c_{4}(\gamma) \geq 1$ such that

$$
s^{\gamma} \varphi(s) \leq c_{4} t^{\gamma} \varphi(t) \quad \text { whenever } 0<s<t .
$$

($\varphi 5$) For each $\gamma>0$, there exists $c_{5}=c_{5}(\gamma) \geq 1$ such that

$$
t^{-\gamma} \varphi(t) \leq c_{5} s^{-\gamma} \varphi(s) \quad \text { whenever } 0<s<t
$$

($\varphi 6$) If φ and φ_{1} are positive monotone functions on $[0, \infty)$ satisfying ($\varphi 1$), then for each $\gamma>0$ then there exists a constant $c_{6}=c_{6}(\gamma) \geq 1$ such that

$$
c_{6}{ }^{-1} \varphi(r) \leq \varphi\left(r^{\gamma} \varphi_{1}(r)\right) \leq c_{6} \varphi(r) \quad \text { whenever } r>0 .
$$

Remark 2.1. For each $A_{1}>0$ there exists $A_{2}>0$ such that

$$
\begin{equation*}
A_{1} \varphi_{p}(r) \geq \varphi_{p}\left(A_{2} r\right) \quad \text { whenever } r>0 \tag{2.1}
\end{equation*}
$$

Remark 2.2. If $\alpha p<n$, then we see from ($\varphi 2$) and ($\varphi 5$) that

$$
\begin{equation*}
\tilde{\varphi}_{p}(r) \sim\left[r^{n-\alpha p} \varphi\left(r^{-1}\right)\right]^{-1 /(p-1)} \tag{2.2}
\end{equation*}
$$

whenever $0<r<R / 2$.
REMARK 2.3. If $n=\alpha p$ and $0<R \leq 1$, then $\tilde{\varphi}_{p}$ is of logarithmic type on [$0, R^{2}$], that is, there exists $c>0$ such that

$$
c^{-1} \tilde{\varphi}_{p}(r) \leq \tilde{\varphi}_{p}\left(r^{2}\right) \leq c \tilde{\varphi}_{p}(r) \quad \text { whenever } 0 \leq r \leq R^{2}
$$

In fact, we see from $(\varphi 1)$ that

$$
\begin{aligned}
\tilde{\varphi}_{p}\left(r^{2}\right) & =\int_{r^{2}}^{R}\left[\varphi\left(t^{-1}\right)\right]^{-1 /(p-1)} d t / t \\
& =\int_{r^{2}}^{R^{2}}\left[\varphi\left(t^{-1}\right)\right]^{-1 /(p-1)} d t / t+\int_{R^{2}}^{R}\left[\varphi\left(t^{-1}\right)\right]^{-1 /(p-1)} d t / t \\
& =2 \int_{r}^{R}\left[\varphi\left(t^{-2}\right)\right]^{-1 /(p-1)} d t / t+\int_{R^{2}}^{R}\left[\varphi\left(t^{-1}\right)\right]^{-1 /(p-1)} d t / t \\
& \leq 2 c_{1}^{1 /(p-1)} \int_{r}^{R}\left[\varphi\left(t^{-1}\right)\right]^{-1 /(p-1)} d t / t+\int_{R^{2}}^{R}\left[\varphi\left(t^{-1}\right)\right]^{-1 /(p-1)} d t / t \\
& \leq\left(2 c_{1}^{1 /(p-1)}+1\right) \tilde{\varphi}_{p}(r)
\end{aligned}
$$

whenever $0<r \leq R^{2}$. Since $\tilde{\varphi}_{p}(r) \leq \tilde{\varphi}_{p}\left(r^{2}\right)$, we see that $\tilde{\varphi}_{p}$ is of logarithmic type on $\left[0, R^{2}\right]$.

If $R^{2}<r<R$, then one sees that $\tilde{\varphi}_{p}(r) \sim \varphi\left(R^{-1}\right)^{-1 /(p-1)} \log (R / r)$.
Here let us give an upper estimate of $\left(\alpha, \varphi_{p}\right)$-capacity of balls.
Lemma 2.4. There exists a constant $A>0$ such that

$$
C_{\alpha, \varphi_{p}}\left(B\left(x_{0}, r\right) ; B\left(x_{0}, 2 r\right)\right) \leq A\left[r^{n-\alpha p} \varphi\left(r^{-1}\right)\right]^{1 / p}
$$

whenever $r>0$ and $x_{0} \in \mathbf{R}^{n}$.
Proof. Without loss of generality we may assume that $x_{0}=0$. For simplicity, set

$$
\psi(r)=\left[r^{n-\alpha p} \varphi\left(r^{-1}\right)\right]^{1 / p}
$$

For $r>0$, consider the function

$$
f_{r}(y)=|y|^{-\alpha}
$$

for $r<|y|<2 r$ and $f_{r}=0$ elsewhere. If $x \in B(0, r)$ and $y \in B(0,2 r) \backslash B(0, r)$, then $|x-y|<3 r$, so that

$$
I_{\alpha} f_{r}(x) \geq(3 r)^{\alpha-n} \int_{B(0,2 r) \backslash B(0, r)}|y|^{-\alpha} d y=A_{1}
$$

with a constant $A_{1}=A_{1}(\alpha, n)>0$. It follows from the definition of capacity that

$$
C_{\alpha, \varphi_{p}}(B(0, r) ; B(0,2 r)) \leq\left\|f_{r} / A_{1}\right\|_{\varphi_{p}, B(0,2 r)}
$$

Here, in view of $(\varphi 6)$ with $\varphi_{1}(r)=\varphi\left(r^{-1}\right)^{-1 / p}$, we see that

$$
\begin{aligned}
\int_{B(0,2 r)} \varphi_{p}\left(f_{r}(y) / \psi(r)\right) d y & \leq A_{2} \int_{B(0,2 r) \backslash B(0, r)} r^{-\alpha p} \psi(r)^{-p} \varphi\left(r^{-1}\right) d y \\
& =A_{3}
\end{aligned}
$$

with constants $A_{2}=A_{2}\left(c_{6}\right)>0$ and $A_{3}=A_{3}\left(c_{6}, n\right)>0$. Hence, in view of (2.1), we can find $A_{4}>0$ such that

$$
\left\|f_{r}\right\|_{\varphi_{p}, B(0,2 r)} \leq A_{4} \psi(r)
$$

Now we establish

$$
\begin{aligned}
C_{\alpha, \varphi_{p}}(B(0, r) ; B(0,2 r)) & \leq A_{1}^{-1}\left\|f_{r}\right\|_{\varphi_{p}, B(0,2 r)} \\
& \leq A_{1}^{-1} A_{4} \psi(r),
\end{aligned}
$$

which proves the lemma.
For $0<R \leq 1$, we take $r_{0}=r_{0}(R)>0$ such that $r<r \tilde{\varphi}_{p}(r)^{1 / n} \leq \sqrt{r}$ for $0<r<r_{0}$ and

$$
\begin{equation*}
\int_{r_{0}}^{R}\left[\varphi\left(t^{-1}\right)\right]^{-1 /(p-1)} d t / t \geq 2 \int_{R^{2}}^{R}\left[\varphi\left(t^{-1}\right)\right]^{-1 /(p-1)} d t / t \tag{2.3}
\end{equation*}
$$

By Lemma 2.4 and Remark 2.2, we obtain the following result.
Corollary 2.5. Suppose $\alpha p<n$. Then there exists a constant $A>0$ independent of R such that

$$
C_{\alpha, \varphi_{p}}\left(B\left(x_{0}, r\right) ; B\left(x_{0}, R\right)\right) \leq A \tilde{\varphi}_{p}(r)^{-(p-1) / p}
$$

whenever $0<r<R / 2$ and $x_{0} \in \mathbf{R}^{n}$.
Next we prove the following result.
Lemma 2.6. Let $\alpha p=n$ and $0<R \leq 1$. Then there exists a constant $A>0$ independent of R such that

$$
C_{\alpha, \varphi_{p}}\left(B\left(x_{0}, r\right) ; B\left(x_{0}, R\right)\right) \leq A \tilde{\varphi}_{p}(r)^{-(p-1) / p}
$$

whenever $0<r<r_{0}$ and $x_{0} \in \mathbf{R}^{n}$.
Proof. Suppose $\alpha p=n, 0<R \leq 1$ and $x_{0}=0$. For $0<r<r_{0}$ and $0<K<1$, consider the function

$$
f_{r, K}(y)=|y|^{-\alpha}\left[\varphi\left(K|y|^{-1}\right)\right]^{-1 /(p-1)}
$$

for $r<|y|<K R$ and $f_{r, K}=0$ elsewhere. If $x \in B(0, r)$ and $y \in B(0, R) \backslash$ $B(0, r)$, then $|x-y|<2|y|$, so that

$$
\begin{aligned}
I_{\alpha} f_{r, K}(x) & \geq 2^{\alpha-n} \int_{B(0, K R) \backslash B(0, r)}|y|^{\alpha-n} f_{r, K}(y) d y \\
& \geq 2^{\alpha-n} \omega_{n-1} \int_{r}^{K R}[\varphi(K / t)]^{-1 /(p-1)} d t / t \\
& =2^{\alpha-n} \omega_{n-1} \tilde{\varphi}_{p}(r / K)
\end{aligned}
$$

where ω_{n-1} is the surface measure of the boundary of the unit ball in \mathbf{R}^{n}. If $K=\tilde{\varphi}_{p}(r)^{-1 / n}(<1)$, then we see from $(\varphi 1)$ and (2.3) that

$$
\begin{aligned}
\tilde{\varphi}_{p}(r / K) & =\int_{r / K}^{R}[\varphi(1 / t)]^{-1 /(p-1)} d t / t \\
& \geq \int_{\sqrt{r}}^{R}[\varphi(1 / t)]^{-1 /(p-1)} d t / t \\
& \geq 2 c_{1}^{-1 /(p-1)} \int_{r}^{R^{2}}[\varphi(1 / t)]^{-1 /(p-1)} d t / t \\
& \geq 2 c_{1}^{-1 /(p-1)}\left(\int_{r}^{R}[\varphi(1 / t)]^{-1 /(p-1)} d t / t-2^{-1} \int_{r_{0}}^{R}[\varphi(1 / t)]^{-1 /(p-1)} d t / t\right) \\
& \geq c_{1}^{-1 /(p-1)} \tilde{\varphi}_{p}(r)
\end{aligned}
$$

Thus it follows that

$$
I_{\alpha} f_{r, K}(x) \geq 2^{\alpha-n} \omega_{n-1} c_{1}^{-1 /(p-1)} \tilde{\varphi}_{p}(r)=A_{1} \tilde{\varphi}_{p}(r)
$$

with a constant $A_{1}=2^{\alpha-n} \omega_{n-1} c_{1}^{-1 /(p-1)}$, which implies

$$
C_{\alpha, \varphi_{p}}(B(0, r) ; B(0, R)) \leq\left\|f_{r, K} /\left\{A_{1} \tilde{\varphi}_{p}(r)\right\}\right\|_{\varphi_{p}, B(0, R)}=\left\{A_{1} \tilde{\varphi}_{p}(r)\right\}^{-1}\left\|f_{r, K}\right\|_{\varphi_{p}, B(0, R)} .
$$

Here note from $(\varphi 6)$ with $\varphi_{1}(r)=\varphi(r)^{-1 / p}$ that

$$
\begin{aligned}
& \int_{B(0, K R)} \varphi_{p}\left(K^{\alpha} f_{r, K}(y)\right) d y \\
\leq & c_{6} \int_{B(0, K R) \backslash B(0, r)}(K /|y|)^{\alpha p}\left[\varphi\left(K|y|^{-1}\right)\right]^{-p /(p-1)} \varphi\left(K|y|^{-1}\right) d y \\
= & A_{2} K^{\alpha p} \int_{r}^{K R}[\varphi(K / t)]^{-1 /(p-1)} d t / t \leq A_{2}
\end{aligned}
$$

with $K=\tilde{\varphi}_{p}(r)^{-1 / n}$ and $A_{2}=c_{6} \omega_{n-1}$. This implies by (2.1) that there exists a constant $A_{3}>0$ such that

$$
\left\|f_{r, K}\right\|_{\varphi_{p}, B(0, R)} \leq A_{3} K^{-\alpha}=A_{3} \tilde{\varphi}_{p}(r)^{1 / p}
$$

Now it follows that

$$
\begin{aligned}
C_{\alpha, \varphi_{p}}(B(0, r) ; B(0, R)) & \leq A_{1}^{-1} \tilde{\varphi}_{p}(r)^{-1}\left\|f_{r, K}\right\|_{\varphi_{p}, B(0, R)} \\
& \leq A_{1}^{-1} A_{3} \tilde{\varphi}_{p}(r)^{-1+1 / p} .
\end{aligned}
$$

Thus the lemma is proved.

By Corollary 2.5 and Lemma 2.6, we find the following result.
Theorem 2.7. Suppose $p>1$ and $0<R \leq 1$. Then there exist constants $A>0$ independent of R and $r_{0}=r_{0}(R)>0$ such that

$$
C_{\alpha, \varphi_{p}}\left(B\left(x_{0}, r\right) ; B\left(x_{0}, R\right)\right) \leq A \tilde{\varphi}_{p}(r)^{-(p-1) / p}
$$

whenever $0<r<r_{0}$ and $x_{0} \in \mathbf{R}^{n}$.
Remark 2.8. Suppose $p>1$. Then for each $R>0$ one can find a constant $A(R)>0$ such that

$$
C_{\alpha, \varphi_{p}}\left(B\left(x_{0}, r\right) ; B\left(x_{0}, R\right)\right) \leq A(R) \tilde{\varphi}_{p}(r)^{-(p-1) / p}
$$

whenever $0<r<R / 2$ and $x_{0} \in \mathbf{R}^{n}$.
In fact, if $0<R \leq 1$ and $0<r<r_{0}$, then this is a consequence of Theorem 2.7. If $0<R \leq 1$ and $r_{0} \leq r<R / 2$, then

$$
C_{\alpha, \varphi_{p}}\left(B\left(x_{0}, r\right) ; B\left(x_{0}, R\right)\right) \leq C_{\alpha, \varphi_{p}}\left(B\left(x_{0}, R / 2\right) ; B\left(x_{0}, R\right)\right)
$$

and hence one can take $A(R)>0$ such that

$$
C_{\alpha, \varphi_{p}}\left(B\left(x_{0}, R / 2\right) ; B\left(x_{0}, R\right)\right) \leq A(R) \tilde{\varphi}_{p}\left(r_{0}\right)^{-(p-1) / p}
$$

The case $R \geq 1$ is similarly treated.
Next we give a lower estimate of $\left(\alpha, \varphi_{p}\right)$-capacity of balls.
THEOREM 2.9. For $R>0$, there exists a constant $A=A(R)>0$ such that

$$
\tilde{\varphi}_{p}(r)^{-(p-1) / p} \leq A C_{\alpha, \varphi_{p}}\left(B\left(x_{0}, r\right) ; B\left(x_{0}, R\right)\right)
$$

whenever $0<r<R / 2<\infty$ and $x_{0} \in \mathbf{R}^{n}$.
Proof. As above we assume that $x_{0}=0$. For $0<r<R / 2$, take a nonnegative measurable function f on $B(0, R)$ such that

$$
I_{\alpha} f(x) \geq 1 \quad \text { for } x \in B(0, r)
$$

Then we have by Fubini's theorem

$$
\begin{aligned}
\int_{B(0, r)} d x & \leq \int_{B(0, r)} I_{\alpha} f(x) d x \\
& \leq \int_{B(0, R)}\left(\int_{B(0, r)}|x-y|^{\alpha-n} d x\right) f(y) d y \\
& \leq A_{1} r^{n} \int_{B(0, R)}(r+|y|)^{\alpha-n} f(y) d y
\end{aligned}
$$

so that

$$
\begin{equation*}
1 \leq A_{1} \int_{B(0, R)}(r+|y|)^{\alpha-n} f(y) d y \tag{2.4}
\end{equation*}
$$

We show that

$$
\begin{equation*}
\int_{B(0, R)}(r+|y|)^{\alpha-n} f(y) d y \leq A_{2} \tilde{\varphi}_{p}(r)^{-1 / p+1}\|f\|_{\varphi_{p}, B(0, R)} \tag{2.5}
\end{equation*}
$$

For this purpose, suppose $\|f\|_{\varphi_{p}, B(0, R)} \leq 1$. Then, considering

$$
k(y)=\tilde{\varphi}_{p}(r+|y|)^{-1 / p}(r+|y|)^{-\alpha}\left[(r+|y|)^{n-\alpha p} \varphi\left((r+|y|)^{-1}\right)\right]^{-1 /(p-1)},
$$

we find by $(\varphi 4),(\varphi 6)$ and Remark 2.2

$$
\begin{aligned}
& \int_{B(0, R / 2)}(r+|y|)^{\alpha-n} f(y) d y \\
\leq & \int_{B(0, R / 2)}(r+|y|)^{\alpha-n} k(y) d y \\
& +A_{3} \int_{B(0, R / 2)}(r+|y|)^{\alpha-n} f(y)\left(\frac{f(y)}{k(y)}\right)^{p-1} \frac{\varphi(f(y))}{\varphi(k(y))} d y \\
\leq & A_{4}\left\{\int_{r}^{R} \tilde{\varphi}_{p}(t)^{-1 / p}\left[t^{n-\alpha p} \varphi\left(t^{-1}\right)\right]^{-1 /(p-1)} d t / t\right. \\
& \left.+\int_{B(0, R)} \tilde{\varphi}_{p}(r+|y|)^{(p-1) / p} \varphi_{p}(f(y)) d y\right\} \\
\leq & A_{5}\left\{\tilde{\varphi}_{p}(r)^{1-1 / p}+\tilde{\varphi}_{p}(r)^{(p-1) / p} \int_{B(0, R)} \varphi_{p}(f(y)) d y\right\} \\
\leq & 2 A_{5} \tilde{\varphi}_{p}(r)^{1-1 / p .}
\end{aligned}
$$

Next, considering

$$
\begin{aligned}
k & =\tilde{\varphi}_{p}(R / 2)^{-1 / p}(R / 2)^{-\alpha}\left[(R / 2)^{n-\alpha p} \varphi\left((R / 2)^{-1}\right)\right]^{-1 /(p-1)} \\
& \sim \tilde{\varphi}_{p}(R / 2)^{1-1 / p}(R / 2)^{-\alpha},
\end{aligned}
$$

we find by $(\varphi 4),(\varphi 6)$ and Remark 2.2

$$
\begin{aligned}
& \int_{B(0, R) \backslash B(0, R / 2)}(r+|y|)^{\alpha-n} f(y) d y \\
\leq & (R / 2)^{\alpha-n} \int_{B(0, R) \backslash B(0, R / 2)} f(y) d y \\
\leq & (R / 2)^{\alpha-n} \int_{B(0, R) \backslash B(0, R / 2)} k d y \\
& +A_{6}(R / 2)^{\alpha-n} \int_{B(0, R) \backslash B(0, R / 2)} f(y)\left(\frac{f(y)}{k}\right)^{p-1} \frac{\varphi(f(y))}{\varphi(k)} d y \\
\leq & A_{7} \tilde{\varphi}_{p}(R / 2)^{1-1 / p}\left(1+\int_{B(0, R)} \varphi_{p}(f(y)) d y\right) \\
\leq & 2 A_{7} \tilde{\varphi}_{p}(R / 2)^{1-1 / p} \\
\leq & 2 A_{7} \tilde{\varphi}_{p}(r)^{1-1 / p} .
\end{aligned}
$$

Thus

$$
\int_{B(0, R)}(r+|y|)^{\alpha-n} f(y) d y \leq A_{8} \tilde{\varphi}_{p}(r)^{1-1 / p}
$$

whenever $\|f\|_{\varphi_{p}, B(0, R)} \leq 1$, which implies (2.5).
In view of (2.4), (2.5) and the definition of capacity, we find

$$
1 \leq A_{9} \tilde{\varphi}_{p}(r)^{1-1 / p} C_{\alpha, \varphi_{p}}(B(0, r) ; B(0, R))
$$

which gives the conclusion.
Proof of Theorem A. Theorem A follows from Theorems 2.7 and 2.9 together with Remark 2.8.

$3 C_{\alpha, \varphi_{1}}$-capacity

In this section, we deal with the case $p=1$. For this purpose, set

$$
\varphi_{1}(r)=r \varphi(r)
$$

and

$$
\tilde{\varphi}_{1}(r)=r^{n-\alpha} \varphi\left(r^{-1}\right)
$$

Here suppose further that $\varphi(r)$ is nondecreasing on $(0, \infty)$.
Theorem B. For $R>0$, there exists a constant $A>0$ such that

$$
A^{-1} \tilde{\varphi}_{1}(r) \leq C_{\alpha, \varphi_{1}}(B(x, r) ; B(x, R)) \leq A \tilde{\varphi}_{1}(r)
$$

whenever $0<r<R / 2$.
The proof is quite similar to that of Theorem A, and thus we omit it.

References

[1] D. R. Adams and L. I. Hedberg, Function spaces and potential theory, Springer-Verlag, Berlin Heidelberg New York, 1996.
[2] D. R. Adams and R. Hurri-Syrjänen, Vanishing exponential integrability for functions whose gradients belong to $L^{n}(\log (e+L))^{\alpha}$, J. Funct. Anal. 197 (2003), 162-178.
[3] D. R. Adams and R. Hurri-Syrjänen, Capacity estimates, Proc. Amer. Math. Soc. 131 (2003), 1159-1167.
[4] N. Aissaoui and A. Benkirane, Capacités dans les espaces d'Orlicz, Ann. Sci. Math. Québec 18 (1994), 1-23.
[5] C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, Inc., New York, 1988.
[6] D. E. Edmunds and W. D. Evans, Hardy operators, function spaces and embeddings, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2004.
[7] J. Joensuu, On null sets of Sobolev-Orlicz capacities, Illinois J. Math. 52 (2008), 1195-1211.
[8] J. Joensuu, Orlicz-Sobolev capacities and their null sets, to appear in Rev. Mat. Complut.
[9] J. Joensuu, Estimates for certain Orlicz-Sobolev capacities of an Euclidean ball, preprint.
[10] N. G. Meyers, A theory of capacities for potentials in Lebesgue classes, Math. Scand. 8 (1970), 255-292.
[11] Y. Mizuta, Continuity properties of potentials and Beppo-Levi-Deny functions, Hiroshima Math. J. 23, 79-153 (1993).
[12] Y. Mizuta, Potential theory in Euclidean spaces, Gakkōtosyo, Tokyo, 1996.
[13] Y. Mizuta, E. Nakai, T. Ohno and T. Shimomura, Sobolev embeddings for Riesz potentials of functions in Morrey spaces $L^{(1, \varphi)}(G)$, to appear in J. Math. Soc. Japan.
[14] Y. Mizuta and T. Shimomura, Differentiability and Hölder continuity of Riesz potentials of functions in Orlicz classes, Analysis 20 (2000), 201223.
[15] Y. Mizuta and T. Shimomura, Vanishing exponential integrability for Riesz potentials of functions in Orlicz classes, Illinois J. Math. 51 (2007), 1039-1060.
[16] Y. Mizuta and T. Shimomura, Continuity properties of Riesz potentials of Orlicz functions, Tohoku Math. J. 61 (2009), 225-240.
[17] W. P. Ziemer, Weakly differentiable functions, Springer-Verlag, New York, 1989.

Department of Mathematics
Daido University
Nagoya 457-8530, Japan
E-mail : futamura@daido-it.ac.jp
and
Department of Mathematics
Graduate School of Science
Hiroshima University
Higashi-Hiroshima 739-8521, Japan
E-mail : yomizuta@hiroshima-u.ac.jp
and
General Arts
Hiroshima National College of Maritime Technology
Higashino Oosakikamijima Toyotagun 725-0231, Japan
E-mail : ohno@hiroshima-cmt.ac.jp
and
Department of Mathematics
Graduate School of Education
Hiroshima University
Higashi-Hiroshima 739-8524, Japan
E-mail : tshimo@hiroshima-u.ac.jp

