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Abstract

Our aim in this note is to estimate the Orlicz-Sobolev capacity of
balls.

1 Introduction and statement of results

For 0 < α < n and a locally integrable function f on Rn, we define the Riesz
potential Iαf of order α by

Iαf(x) =

∫
Rn

|x− y|α−nf(y) dy.

In the present note, we treat functions f satisfying an Orlicz condition :∫
Rn

φp(|f(y)|) dy <∞. (1.1)

Here φp(r) is a positive nondecreasing function on the interval (0,∞) of the
form

φp(r) = rpφ(r),

where p > 1 and φ(r) is a positive monotone function on (0,∞) which is of
logarithmic type; that is, there exists c1 > 0 such that

(φ1) c−1
1 φ(r) ≤ φ(r2) ≤ c1φ(r) whenever r > 0.

We set
φp(0) = 0,

because we will see from (φ4) below that

lim
r→0+

φp(r) = 0;
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see [14, p205]. For an open set G ⊂ Rn, we denote by Lφp(G) the family of
all locally integrable functions g on G such that∫

G

φp(|g(x)|) dx <∞,

and define

∥g∥φp,G = inf

{
λ > 0 :

∫
G

φp(|g(x)|/λ) dx ≤ 1

}
.

This is a quasi-norm in Lφp(G). For E ⊂ G, the (α,φp)-capacity is defined
by

Cα,φp(E;G) = inf ∥f∥φp,G,

where the infimum is taken over all functions f such that f = 0 outside G
and

Iαf(x) ≥ 1 for all x ∈ E

(cf. Adams and Hedberg [1], Meyers [10], Ziemer [17] and the second author
[11, 12]).

Our aim in the present note is to give an estimate of (α, φp)-capacity of
balls. We denote by B(x, r) the open ball centered at x of radius r. For
R > 0, consider

φ̃p(r) =

∫ R

r

[tn−αpφ(t−1)]−1/(p−1) dt/t.

As an extension of Adams and Hurri-Syrjänen [3, Theorem 2.11] and Joen-
suu [9, Corollary 6.3], we state our theorem in the following.

Theorem A. Suppose p > 1 and

φ̃p(0) = ∞.

For R > 0, there exists a constant A > 0 such that

A−1φ̃p(r)
−(p−1)/p ≤ Cα,φp(B(x, r);B(x,R)) ≤ Aφ̃p(r)

−(p−1)/p

whenever 0 < r < R/2.

Recently Joensuu [9, Corollary 6.3] treated the case when φ is nondecreas-
ing. His main idea was to use the rearrangement equivalent norm for ∥f∥φp,G

([5, 7, 8]), as an extension of Adams and Hurri-Syrjänen [3, Theorem 2.11] in
the case when φ(t) = (log(e+ t))β with p = n/α > 1 and 0 ≤ β ≤ p− 1. Our
proof will be done straightforward from the definition of capacity, and several
technical assumptions posed in [9] are removed.

Throughout this note, let A denote various constants independent of the
variables in question and A(a, b, · · · ) be a constant that depends on a, b, · · · .
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Remark 1.1. If φ̃p(0) <∞, then Cα,φp
({0};B(0, R)) > 0. In this case Iαf is

continuous when f ∈ Lφp(Rn) vanishes outside a compact set; for this fact,
we refer the reader to the paper [14, 16].

Remark 1.2. We here introduce another capacity. For a set E ⊂ Rn and an
open set G ⊂ Rn, we define

Bα,φp(E;G) = inf

∫
G

φp(f(y)) dy,

where the infimum is taken over all nonnegative measurable functions f on
Rn such that f = 0 outside G and Iαf(x) ≥ 1 for all x ∈ E. With the aid of
Adams and Hurri-Syrjänen [3], Joensuu [7, 8, 9] and Mizuta [12, Section 8.3,
Lemma 3.1], [11], one can find a constant A > 1 such that

A−1φ̃p(r)
−(p−1) ≤ Bα,φp

(B(x, r);B(x,R)) ≤ Aφ̃p(r)
−(p−1)

for 0 < r < R/2 and x ∈ Rn. Hence, in view of Theorem A, there is a
constant A > 1 such that

A−1Bα,φp(B(x, r);B(x,R))1/p ≤ Cα,φp(B(x, r);B(x,R)) ≤ ABα,φp(B(x, r);B(x,R))1/p

for 0 < r < R/2 and x ∈ Rn.

We write f ∼ g if there exists a constant A so that A−1g ≤ f ≤ Ag.

Example 1.3. For n = αp, consider the function

φ(t) = (log(e+ t))β .

If β < p− 1, then

φ̃p(r) ∼ (log(e+ 1/r))−β/(p−1)+1

for 0 < r < 1. In this case

Cα,φp(B(x0, r);B(x0, R)) ∼ (log(e+ 1/r))(β−p+1)/p

whenever 0 < r < R/2 and x0 ∈ Rn.
If β = p− 1, then

φ̃p(r) ∼ log(e+ (log(e+ 1/r)))

for 0 < r < 1. In this case

Cα,φp
(B(x0, r);B(x0, R)) ∼ (log(e+ (log(e+ 1/r))))−(p−1)/p

whenever 0 < r < R/2 and x0 ∈ Rn.

For further related results, see Aissaoui and A. Benkirane [4], Adams and
Hurri-Syrjänen [2], Edmunds and Evans [6] and Mizuta and Shimomura [14,
15, 16].
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2 Proof of Theorem A

First we collect properties which follow from condition (φ1) (see [12], [14,
Lemma 2.3], [13, Section 7]).

(φ2) φ satisfies the doubling condition, that is, there exists c2 > 1 such that

c−1
2 φ(r) ≤ φ(2r) ≤ c2φ(r) whenever r > 0.

(φ3) For each γ > 0, there exists c3 = c3(γ) ≥ 1 such that

c−1
3 φ(r) ≤ φ(rγ) ≤ c3φ(r) whenever r > 0.

(φ4) For each γ > 0, there exists c4 = c4(γ) ≥ 1 such that

sγφ(s) ≤ c4t
γφ(t) whenever 0 < s < t.

(φ5) For each γ > 0, there exists c5 = c5(γ) ≥ 1 such that

t−γφ(t) ≤ c5s
−γφ(s) whenever 0 < s < t.

(φ6) If φ and φ1 are positive monotone functions on [0,∞) satisfying (φ1),
then for each γ > 0 then there exists a constant c6 = c6(γ) ≥ 1 such
that

c6
−1φ(r) ≤ φ(rγφ1(r)) ≤ c6φ(r) whenever r > 0.

Remark 2.1. For each A1 > 0 there exists A2 > 0 such that

A1φp(r) ≥ φp(A2r) whenever r > 0. (2.1)

Remark 2.2. If αp < n, then we see from (φ2) and (φ5) that

φ̃p(r) ∼ [rn−αpφ(r−1)]−1/(p−1) (2.2)

whenever 0 < r < R/2.

Remark 2.3. If n = αp and 0 < R ≤ 1, then φ̃p is of logarithmic type on
[0, R2], that is, there exists c > 0 such that

c−1φ̃p(r) ≤ φ̃p(r
2) ≤ cφ̃p(r) whenever 0 ≤ r ≤ R2.
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In fact, we see from (φ1) that

φ̃p(r
2) =

∫ R

r2
[φ(t−1)]−1/(p−1) dt/t

=

∫ R2

r2
[φ(t−1)]−1/(p−1) dt/t+

∫ R

R2

[φ(t−1)]−1/(p−1) dt/t

= 2

∫ R

r

[φ(t−2)]−1/(p−1) dt/t+

∫ R

R2

[φ(t−1)]−1/(p−1) dt/t

≤ 2c
1/(p−1)
1

∫ R

r

[φ(t−1)]−1/(p−1) dt/t+

∫ R

R2

[φ(t−1)]−1/(p−1) dt/t

≤ (2c
1/(p−1)
1 + 1)φ̃p(r)

whenever 0 < r ≤ R2. Since φ̃p(r) ≤ φ̃p(r
2), we see that φ̃p is of logarithmic

type on [0, R2].
If R2 < r < R, then one sees that φ̃p(r) ∼ φ(R−1)−1/(p−1) log(R/r).

Here let us give an upper estimate of (α,φp)-capacity of balls.

Lemma 2.4. There exists a constant A > 0 such that

Cα,φp(B(x0, r);B(x0, 2r)) ≤ A[rn−αpφ(r−1)]1/p

whenever r > 0 and x0 ∈ Rn.

Proof. Without loss of generality we may assume that x0 = 0. For simplicity,
set

ψ(r) = [rn−αpφ(r−1)]1/p.

For r > 0, consider the function

fr(y) = |y|−α

for r < |y| < 2r and fr = 0 elsewhere. If x ∈ B(0, r) and y ∈ B(0, 2r)\B(0, r),
then |x− y| < 3r, so that

Iαfr(x) ≥ (3r)α−n

∫
B(0,2r)\B(0,r)

|y|−α dy = A1

with a constant A1 = A1(α, n) > 0. It follows from the definition of capacity
that

Cα,φp(B(0, r);B(0, 2r)) ≤ ∥fr/A1∥φp,B(0,2r).

Here, in view of (φ6) with φ1(r) = φ(r−1)−1/p, we see that∫
B(0,2r)

φp(fr(y)/ψ(r)) dy ≤ A2

∫
B(0,2r)\B(0,r)

r−αpψ(r)−pφ(r−1) dy

= A3
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with constants A2 = A2(c6) > 0 and A3 = A3(c6, n) > 0. Hence, in view of
(2.1), we can find A4 > 0 such that

∥fr∥φp,B(0,2r) ≤ A4ψ(r).

Now we establish

Cα,φp
(B(0, r);B(0, 2r)) ≤ A−1

1 ∥fr∥φp,B(0,2r)

≤ A−1
1 A4ψ(r),

which proves the lemma.

For 0 < R ≤ 1, we take r0 = r0(R) > 0 such that r < rφ̃p(r)
1/n ≤

√
r for

0 < r < r0 and∫ R

r0

[φ(t−1)]−1/(p−1)dt/t ≥ 2

∫ R

R2

[φ(t−1)]−1/(p−1)dt/t. (2.3)

By Lemma 2.4 and Remark 2.2, we obtain the following result.

Corollary 2.5. Suppose αp < n. Then there exists a constant A > 0
independent of R such that

Cα,φp
(B(x0, r);B(x0, R)) ≤ Aφ̃p(r)

−(p−1)/p

whenever 0 < r < R/2 and x0 ∈ Rn.

Next we prove the following result.

Lemma 2.6. Let αp = n and 0 < R ≤ 1. Then there exists a constant A > 0
independent of R such that

Cα,φp(B(x0, r);B(x0, R)) ≤ Aφ̃p(r)
−(p−1)/p

whenever 0 < r < r0 and x0 ∈ Rn.

Proof. Suppose αp = n, 0 < R ≤ 1 and x0 = 0. For 0 < r < r0 and
0 < K < 1, consider the function

fr,K(y) = |y|−α[φ(K|y|−1)]−1/(p−1)

for r < |y| < KR and fr,K = 0 elsewhere. If x ∈ B(0, r) and y ∈ B(0, R) \
B(0, r), then |x− y| < 2|y|, so that

Iαfr,K(x) ≥ 2α−n

∫
B(0,KR)\B(0,r)

|y|α−nfr,K(y) dy

≥ 2α−nωn−1

∫ KR

r

[φ(K/t)]−1/(p−1) dt/t

= 2α−nωn−1φ̃p(r/K),
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where ωn−1 is the surface measure of the boundary of the unit ball in Rn. If
K = φ̃p(r)

−1/n(< 1), then we see from (φ1) and (2.3) that

φ̃p(r/K) =

∫ R

r/K

[φ(1/t)]−1/(p−1) dt/t

≥
∫ R

√
r

[φ(1/t)]−1/(p−1) dt/t

≥ 2c
−1/(p−1)
1

∫ R2

r

[φ(1/t)]−1/(p−1) dt/t

≥ 2c
−1/(p−1)
1

(∫ R

r

[φ(1/t)]−1/(p−1) dt/t− 2−1

∫ R

r0

[φ(1/t)]−1/(p−1) dt/t

)
≥ c

−1/(p−1)
1 φ̃p(r).

Thus it follows that

Iαfr,K(x) ≥ 2α−nωn−1c
−1/(p−1)
1 φ̃p(r) = A1φ̃p(r)

with a constant A1 = 2α−nωn−1c
−1/(p−1)
1 , which implies

Cα,φp(B(0, r);B(0, R)) ≤ ∥fr,K/{A1φ̃p(r)}∥φp,B(0,R) = {A1φ̃p(r)}−1∥fr,K∥φp,B(0,R).

Here note from (φ6) with φ1(r) = φ(r)−1/p that∫
B(0,KR)

φp(K
αfr,K(y)) dy

≤ c6

∫
B(0,KR)\B(0,r)

(K/|y|)αp[φ(K|y|−1)]−p/(p−1)φ(K|y|−1) dy

= A2K
αp

∫ KR

r

[φ(K/t)]−1/(p−1) dt/t ≤ A2

with K = φ̃p(r)
−1/n and A2 = c6ωn−1. This implies by (2.1) that there exists

a constant A3 > 0 such that

∥fr,K∥φp,B(0,R) ≤ A3K
−α = A3φ̃p(r)

1/p.

Now it follows that

Cα,φp(B(0, r);B(0, R)) ≤ A−1
1 φ̃p(r)

−1∥fr,K∥φp,B(0,R)

≤ A−1
1 A3φ̃p(r)

−1+1/p.

Thus the lemma is proved.
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By Corollary 2.5 and Lemma 2.6, we find the following result.

Theorem 2.7. Suppose p > 1 and 0 < R ≤ 1. Then there exist constants
A > 0 independent of R and r0 = r0(R) > 0 such that

Cα,φp(B(x0, r);B(x0, R)) ≤ Aφ̃p(r)
−(p−1)/p

whenever 0 < r < r0 and x0 ∈ Rn.

Remark 2.8. Suppose p > 1. Then for each R > 0 one can find a constant
A(R) > 0 such that

Cα,φp(B(x0, r);B(x0, R)) ≤ A(R)φ̃p(r)
−(p−1)/p

whenever 0 < r < R/2 and x0 ∈ Rn.
In fact, if 0 < R ≤ 1 and 0 < r < r0, then this is a consequence of Theorem

2.7. If 0 < R ≤ 1 and r0 ≤ r < R/2, then

Cα,φp(B(x0, r);B(x0, R)) ≤ Cα,φp(B(x0, R/2);B(x0, R))

and hence one can take A(R) > 0 such that

Cα,φp(B(x0, R/2);B(x0, R)) ≤ A(R)φ̃p(r0)
−(p−1)/p.

The case R ≥ 1 is similarly treated.

Next we give a lower estimate of (α, φp)-capacity of balls.

Theorem 2.9. For R > 0, there exists a constant A = A(R) > 0 such that

φ̃p(r)
−(p−1)/p ≤ ACα,φp(B(x0, r);B(x0, R))

whenever 0 < r < R/2 <∞ and x0 ∈ Rn.

Proof. As above we assume that x0 = 0. For 0 < r < R/2, take a nonnegative
measurable function f on B(0, R) such that

Iαf(x) ≥ 1 for x ∈ B(0, r).

Then we have by Fubini’s theorem∫
B(0,r)

dx ≤
∫
B(0,r)

Iαf(x) dx

≤
∫
B(0,R)

(∫
B(0,r)

|x− y|α−n dx

)
f(y) dy

≤ A1r
n

∫
B(0,R)

(r + |y|)α−nf(y) dy,
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so that

1 ≤ A1

∫
B(0,R)

(r + |y|)α−nf(y) dy. (2.4)

We show that∫
B(0,R)

(r + |y|)α−nf(y) dy ≤ A2φ̃p(r)
−1/p+1∥f∥φp,B(0,R). (2.5)

For this purpose, suppose ∥f∥φp,B(0,R) ≤ 1. Then, considering

k(y) = φ̃p(r + |y|)−1/p(r + |y|)−α[(r + |y|)n−αpφ((r + |y|)−1)]−1/(p−1),

we find by (φ4), (φ6) and Remark 2.2∫
B(0,R/2)

(r + |y|)α−nf(y) dy

≤
∫
B(0,R/2)

(r + |y|)α−nk(y) dy

+A3

∫
B(0,R/2)

(r + |y|)α−nf(y)

(
f(y)

k(y)

)p−1
φ(f(y))

φ(k(y))
dy

≤ A4

{∫ R

r

φ̃p(t)
−1/p[tn−αpφ(t−1)]−1/(p−1) dt/t

+

∫
B(0,R)

φ̃p(r + |y|)(p−1)/pφp(f(y)) dy

}
≤ A5

{
φ̃p(r)

1−1/p + φ̃p(r)
(p−1)/p

∫
B(0,R)

φp(f(y)) dy

}
≤ 2A5φ̃p(r)

1−1/p.

Next, considering

k = φ̃p(R/2)
−1/p(R/2)−α[(R/2)n−αpφ((R/2)−1)]−1/(p−1)

∼ φ̃p(R/2)
1−1/p(R/2)−α,
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we find by (φ4), (φ6) and Remark 2.2∫
B(0,R)\B(0,R/2)

(r + |y|)α−nf(y) dy

≤ (R/2)α−n

∫
B(0,R)\B(0,R/2)

f(y) dy

≤ (R/2)α−n

∫
B(0,R)\B(0,R/2)

k dy

+A6(R/2)
α−n

∫
B(0,R)\B(0,R/2)

f(y)

(
f(y)

k

)p−1
φ(f(y))

φ(k)
dy

≤ A7φ̃p(R/2)
1−1/p

(
1 +

∫
B(0,R)

φp(f(y)) dy

)
≤ 2A7φ̃p(R/2)

1−1/p

≤ 2A7φ̃p(r)
1−1/p.

Thus ∫
B(0,R)

(r + |y|)α−nf(y) dy ≤ A8φ̃p(r)
1−1/p

whenever ∥f∥φp,B(0,R) ≤ 1, which implies (2.5).
In view of (2.4), (2.5) and the definition of capacity, we find

1 ≤ A9φ̃p(r)
1−1/pCα,φp(B(0, r);B(0, R)),

which gives the conclusion.

Proof of Theorem A. Theorem A follows from Theorems 2.7 and 2.9 together
with Remark 2.8.

3 Cα,φ1
-capacity

In this section, we deal with the case p = 1. For this purpose, set

φ1(r) = rφ(r)

and
φ̃1(r) = rn−αφ(r−1).

Here suppose further that φ(r) is nondecreasing on (0,∞).

Theorem B. For R > 0, there exists a constant A > 0 such that

A−1φ̃1(r) ≤ Cα,φ1(B(x, r);B(x,R)) ≤ Aφ̃1(r)
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whenever 0 < r < R/2.

The proof is quite similar to that of Theorem A, and thus we omit it.
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