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Abstract

The notion of classical Newton capacity has been generalized to various
forms. Among others, Meyers introduced a general notion of Lp-capacity,
which is defined by general potentials of functions in the Lebesgue space Lp

and such notion of capacity has been proved to provide rich results in the
nonlinear potential theory as well as in the study of various function spaces
and partial differential equations; see e.g., Adams-Hedberg [1]. The most
useful Lp-capacity is Riesz capacity. The aim in this note is to estimate the
Riesz capacity of balls B(x, r) centered at x of radius r in the Orlicz setting.

1 Introduction and statement of results

For 0 < α < n and a locally integrable function f on Rn, we define the Riesz

potential Iαf of order α by

Iαf(x) =

∫
Rn

|x− y|α−nf(y) dy.

In the present note, we treat functions f satisfying an Orlicz condition :∫
Rn

|f(y)|pφ(|f(y)|) dy < ∞, (1.1)

where p > 1 and φ(r) is a positive monotone function on the interval (0,∞) which

is of logarithmic type; that is, there exists c1 > 0 such that

(φ1) c−1
1 φ(r) ≤ φ(r2) ≤ c1φ(r) whenever r > 0.

We set Φp,φ(r) = rpφ(r) and

Φp,φ(0) = 0,

because we will see from (φ4) below that

lim
r→0+

Φp,φ(r) = 0;
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see [16, p205].

We denote by LΦp,φ(Rn) the family of all locally integrable functions g on Rn

such that

Φp,φ(g) ≡
∫
Rn

Φp,φ(|g(x)|) dx < ∞.

Let G be a bounded open set in Rn. For E ⊂ G, the relative (α,Φp,φ)-capacity

is defined by

Cα,Φp,φ(E;G) = inf
f
Φp,φ(f),

where the infimum is taken over all functions f such that f = 0 outside G and

Iαf(x) ≥ 1 for all x ∈ E

(cf. Adams-Hedberg [1], Meyers [12], Ziemer [21] and the first author [13, 14]).

Our first aim in the present note is to give an estimate of (α,Φp,φ)-capacity of

balls. We denote by B(x, r) the open ball centered at x of radius r. For fixed α,

set

φp(r) =

∫ 1

r

[tn−αpφ(t−1)]−1/(p−1) dt/t

when 0 ≤ r < 1.

As an extension of Adams-Hurri-Syrjänen [3], Joensuu [11] and Mizuta [14,

Section 8.3, Lemma 3.1], we state our theorem in the following.

Theorem A. There exists a constant A1 > 0 such that

A−1
1 φp(r)

−(p−1) ≤ Cα,Φp,φ(B(0, r);B(0, 1)) ≤ A1φp(r)
−(p−1)

whenever 0 < r < 1/2.

Theorem A was proved by Adams-Hurri-Syrjänen [3, Theorem 2.11] in the case

when φ(t) = (log(e+ t))β with p = n/α > 1 and 0 ≤ β ≤ p− 1. Recently Joensuu

[9, 10, 11] treated the case when φ is nondecreasing. Their main idea was to use the

rearrangement equivalent norm for ∥f∥LΦp,φ (Rn) ([6, 9, 10]). Our proof will be done

straightforward from the definition of capacity, and several technical assumptions

posed in [11] are removed. If φp(0) < ∞, then Cα,Φp,φ({0};B(0, 1)) > 0, and

Iαf is continuous when f ∈ LΦp,φ(Rn) has compact support, in view of Mizuta-

Shimomura [18] .

If αp < n, then we see from (φ4) below that

φp(r) ∼ [rn−αpφ(r−1)]−1/(p−1)

when 0 < r < 1/2, where we write f ∼ g if there exists a constant A > 0 so that

A−1g ≤ f ≤ Ag.

2



Corollary 1.1. If αp < n, then

Cα,Φp,φ(B(0, r);B(0, 1)) ∼ rn−αpφ(r−1)

whenever 0 < r < 1/2.

Example 1.2. For n = αp, consider the function

φ(t) = (log(e+ t))β.

If β < p− 1, then

φp(r) ∼ (log(e+ 1/r))−β/(p−1)+1

for 0 < r < 1. In this case

Cα,Φp,φ(B(0, r);B(0, 1)) ∼ (log(e+ 1/r))β−p+1

whenever 0 < r < 1/2.

If β = p− 1, then

φp(r) ∼ log(e+ (log(e+ 1/r)))

for 0 < r < 1. In this case

Cα,Φp,φ(B(0, r);B(0, 1)) ∼ (log(e+ (log(e+ 1/r))))−p+1

whenever 0 < r < 1/2.

Remark 1.3. We here introduce another capacity. Define

∥g∥LΦp,φ (Rn) = inf{λ > 0 : Φp,φ(g/λ) ≤ 1}.

This is a quasi-norm in LΦp,φ(Rn). For a set E ⊂ G, we define

Nα,Φp,φ(E;G) = inf
f
∥f∥p

LΦp,φ (Rn)
,

where the infimum is taken over all nonnegative measurable functions f on Rn

such that f = 0 outside G and Iα(x)f(x) ≥ 1 for all x ∈ E. With the aid of [8],

one can find a constant A > 1 such that

A−1φp(r)
−(p−1) ≤ Nα,Φp,φ(B(0, r);B(0, 1)) ≤ Aφp(r)

−(p−1)

for 0 < r < 1/2. This implies that two quantities Cα,Φp,φ(B(0, r);B(0, 1)) and

Nα,Φp,φ(B(0, r);B(0, 1)) are comparable. We do not know whether two capacites

Cα,Φp,φ(·;B(0, 1)) and Nα,Φp,φ(·;B(0, 1)) are comparable or not.
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Next consider the Morrey-Orlicz space Mν,Φp,φ(Rn) of all functions g such that

sup
x∈Rn,r>0

rν −
∫
B(x,r)

Φp,φ(|g(y)|) dy < ∞

with the quasi-norm

∥g∥Mν,Φp,φ (Rn) = inf

{
λ > 0 : sup

x∈Rn,r>0
rν −

∫
B(x,r)

Φp,φ(|g(y)|/λ) dy ≤ 1

}
.

For fundamental properties of Morrey-Orlicz space, we refer the reader to the pa-

pers by Adams-Xiao [4], Mizuta-Nakai-Ohno-Shimomura [15] and Mizuta-Shimomura

[19, 20] .

Our second aim in the present note is to give an estimate of Morrey-Orlicz

capacity of balls defined by

Nα,Mν,Φp,φ (E;G) = inf
f
∥f∥pMν,Φp,φ (Rn)

,

where the infimum is taken over all functions f such that f = 0 outside G and

Iαf(x) ≥ 1 for all x ∈ E.

For fixed α, ν, consider

φ̃p(r) =

∫ 1

r

[tν−αpφ(t−1)]−1/p dt/t

when 0 < r < 1.

Theorem B. Suppose αp ≤ ν < n. There exists a constant A2 > 0 such that

A−1
2 φ̃p(r)

−p ≤ Nα,Mν,Φp,φ (B(0, r);B(0, 1)) ≤ A2φ̃p(r)
−p

whenever 0 < r < 1/2.

This is an extension of Adams-Xiao [4, Theorem 5.3].

The case ν = n was treated by Theorem A. If φ̃p(0) < ∞, then

Nα,Mν,Φp,φ ({0};B(0, 1)) > 0, and Iαf is continuous on Rn when f ∈ Mν,Φp,φ(Rn)

has compact support, in view of Mizuta-Shimomura [19, 20] .

Corollary 1.4. If αp < ν, then

Nα,Mν,Φp,φ (B(0, r);B(0, 1)) ∼ rν−αpφ(r−1)

whenever 0 < r < 1/2.
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Example 1.5. Let φ(t) = (log(e+ t))β . If αp < ν, then

φ̃p(r) ∼ [rν−αp(log(e+ 1/r))β]−1/p

for 0 < r < 1/2, so that

Nα,Mν,Φp,φ (B(0, r);B(0, 1)) ∼ rν−αp(log(e+ 1/r))β

whenever 0 < r < 1/2.

If αp = ν and β < p, then

φ̃p(r) ∼ (log(e+ 1/r))1−β/p

for 0 < r < 1/2, so that

Nα,Mν,Φp,φ (B(0, r);B(0, 1)) ∼ (log(e+ 1/r))β−p

whenever 0 < r < 1/2.

For further related results, see Aissaoui-Benkirane [5], Adams-Hurri-Syrjänen

[2], Edmunds-Evans [7] and Mizuta-Shimomura [16, 17, 18].

Throughout this note, let A denote various constants independent of the vari-

ables in question and A(a, b, · · · ) be a constant that depends on a, b, · · · .

2 Proof of Theorem A

First we collect properties which follow from condition (φ1) (see [14], [16, Lemma

2.3], [15, Section 7]).

(φ2) φ satisfies the doubling condition, that is, there exists c2 > 1 such that

c−1
2 φ(r) ≤ φ(2r) ≤ c2φ(r) whenever r > 0.

(φ3) For each γ > 0, there exists c3 = c3(γ) ≥ 1 such that

c−1
3 φ(r) ≤ φ(rγ) ≤ c3φ(r) whenever r > 0.

(φ4) For each γ > 0, there exists c4 = c4(γ) ≥ 1 such that

sγφ(s) ≤ c4t
γφ(t) whenever 0 < s < t.

(φ5) For each γ > 0, there exists c5 = c5(γ) ≥ 1 such that

t−γφ(t) ≤ c5s
−γφ(s) whenever 0 < s < t.
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(φ6) If φ and φ1 are positive monotone functions on [0,∞) satisfying (φ1), then

for each γ > 0 there exists a constant c6 = c6(γ) ≥ 1 such that

c6
−1φ(r) ≤ φ(rγφ1(r)) ≤ c6φ(r) whenever r > 0.

Consider the function

Φ̄p,φ(r) =

∫ r

0

sup
0<s<t

s−1Φp,φ(s) dt.

Then Φ̄p,φ is nondecreasing and

Φ̄p,φ(r) ∼ Φp,φ(r)

by (φ4). Thus ∥ · ∥LΦ̄p,φ (Rn) defines an equivalent norm to ∥ · ∥LΦp,φ (Rn), and

Cα,Φp,φ(E,B(0, 1)) ∼ Cα,Φ̄p,φ
(E,B(0, 1))

for E ⊂ B(0, 1/2).

Lemma 2.1. There exists a constant A > 0 such that

Cα,Φp,φ(B(0, r), B(0, 1)) ≤ Aφp(r)
−(p−1)

for 0 < r < 1/2.

Proof. We prove this lemma only when αp = n. Set K = φp(r). If r > 0 is small,

say 0 < r < r0
(
< 1/2

)
, then we see from (φ4) that

rK1/α <
√
r.

For 0 < r < r0, consider the function

fr(y) = K−1|y|−α[φ(K−1/α|y|−1)]−1/(p−1)

for r < |y| < K−1/α and fr = 0 elsewhere. If y ∈ B(0, 1) \B(0, r) and x ∈ B(0, r),

then |x− y| < 2|y|. Hence we have

Iαfr(x) ≥ 2α−n

∫
B(0,1)\B(0,r)

|y|α−nfr(y) dy

≥ 2α−nωn−1K
−1

∫ 1

rK1/α

[φ(t−1)]−1/(p−1) dt/t

≥ AK−1

∫ 1

√
r

[φ(t−1)]−1/(p−1) dt/t

≥ A,
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since φp(r) is of log-type, where ωn−1 denotes the area of the unit sphere. Hence

we obtain

Cα,Φp,φ(B(0, r), B(0, 1)) ≤ AΦp,φ(fr).

Since φ(fr) ≤ Aφ(K−1/α|y|−1) by (φ6), we obtain∫
B(0,1)

Φp,φ(fr(y)) dy ≤ AK−p

∫
B(0,K−1/α)\B(0,r)

|y|−αpφ(K−1/α|y|−1)−p/(p−1)+1 dy

≤ AK−p+1.

Thus it follows that

Cα,Φp,φ(B(0, r), B(0, 1)) ≤ AK−p+1

for 0 < r < r0.

If r0 ≤ r < 1/2, then

Cα,Φp,φ(B(0, r), B(0, 1)) ≤ Cα,Φp,φ(B(0, 1/2), B(0, 1))

= A

≤ AK−p+1,

which proves the lemma.

Lemma 2.2. There exists a constant A > 0 such that

Cα,Φp,φ(B(0, r), B(0, 1)) ≥ Aφp(r)
−(p−1).

for 0 < r < 1/2.

Proof. We prove this only when αp = n, since the case αp < n is proved similarly.

For 0 < r < 1/2, take a nonnegative measurable function f on B(0, 1) such that

Iαf(x) ≥ 1 for x ∈ B(0, r).

Then we have by Fubini’s theorem∫
B(0,r)

dx ≤
∫
B(0,r)

Iαf(x) dx

≤
∫
B(0,1)

(∫
B(0,r)

|x− y|α−n dx

)
f(y) dy

≤ Arn
∫
B(0,1)

(r + |y|)α−nf(y) dy,

so that

1 ≤ A

∫
B(0,1)

(r + |y|)α−nf(y) dy.
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We show that

1 ≤ A[φp(r)]
p−1Φp,φ(f). (2.1)

Let 0 < ε < 1 and K = φp(r). Considering

k(y) = εK−1(r + |y|)−α[φ(K−1/α(r + |y|)−1)]−1/(p−1),

we obtain ∫
B(0,1)

(r + |y|)α−nf(y) dy ≤
∫
B(0,1)

(r + |y|)α−nk(y) dy

+ A

∫
B(0,1)

(r + |y|)α−nf(y)

(
f(y)

k(y)

)p−1
φ(f(y))

φ(k(y))
dy

≤ AεK−1

∫ 1

0

[φ(K−1/α(r + t)−1)]−1/(p−1)(r + t)−1 dt

+ A(ε)Kp−1

∫
B(0,1)

f(y)pφ(f(y)) dy

≤ Aε+ A(ε)Kp−1Φp,φ(f),

since

φ(k(y)) ≥ A(ε)φ((K−1/α(r + |y|)−1)α[φ(K−1/α(r + |y|)−1)]−1/(p−1))

≥ A(ε)φ(K−1/α(r + |y|)−1)

by (φ2) and (φ6), and∫ 1

r

[φ(K−1/αt−1)]−1/(p−1) dt/t ≤
∫ K1/α

rK1/α

[φ(s−1)]−1/(p−1) ds/s

≤ AK +

∫ K1/α

1

[φ(s−1)]−1/(p−1) ds/s

≤ AK + Amax{1, [φ(K1/α)]−1/(p−1)} logK

≤ AK

by (φ6). Now it follows that

1 ≤ Aε+ A(ε)Kp−1Φp,φ(f).

By taking Aε = 1/2, we obtain (2.1), and hence

1 ≤ Aφp(r)
p−1Cα,Φp,φ(B(0, r);B(0, 1)),

which proves the conclusion.

Now we establish Theorem A by use of Lemmas 2.1 and 2.2.
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3 Proof of Theorem B

To prove Theorem B, we prepare some lemmas.

Lemma 3.1. If αp ≤ ν < n, then there exists a constant A > 0 such that

Nα,Mν,Φp,φ (B(0, r);B(0, 1)) ≤ Aφ̃p(r)
−p

whenever 0 < r ≤ 1/2.

Proof. We show this lemma only when αp = ν. For 0 < r < 1/2 and K = φ̃p(r),

consider the function

fr(y) = K−1|y|−α[φ(|y|−1)]−1/p

for r < |y| < 1 and fr = 0 elsewhere. If x ∈ B(0, r), then, as in the proof of

Lemma 2.1, we have

Iαfr(x) ≥ A,

so that

Nα,Mν,Φp,φ (B(0, r);B(0, 1)) ≤ A∥fr∥pMν,Φp,φ (Rn)
.

Setting

gr(y) = |y|−α[φ(|y|−1)]−1/p,

we have ∫
B(x,t)

Φp,φ(gr(y)) dy ≤ A

∫
B(0,t)

|y|−αp dy ≤ AtN−αp,

which implies that ∥gr∥Mν,Φp,φ (Rn) ≤ A. Hence it follows that

∥fr∥Mν,Φp,φ (Rn) ≤ AK−1∥gr∥Mν,Φp,φ (Rn) ≤ AK−1,

which proves the lemma.

Lemma 3.2. If αp ≤ ν < n, then there exists a constant A > 0 such that

Nα,Mν,Φp,φ (B(0, r);B(0, 1)) ≥ Aφ̃p(r)
−p

whenever 0 < r ≤ 1/2.

Proof. As before, we show this lemma only when αp = ν. For 0 < r < 1/2, take a

nonnegative measurable function f on B(0, 1) such that

Iαf(x) ≥ 1 for x ∈ B(0, r).
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Then, as in the proof of Lemma 2.2, we have

1 ≤ A

∫
B(0,1)

(r + |y|)α−nf(y) dy.

We show that

1 ≤ Aφ̃p(r)
p∥f∥pMν,Φp,φ (Rn)

. (3.1)

To show this, we may assume that ∥f∥Mν,Φp,φ (Rn) ≤ 1. Considering

k(y) = |y|−α[φ(|y|−1)]−1/p,

we find

−
∫
B(0,t)

f(y) dy ≤ −
∫
B(0,t)

k(y) dy + A−
∫
B(0,t)

f(y)

(
f(y)

k(y)

)p−1
φ(f(y))

φ(k(y))
dy

≤ At−α[φ(t−1)]−1/p + Atα(p−1)[φ(t−1)]−1/p −
∫
B(0,t)

f(y)pφ(f(y)) dy

≤ At−α[φ(t−1)]−1/p,

so that∫
B(0,1)

(r + |y|)α−nf(y) dy ≤ A

∫ 1

0

(∫
B(0,t)

f(y) dy

)
(r + t)α−n−1dt

≤ A

∫ 1

0

(r + t)−1[φ((r + t)−1)]−1/p dt

≤ Aφ̃(r),

which gives (3.1). Thus we obtain

1 ≤ Aφ̃p(r)
pNα,Mν,Φp,φ (B(0, r);B(0, 1)),

which proves the conclusion.

Now we establish Theorem B by use of Lemmas 3.1 and 3.2.
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