Riesz potentials and Sobolev embeddings on Morrey spaces of variable exponent

Yoshihiro Mizuta, Eiichi Nakai, Takao Ohno and Tetsu Shimomura

November 14, 2009

Abstract

Let α, ν, β, p and q be all variable exponents. Our aim in this paper is to deal with Sobolev embeddings for Riesz potentials of order α with functions f in Morrey spaces $L^{\Phi, \nu, \beta}(G)$ with $\Phi(t)=t^{p}(\log (e+t))^{q}$ over a bounded open set $G \subset \mathbf{R}^{n}$. Here p and q satisfy the log-Hölder and the loglog-Hölder conditions, respectively. Also the case when p attains the value 1 in some parts of the domain is included in our results.

1 Introduction

Let G be a bounded open set in \mathbf{R}^{n}. We denote by d_{G} the diameter of G.
For a measurable function $\alpha: \mathbf{R}^{n} \rightarrow(0, n)$, we define the Riesz potential of order α for an integrable function f on G by

$$
I_{\alpha(x)} f(x)=\int_{\mathbf{R}^{n}}|x-y|^{\alpha(x)-n} f(y) d y .
$$

Here and in what follows we assume that $f=0$ outside G. We also assume that $\alpha_{-} \equiv \operatorname{ess}_{\inf }^{x \in \mathbf{R}^{n}}{ }^{\alpha(x)>0}$.

We denote by $B(x, r)$ the ball $\left\{y \in \mathbf{R}^{n}:|y-x|<r\right\}$ with center x and of radius $r>0$, and by $|B(x, r)|$ its Lebesgue measure, i.e. $|B(x, r)|=\sigma_{n} r^{n}$, where σ_{n} is the volume of the unit ball in \mathbf{R}^{n}. We define the integral mean of f over $B(x, r)$ by

$$
f_{B(x, r)} f(y) d y=\frac{1}{|B(x, r)|} \int_{B(x, r)} f(y) d y .
$$

Following Cruz-Uribe and Fiorenza [5], we consider continuous functions p : $\mathbf{R}^{n} \rightarrow[1, \infty)$ and $q: \mathbf{R}^{n} \rightarrow \mathbf{R}$, which are called variable exponents. In this paper, we consider variable exponents p and q on \mathbf{R}^{n} such that

2000 Mathematics Subject Classification : Primary 31B15, 46E30
Key words and phrases : Morrey spaces of variable exponent, Riesz potentials, Sobolev embeddings, Sobolev's inequality, Trudinger's exponential inequality, Lipschitz spaces of variable exponent
(P1) $1 \leq p_{-} \equiv \inf _{x \in \mathbf{R}^{n}} p(x) \leq \sup _{x \in \mathbf{R}^{n}} p(x) \equiv p_{+}<\infty$;
(P2) $|p(x)-p(y)| \leq C / \log (e+1 /|x-y|) \quad$ whenever $x \in \mathbf{R}^{n}$ and $y \in \mathbf{R}^{n}$;
(Q1) $-\infty<q_{-} \equiv \inf _{x \in \mathbf{R}^{n}} q(x) \leq \sup _{x \in \mathbf{R}^{n}} q(x) \equiv q_{+}<\infty$;
(Q2) $|q(x)-q(y)| \leq C / \log (e+(\log (e+1 /|x-y|))) \quad$ whenever $x \in \mathbf{R}^{n}$ and $y \in \mathbf{R}^{n}$.

If p satisfies (P2) (resp. q satisfies (Q2)), then p (resp. q) is said to satisfy the log-Hölder (resp. loglog-Hölder) condition.

Set

$$
\Phi(x, r)=\Phi_{p, q}(x, r)=r^{p(x)}(\log (e+r))^{q(x)}
$$

For bounded measurable functions $\nu: \mathbf{R}^{n} \rightarrow(0, n]$ and $\beta: \mathbf{R}^{n} \rightarrow \mathbf{R}$, let $L^{\Phi, \nu, \beta}(G)$ be the set of all measurable functions f on G such that $\|f\|_{L^{\Phi, \nu, \beta}(G)}<\infty$, where

$$
\begin{aligned}
& \|f\|_{L^{\Phi, \nu, \beta}(G)} \\
& =\inf \left\{\lambda>0: \sup _{x \in G, 0<r<d_{G}} r^{\nu(x)}(\log (e+1 / r))^{\beta(x)} f_{B(x, r)} \Phi(y,|f(y)| / \lambda) d y \leq 1\right\}
\end{aligned}
$$

we set $f=0$ outside G. For the constant Morrey spaces, we refer to [19], [27] and $[15,22,24,25]$. For simplicity, in the case $\nu \equiv n$ and $\beta \equiv 0, L^{\Phi, \nu, \beta}(G)$ is denoted by $L^{p(\cdot)}(\log L)^{q(\cdot)}(G)$.

Throughtout this paper, we assume that (P1), (P2), (Q1) and (Q2) hold and that there exists a constant $K>0$ such that

$$
\begin{equation*}
K(p(x)-1)+q(x)>0 \tag{1.1}
\end{equation*}
$$

for all $x \in \mathbf{R}^{n}$. In this case we can find $c_{0}>e$ such that, for each fixed $x \in \mathbf{R}^{n}$, $\bar{\Phi}(x, r) \equiv r^{p(x)}\left(\log \left(c_{0}+r\right)\right)^{q(x)}$ is convex on $[0, \infty), \lim _{r \rightarrow 0} \bar{\Phi}(x, r)=\bar{\Phi}(x, 0)=0$ and $\lim _{r \rightarrow \infty} \bar{\Phi}(x, r)=\infty$ (see $\left[9\right.$, Theorem 5.1]). Then $\|\cdot\|_{L^{\Phi, \nu, \beta}(G)}$ is a quasi norm, since

$$
\Phi\left(x, c^{-1} r\right) \leq \bar{\Phi}(x, r) \leq \Phi(x, c r)
$$

for some constant $c>0$ independent of $x \in \mathbf{R}^{n}$ and $r \geq 0$. Furthermore, $t^{-1} \Phi(x, t)$ is uniformly almost increasing on $(0, \infty)$, that is, there exists a constant $C>0$ such that

$$
\begin{equation*}
s^{-1} \Phi(x, s) \leq C t^{-1} \Phi(x, t) \tag{1.2}
\end{equation*}
$$

whenever $0<s<t$ and $x \in \mathbf{R}^{n}$.
Our aim in this paper is to discuss the boundedness of the operator I_{α} : $f \longrightarrow I_{\alpha(x)} f(x)$ from the Morrey space $L^{\Phi, \nu, \beta}(G)$ to another Morrey space $L^{\Psi, \nu, \beta}(G)$ with suitable $\Psi(x, r)$. When $p_{-}=\inf _{x \in \mathbf{R}^{n}} p(x)>1$, the maximal functions are a crucial tool as in Hedberg [8], where an easy proof of Sobolev's inequality for Riesz potentials is given. Since we are mainly concerned with the case $p_{-}=1$, our strategy is to find an estimate of Riesz potentials by use of another Riesz-type potentials of 0 order, which plays a role of the maximal functions (see Sections 2
and 3). Our result contains the known result, as a special case, that I_{α} is bounded from $L^{1}(\log L)^{q}(G)$ to $L^{p^{*}}(\log L)^{p^{*} q-1}(G)$ for $p^{*}=n /(n-\alpha)$ and $q>0$ (O' Neil [26, Theorem 5.2]); see Remark 2.3.

In Section 4, we investigate the case $p_{-}>1$. For this purpose, we first show the boundedness of the Hardy-Littlewood maximal operator M. Our result contains the known result, as a special case, that I_{α} is bounded from $L^{p}(\log L)^{q}(G)$ to $L^{p^{*}}(\log L)^{p^{*} q / p}(G)$ for $p^{*}=n p /(n-\alpha p)$ and $q \in \mathbf{R}$ (O'Neil [26, Theorem 4.7]); see Remark 4.7. For related results, see [1, 3, 4, 16, 17, 18].

In Section 5, we are concerned with Morrey version of Trudinger's type exponential integrability for $I_{\alpha(x)} f(x)$ in the case $p_{-} \geq 1$. Our result contains the result of Trudinger [30] and [12, Corollaries 4.6 and 4.8] as special cases (Remark 5.4). The result is also an improvement of [15, Theorems 4.4 and 4.5]. For related results, see $[2,4,10,11,28,31]$.

In the last section we discuss the continuity of $I_{\alpha(x)} f(x)$. For a function ϕ : $\mathbf{R}^{n} \times(0, \infty) \rightarrow(0, \infty)$, let $\Lambda_{\phi}(G)$ be the set of all functions f on G such that $\|f\|_{\Lambda_{\phi}(G)}<\infty$, where

$$
\|f\|_{\Lambda_{\phi}}=\sup _{x, y \in G, x \neq y} \frac{2|f(x)-f(y)|}{\phi(x,|x-y|)+\phi(y,|x-y|)}
$$

See [23] for the function space Λ_{ϕ}. If $\phi(x, r)=r^{\gamma(x)}$, then we denote $\Lambda_{\phi}(G)$ by $\operatorname{Lip}_{\gamma(\cdot)}(G)$. In the last section we show the boundedness of the operator $I_{\alpha(\cdot)}$ from $L^{\Phi, \nu, \beta}(G)$ to $\Lambda_{\phi}(G)$ under some conditions. It is known that I_{α} is bounded from $L^{p}(G)$ to $\operatorname{Lip}_{\gamma}(G)$ for $0<\gamma=\alpha-n / p<1$. We extend this fact to the boundedness of $I_{\alpha(\cdot)}$ from $L^{p(\cdot)}$ to $\operatorname{Lip}_{\gamma(\cdot)}(G)$ as a corollary (Corollary 6.2).

Throughout this paper, let C denote various constants independent of the variables in question and $C(a, b, \cdots)$ be a constant that depends on a, b, \cdots.

2 Sobolev's inequality in the case $\boldsymbol{p}_{-}=1$

Recall that $\alpha: \mathbf{R}^{n} \rightarrow(0, n), \nu: \mathbf{R}^{n} \rightarrow(0, n]$ and $\beta: \mathbf{R}^{n} \rightarrow \mathbf{R}$ are bounded measurable functions and $\alpha_{-}>0$. Throughtout this section, we assume that

$$
\begin{equation*}
\underset{x \in \mathbf{R}^{n}}{\operatorname{ess} \inf }(1 / p(x)-\alpha(x) / \nu(x))>0 . \tag{2.1}
\end{equation*}
$$

In this case we have $\nu_{-} \geq \alpha_{-}>0$.
Our first aim is to give the following Morrey version of Sobolev's type inequality for Riesz potentials of functions satisfying Morrey conditions. We consider the Sobolev exponent

$$
\begin{equation*}
1 / p^{*}(x)=1 / p(x)-\alpha(x) / \nu(x) \tag{2.2}
\end{equation*}
$$

and the new modular function

$$
\begin{equation*}
\Psi(x, t)=t^{p^{*}(x)}(\log (e+t))^{p^{*}(x)(q(x) / p(x)+\alpha(x) \beta(x) / \nu(x))} . \tag{2.3}
\end{equation*}
$$

Theorem 2.1. Let $p_{-}=1$. Suppose that (2.1) holds. Then, for each $\varepsilon>0$, there exists a constant $C>0$ such that
$f_{B(z, r)} \Psi\left(x,\left|I_{\alpha(x)} f(x)\right|\right)\left(\log \left(e+\left|I_{\alpha(x)} f(x)\right|\right)\right)^{-(1+\varepsilon)} d x \leq C r^{-\nu(z)}(\log (e+1 / r))^{-\beta(z)-\varepsilon}$ whenever $z \in G, 0<r<d_{G}$ and $\|f\|_{L^{\Phi, \nu, \beta}(G)} \leq 1$.

Remark 2.2. For $\eta \in \mathbf{R}$, set

$$
\begin{aligned}
\widetilde{\Psi}_{\eta}(x, t) & =\Psi(x, t)(\log (e+t))^{-\eta} \\
& =t^{p^{*}(x)}(\log (e+t))^{p^{*}(x)(q(x) / p(x)+\alpha(x) \beta(x) / \nu(x))-\eta}
\end{aligned}
$$

Then $\widetilde{\Psi}_{\eta}(x, t)$ satisfies the condition (1.1) with $p(x)$ and $q(x)$ replaced by $p^{*}(x)$ and $p^{*}(x)(q(x) / p(x)+\alpha(x) \beta(x) / \nu(x))-\eta$, respectively, and thus $\|\cdot\|_{L^{\tilde{\eta}_{n}, \nu, \beta}(G)}$ is a quasi norm.

Remark 2.3. In this theorem, we can not take $\varepsilon=0$ (see [11, Remark 3.3] and O'Neil [26, Theorem 5.2]).

This theorem gives the following norm version.
Corollary 2.4. Let $p_{-}=1$. Suppose that (2.1) holds. Then, for $\varepsilon>0$, there exists a constant $C>0$ such that

$$
\left\|I_{\alpha(\cdot)} f\right\|_{L^{\tilde{\Psi}_{\varepsilon}, \nu, \beta}(G)} \leq C\|f\|_{L^{\Phi, \nu, \beta}(G)} .
$$

For $\varepsilon>0$, setting

$$
\rho_{\varepsilon}(r)=r^{-n}(\log (e+1 / r))^{-\varepsilon-1}
$$

we consider the logarithmic potential

$$
J_{\varepsilon} f(x)=\int_{G} \rho_{\varepsilon}(|x-y|) g(y) d y
$$

where $g(y)=\Phi(y,|f(y)|)=|f(y)|^{p(y)}(\log (e+|f(y)|))^{q(y)}$. Write

$$
\begin{aligned}
I_{\alpha(x)} f(x) & =\int_{B(x, \delta)}|x-y|^{\alpha(x)-n} f(y) d y+\int_{G \backslash B(x, \delta)}|x-y|^{\alpha(x)-n} f(y) d y \\
& =I_{1}(\delta)+I_{2}(\delta)
\end{aligned}
$$

Following the Hedberg trick [8], we give an estimate of $I_{1}(\delta)$ by $J_{\varepsilon} f(x)$, instead of maximal functions. After this, we give an estimate of $I_{2}(\delta)$ by use of Young's inequality. Finally, taking δ suitably, we obtain an estimate of $I_{\alpha(x)} f(x)$ by $J_{\varepsilon} f(x)$. For this purpose, we prepare some lemmas.

Let us begin with an estimate of $I_{1}(\delta)$ by $J_{\varepsilon} f(x)$.
Lemma 2.5. For $0<\delta \leq d_{G}$, $x \in G$ and a nonnegative integrable function f on G, set

$$
I_{1}(\delta)=\int_{B(x, \delta)}|x-y|^{\alpha(x)-n} f(y) d y
$$

Let $\varepsilon>0$ be fixed and set $J=J_{\varepsilon} f(x)$ for simplicity. Then there exists a constant $C>0$ such that

$$
\begin{aligned}
I_{1}(\delta) \leq & C\left\{\delta^{\alpha(x)-\nu(x) / p(x)}(\log (e+1 / \delta))^{-(q(x)+\beta(x)) / p(x)}\right. \\
& \left.+\delta^{\alpha(x)+(p(x)-1) \nu(x) / p(x)}(\log (e+1 / \delta))^{\beta(x)-(q(x)+\beta(x)) / p(x)+(1+\varepsilon)} J\right\}
\end{aligned}
$$

Proof. For $k>0$, we have by (1.2)

$$
\begin{aligned}
I_{1}(\delta) \leq & k \int_{B(x, \delta)}|x-y|^{\alpha(x)-n} d y \\
& +C \int_{B(x, \delta)}|x-y|^{\alpha(x)-n} f(y)\left(\frac{f(y)}{k}\right)^{p(y)-1}\left(\frac{\log (e+f(y))}{\log (e+k)}\right)^{q(y)} d y \\
\leq & C\left\{k \delta^{\alpha(x)}+\int_{B(x, \delta)}|x-y|^{\alpha(x)-n} g(y)\left(\frac{1}{k}\right)^{p(y)-1}\left(\frac{1}{\log (e+k)}\right)^{q(y)} d y\right\} \\
\leq & C\left\{k \delta^{\alpha(x)}+\delta^{\alpha(x)}(\log (e+1 / \delta))^{1+\varepsilon}\right. \\
& \left.\times \int_{B(x, \delta)} \rho_{\varepsilon}(|x-y|) g(y)\left(\frac{1}{k}\right)^{p(y)-1}\left(\frac{1}{\log (e+k)}\right)^{q(y)} d y\right\} .
\end{aligned}
$$

We set

$$
k=\delta^{-\nu(x) / p(x)}(\log (e+1 / \delta))^{-(q(x)+\beta(x)) / p(x)} .
$$

For $y \in B(x, \delta)$, note from (P2) that

$$
|(p(x)-p(y)) \log k| \leq C
$$

so that

$$
\begin{equation*}
k^{-p(y)} \leq C k^{-p(x)} . \tag{2.4}
\end{equation*}
$$

Similarly, by (Q2) we have

$$
\begin{equation*}
(\log (e+k))^{-q(y)} \leq C(\log (e+k))^{-q(x)} \tag{2.5}
\end{equation*}
$$

Consequently it follows from (2.4) and (2.5) that

$$
\begin{aligned}
I_{1}(\delta) \leq & C\left\{\delta^{\alpha(x)-\nu(x) / p(x)}(\log (e+1 / \delta))^{-(q(x)+\beta(x)) / p(x)}\right. \\
& \left.+\delta^{\alpha(x)+(p(x)-1) \nu(x) / p(x)}(\log (e+1 / \delta))^{\beta(x)-(q(x)+\beta(x)) / p(x)+(1+\varepsilon)} J\right\}
\end{aligned}
$$

Now the result follows.
Next we give an estimate for

$$
I_{2}(\delta)=\int_{G \backslash B(x, \delta)}|x-y|^{\alpha(x)-n} f(y) d y .
$$

Lemma 2.6. There exists a constant $C>0$ such that

$$
f_{B(x, r)} f(y) d y \leq C r^{-\nu(x) / p(x)}(\log (e+1 / r))^{-(q(x)+\beta(x)) / p(x)}
$$

for all $x \in G, 0<r<d_{G}$ and $f \geq 0$ satisfying $\|f\|_{L^{\Phi, \nu, \beta}(G)} \leq 1$.
Proof. For $k>0$, we have by (1.2)

$$
\begin{aligned}
f_{B(x, r)} f(y) d y & \leq k+C f_{B(x, r)} f(y)\left(\frac{f(y)}{k}\right)^{p(y)-1}\left(\frac{\log (e+f(y))}{\log (e+k)}\right)^{q(y)} d y \\
& =k+C f_{B(x, r)} g(y) k^{-p(y)+1}(\log (e+k))^{-q(y)} d y
\end{aligned}
$$

where $g(y)=f(y)^{p(y)}(\log (e+f(y)))^{q(y)}$ as before. Setting

$$
k=r^{-\nu(x) / p(x)}(\log (e+1 / r))^{-(q(x)+\beta(x)) / p(x)}
$$

we find by (P2) and (Q2)

$$
\begin{aligned}
f_{B(x, r)} f(y) d y & \leq k+C k r^{\nu(x)}(\log (e+1 / r))^{\beta(x)} f_{B(x, r)} g(y) d y \\
& \leq C k \\
& =C r^{-\nu(x) / p(x)}(\log (e+1 / r))^{-(q(x)+\beta(x)) / p(x)}
\end{aligned}
$$

as required.
Lemma 2.7. Let λ, μ, ν, τ and γ are real numbers. Suppose h is a nonnegative measurable function on \mathbf{R}^{n} such that

$$
\int_{B(0, r)} h(y) d y \leq r^{-\lambda}(\log (e+1 / r))^{-\mu}
$$

for all $r>0$. Then there exist a constant $C>0$ such that

$$
\int_{B\left(0, r_{2}\right) \backslash B\left(0, r_{1}\right)}|y|^{-\tau}(\log (1 /|y|))^{-\gamma} h(y) d y \leq C \int_{r_{1}}^{2 r_{2}} t^{-\tau-\lambda}(\log (e+1 / t))^{-\mu-\gamma} \frac{d t}{t}
$$

whenever $0<r_{1} \leq r_{2}<\infty$.
Proof. By the integration by parts we have

$$
\begin{aligned}
& \int_{B\left(0, r_{2}\right) \backslash B\left(0, r_{1}\right)}|y|^{-\tau}(\log (1 /|y|))^{-\gamma} h(y) d y \\
& \leq \int_{r_{1}}^{r_{2}}\left(\int_{B(0, t)} f(y) d y\right) d\left(-t^{-\tau}(\log (1 / t))^{-\gamma}\right)+r_{2}^{-\tau}\left(\log \left(1 / r_{2}\right)\right)^{-\gamma} \int_{B\left(0, r_{2}\right)} f(y) d y
\end{aligned}
$$

Hence it suffices to note that

$$
\begin{aligned}
r_{2}^{-\tau}\left(\log \left(1 / r_{2}\right)\right)^{-\gamma} \int_{B\left(0, r_{2}\right)} f(y) d y & \leq r_{2}^{-\tau-\lambda}\left(\log \left(e+1 / r_{2}\right)\right)^{-\mu-\gamma} \\
& \leq C \int_{r_{2}}^{2 r_{2}} t^{-\tau-\lambda}(\log (e+1 / t))^{-\mu-\gamma} \frac{d t}{t}
\end{aligned}
$$

Lemma 2.8. There exists a constant $C>0$ such that

$$
I_{2}(\delta) \leq C \delta^{\alpha(x)-\nu(x) / p(x)}(\log (e+1 / \delta))^{-(q(x)+\beta(x)) / p(x)}
$$

for all $x \in G, 0<\delta<d_{G}$ and $f \geq 0$ satisfying $\|f\|_{L^{\Phi, \nu, \beta}(G)} \leq 1$.
Proof. Let

$$
\eta=\underset{x \in G}{\operatorname{ess} \inf }(\nu(x) / p(x)-\alpha(x)) .
$$

Then $\eta>0$ by (2.1). By Lemmas 2.6 and 2.7 we have for all $x \in G$ and $0<\delta<d_{G}$

$$
\begin{aligned}
I_{2}(\delta) & \leq C \int_{\delta}^{2 d_{G}} t^{\alpha(x)-\nu(x) / p(x)}(\log (e+1 / t))^{-q(x) / p(x)-\beta(x) / p(x)} \frac{d t}{t} \\
& \leq C \delta^{\alpha(x)-\nu(x) / p(x)+\eta / 2}(\log (e+1 / \delta))^{-q(x) / p(x)-\beta(x) / p(x)} \int_{\delta}^{2 d_{G}} t^{-\eta / 2} \frac{d t}{t} \\
& \leq C \delta^{\alpha(x)-\nu(x) / p(x)}(\log (e+1 / \delta))^{-q(x) / p(x)-\beta(x) / p(x)},
\end{aligned}
$$

which completes the proof.
What remains for the proof of Theorem 2.1 is to give a Morrey property for $J_{\varepsilon} f(x)$.
Lemma 2.9. There exists a constant $C>0$ such that

$$
f_{B(z, r)} J_{\varepsilon} f(x) d x \leq C r^{-\nu(z)}(\log (e+1 / r))^{-\beta(z)-\varepsilon}
$$

for all $z \in G, 0<r<d_{G}$ and $f \geq 0$ satisfying $\|f\|_{L^{\Phi, \nu, \beta}(G)} \leq 1$.
Proof. For $z \in G$ and $0<r<d_{G}$, write

$$
\begin{aligned}
J_{\varepsilon} f(x) & =\int_{B(z, 2 r)} \rho_{\varepsilon}(|x-y|) g(y) d y+\int_{G \backslash B(z, 2 r)} \rho_{\varepsilon}(|x-y|) g(y) d y \\
& =J_{1}(x)+J_{2}(x) .
\end{aligned}
$$

Then we have

$$
\begin{aligned}
f_{B(z, r)} J_{1}(x) d x & \leq \int_{B(z, 2 r)}\left(f_{B(z, r)} \rho_{\varepsilon}(|x-y|) d x\right) g(y) d y \\
& \leq C r^{-n}(\log (e+1 / r))^{-\varepsilon} \int_{B(z, 2 r)} g(y) d y \\
& \leq C r^{-\nu(z)}(\log (e+1 / r))^{-\beta(z)-\varepsilon}
\end{aligned}
$$

and

$$
\begin{aligned}
f_{B(z, r)} J_{2}(x) d x & \leq C \int_{G \backslash B(z, 2 r)} \rho_{\varepsilon}(|z-y|) g(y) d y \\
& \leq C r^{-\nu(z)}(\log (e+1 / r))^{-\beta(z)-\varepsilon}
\end{aligned}
$$

where we use Lemma 2.7 for the last inequality.

Now we are ready to prove Theorem 2.1.
Proof of Theorem 2.1. We may assume that $f \geq 0$. For $\delta>0$, write

$$
I_{\alpha(x)} f(x)=I_{1}(\delta)+I_{2}(\delta)
$$

In view of Lemma 2.5, we find

$$
\begin{aligned}
I_{1}(\delta) \leq & C\left\{\delta^{\alpha(x)-\nu(x) / p(x)}(\log (e+1 / \delta))^{-(q(x)+\beta(x)) / p(x)}\right. \\
& \left.+\delta^{\alpha(x)+(p(x)-1) \nu(x) / p(x)}(\log (e+1 / \delta))^{\beta(x)-(q(x)+\beta(x)) / p(x)+(1+\varepsilon)} J\right\}
\end{aligned}
$$

Moreover, Lemma 2.8 yields

$$
I_{2}(\delta) \leq C \delta^{\alpha(x)-\nu(x) / p(x)}(\log (e+1 / \delta))^{-(q(x)+\beta(x)) / p(x)}
$$

so that

$$
\begin{aligned}
I_{\alpha(x)} f(x) \leq & C\left\{\delta^{\alpha(x)-\nu(x) / p(x)}(\log (e+1 / \delta))^{-(q(x)+\beta(x)) / p(x)}\right. \\
& \left.+\delta^{\alpha(x)+(p(x)-1) \nu(x) / p(x)}(\log (e+1 / \delta))^{\beta(x)-(q(x)+\beta(x)) / p(x)+(1+\varepsilon)} J\right\}
\end{aligned}
$$

Now, letting $\delta=\min \left\{d_{G}, J^{-1 / \nu(x)}(\log (e+J))^{-(\beta(x)+(1+\varepsilon)) / \nu(x)}\right\}$, we obtain

$$
I_{\alpha(x)} f(x) \leq C\left\{1+J^{1 / p^{*}(x)}(\log (e+J))^{-\alpha(x) \beta(x) / \nu(x)-q(x) / p(x)+(1+\varepsilon) / p^{*}(x)}\right\}
$$

By Lemma 2.9, we obtain

$$
\begin{aligned}
& f_{B(z, r)} \Psi\left(x, I_{\alpha(x)} f(x)\right)\left(\log \left(e+\left|I_{\alpha(x)} f(x)\right|\right)\right)^{-(1+\varepsilon)} d x \\
\leq & C f_{B(z, r)}(1+J) d x \\
\leq & C r^{-\nu(z)}(\log (e+1 / r))^{-\beta(z)-\varepsilon}
\end{aligned}
$$

for $z \in G$ and $0<r<d_{G}$, which completes the proof of Theorem 2.1.
Example 2.10. Let

$$
\omega(t)= \begin{cases}0 & \text { when } t=0 \\ 1 / \log (1 /|t|) & \text { when } 0<|t|<r_{0} \\ 1 / \log \left(1 / r_{0}\right) & \text { when }|t| \geq r_{0}\end{cases}
$$

and

$$
\eta(t)= \begin{cases}0 & \text { when } t=0 \\ 1 / \log \log (1 /|t|) & \text { when } 0<|t|<r_{0} \\ 1 / \log \log \left(1 / r_{0}\right) & \text { when }|t| \geq r_{0}\end{cases}
$$

for $0<r_{0}<1 / 4$. Consider

$$
p(x)=p\left(x_{1}, x_{2}\right)=1+a \omega\left(x_{2}\right)
$$

and

$$
q(x)=q\left(x_{1}, x_{2}\right)=b \eta\left(x_{2}\right),
$$

where $a>0$ and $b>0$. Then, note that $p(\cdot)$ satisfies the conditions (P1) and (P2) and $q(\cdot)$ satisfies the conditions (Q1) and (Q2). Let $\gamma>1$. If

$$
f(y)=\left|y_{2}\right|^{-1}\left(\log \left(e+1 /\left|y_{2}\right|\right)\right)^{-\gamma},
$$

then note that

$$
\begin{aligned}
f_{B(z, r)} f(y)^{p(y)}(\log (e+f(y)))^{q(y)} d y & \leq C r^{-1} \int_{0}^{r}\left|y_{2}\right|^{-1}\left(\log \left(e+1 /\left|y_{2}\right|\right)\right)^{-\gamma} d y_{2} \\
& \leq C r^{-1}(\log (e+1 / r))^{-\beta}
\end{aligned}
$$

for all $z \in \mathbf{B}=B(0,1)$ and $r>0$, when $\beta=\gamma-1>0$. Here we may assume that $x_{2} \neq 0$. Setting $Q(x)=\left\{y=\left(y_{1}, y_{2}\right) \in \mathbf{B}:\left|x_{1}-y_{1}\right|<\left|x_{2}\right|,\left|y_{2}\right|<\left|x_{2}\right|\right\}$, we note that

$$
\begin{aligned}
I_{\alpha} f(x) & \geq \int_{Q(x)}|x-y|^{\alpha-2} f(y) d y \\
& \geq C\left|x_{2}\right|^{\alpha-2} \int_{Q(x)} f(y) d y \\
& \geq C\left|x_{2}\right|^{\alpha-1} \int_{0}^{\left|x_{2}\right|}\left|y_{2}\right|^{-1}\left(\log \left(2+\left|y_{2}\right|^{-1}\right)\right)^{-\beta-1} d y_{2} \\
& \geq C\left|x_{2}\right|^{\alpha-1}\left(\log \left(2+\left|x_{2}\right|^{-1}\right)\right)^{-\beta}
\end{aligned}
$$

Since

$$
1 / p^{*}(x)-1 / p^{*}(y)=1 / p(x)-1 / p(y),
$$

we see that

$$
\begin{aligned}
& f_{B(0, r)} I_{\alpha} f(x)^{p^{*}(x)}\left(\log \left(e+I_{\alpha} f(x)\right)\right)^{(q(x) / p(x)+\alpha \beta) p^{*}(x)-(1+\varepsilon)} d x \\
\geq & C f_{B(0, r)}\left|x_{2}\right|^{-1}\left(\log \left(e+1 /\left|x_{2}\right|\right)\right)^{-\beta-\varepsilon-1} d x \\
\geq & C r^{-1}(\log (e+1 / r))^{-\beta-\varepsilon}
\end{aligned}
$$

for all $0<r<1$.
This implies that Theorem 2.1 is best possible as to the exponents appearing in the Morrey condition.

3 Sobolev's inequality in the case $p_{-}=1$ and $q_{-}>$ 0

Let $p_{-}=1$. In this section we assume that there exists a constant $q_{0}>0$ such that

$$
\begin{equation*}
s^{p(x)-1}(\log (e+s))^{q(x)-q_{0}} \leq t^{p(x)-1}(\log (e+t))^{q(x)-q_{0}} \tag{3.1}
\end{equation*}
$$

whenever $0<s<t$ and $x \in \mathbf{R}^{n}$. Let p^{*} and Ψ be as in (2.2) and (2.3), respectively. Under this assumption, Theorem 2.1 is shown to be valid for $\varepsilon=0$.

Theorem 3.1. Let $p_{-}=1$. Suppose that (2.1) and (3.1) hold. Then there exists a constant $C>0$ such that

$$
f_{B(z, r)} \Psi\left(x,\left|I_{\alpha(x)} f(x)\right|\right)\left(\log \left(e+\left|I_{\alpha(x)} f(x)\right|\right)\right)^{-1} d x \leq C r^{-\nu(z)}(\log (e+1 / r))^{-\beta(z)}
$$

for all $z \in G, 0<r<d_{G}$ and f satisfying $\|f\|_{L^{\Phi, \nu, \beta}(G)} \leq 1$.
Corollary 3.2. Let $p_{-}=1$. Suppose that (2.1) and (3.1) hold. Then there exists a constant $C>0$ such that

$$
\left\|I_{\alpha} f\right\|_{L^{\tilde{\Psi}_{1, \nu, \beta}(G)}} \leq C\|f\|_{L^{\Phi, \nu, \beta}(G)},
$$

where $\widetilde{\Psi}_{1}(x, t)=\Psi(x, t)(\log (e+t))^{-1}$.
REmARK 3.3. If $p(x)=1, q(x)=q>0, \nu(x)=n$ and $\beta(x)=0$, then $p^{*}=n /(n-$ α) and the Riesz operator I_{α} is bounded from $L^{1}(\log L)^{q}(G)$ to $L^{p^{*}}(\log L)^{p^{*} q-1}(G)$, which is a consequence of O'Neil [26, Theorem 5.2].

For $\varepsilon>0$, let

$$
\rho_{-\varepsilon}(r)=r^{-n}(\log (e+1 / r))^{\varepsilon-1} .
$$

For a nonnegative measurable function f on G, we define the logarithmic potential

$$
L_{\varepsilon} f(x)=\int_{\left\{y \in G:|x-y|^{-\varepsilon}<f(y)\right\}} \rho_{-\varepsilon}(|x-y|)(\log (e+f(y)))^{-\varepsilon} g(y) d y
$$

where $g(y)=f(y)^{p(y)}(\log (e+f(y)))^{q(y)}$.
For the proof of Theorem 3.1, we need to modify Lemmas 2.5 and 2.9 in the following manner.

Lemma 3.4. Let $0<\varepsilon \leq q_{0} / 2$ and

$$
F(\delta)=\int_{\left\{y \in B(x, \delta):|x-y|^{-\varepsilon}<f(y)\right\}}|x-y|^{\alpha(x)-n}\left(\frac{\log (e+f(y))}{\log (e+1 /|x-y|)}\right)^{\varepsilon} f(y) d y
$$

for $0<\delta<d_{G}$ and a nonnegative measurable function f on G. Then there exists a constant $C>0$ such that

$$
\begin{aligned}
F(\delta) \leq & C\left\{\delta^{\alpha(x)-\nu(x) / p(x)}(\log (e+1 / \delta))^{-(q(x)+\beta(x)) / p(x)}\right. \\
& \left.+\delta^{\alpha(x)+(p(x)-1) \nu(x) / p(x)}(\log (e+1 / \delta))^{\beta(x)-(q(x)+\beta(x)) / p(x)+1} L_{\varepsilon} f(x)\right\}
\end{aligned}
$$

Proof. Let $E=\left\{y \in B(x, \delta):|x-y|^{-\varepsilon}<f(y)\right\}$. For $k>0$, let

$$
E_{k}^{1}=\left\{y \in B(x, \delta):|x-y|^{-\varepsilon}<f(y) \leq k\right\}, \quad E_{k}^{2}=E \backslash E_{k}^{1} .
$$

Then we have

$$
\begin{aligned}
& \int_{E_{k}^{1}}|x-y|^{\alpha(x)-n}\left(\frac{\log (e+f(y))}{\log (e+1 /|x-y|)}\right)^{\varepsilon} f(y) d y \\
\leq & k(\log (e+k))^{\varepsilon} \int_{B(x, \delta)}|x-y|^{\alpha(x)-n}(\log (e+1 /|x-y|))^{-\varepsilon} d y \\
= & C k(\log (e+k))^{\varepsilon} \int_{0}^{\delta} t^{\alpha(x)-1}(\log (e+1 / t))^{-\varepsilon} d t \\
\leq & C k(\log (e+k))^{\varepsilon} \delta^{\alpha(x)-\alpha-/ 2}(\log (e+1 / \delta))^{-\varepsilon} \int_{0}^{\delta} t^{\alpha-/ 2-1} d t \\
= & C k(\log (e+k))^{\varepsilon} \delta^{\alpha(x)}(\log (e+1 / \delta))^{-\varepsilon},
\end{aligned}
$$

and, using (3.1),

$$
\begin{aligned}
& \int_{E_{k}^{2}}|x-y|^{\alpha(x)-n}\left(\frac{\log (e+f(y))}{\log (e+1 /|x-y|)}\right)^{\varepsilon} f(y) d y \\
\leq & \int_{E_{k}^{2}}|x-y|^{\alpha(x)-n}\left(\frac{\log (e+f(y))}{\log (e+1 /|x-y|)}\right)^{\varepsilon} f(y) \\
& \times C\left(\frac{f(y)}{k}\right)^{p(y)-1}\left(\frac{\log (e+f(y))}{\log (e+k)}\right)^{q(y)-2 \varepsilon} d y \\
= & C \int_{E_{k}^{2}}|x-y|^{\alpha(x)-n}(\log (e+1 /|x-y|))^{-\varepsilon}(\log (e+f(y)))^{-\varepsilon} g(y)
\end{aligned} \quad \begin{aligned}
& \quad \times\left(\frac{1}{k}\right)^{p(y)-1}\left(\frac{1}{\log (e+k)}\right)^{q(y)-2 \varepsilon} d y \\
& \leq C \delta^{\alpha(x)}(\log (e+1 / \delta))^{1-2 \varepsilon} \int_{E} \rho_{-\varepsilon}(|x-y|)(\log (e+f(y)))^{-\varepsilon} g(y) \\
& \quad \times\left(\frac{1}{k}\right)^{p(y)-1}\left(\frac{1}{\log (e+k)}\right)^{q(y)-2 \varepsilon} d y .
\end{aligned}
$$

Hence

$$
\begin{aligned}
& F(\delta) \leq C\left\{k(\log (e+k))^{\varepsilon} \delta^{\alpha(x)}(\log (e+1 / \delta))^{-\varepsilon}\right. \\
& \quad+\delta^{\alpha(x)}(\log (e+1 / \delta))^{1-2 \varepsilon} \int_{E} \rho_{-\varepsilon}(|x-y|)\left(\log (e+f(y))^{-\varepsilon} g(y)\right. \\
& \left.\quad \times\left(\frac{1}{k}\right)^{p(y)-1}\left(\frac{1}{\log (e+k)}\right)^{q(y)-2 \varepsilon} d y\right\}
\end{aligned}
$$

We set

$$
k=\delta^{-\nu(x) / p(x)}(\log (e+1 / \delta))^{-(q(x)+\beta(x)) / p(x)}
$$

Then we have for $y \in B(x, \delta)$,

$$
k^{-p(y)} \leq C k^{-p(x)}
$$

and

$$
(\log (e+k))^{-q(y)} \leq C(\log (e+k))^{-q(x)}
$$

by (2.4) and (2.5). Consequently it follows that

$$
\begin{aligned}
F(\delta) \leq C\{ & \delta^{\alpha(x)-\nu(x) / p(x)}(\log (e+1 / \delta))^{-(q(x)+\beta(x)) / p(x)} \\
& \left.+\delta^{\alpha(x)+(p(x)-1) \nu(x) / p(x)}(\log (e+1 / \delta))^{\beta(x)-(q(x)+\beta(x)) / p(x)+1} L_{\varepsilon} f(x)\right\} .
\end{aligned}
$$

Now the result follows.
Lemma 3.5. There exists a constant $C>0$ such that

$$
f_{B(z, r)} L_{\varepsilon} f(x) d x \leq C r^{-\nu(z)}(\log (e+1 / r))^{-\beta(z)}
$$

for all $z \in G, 0<r<d_{G}$ and $f \geq 0$ satisfying $\|f\|_{L^{\Phi, \nu, \beta}(G)} \leq 1$.
Proof. Let f be a nonnegative measurable function on G satisfying $\|f\|_{L^{\Phi, \nu, \beta}(G)} \leq 1$. Write

$$
\begin{aligned}
L_{\varepsilon} f(x)= & \int_{\left\{y \in B(z, 2 r):|x-y|^{-\varepsilon<f(y)\}}\right.} \rho_{-\varepsilon}(|x-y|)(\log (e+f(y)))^{-\varepsilon} g(y) d y \\
& +\int_{\left\{y \in G \backslash B(z, 2 r):|x-y|^{-\varepsilon}<f(y)\right\}} \rho_{-\varepsilon}(|x-y|)(\log (e+f(y)))^{-\varepsilon} g(y) d y \\
= & L_{1}(x)+L_{2}(x),
\end{aligned}
$$

where $g(y)=f(y)^{p(y)}(\log (e+f(y)))^{q(y)}$. By Fubini's theorem, we have

$$
\begin{aligned}
& \int_{B(z, r)} L_{1}(x) d x \\
\leq & C \int_{B(z, 2 r)}\left(\int_{\left\{y \in G:|x-y|^{-\varepsilon}<f(y)\right\}} \rho_{-\varepsilon}(|x-y|) d x\right)(\log (e+f(y)))^{-\varepsilon} g(y) d y \\
\leq & C \int_{B(z, 2 r)} g(y) d y \leq C r^{n-\nu(z)}(\log (e+1 / r))^{-\beta(z)} .
\end{aligned}
$$

For L_{2}, note that

$$
\begin{aligned}
L_{2}(x) & \leq C \int_{G \backslash B(z, 2 r)}|x-y|^{-n}(\log (e+1 /|x-y|))^{-1} g(y) d y \\
& \leq C \int_{G \backslash B(z, 2 r)}|z-y|^{-n}(\log (e+1 /|z-y|))^{-1} g(y) d y
\end{aligned}
$$

for $x \in B(z, r)$. Hence, as in the proof of Lemma 2.7, we see that

$$
\begin{aligned}
\int_{B(z, r)} L_{2}(x) d x & \leq C r^{n} \int_{G \backslash B(z, 2 r)}|z-y|^{-n}(\log (e+1 /|z-y|))^{-1} g(y) d y \\
& \leq C r^{n} \int_{2 r}^{2 d_{G}} t^{-\nu(z)}(\log (e+1 / t))^{-\beta(z)-1} \frac{d t}{t} \\
& \leq C r^{n-\nu(z)}(\log (e+1 / r))^{-\beta(z)-1}
\end{aligned}
$$

Thus this lemma is proved.

Proof of Theorem 3.1. We may assume that $f \geq 0$. For $\varepsilon=\min \left\{\alpha_{-} / 2, q_{0} / 2\right\}$ and $x \in \mathbf{R}^{n}$, set $L=L_{\varepsilon} f(x)$.

For $\delta>0$, write

$$
\begin{aligned}
I_{\alpha(x)} f(x) & =\int_{B(x, \delta)}|x-y|^{\alpha(x)-n} f(y) d y+\int_{G \backslash B(x, \delta)}|x-y|^{\alpha(x)-n} f(y) d y \\
& =I_{1}(\delta)+I_{2}(\delta)
\end{aligned}
$$

In view of Lemma 3.4, we find

$$
\begin{aligned}
I_{1}(\delta) \leq & \int_{B(x, \delta)}|x-y|^{\alpha(x)-n-\varepsilon} d y \\
& +\int_{\left\{y \in B(x, \delta):|x-y|^{-\varepsilon}<f(y)\right\}}|x-y|^{\alpha(x)-n}\left(\frac{(\log (e+f(y)))}{\log \left(e+|x-y|^{-\varepsilon}\right)}\right)^{\varepsilon} f(y) d y \\
\leq & C\left\{\delta^{\alpha(x)-\nu(x) / p(x)}(\log (e+1 / \delta))^{-(q(x)+\beta(x)) / p(x)}\right. \\
& \left.+\delta^{\alpha(x)+(p(x)-1) \nu(x) / p(x)}(\log (e+1 / \delta))^{\beta(x)-(q(x)+\beta(x)) / p(x)+1} L\right\}
\end{aligned}
$$

with $L=L_{\varepsilon} f(x)$. Moreover, Lemma 2.8 yields

$$
I_{2}(\delta) \leq C \delta^{\alpha(x)-\nu(x) / p(x)}(\log (e+1 / \delta))^{-(q(x)+\beta(x)) / p(x)}
$$

so that

$$
\begin{aligned}
I_{\alpha(x)} f(x) \leq & C\left\{\delta^{\alpha(x)-\nu(x) / p(x)}(\log (e+1 / \delta))^{-(q(x)+\beta(x)) / p(x)}\right. \\
& \left.+\delta^{\alpha(x)+(p(x)-1) \nu(x) / p(x)}(\log (e+1 / \delta))^{\beta(x)-(q(x)+\beta(x)) / p(x)+1} L\right\}
\end{aligned}
$$

Now, letting $\delta=\min \left\{d_{G}, L^{-1 / \nu(x)}(\log (e+L))^{-(\beta(x)+1) / \nu(x)}\right\}$, we obtain

$$
I_{\alpha(x)} f(x) \leq C\left\{1+L^{1 / p^{*}(x)}(\log (e+L))^{-\alpha(x) \beta(x) / \nu(x)-q(x) / p(x)+1 / p^{*}(x)}\right\} .
$$

In view of Lemma 3.5, we find

$$
\begin{aligned}
& f_{B(z, r)} \Psi\left(x, I_{\alpha(x)} f(x)\right)\left(\log \left(e+I_{\alpha(x)} f(x)\right)\right)^{-1} d x \\
\leq & C f_{B(z, r)}(1+L) d x \leq C r^{-\nu(z)}(\log (e+1 / r))^{-\beta(z)},
\end{aligned}
$$

which completes the proof of Theorem 3.1.
Example 3.6. Let

$$
\omega(t)= \begin{cases}0 & \text { when } t=0 \\ 1 / \log (1 /|t|) & \text { when } 0<|t|<r_{0} \\ 1 / \log \left(1 / r_{0}\right) & \text { when }|t| \geq r_{0}\end{cases}
$$

and

$$
\eta(t)= \begin{cases}0 & \text { when } t=0 \\ 1 / \log \log (1 /|t|) & \text { when } 0<|t|<r_{0} \\ 1 / \log \log \left(1 / r_{0}\right) & \text { when }|t| \geq r_{0}\end{cases}
$$

for $0<r_{0}<1 / 4$. Consider

$$
p(x)=p\left(x_{1}, x_{2}\right)=1+a \omega\left(x_{2}\right)
$$

and

$$
q(x)=q\left(x_{1}, x_{2}\right)=q+b \eta\left(x_{2}\right),
$$

where $a>0, q>0$ and $b>0$. Let $\gamma \in \mathbf{R}$. If

$$
f(y)=\left|y_{2}\right|^{-1}\left(\log \left(e+1 /\left|y_{2}\right|\right)\right)^{-\gamma}
$$

then note that

$$
f_{B(z, r)} f(y)^{p(y)}(\log (e+f(y)))^{q(y)} d y \leq C r^{-1}(\log (e+1 / r))^{-\beta}
$$

for all $z \in \mathbf{B}=B(0,1)$ and $r>0$, when $\beta=\gamma-1-q>0$. Further, for $0<\alpha<1$, we have

$$
I_{\alpha} f(x) \geq C\left|x_{2}\right|^{\alpha-1}\left(\log \left(e+1 /\left|x_{2}\right|\right)\right)^{-\gamma+1}
$$

for $x \in B(0,1)$. Take γ such that $\gamma<\delta+1+q$ for $\delta>0$. Then we see that

$$
\begin{aligned}
& f_{B(0, r)} I_{\alpha} f(x)^{p^{*}(x)}\left(\log \left(e+I_{\alpha} f(x)\right)\right)^{(q(x) / p(x)+\alpha \beta) p^{*}(x)-1+\delta} d x \\
\geq & C f_{B(0, r)}\left|x_{2}\right|^{-1}\left(\log \left(e+1 /\left|x_{2}\right|\right)\right)^{-\beta-1+\delta} d x=\infty
\end{aligned}
$$

for all $0<r<1$ and $\delta>0$. This implies that Theorem 3.1 is best possible as to the exponents appearing in the Morrey condition.

4 Sobolev's inequality in the case $p_{-}>1$

In this section, we are concerned with the case $p_{-}>1$. In this case, (1.1) holds for $K \geq-q_{-} /\left(p_{-}-1\right)$.

We first show the boundedness of the Hardy-Littlewood maximal operator:

$$
M f(x)=\sup _{B} f_{B}|f(y)| d y
$$

where the supremum is taken over all balls B containing x.
Theorem 4.1. Suppose $p_{-}>1$ and $\nu_{-}>0$ Then there exists a constant $C>0$ such that

$$
f_{B(z, r)} M f(x)^{p(x)}(\log (e+M f(x)))^{q(x)} d x \leq C r^{-\nu(z)}(\log (e+1 / r))^{-\beta(z)}
$$

for all $z \in G, 0<r<d_{G}$ and f with $\|f\|_{L^{\Phi, \nu, \beta}(G)} \leq 1$.
Remark 4.2. For the constant case, we refer the reader to [25].

To prove Theorem 4.1, we prepare several lemmas. Let us begin with the following result, which is a consequence of [20, Theorem 1].

Lemma 4.3 ([20, Theorem 1]). Suppose $p_{0}>1$ and $\nu_{-}>0$. Let f be a measurable function on G satisfying

$$
\begin{equation*}
f_{B(x, r)}|f(y)|^{p_{0}} d y \leq r^{-\nu(x)}(\log (e+1 / r))^{-\beta(x)} \tag{4.1}
\end{equation*}
$$

for all $x \in G$ and $0<r<d_{G}$. Then there exists a constant $C>0$ such that

$$
f_{B(z, r)} M f(x)^{p_{0}} d x \leq C r^{-\nu(x)}(\log (e+1 / r))^{-\beta(x)}
$$

for all $z \in G$ and $0<r<d_{G}$, where the constant C is independent of f satisfying (4.1).

Lemma 4.4. Suppose $\nu_{-}>0$. Let f be a nonnegative measurable function on G satisfying $\|f\|_{L^{\Phi, \nu, \beta}(G)} \leq 1$ such that

$$
\begin{equation*}
f(x) \geq 1 \quad \text { or } \quad f(x)=0 \quad \text { for each } x \in G . \tag{4.2}
\end{equation*}
$$

Then there exists a constant $C>0$ such that

$$
M f(x)^{p(x)}(\log (e+M f(x)))^{q(x)} \leq C M g(x)
$$

for all $x \in G$, where $g(y)=f(y)^{p(y)}(\log (e+f(y)))^{q(y)}$. In the above, the constant C is independent of f.

Proof. Let

$$
H=H_{x, r}=f_{B(x, r)} g(y) d y
$$

We shall show

$$
\begin{equation*}
f_{B(x, r)} f(y) d y \leq C H^{1 / p(x)}(\log (e+H))^{-q(x) / p(x)} \tag{4.3}
\end{equation*}
$$

for all $x \in G$ and $0<r<d_{G}$. Then

$$
M f(x) \leq C M g(x)^{1 / p(x)}(\log (e+M g(x)))^{-q(x) / p(x)} .
$$

This implies the desired conclusion.
To show (4.3), first consider the case when $H \geq 1$. Set

$$
k=H^{1 / p(x)}(\log (e+H))^{-q(x) / p(x)} \text {. }
$$

Then we have

$$
\begin{aligned}
f_{B(x, r)} f(y) d y & \leq k+C f_{B(x, r)} f(y)\left(\frac{f(y)}{k}\right)^{p(y)-1}\left(\frac{\log (e+f(y))}{\log (e+k)}\right)^{q(y)} d y \\
& =k+C f_{B(x, r)} g(y) k^{-p(y)+1}(\log (e+k))^{-q(y)} d y
\end{aligned}
$$

Since

$$
H \leq r^{-\nu(x)}(\log (e+1 / r))^{-\beta(x)}
$$

for all $x \in G$ and $0<r<d_{G}$, we obtain for $y \in B(x, r)$, as in the proof of Lemma 2.5,

$$
k^{-p(y)} \leq C k^{-p(x)}=C H^{-1}(\log (e+H))^{q(x)}
$$

and

$$
(\log (e+k))^{-q(y)} \leq C(\log (e+k))^{-q(x)} \leq C(\log (e+H))^{-q(x)} .
$$

Consequently (4.3) follows.
In the case $H \leq 1$, we find

$$
H \leq C H^{1 / p(x)}(\log (e+H))^{-q(x) / p(x)} .
$$

Since $f(y) \geq 1$ or $f(y)=0$ for each $y \in G$, we have

$$
g(y)=f(y) \cdot f(y)^{p(y)-1}(\log (e+f(y)))^{q(y)} \geq C f(y)
$$

for some $C>0$ and hence

$$
f_{B(x, r)} f(y) d y \leq C H
$$

This shows (4.3).
Proof of Theorem 4.1. We may assume that $f \geq 0$. Write

$$
f=f \chi_{\{y: f(y) \geq 1\}}+f \chi_{\{y: f(y)<1\}}=f_{1}+f_{2},
$$

where χ_{E} denotes the characteristic function of E. Take p_{0} such that $1<p_{0}<p_{-}$. Since

$$
\begin{aligned}
& f_{B(x, r)} f_{1}(y)^{p(y) / p_{0}}\left(\log \left(e+f_{1}(y)\right)\right)^{q(y) / p_{0}} d y \\
& \leq C f_{B(x, r)} f_{1}(y)^{p(y)}\left(\log \left(e+f_{1}(y)\right)\right)^{q(y)} d y \leq C r^{-\nu(x)}(\log (e+1 / r))^{-\beta(x)}
\end{aligned}
$$

for all $x \in G$ and $0<r<d_{G}$, applying Lemma 4.4 with $p(x)$ and $q(x)$ replaced by $p(x) / p_{0}$ and $q(x) / p_{0}$, respectively, we obtain

$$
M f_{1}(x)^{p(x) / p_{0}}\left(\log \left(e+M f_{1}(x)\right)\right)^{q(x) / p_{0}} \leq C M g_{1}(x),
$$

where $g_{1}(y)=f_{1}(y)^{p(y) / p_{0}}\left(\log \left(e+f_{1}(y)\right)\right)^{q(y) / p_{0}}$. Note that g_{1} satisfies (4.1). Since $M f_{2} \leq 1$, it follows that

$$
M f(x)^{p(x)}(\log (e+M f(x)))^{q(x)} \leq C\left(1+M g_{1}(x)^{p_{0}}\right)
$$

Hence, by Lemma 4.3, we see that

$$
\begin{aligned}
f_{B(z, r)} M f(x)^{p(x)}(\log (e+M f(x)))^{q(x)} d x & \leq C f_{B(z, r)}\left(1+M g_{1}(x)^{p_{0}}\right) d x \\
& \leq C r^{-\nu(z)}(\log (e+1 / r))^{-\beta(z)}
\end{aligned}
$$

for all $z \in G$ and $0<r<d_{G}$, as required.

Now we give a Morrey version of Sobolev's inequality for Riesz potentials. Let p^{*} and Ψ be as in (2.2) and (2.3), respectively.

Theorem 4.5. Suppose that $p_{-}>1$ and (2.1) holds. Then there exists a constant $C>0$ such that

$$
f_{B(z, r)} \Psi\left(x,\left|I_{\alpha(x)} f(x)\right|\right) d x \leq C r^{-\nu(z)}(\log (e+1 / r))^{-\beta(z)}
$$

for all $z \in G, 0<r<d_{G}$ and f satisfying $\|f\|_{L^{\Phi, \nu, \beta}(G)} \leq 1$.
This theorem gives the following norm version, which is simpler than Corollaries 2.4 and 3.2 .

Corollary 4.6 (cf. [16, Theorem 4.3]). Suppose that $p_{-}>1$ and (2.1) holds. Then there exists a constant $C>0$ such that

$$
\left\|I_{\alpha(\cdot)} f\right\|_{L^{\Psi, \nu, \beta}(G)} \leq C\|f\|_{L^{\Phi, \nu, \beta}(G)} .
$$

REMARK 4.7. If $p(x)=p>1, q(x)=q \in \mathbf{R}, \nu(x)=n$ and $\beta(x)=0$, then $p^{*}=n p /(n-\alpha p)$ and the operator I_{α} is bounded from $L^{p}(\log L)^{q}(G)$ to $L^{p^{*}}(\log L)^{p^{*} q / p}(G)$, which is shown by O'Neil [26, Theorem 4.7].

For further related results, we refer the reader to the papers $[3,16,17]$.
Remark 4.8. Theorem 4.5 is best possible as to the exponents appearing in the Morrey condition.

Proof of Theorem 4.5. We may assume that $f \geq 0$, as before. By Lemma 2.8, we find

$$
\begin{aligned}
I_{\alpha(x)} f(x) & =\int_{B(x, \delta)}|x-y|^{\alpha(x)-n} f(y) d y+\int_{G \backslash B(x, \delta)}|x-y|^{\alpha(x)-n} f(y) d y \\
& \leq C\left\{\delta^{\alpha(x)} M f(x)+\delta^{\alpha(x)-\nu(x) / p(x)}(\log (e+1 / \delta))^{-(q(x)+\beta(x)) / p(x)}\right\}
\end{aligned}
$$

Considering

$$
\delta=\min \left\{d_{G}, M f(x)^{-p(x) / \nu(x)}(\log (e+M f(x)))^{-(q(x)+\beta(x)) / \nu(x)}\right\},
$$

we have

$$
\begin{aligned}
I_{\alpha(x)} f(x) & \leq C\left\{1+M f(x)^{1-\alpha(x) p(x) / \nu(x)}(\log (e+M f(x)))^{-\alpha(x)(q(x)+\beta(x)) / \nu(x)}\right\} \\
& =C\left\{1+M f(x)^{p(x) / p^{*}(x)}(\log (e+M f(x)))^{-\alpha(x)(q(x)+\beta(x)) / \nu(x)}\right\}
\end{aligned}
$$

Then we find

$$
\Psi\left(x, I_{\alpha(x)} f(x)\right) \leq C\left\{1+M f(x)^{p(x)}(\log (e+M f(x)))^{q(x)}\right\}
$$

for all $x \in G$. It follows from Theorem 4.1 that

$$
f_{B(z, r)} \Psi\left(x, I_{\alpha(x)} f(x)\right) d x \leq C r^{-\nu(z)}(\log (e+1 / r))^{-\beta(z)}
$$

for all $z \in G$ and $0<r<d_{G}$, as required.

5 Trudinger's inequality

This section is concerned with Morrey version of Trudinger's type exponential integrability for Riesz potentials, in case

$$
\begin{equation*}
\underset{x \in \mathbf{R}^{n}}{\operatorname{ess} \inf }(\alpha(x)-\nu(x) / p(x)) \geq 0 \tag{5.1}
\end{equation*}
$$

which is equivalent to

$$
\underset{x \in \mathbf{R}^{n}}{\operatorname{ess} \sup }(1 / p(x)-\alpha(x) / \nu(x)) \leq 0
$$

Set

$$
\Gamma(x, r)=c_{0} \int_{1}^{r}(\log (e+t))^{-(q(x)+\beta(x)) / p(x)} \frac{d t}{t}
$$

for $x \in \mathbf{R}^{n}$ and $r \geq 2$, where we choose c_{0} such that $\inf _{x \in \mathbf{R}^{n}} \Gamma(x, 2)=2$. For convenience, set $\Gamma(x, r)=(\Gamma(x, 2) / 2) r$ when $r<2$. Note that there exists a constant $C>0$ such that

$$
C^{-1} \leq \frac{\Gamma\left(x, r^{2}\right)}{\Gamma(x, r)} \leq C \quad \text { for } \quad x \in \mathbf{R}^{n} \text { and } r \geq 2
$$

since $-(q(x)+\beta(x)) / p(x)$ is bounded. Let

$$
s_{x}=\sup _{r \geq 2} \Gamma(x, r)=c_{0} \int_{1}^{\infty}(\log (1+t))^{-(q(x)+\beta(x)) / p(x)} \frac{d t}{t} .
$$

Then $2<s_{x} \leq \infty$ and $\Gamma(x, \cdot)$ is bijective from $[0, \infty)$ to $\left[0, s_{x}\right)$. We denote by $\Gamma^{-1}(x, \cdot)$ the inverse function of $\Gamma(x, \cdot)$. If $s_{x}<\infty$, we set $\Gamma^{-1}(x, r)=\infty$ for $r \geq s_{x}$.

Theorem 5.1. Suppose $\nu_{-}>0$ and (5.1) holds. Let ε be a measurable function on \mathbf{R}^{n} such that

$$
\begin{equation*}
\underset{x \in \mathbf{R}^{n}}{\operatorname{essinf}}(\nu(x) / p(x)-\varepsilon(x))>0 \text { and } 0<\varepsilon_{-} \leq \varepsilon_{+}<\alpha_{-} . \tag{5.2}
\end{equation*}
$$

Then there exist constants $c_{1}, c_{2}>0$ such that

$$
f_{B(z, r)} \Gamma^{-1}\left(x, \frac{\left|I_{\alpha(x)} f(x)\right|}{c_{1}}\right) d x \leq c_{2} r^{\varepsilon(z)-\nu(z) / p(z)}
$$

for all $z \in G, 0<r<d_{G}$ and f satisfying $\|f\|_{L^{\Phi, \nu, \beta}(G)} \leq 1$. In the above $\left|I_{\alpha(x)} f(x)\right| / c_{1}<s_{x}$ for a.e. $x \in B(z, r)$.

Remark 5.2. Let $\alpha, p, q, \nu, \beta, \varepsilon$ be all constants and $0<\varepsilon<\alpha$.
(1) If $q+\beta<p$, then, for $r \geq 2$,

$$
C^{-1} \Gamma(r) \leq(\log (e+r))^{1-(q+\beta) / p} \leq C \Gamma(r)
$$

and

$$
\Gamma^{-1}\left(C^{-1} r\right) \leq \exp \left(r^{p /(p-q-\beta)}\right) \leq \Gamma^{-1}(C r)
$$

(2) If $q+\beta=p$, then, for $r \geq 2$,

$$
C^{-1} \Gamma(r) \leq \log (\log (e+r)) \leq C \Gamma(r)
$$

and

$$
\Gamma^{-1}\left(C^{-1} r\right) \leq \exp \exp (r) \leq \Gamma^{-1}(C r) .
$$

Corollary 5.3. Under the assumptions in Theorem 5.1, there exist constants $c_{1}, c_{2}>0$ such that
(1) in case ess $\sup _{x \in \mathbf{R}^{n}}(q(x)+\beta(x)) / p(x)<1$,

$$
f_{B(z, r)} \exp \left(\frac{\left|I_{\alpha} f(x)\right|^{p(x) /(p(x)-q(x)-\beta)}}{c_{1}}\right) d x \leq c_{2} r^{\varepsilon(z)-\nu / p(z)} ;
$$

(2) in case ess $\inf _{x \in \mathbf{R}^{n}}(q(x)+\beta(x)) / p(x) \geq 1$,

$$
f_{B(z, r)} \exp \left(\exp \left(\frac{\left|I_{\alpha} f(x)\right|}{c_{1}}\right)\right) d x \leq c_{2} r^{\varepsilon(z)-\nu / p(z)}
$$

for all $z \in G, 0<r<d_{G}$ and f satisfying $\|f\|_{L^{\Phi, \nu, \beta}(G)} \leq 1$.
Remark 5.4. When p, q, β, α, ν are all constants such that $p=1, q=0, \beta<1$ and $\alpha=\nu$, this is due to Corollaries 4.6 and 4.8 in [12]. In particular, the case $p=1, q=\beta=0, \alpha=\nu=1$ and $r=d_{G}$ coincides with the result by Trudinger [30]. A weaker result is shown by Mizuta and Shimomura [15, Theorem 4.4].

To prove the theorem, we use the following lemmas. The first lemma can be proved with minor changes of the proof of Lemma 2.8.

Lemma 5.5. Suppose that $\nu_{-}>0$ and (5.1) holds. Then there exists a constant $C>0$ such that

$$
\int_{G \backslash B(x, \delta)}|x-y|^{\alpha(x)-n} f(y) d y \leq C \Gamma(x, 1 / \delta)
$$

for all $x \in G, 0<\delta<d_{G}$ and $f \geq 0$ satisfying $\|f\|_{L^{\Phi, \nu, \beta}(G)} \leq 1$.
Lemma 5.6. Let ε be a measurable function on G satisfying (5.2). Setting $\rho(z, r)=$ $r^{\varepsilon(z)}(\log (e+1 / r))^{(q(z)+\beta(z)) / p(z)}$, define

$$
I_{\rho(z)} f(x)=\int_{G} \frac{\rho(z,|x-y|)}{|x-y|^{n}} f(y) d y .
$$

Then there exists a constant $C>0$ such that

$$
f_{B(z, r)} I_{\rho(z)} f(x) d x \leq C r^{\varepsilon(z)-\nu(z) / p(z)}
$$

for all $z \in G, 0<r<d_{G}$ and $f \geq 0$ satisfying $\|f\|_{L^{\Phi, \nu, \beta}(G)} \leq 1$.

Proof. Write

$$
\begin{aligned}
I_{\rho(z)} f(x) & =\int_{B(z, 2 r)} \frac{\rho(z,|x-y|)}{|x-y|^{n}} f(y) d y+\int_{G \backslash B(z, 2 r)} \frac{\rho(z,|x-y|)}{|x-y|^{n}} f(y) d y \\
& =I_{1}(x)+I_{2}(x) .
\end{aligned}
$$

By Fubini's theorem and Lemma 2.6, we have

$$
\begin{aligned}
\int_{B(z, r)} I_{1}(x) d x & =\int_{B(z, 2 r)}\left(\int_{B(z, r)} \frac{\rho(z,|x-y|)}{|x-y|^{n}} d x\right) f(y) d y \\
& \leq \int_{B(z, 2 r)}\left(\int_{B(y, 3 r)} \frac{\rho(z,|x-y|)}{|x-y|^{n}} d x\right) f(y) d y \\
& =n \sigma_{n} \int_{B(z, 2 r)}\left(\int_{0}^{3 r} \frac{\rho(z, t)}{t} d t\right) f(y) d y \\
& \leq C \rho(z, 3 r) \int_{B(z, 2 r)} f(y) d y \\
& \leq C \rho(z, 3 r)(2 r)^{n-\nu(z) / p(z)}(\log (e+1 /(2 r)))^{-(q(z)+\beta(z)) / p(z)} \\
& \leq C r^{n+\varepsilon(z)-\nu(z) / p(z)} .
\end{aligned}
$$

For I_{2}, note that

$$
I_{2}(x) \leq C \int_{G \backslash B(z, 2 r)} \frac{\rho(z,|z-y|)}{|z-y|^{n}} f(y) d y \quad \text { for } \quad x \in B(z, r),
$$

since there exists a constant $C>0$ such that

$$
C^{-1} \leq \frac{\rho(z, r)}{\rho(z, s)} \leq C \quad \text { for } \quad z \in G, \frac{1}{2} \leq \frac{r}{s} \leq 2 .
$$

Hence we have by Lemmas 2.6 and 2.7

$$
\begin{aligned}
I_{2}(x) & \leq C \int_{2 r}^{2 d_{G}} \frac{\rho(z, t)}{t^{n}} t^{n-\nu(z) / p(z)}(\log (e+1 / t))^{-(q(z)+\beta(z)) / p(z)} \frac{d t}{t} \\
& \leq C \int_{2 r}^{2 d_{G}} t^{\varepsilon(z)-\nu(z) / p(z)} \frac{d t}{t} \\
& \leq C r^{\varepsilon(z)-\nu(z) / p(z)} .
\end{aligned}
$$

Thus this lemma is proved.
Proof of Theorem 5.1. We have only to treat nonnegative f with $\|f\|_{L^{\Phi, \nu, \beta}(G)} \leq 1$. By Lemma 5.5 we find

$$
\begin{aligned}
& I_{\alpha(x)} f(x)= \int_{B(x, \delta)}|x-y|^{\alpha(x)-n} f(y) d y+\int_{G \backslash B(x, \delta)}|x-y|^{\alpha(x)-n} f(y) d y \\
&= \int_{B(x, \delta)}|x-y|^{\alpha(x)-\varepsilon(z)}(\log (e+1 /|x-y|))^{-(q(z)+\beta(z)) / p(z)} \frac{\rho(z,|x-y|)}{|x-y|^{n}} f(y) d y \\
& \leq C[\Gamma(x, 1 / \delta) \\
& \leq\left\{\delta^{\alpha(x)-\varepsilon(z)}(\log (e+1 / \delta))^{-(q(z)+\beta(z)) / p(z)} I_{\rho(z)} f(x)+\Gamma(x, 1 / \delta)\right\}
\end{aligned}
$$

for $\delta>0$. Considering

$$
\delta=\min \left\{d_{G},\left(\frac{\Gamma\left(x, I_{\rho(z)} f(x)\right)\left(\log \left(e+I_{\rho(z)} f(x)\right)\right)^{(q(z)+\beta(z)) / p(z)}}{I_{\rho(z)} f(x)}\right)^{1 /(\alpha(x)-\varepsilon(z))}\right\}
$$

we have the inequality

$$
I_{\alpha(x)} f(x) \leq c_{1} \max \left\{1, \Gamma\left(x, I_{\rho(z)} f(x)\right)\right\},
$$

for some constant $c_{1}>0$. Since $1 \leq \Gamma(x, 1)=\Gamma(x, 2) / 2, \Gamma^{-1}(x, 1) \leq 1$. Then

$$
f_{B(z, r)} \Gamma^{-1}\left(x, \frac{I_{\alpha(x)} f(x)}{c_{1}}\right) d x \leq f_{B(z, r)}\left\{1+I_{\rho(z)} f(x)\right\} d x
$$

for all $z \in G$ and $0<r<d_{G}$. Hence Lemma 5.6 gives the conclusion.

6 Continuity

In this section we are concerned with continuity for Riesz potentials when (5.1) and the following condition hold:

$$
\mathcal{H}(x, r) \equiv \int_{0}^{r} t^{\alpha(x)-\nu(x) / p(x)}(\log (e+1 / t))^{-(q(x)+\beta(x)) / p(x)} \frac{d t}{t}<\infty .
$$

In this case $\mathcal{H}(x, r) \rightarrow 0$ as $r \rightarrow 0$ and $\mathcal{H}(x, r) \leq \mathcal{H}(x, 2 r) \leq C \mathcal{H}(x, r)$ for some constant $C>0$ independent of $x \in \mathbf{R}^{n}$ and $0<r<\infty$.

Theorem 6.1. Let $0<\theta \leq 1$ and $\gamma(x)=\alpha(x)-\nu(x) / p(x)$. Suppose that $\alpha \in$ $\operatorname{Lip}_{\theta}(G), \nu_{-}>0$ and $0 \leq \gamma_{-} \leq \gamma_{+}<\theta$. If f is a measurable function on G satisfying $\|f\|_{L^{\Phi, \nu, \beta}(G)} \leq 1$, then $I_{\alpha(x)} f$ is continuous on G. Moreover, there exists a constant $C>0$ such that

$$
\left|I_{\alpha(x)} f(x)-I_{\alpha(z)} f(z)\right| \leq C\{\mathcal{H}(x,|x-z|)+\mathcal{H}(z,|x-z|)\}
$$

for all $x, z \in G$, where the constant C is independent of f satisfying $\|f\|_{L^{\Phi, \nu, \beta}(G)} \leq$ 1. That is, the operator $I_{\alpha(\cdot)}$ is bounded from $L^{\Phi, \nu, \beta}(G)$ to $\Lambda_{\mathcal{H}}(G)$.

Corollary 6.2. Let $0<\theta \leq 1$ and $\gamma(x)=\alpha(x)-n / p(x)$. Suppose $\alpha \in \operatorname{Lip}_{\theta}(G)$ and $0<\gamma_{-} \leq \gamma_{+}<\theta$. Then the operator $I_{\alpha(\cdot)}$ is bounded from $L^{p(\cdot)}(G)$ to $\operatorname{Lip}_{\gamma(\cdot)}(G)$.

Remark 6.3. The case when α, p are constants and $n=1$ is the result of HardyLittlewood [6, Theorem 12].

Corollary 6.4. Let α, ν and β be constants. Suppose

$$
0 \leq \alpha-\nu / p_{-} \leq \alpha-\nu / p_{+}<1, \quad \beta>\underset{x \in \mathbf{R}^{n}}{\operatorname{ess} \sup }(p(x)-q(x)) .
$$

Then there exists a constant $C>0$ such that

$$
\begin{aligned}
& \left|I_{\alpha} f(x)-I_{\alpha} f(z)\right| \\
& \quad \leq C\left\{|x-z|^{\alpha-\nu / p(x)}(\log (e+1 /|x-z|))^{-(q(x)+\beta) / p(x)+1}\right. \\
& \left.\quad+|x-z|^{\alpha-\nu / p(z)}(\log (e+1 /|x-z|))^{-(q(z)+\beta) / p(z)+1}\right\},
\end{aligned}
$$

for all $x, z \in G$ and for all f satisfying $\|f\|_{L^{\Phi, \nu, \beta}(G)} \leq 1$.
REMARK 6.5. If $p(x)=1$ and $q(x)=0$, the corollary above is a special case of [21, Theorem 3.3]. If $p(x)=1, q(x)=0, \alpha=\nu$ and $\beta>1$, the corollary above is [11, Theorem 1.1 (3)], where α, ν and β are constants. See also [21, 29].

To prove the theorems, we need the following lemmas.
Lemma 6.6. Let $0<\theta \leq 1$. Suppose $\alpha \in \operatorname{Lip}_{\theta}(G)$. Then there exists a constant $C>0$ such that
$\left||x-y|^{\alpha(x)-n}-|z-y|^{\alpha(z)-n}\right| \leq C\left(|x-z||x-y|^{\alpha(x)-n-1}+|x-z|^{\theta}|x-y|^{\alpha(x)-n-\theta}\right)$, for all $x, y, z \in G$ satisfying $|x-y| \geq 2|x-z|$.

Proof. Let $r=|x-y|$ and $s=|z-y|$. Then $1 / 2 \leq r / s \leq 2$ and

$$
\begin{aligned}
\left|r^{\alpha(x)-n}-s^{\alpha(z)-n}\right| & \leq\left|r^{\alpha(x)-n}-s^{\alpha(x)-n}\right|+\left|s^{\alpha(x)-n}-s^{\alpha(z)-n}\right| \\
& =|r-s||\alpha(x)-n| \tilde{r}^{\alpha(x)-n-1}+|\alpha(x)-\alpha(z)||\log s| s^{\tilde{\alpha}-n} \\
& \leq C\left(|x-z| r^{\alpha(x)-n-1}+|x-z|^{\theta} s^{\alpha(x)-n-\theta} s^{\tilde{\alpha}-\alpha(x)}\right) \\
& \leq C\left(|x-z| r^{\alpha(x)-n-1}+|x-z|^{\theta} r^{\alpha(x)-n-\theta}\right)
\end{aligned}
$$

where $\tilde{r}=(1-t) r+t s$ and $\tilde{\alpha}=(1-u) \alpha(x)+u \alpha(z)$ for some $0<t, u<1$.
The following two lemmas can be proved in the same manner as Lemma 2.8.
Lemma 6.7. Suppose $\nu_{-}>0$. Then there exists a constant $C>0$ such that

$$
\int_{B(x, r) \backslash B(x, s)}|x-y|^{\alpha(x)-n} f(y) d y \leq C \int_{s}^{r} t^{\alpha(x)-\nu(x) / p(x)}(\log (e+1 / t))^{-(q(x)+\beta(x)) / p(x)} \frac{d t}{t}
$$

for all $x \in G, 0<2 s<r<\infty$ and for all $f \geq 0$ satisfying $\|f\|_{L^{\Phi, \nu, \beta}(G)} \leq 1$.
Lemma 6.8. Let $\theta>0$. Suppose $\nu_{-}>0$ and

$$
\underset{x \in G}{\operatorname{ess} \sup }(\alpha(x)-\nu(x) / p(x))<\theta .
$$

Then there exists a constant $C>0$ such that

$$
\int_{\mathbf{R}^{n} \backslash B(x, r)}|x-y|^{\alpha(x)-n-\theta} f(y) d y \leq C r^{\alpha(x)-\nu(x) / p(x)-\theta}(\log (e+1 / r))^{-(q(x)+\beta(x)) / p(x)},
$$

for all $x \in G, r>0$ and for all $f \geq 0$ satisfying $\|f\|_{L^{\Phi, \nu, \beta}(G)} \leq 1$.

Proof of Theorem 6.1. We may assume that $f \geq 0$. Write

$$
\begin{aligned}
& I_{\alpha(x)} f(x)-I_{\alpha(z)} f(z) \\
& =\int_{B(x, 2|x-z|)}|x-y|^{\alpha(x)-n} f(y) d y-\int_{B(x, 2|x-z|)}|z-y|^{\alpha(z)-n} f(y) d y \\
& \quad+\int_{G \backslash B(x, 2|x-z|)}\left(|x-y|^{\alpha(x)-n}-|z-y|^{\alpha(z)-n}\right) f(y) d y
\end{aligned}
$$

for $x, z \in G$. Using Lemma 6.7, we have

$$
\begin{aligned}
\int_{B(x, 2|x-z|)}|x-y|^{\alpha(x)-n} f(y) d y & \leq C \int_{0}^{2|x-z|} t^{\alpha(x)-\nu(x) / p(x)}(\log (e+1 / t))^{-(q(x)+\beta(x)) / p(x)} \frac{d t}{t} \\
& \leq C \mathcal{H}(x,|x-z|)
\end{aligned}
$$

and

$$
\begin{aligned}
\int_{B(x, 2|x-z|)}|x-y|^{\alpha(z)-n} f(y) d y & \leq \int_{B(z, 3|x-z|)}|x-y|^{\alpha(z)-n} f(y) d y \\
& \leq C \mathcal{H}(z,|x-z|) .
\end{aligned}
$$

On the other hand, by Lemmas 6.6 and 6.8, we have

$$
\begin{aligned}
& \int_{G \backslash B(x, 2|x-z|)} \| x-\left.y\right|^{\alpha(x)-n}-|z-y|^{\alpha(z)-n} \mid f(y) d y \\
& \leq C\left\{|x-z| \int_{G \backslash B(x, 2|x-z|)}|x-y|^{\alpha(x)-n-1} f(y) d y\right. \\
& \left.\quad+|x-z|^{\theta} \int_{G \backslash B(x, 2|x-z|)}|x-y|^{\alpha(x)-n-\theta} f(y) d y\right\} \\
& \leq C|x-z|^{\alpha(x)-\nu(x) / p(x)}(\log (e+1 /|x-z|))^{-(q(x)+\beta(x)) / p(x)} \\
& \leq C \mathcal{H}(x,|x-z|) .
\end{aligned}
$$

Then we have the conclusion.

References

[1] D. R. Adams, A note on Riesz potentials, Duke Math. J. 42 (1975), 765-778.
[2] D. R. Adams and L. I. Hedberg, Function spaces and potential theory, Springer-Verlag, Berlin, Heidelberg, 1996.
[3] A. Almeida, J. Hasanov and S. Samko, Maximal and potential operators in variable exponent Morrey spaces, Georgian Math. J. 15 (2008), 195-208.
[4] F. Chiarenza and M. Frasca, Morrey spaces and Hardy-Littlewood maximal function, Rend. Mat. Apple. (7) 7 (1987), 273-279.
[5] D. Cruz-Uribe and A. Fiorenza, $L \log L$ results for the maximal operator in variable L^{p} spaces, Trans. Amer. Math. Soc. 361 (2009), 2631-2647.
[6] G. H. Hardy and J. E. Littlewood, Some properties of fractional integrals. I., Math. Z. 27 (1928), 565-606.
[7] P. Hästö, Local-to-global results in variable exponent spaces, Math. Res. Lett. 16 (2009), no. 2, 263-278.
[8] L. I. Hedberg, On certain convolution inequalities, Proc. Amer. Math. Soc. 36 (1972), 505-510.
[9] F. Maeda, Y. Mizuta and T. Ohno, Approximate identities and Young type inequalities in variable Lebesgue-Orlicz spaces $L^{p(\cdot)}(\log L)^{q(\cdot)}$, preprint.
[10] Y. Mizuta, Potential theory in Euclidean spaces, Gakkōtosho, Tokyo, 1996.
[11] Y. Mizuta, E. Nakai, T. Ohno and T. Shimomura, An elementary proof of Sobolev embeddings for Riesz potentials of functions in Morrey spaces $L^{1, \nu, \beta}(G)$, Hiroshima Math. J. 38 (2008), 461-472.
[12] Y. Mizuta, E. Nakai, T. Ohno and T. Shimomura, Boundedness of fractional integral operators on Morrey spaces and Sobolev embeddings for generalized Riesz potentials, to appear in J. Math. Soc. Japan.
[13] Y. Mizuta, T. Ohno and T. Shimomura, Integrability of maximal functions for generalized Lebesgue spaces with variable exponent, Math. Nachr. 281 (2008), No.3, 386-395.
[14] Y. Mizuta, T. Ohno and T. Shimomura, Sobolev's inequalities and vanishing integrability for Riesz potentials of functions in the generalized Lebesgue space $L^{p(\cdot)}(\log L)^{q(\cdot)}$, J. Math. Anal. Appl. 345 (2008), 70-85.
[15] Y. Mizuta and T. Shimomura, Sobolev's inequality for Riesz potentials of functions in Morrey spaces of integral form, to appear in Math. Nachr.
[16] Y. Mizuta and T. Shimomura, Sobolev embeddings for Riesz potentials of functions in Morrey spaces of variable exponent, J. Math. Soc. Japan 60 (2008), 583-602.
[17] Y. Mizuta and T. Shimomura, Continuity properties for Riesz potentials of functions in Morrey spaces of variable exponent, to appear in Math. Inequal. Appl.
[18] Y. Mizuta and T. Shimomura, Continuity properties of Riesz potentials of Orlicz functions, Tohoku Math. J. 61 (2009), 225-240.
[19] C. B. Morrey, On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc. 43 (1938), 126-166.
[20] E. Nakai, Hardy-Littlewood maximal operator, singular integral operators and the Riesz potentials on generalized Morrey spaces, Math. Nachr. 166 (1994), 95-103.
[21] E. Nakai, On generalized fractional integrals on the weak Orlicz spaces, BMO_{ϕ}, the Morrey spaces and the Campanato spaces, Function spaces, interpolation theory and related topics (Lund, 2000), 389-401, Walter de Gruyter, Berlin, New York, 2002.
[22] E. Nakai, Generalized fractional integrals on Orlicz-Morrey spaces, Banach and function spaces, 323-333, Yokohama Publ., Yokohama, 2004.
[23] E. Nakai, The Campanato, Morrey and Hölder spaces on spaces of homogeneous type, Studia Math. 176 (2006), 1-19.
[24] E. Nakai, Calderón-Zygmund operators on Orlicz-Morrey spaces and modular inequalities, Banach and Function Spaces II, 393-410. Yokohama Publ., Yokohama, 2008.
[25] E. Nakai, Orlicz-Morrey spaces and the Hardy-Littlewood maximal function, Studia Math. 188 (2008), 193-221.
[26] R. O'Neil, Fractional integration in Orlicz spaces. I, Trans. Amer. Math. Soc. 115 (1965), 300-328.
[27] J. Peetre, On the theory of $L_{p, \lambda}$ spaces, J. Funct. Anal. 4 (1969), 71-87.
[28] J. Serrin, A remark on Morrey potential, Contemp. Math. 426 (2007), 307315.
[29] S. Spanne, Some function spaces defined using the mean oscillation over cubes, Ann. Scuola Norm. Sup. Pisa (3) 19 (1965), 593-608.
[30] N. Trudinger, On imbeddings into Orlicz spaces and some applications, J. Math. Mech. 17 (1967), 473-483.
[31] W. P. Ziemer, Weakly differentiable functions, Springer-Verlag, New York, 1989.

The Division of Mathematical and Information Sciences Faculty of Integrated Arts and Sciences

Hiroshima University Higashi-Hiroshima 739-8521, Japan E-mail : yomizuta@hiroshima-u.ac.jp and
Department of Mathematics Osaka Kyoiku University Kashiwara, Osaka 582-8582, Japan E-mail: enakai@cc.osaka-kyoiku.ac.jp and General Arts, Hiroshima National College of Maritime Technology, Higashino Oosakikamijima Toyotagun 725-0231, Japan

E-mail : ohno@hiroshima-cmt.ac.jp and
Department of Mathematics
Graduate School of Education
Hiroshima University
Higashi-Hiroshima 739-8524, Japan
E-mail: tshimo@hiroshima-u.ac.jp

