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Abstract

Let α, ν, β, p and q be all variable exponents. Our aim in this paper is to
deal with Sobolev embeddings for Riesz potentials of order α with functions
f in Morrey spaces LΦ,ν,β(G) with Φ(t) = tp(log(e + t))q over a bounded
open set G ⊂ Rn. Here p and q satisfy the log-Hölder and the loglog-Hölder
conditions, respectively. Also the case when p attains the value 1 in some
parts of the domain is included in our results.

1 Introduction

Let G be a bounded open set in Rn. We denote by dG the diameter of G.
For a measurable function α : Rn → (0, n), we define the Riesz potential of

order α for an integrable function f on G by

Iα(x)f(x) =

∫
Rn

|x − y|α(x)−nf(y) dy.

Here and in what follows we assume that f = 0 outside G. We also assume that
α− ≡ ess infx∈Rn α(x) > 0.

We denote by B(x, r) the ball {y ∈ Rn : |y − x| < r} with center x and of
radius r > 0, and by |B(x, r)| its Lebesgue measure, i.e. |B(x, r)| = σnrn, where
σn is the volume of the unit ball in Rn. We define the integral mean of f over
B(x, r) by

−
∫

B(x,r)

f(y) dy =
1

|B(x, r)|

∫
B(x,r)

f(y) dy.

Following Cruz-Uribe and Fiorenza [5], we consider continuous functions p :
Rn → [1,∞) and q : Rn → R, which are called variable exponents. In this paper,
we consider variable exponents p and q on Rn such that
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(P1) 1 ≤ p− ≡ infx∈Rn p(x) ≤ supx∈Rn p(x) ≡ p+ < ∞;

(P2) |p(x) − p(y)| ≤ C/ log(e + 1/|x − y|) whenever x ∈ Rn and y ∈ Rn;

(Q1) −∞ < q− ≡ infx∈Rn q(x) ≤ supx∈Rn q(x) ≡ q+ < ∞;

(Q2) |q(x) − q(y)| ≤ C/ log(e + (log(e + 1/|x − y|))) whenever x ∈ Rn and
y ∈ Rn.

If p satisfies (P2) (resp. q satisfies (Q2)), then p (resp. q) is said to satisfy the
log-Hölder (resp. loglog-Hölder) condition.

Set
Φ(x, r) = Φp,q(x, r) = rp(x)(log(e + r))q(x).

For bounded measurable functions ν : Rn → (0, n] and β : Rn → R, let LΦ,ν,β(G)
be the set of all measurable functions f on G such that ‖f‖LΦ,ν,β(G) < ∞, where

‖f‖LΦ,ν,β(G)

= inf

{
λ > 0 : sup

x∈G,0<r<dG

rν(x)(log(e + 1/r))β(x) −
∫

B(x,r)

Φ(y, |f(y)|/λ) dy ≤ 1

}
;

we set f = 0 outside G. For the constant Morrey spaces, we refer to [19], [27] and
[15, 22, 24, 25]. For simplicity, in the case ν ≡ n and β ≡ 0, LΦ,ν,β(G) is denoted
by Lp(·)(log L)q(·)(G).

Throughtout this paper, we assume that (P1), (P2), (Q1) and (Q2) hold and
that there exists a constant K > 0 such that

K(p(x) − 1) + q(x) > 0 (1.1)

for all x ∈ Rn. In this case we can find c0 > e such that, for each fixed x ∈ Rn,
Φ̄(x, r) ≡ rp(x)(log(c0 + r))q(x) is convex on [0,∞), lim

r→0
Φ̄(x, r) = Φ̄(x, 0) = 0 and

lim
r→∞

Φ̄(x, r) = ∞ (see [9, Theorem 5.1]). Then ‖ · ‖LΦ,ν,β(G) is a quasi norm, since

Φ(x, c−1r) ≤ Φ̄(x, r) ≤ Φ(x, cr),

for some constant c > 0 independent of x ∈ Rn and r ≥ 0. Furthermore, t−1Φ(x, t)
is uniformly almost increasing on (0,∞), that is, there exists a constant C > 0
such that

s−1Φ(x, s) ≤ Ct−1Φ(x, t), (1.2)

whenever 0 < s < t and x ∈ Rn.
Our aim in this paper is to discuss the boundedness of the operator Iα :

f −→ Iα(x)f(x) from the Morrey space LΦ,ν,β(G) to another Morrey space LΨ,ν,β(G)
with suitable Ψ(x, r). When p− = infx∈Rn p(x) > 1, the maximal functions are a
crucial tool as in Hedberg [8], where an easy proof of Sobolev’s inequality for Riesz
potentials is given. Since we are mainly concerned with the case p− = 1, our
strategy is to find an estimate of Riesz potentials by use of another Riesz-type
potentials of 0 order, which plays a role of the maximal functions (see Sections 2
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and 3). Our result contains the known result, as a special case, that Iα is bounded
from L1(log L)q(G) to Lp∗(log L)p∗q−1(G) for p∗ = n/(n − α) and q > 0 (O’ Neil
[26, Theorem 5.2]); see Remark 2.3.

In Section 4, we investigate the case p− > 1. For this purpose, we first show the
boundedness of the Hardy-Littlewood maximal operator M . Our result contains
the known result, as a special case, that Iα is bounded from Lp(log L)q(G) to
Lp∗(log L)p∗q/p(G) for p∗ = np/(n− αp) and q ∈ R (O’Neil [26, Theorem 4.7]); see
Remark 4.7. For related results, see [1, 3, 4, 16, 17, 18].

In Section 5, we are concerned with Morrey version of Trudinger’s type expo-
nential integrability for Iα(x)f(x) in the case p− ≥ 1. Our result contains the result
of Trudinger [30] and [12, Corollaries 4.6 and 4.8] as special cases (Remark 5.4).
The result is also an improvement of [15, Theorems 4.4 and 4.5]. For related results,
see [2, 4, 10, 11, 28, 31].

In the last section we discuss the continuity of Iα(x)f(x). For a function φ :
Rn × (0,∞) → (0,∞), let Λφ(G) be the set of all functions f on G such that
‖f‖Λφ(G) < ∞, where

‖f‖Λφ
= sup

x,y∈G, x 6=y

2|f(x) − f(y)|
φ(x, |x − y|) + φ(y, |x − y|)

.

See [23] for the function space Λφ. If φ(x, r) = rγ(x), then we denote Λφ(G) by
Lipγ(·)(G). In the last section we show the boundedness of the operator Iα(·) from

LΦ,ν,β(G) to Λφ(G) under some conditions. It is known that Iα is bounded from
Lp(G) to Lipγ(G) for 0 < γ = α−n/p < 1. We extend this fact to the boundedness

of Iα(·) from Lp(·) to Lipγ(·)(G) as a corollary (Corollary 6.2).

Throughout this paper, let C denote various constants independent of the vari-
ables in question and C(a, b, · · · ) be a constant that depends on a, b, · · · .

2 Sobolev’s inequality in the case p− = 1

Recall that α : Rn → (0, n), ν : Rn → (0, n] and β : Rn → R are bounded
measurable functions and α− > 0. Throughtout this section, we assume that

ess inf
x∈Rn

(1/p(x) − α(x)/ν(x)) > 0. (2.1)

In this case we have ν− ≥ α− > 0.

Our first aim is to give the following Morrey version of Sobolev’s type inequality
for Riesz potentials of functions satisfying Morrey conditions. We consider the
Sobolev exponent

1/p∗(x) = 1/p(x) − α(x)/ν(x) (2.2)

and the new modular function

Ψ(x, t) = tp
∗(x)(log(e + t))p∗(x)(q(x)/p(x)+α(x)β(x)/ν(x)). (2.3)
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Theorem 2.1. Let p− = 1. Suppose that (2.1) holds. Then, for each ε > 0, there
exists a constant C > 0 such that

−
∫

B(z,r)

Ψ(x, |Iα(x)f(x)|)(log(e+ |Iα(x)f(x)|))−(1+ε) dx ≤ Cr−ν(z)(log(e+1/r))−β(z)−ε

whenever z ∈ G, 0 < r < dG and ‖f‖LΦ,ν,β(G) ≤ 1.

Remark 2.2. For η ∈ R, set

Ψ̃η(x, t) = Ψ(x, t)(log(e + t))−η

= tp
∗(x)(log(e + t))p∗(x)(q(x)/p(x)+α(x)β(x)/ν(x))−η

Then Ψ̃η(x, t) satisfies the condition (1.1) with p(x) and q(x) replaced by p∗(x)
and p∗(x)(q(x)/p(x) + α(x)β(x)/ν(x))− η, respectively, and thus ‖ · ‖

L
eΨη,ν,β(G)

is a

quasi norm.

Remark 2.3. In this theorem, we can not take ε = 0 (see [11, Remark 3.3] and
O’Neil [26, Theorem 5.2]).

This theorem gives the following norm version.

Corollary 2.4. Let p− = 1. Suppose that (2.1) holds. Then, for ε > 0, there
exists a constant C > 0 such that

‖Iα(·)f‖LeΨε,ν,β(G) ≤ C‖f‖LΦ,ν,β(G).

For ε > 0, setting
ρε(r) = r−n(log(e + 1/r))−ε−1,

we consider the logarithmic potential

Jεf(x) =

∫
G

ρε(|x − y|)g(y) dy,

where g(y) = Φ(y, |f(y)|) = |f(y)|p(y)(log(e + |f(y)|))q(y). Write

Iα(x)f(x) =

∫
B(x,δ)

|x − y|α(x)−nf(y) dy +

∫
G\B(x,δ)

|x − y|α(x)−nf(y) dy

= I1(δ) + I2(δ).

Following the Hedberg trick [8], we give an estimate of I1(δ) by Jεf(x), instead
of maximal functions. After this, we give an estimate of I2(δ) by use of Young’s
inequality. Finally, taking δ suitably, we obtain an estimate of Iα(x)f(x) by Jεf(x).
For this purpose, we prepare some lemmas.

Let us begin with an estimate of I1(δ) by Jεf(x).

Lemma 2.5. For 0 < δ ≤ dG, x ∈ G and a nonnegative integrable function f on
G, set

I1(δ) =

∫
B(x,δ)

|x − y|α(x)−nf(y) dy.
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Let ε > 0 be fixed and set J = Jεf(x) for simplicity. Then there exists a constant
C > 0 such that

I1(δ) ≤ C{δα(x)−ν(x)/p(x)(log(e + 1/δ))−(q(x)+β(x))/p(x)

+ δα(x)+(p(x)−1)ν(x)/p(x)(log(e + 1/δ))β(x)−(q(x)+β(x))/p(x)+(1+ε)J}.

Proof. For k > 0, we have by (1.2)

I1(δ) ≤ k

∫
B(x,δ)

|x − y|α(x)−ndy

+ C

∫
B(x,δ)

|x − y|α(x)−nf(y)

(
f(y)

k

)p(y)−1 (
log(e + f(y))

log(e + k)

)q(y)

dy

≤ C

{
kδα(x) +

∫
B(x,δ)

|x − y|α(x)−ng(y)

(
1

k

)p(y)−1 (
1

log(e + k)

)q(y)

dy

}

≤ C

{
kδα(x) + δα(x)(log(e + 1/δ))1+ε

×
∫

B(x,δ)

ρε(|x − y|)g(y)

(
1

k

)p(y)−1 (
1

log(e + k)

)q(y)

dy

}
.

We set

k = δ−ν(x)/p(x)(log(e + 1/δ))−(q(x)+β(x))/p(x).

For y ∈ B(x, δ), note from (P2) that

|(p(x) − p(y)) log k| ≤ C

so that

k−p(y) ≤ Ck−p(x). (2.4)

Similarly, by (Q2) we have

(log(e + k))−q(y) ≤ C(log(e + k))−q(x). (2.5)

Consequently it follows from (2.4) and (2.5) that

I1(δ) ≤ C{δα(x)−ν(x)/p(x)(log(e + 1/δ))−(q(x)+β(x))/p(x)

+ δα(x)+(p(x)−1)ν(x)/p(x)(log(e + 1/δ))β(x)−(q(x)+β(x))/p(x)+(1+ε)J}.

Now the result follows.

Next we give an estimate for

I2(δ) =

∫
G\B(x,δ)

|x − y|α(x)−nf(y) dy.
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Lemma 2.6. There exists a constant C > 0 such that

−
∫

B(x,r)

f(y)dy ≤ Cr−ν(x)/p(x)(log(e + 1/r))−(q(x)+β(x))/p(x)

for all x ∈ G, 0 < r < dG and f ≥ 0 satisfying ‖f‖LΦ,ν,β(G) ≤ 1.

Proof. For k > 0, we have by (1.2)

−
∫

B(x,r)

f(y)dy ≤ k + C −
∫

B(x,r)

f(y)

(
f(y)

k

)p(y)−1 (
log(e + f(y))

log(e + k)

)q(y)

dy

= k + C −
∫

B(x,r)

g(y)k−p(y)+1(log(e + k))−q(y)dy,

where g(y) = f(y)p(y)(log(e + f(y)))q(y) as before. Setting

k = r−ν(x)/p(x)(log(e + 1/r))−(q(x)+β(x))/p(x),

we find by (P2) and (Q2)

−
∫

B(x,r)

f(y)dy ≤ k + Ckrν(x)(log(e + 1/r))β(x) −
∫

B(x,r)

g(y) dy

≤ Ck

= Cr−ν(x)/p(x)(log(e + 1/r))−(q(x)+β(x))/p(x),

as required.

Lemma 2.7. Let λ, µ, ν, τ and γ are real numbers. Suppose h is a nonnegative
measurable function on Rn such that∫

B(0,r)

h(y)dy ≤ r−λ(log(e + 1/r))−µ

for all r > 0. Then there exist a constant C > 0 such that∫
B(0,r2)\B(0,r1)

|y|−τ (log(1/|y|))−γh(y)dy ≤ C

∫ 2r2

r1

t−τ−λ(log(e + 1/t))−µ−γ dt

t

whenever 0 < r1 ≤ r2 < ∞.

Proof. By the integration by parts we have∫
B(0,r2)\B(0,r1)

|y|−τ (log(1/|y|))−γh(y)dy

≤
∫ r2

r1

(∫
B(0,t)

f(y)dy

)
d(−t−τ (log(1/t))−γ) + r−τ

2 (log(1/r2))
−γ

∫
B(0,r2)

f(y)dy.

Hence it suffices to note that

r−τ
2 (log(1/r2))

−γ

∫
B(0,r2)

f(y)dy ≤ r−τ−λ
2 (log(e + 1/r2))

−µ−γ

≤ C

∫ 2r2

r2

t−τ−λ(log(e + 1/t))−µ−γ dt

t
.
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Lemma 2.8. There exists a constant C > 0 such that

I2(δ) ≤ Cδα(x)−ν(x)/p(x)(log(e + 1/δ))−(q(x)+β(x))/p(x)

for all x ∈ G, 0 < δ < dG and f ≥ 0 satisfying ‖f‖LΦ,ν,β(G) ≤ 1.

Proof. Let
η = ess inf

x∈G
(ν(x)/p(x) − α(x)).

Then η > 0 by (2.1). By Lemmas 2.6 and 2.7 we have for all x ∈ G and 0 < δ < dG

I2(δ) ≤ C

∫ 2dG

δ

tα(x)−ν(x)/p(x)(log(e + 1/t))−q(x)/p(x)−β(x)/p(x) dt

t

≤ Cδα(x)−ν(x)/p(x)+η/2(log(e + 1/δ))−q(x)/p(x)−β(x)/p(x)

∫ 2dG

δ

t−η/2 dt

t

≤ Cδα(x)−ν(x)/p(x)(log(e + 1/δ))−q(x)/p(x)−β(x)/p(x),

which completes the proof.

What remains for the proof of Theorem 2.1 is to give a Morrey property for
Jεf(x).

Lemma 2.9. There exists a constant C > 0 such that

−
∫

B(z,r)

Jεf(x) dx ≤ Cr−ν(z)(log(e + 1/r))−β(z)−ε

for all z ∈ G, 0 < r < dG and f ≥ 0 satisfying ‖f‖LΦ,ν,β(G) ≤ 1.

Proof. For z ∈ G and 0 < r < dG, write

Jεf(x) =

∫
B(z,2r)

ρε(|x − y|)g(y) dy +

∫
G\B(z,2r)

ρε(|x − y|)g(y) dy

= J1(x) + J2(x).

Then we have

−
∫

B(z,r)

J1(x) dx ≤
∫

B(z,2r)

(
−
∫

B(z,r)

ρε(|x − y|)dx

)
g(y) dy

≤ Cr−n(log(e + 1/r))−ε

∫
B(z,2r)

g(y) dy

≤ Cr−ν(z)(log(e + 1/r))−β(z)−ε

and

−
∫

B(z,r)

J2(x) dx ≤ C

∫
G\B(z,2r)

ρε(|z − y|)g(y) dy

≤ Cr−ν(z)(log(e + 1/r))−β(z)−ε,

where we use Lemma 2.7 for the last inequality.
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Now we are ready to prove Theorem 2.1.

Proof of Theorem 2.1. We may assume that f ≥ 0. For δ > 0, write

Iα(x)f(x) = I1(δ) + I2(δ).

In view of Lemma 2.5, we find

I1(δ) ≤ C{δα(x)−ν(x)/p(x)(log(e + 1/δ))−(q(x)+β(x))/p(x)

+ δα(x)+(p(x)−1)ν(x)/p(x)(log(e + 1/δ))β(x)−(q(x)+β(x))/p(x)+(1+ε)J}.

Moreover, Lemma 2.8 yields

I2(δ) ≤ Cδα(x)−ν(x)/p(x)(log(e + 1/δ))−(q(x)+β(x))/p(x),

so that

Iα(x)f(x) ≤ C{δα(x)−ν(x)/p(x)(log(e + 1/δ))−(q(x)+β(x))/p(x)

+ δα(x)+(p(x)−1)ν(x)/p(x)(log(e + 1/δ))β(x)−(q(x)+β(x))/p(x)+(1+ε)J}.

Now, letting δ = min{dG, J−1/ν(x)(log(e + J))−(β(x)+(1+ε))/ν(x)}, we obtain

Iα(x)f(x) ≤ C
{
1 + J1/p∗(x)(log(e + J))−α(x)β(x)/ν(x)−q(x)/p(x)+(1+ε)/p∗(x)

}
.

By Lemma 2.9, we obtain

−
∫

B(z,r)

Ψ(x, Iα(x)f(x))(log(e + |Iα(x)f(x)|))−(1+ε) dx

≤ C −
∫

B(z,r)

(1 + J) dx

≤ Cr−ν(z)(log(e + 1/r))−β(z)−ε

for z ∈ G and 0 < r < dG, which completes the proof of Theorem 2.1.

Example 2.10. Let

ω(t) =


0 when t = 0,
1/ log(1/|t|) when 0 < |t| < r0,
1/ log(1/r0) when |t| ≥ r0

and

η(t) =


0 when t = 0,
1/ log log(1/|t|) when 0 < |t| < r0,
1/ log log(1/r0) when |t| ≥ r0

for 0 < r0 < 1/4. Consider

p(x) = p(x1, x2) = 1 + aω(x2),
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and
q(x) = q(x1, x2) = bη(x2),

where a > 0 and b > 0. Then, note that p(·) satisfies the conditions (P1) and (P2)
and q(·) satisfies the conditions (Q1) and (Q2). Let γ > 1. If

f(y) = |y2|−1(log(e + 1/|y2|))−γ,

then note that

−
∫

B(z,r)

f(y)p(y)(log(e + f(y)))q(y)dy ≤ Cr−1

∫ r

0

|y2|−1(log(e + 1/|y2|))−γdy2

≤ Cr−1(log(e + 1/r))−β

for all z ∈ B = B(0, 1) and r > 0, when β = γ − 1 > 0. Here we may assume that
x2 6= 0. Setting Q(x) = {y = (y1, y2) ∈ B : |x1 − y1| < |x2|, |y2| < |x2|}, we note
that

Iαf(x) ≥
∫

Q(x)

|x − y|α−2f(y)dy

≥ C|x2|α−2

∫
Q(x)

f(y)dy

≥ C|x2|α−1

∫ |x2|

0

|y2|−1(log(2 + |y2|−1))−β−1dy2

≥ C|x2|α−1(log(2 + |x2|−1))−β,

Since
1/p∗(x) − 1/p∗(y) = 1/p(x) − 1/p(y),

we see that

−
∫

B(0,r)

Iαf(x)p∗(x)(log(e + Iαf(x)))(q(x)/p(x)+αβ)p∗(x)−(1+ε)dx

≥ C −
∫

B(0,r)

|x2|−1(log(e + 1/|x2|))−β−ε−1dx

≥ Cr−1(log(e + 1/r))−β−ε

for all 0 < r < 1.
This implies that Theorem 2.1 is best possible as to the exponents appearing

in the Morrey condition.

3 Sobolev’s inequality in the case p− = 1 and q− >

0

Let p− = 1. In this section we assume that there exists a constant q0 > 0 such that

sp(x)−1(log(e + s))q(x)−q0 ≤ tp(x)−1(log(e + t))q(x)−q0 , (3.1)

whenever 0 < s < t and x ∈ Rn. Let p∗ and Ψ be as in (2.2) and (2.3), respectively.
Under this assumption, Theorem 2.1 is shown to be valid for ε = 0.
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Theorem 3.1. Let p− = 1. Suppose that (2.1) and (3.1) hold. Then there exists a
constant C > 0 such that

−
∫

B(z,r)

Ψ(x, |Iα(x)f(x)|)(log(e + |Iα(x)f(x)|))−1 dx ≤ Cr−ν(z)(log(e + 1/r))−β(z)

for all z ∈ G, 0 < r < dG and f satisfying ‖f‖LΦ,ν,β(G) ≤ 1.

Corollary 3.2. Let p− = 1. Suppose that (2.1) and (3.1) hold. Then there exists
a constant C > 0 such that

‖Iαf‖
L

eΨ1,ν,β(G)
≤ C‖f‖LΦ,ν,β(G),

where Ψ̃1(x, t) = Ψ(x, t)(log(e + t))−1.

Remark 3.3. If p(x) = 1, q(x) = q > 0, ν(x) = n and β(x) = 0, then p∗ = n/(n−
α) and the Riesz operator Iα is bounded from L1(log L)q(G) to Lp∗(log L)p∗q−1(G),
which is a consequence of O’Neil [26, Theorem 5.2].

For ε > 0, let

ρ−ε(r) = r−n(log(e + 1/r))ε−1.

For a nonnegative measurable function f on G, we define the logarithmic potential

Lεf(x) =

∫
{y∈G:|x−y|−ε<f(y)}

ρ−ε(|x − y|)(log(e + f(y)))−εg(y) dy,

where g(y) = f(y)p(y)(log(e + f(y)))q(y).

For the proof of Theorem 3.1, we need to modify Lemmas 2.5 and 2.9 in the
following manner.

Lemma 3.4. Let 0 < ε ≤ q0/2 and

F (δ) =

∫
{y∈B(x,δ):|x−y|−ε<f(y)}

|x − y|α(x)−n

(
log(e + f(y))

log(e + 1/|x − y|)

)ε

f(y) dy

for 0 < δ < dG and a nonnegative measurable function f on G. Then there exists
a constant C > 0 such that

F (δ) ≤ C{δα(x)−ν(x)/p(x)(log(e + 1/δ))−(q(x)+β(x))/p(x)

+ δα(x)+(p(x)−1)ν(x)/p(x)(log(e + 1/δ))β(x)−(q(x)+β(x))/p(x)+1Lεf(x)}.

Proof. Let E = {y ∈ B(x, δ) : |x − y|−ε < f(y)}. For k > 0, let

E1
k = {y ∈ B(x, δ) : |x − y|−ε < f(y) ≤ k}, E2

k = E \ E1
k .
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Then we have ∫
E1

k

|x − y|α(x)−n

(
log(e + f(y))

log(e + 1/|x − y|)

)ε

f(y) dy

≤ k(log(e + k))ε

∫
B(x,δ)

|x − y|α(x)−n(log(e + 1/|x − y|))−ε dy

= Ck(log(e + k))ε

∫ δ

0

tα(x)−1(log(e + 1/t))−ε dt

≤ Ck(log(e + k))εδα(x)−α−/2(log(e + 1/δ))−ε

∫ δ

0

tα−/2−1 dt

= Ck(log(e + k))εδα(x)(log(e + 1/δ))−ε,

and, using (3.1),∫
E2

k

|x − y|α(x)−n

(
log(e + f(y))

log(e + 1/|x − y|)

)ε

f(y) dy

≤
∫

E2
k

|x − y|α(x)−n

(
log(e + f(y))

log(e + 1/|x − y|)

)ε

f(y)

× C

(
f(y)

k

)p(y)−1 (
log(e + f(y))

log(e + k)

)q(y)−2ε

dy

= C

∫
E2

k

|x − y|α(x)−n(log(e + 1/|x − y|))−ε(log(e + f(y)))−εg(y)

×
(

1

k

)p(y)−1 (
1

log(e + k)

)q(y)−2ε

dy

≤ Cδα(x)(log(e + 1/δ))1−2ε

∫
E

ρ−ε(|x − y|)(log(e + f(y)))−εg(y)

×
(

1

k

)p(y)−1 (
1

log(e + k)

)q(y)−2ε

dy.

Hence

F (δ) ≤ C

{
k(log(e + k))εδα(x)(log(e + 1/δ))−ε

+ δα(x)(log(e + 1/δ))1−2ε

∫
E

ρ−ε(|x − y|)(log(e + f(y)))−εg(y)

×
(

1

k

)p(y)−1 (
1

log(e + k)

)q(y)−2ε

dy

}
.

We set
k = δ−ν(x)/p(x)(log(e + 1/δ))−(q(x)+β(x))/p(x).

Then we have for y ∈ B(x, δ),

k−p(y) ≤ Ck−p(x)
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and

(log(e + k))−q(y) ≤ C(log(e + k))−q(x)

by (2.4) and (2.5). Consequently it follows that

F (δ) ≤ C{δα(x)−ν(x)/p(x)(log(e + 1/δ))−(q(x)+β(x))/p(x)

+ δα(x)+(p(x)−1)ν(x)/p(x)(log(e + 1/δ))β(x)−(q(x)+β(x))/p(x)+1Lεf(x)}.

Now the result follows.

Lemma 3.5. There exists a constant C > 0 such that

−
∫

B(z,r)

Lεf(x) dx ≤ Cr−ν(z)(log(e + 1/r))−β(z)

for all z ∈ G, 0 < r < dG and f ≥ 0 satisfying ‖f‖LΦ,ν,β(G) ≤ 1.

Proof. Let f be a nonnegative measurable function on G satisfying ‖f‖LΦ,ν,β(G) ≤ 1.
Write

Lεf(x) =

∫
{y∈B(z,2r):|x−y|−ε<f(y)}

ρ−ε(|x − y|)(log(e + f(y)))−εg(y) dy

+

∫
{y∈G\B(z,2r):|x−y|−ε<f(y)}

ρ−ε(|x − y|)(log(e + f(y)))−εg(y) dy

= L1(x) + L2(x),

where g(y) = f(y)p(y)(log(e + f(y)))q(y). By Fubini’s theorem, we have∫
B(z,r)

L1(x) dx

≤ C

∫
B(z,2r)

(∫
{y∈G:|x−y|−ε<f(y)}

ρ−ε(|x − y|)dx

)
(log(e + f(y)))−εg(y)dy

≤ C

∫
B(z,2r)

g(y)dy ≤ Crn−ν(z)(log(e + 1/r))−β(z).

For L2, note that

L2(x) ≤ C

∫
G\B(z,2r)

|x − y|−n(log(e + 1/|x − y|))−1g(y) dy

≤ C

∫
G\B(z,2r)

|z − y|−n(log(e + 1/|z − y|))−1g(y) dy

for x ∈ B(z, r). Hence, as in the proof of Lemma 2.7, we see that∫
B(z,r)

L2(x) dx ≤ Crn

∫
G\B(z,2r)

|z − y|−n(log(e + 1/|z − y|))−1g(y) dy

≤ Crn

∫ 2dG

2r

t−ν(z)(log(e + 1/t))−β(z)−1dt

t

≤ Crn−ν(z)(log(e + 1/r))−β(z)−1.

Thus this lemma is proved.
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Proof of Theorem 3.1. We may assume that f ≥ 0. For ε = min{α−/2, q0/2} and
x ∈ Rn, set L = Lεf(x).

For δ > 0, write

Iα(x)f(x) =

∫
B(x,δ)

|x − y|α(x)−nf(y) dy +

∫
G\B(x,δ)

|x − y|α(x)−nf(y) dy

= I1(δ) + I2(δ).

In view of Lemma 3.4, we find

I1(δ) ≤
∫

B(x,δ)

|x − y|α(x)−n−ε dy

+

∫
{y∈B(x,δ):|x−y|−ε<f(y)}

|x − y|α(x)−n

(
(log(e + f(y)))

log(e + |x − y|−ε)

)ε

f(y) dy

≤ C{δα(x)−ν(x)/p(x)(log(e + 1/δ))−(q(x)+β(x))/p(x)

+ δα(x)+(p(x)−1)ν(x)/p(x)(log(e + 1/δ))β(x)−(q(x)+β(x))/p(x)+1L}

with L = Lεf(x). Moreover, Lemma 2.8 yields

I2(δ) ≤ Cδα(x)−ν(x)/p(x)(log(e + 1/δ))−(q(x)+β(x))/p(x),

so that

Iα(x)f(x) ≤ C{δα(x)−ν(x)/p(x)(log(e + 1/δ))−(q(x)+β(x))/p(x)

+ δα(x)+(p(x)−1)ν(x)/p(x)(log(e + 1/δ))β(x)−(q(x)+β(x))/p(x)+1L}.

Now, letting δ = min{dG, L−1/ν(x)(log(e + L))−(β(x)+1)/ν(x)}, we obtain

Iα(x)f(x) ≤ C
{
1 + L1/p∗(x)(log(e + L))−α(x)β(x)/ν(x)−q(x)/p(x)+1/p∗(x)

}
.

In view of Lemma 3.5, we find

−
∫

B(z,r)

Ψ(x, Iα(x)f(x))(log(e + Iα(x)f(x)))−1 dx

≤ C −
∫

B(z,r)

(1 + L) dx ≤ Cr−ν(z)(log(e + 1/r))−β(z),

which completes the proof of Theorem 3.1.

Example 3.6. Let

ω(t) =


0 when t = 0,
1/ log(1/|t|) when 0 < |t| < r0,
1/ log(1/r0) when |t| ≥ r0

and

η(t) =


0 when t = 0,
1/ log log(1/|t|) when 0 < |t| < r0,
1/ log log(1/r0) when |t| ≥ r0
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for 0 < r0 < 1/4. Consider

p(x) = p(x1, x2) = 1 + aω(x2),

and
q(x) = q(x1, x2) = q + bη(x2),

where a > 0, q > 0 and b > 0. Let γ ∈ R. If

f(y) = |y2|−1(log(e + 1/|y2|))−γ,

then note that

−
∫

B(z,r)

f(y)p(y)(log(e + f(y)))q(y)dy ≤ Cr−1(log(e + 1/r))−β

for all z ∈ B = B(0, 1) and r > 0, when β = γ− 1− q > 0. Further, for 0 < α < 1,
we have

Iαf(x) ≥ C|x2|α−1(log(e + 1/|x2|))−γ+1

for x ∈ B(0, 1). Take γ such that γ < δ + 1 + q for δ > 0. Then we see that

−
∫

B(0,r)

Iαf(x)p∗(x)(log(e + Iαf(x)))(q(x)/p(x)+αβ)p∗(x)−1+δdx

≥ C −
∫

B(0,r)

|x2|−1(log(e + 1/|x2|))−β−1+δdx = ∞

for all 0 < r < 1 and δ > 0. This implies that Theorem 3.1 is best possible as to
the exponents appearing in the Morrey condition.

4 Sobolev’s inequality in the case p− > 1

In this section, we are concerned with the case p− > 1. In this case, (1.1) holds for
K ≥ −q−/(p− − 1).

We first show the boundedness of the Hardy-Littlewood maximal operator:

Mf(x) = sup
B

−
∫

B

|f(y)| dy,

where the supremum is taken over all balls B containing x.

Theorem 4.1. Suppose p− > 1 and ν− > 0 Then there exists a constant C > 0
such that

−
∫

B(z,r)

Mf(x)p(x)(log(e + Mf(x)))q(x)dx ≤ Cr−ν(z)(log(e + 1/r))−β(z)

for all z ∈ G, 0 < r < dG and f with ‖f‖LΦ,ν,β(G) ≤ 1.

Remark 4.2. For the constant case, we refer the reader to [25].
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To prove Theorem 4.1, we prepare several lemmas. Let us begin with the
following result, which is a consequence of [20, Theorem 1].

Lemma 4.3 ([20, Theorem 1]). Suppose p0 > 1 and ν− > 0. Let f be a measurable
function on G satisfying

−
∫

B(x,r)

|f(y)|p0 dy ≤ r−ν(x)(log(e + 1/r))−β(x) (4.1)

for all x ∈ G and 0 < r < dG. Then there exists a constant C > 0 such that

−
∫

B(z,r)

Mf(x)p0 dx ≤ Cr−ν(x)(log(e + 1/r))−β(x)

for all z ∈ G and 0 < r < dG, where the constant C is independent of f satisfying
(4.1).

Lemma 4.4. Suppose ν− > 0. Let f be a nonnegative measurable function on G
satisfying ‖f‖LΦ,ν,β(G) ≤ 1 such that

f(x) ≥ 1 or f(x) = 0 for each x ∈ G. (4.2)

Then there exists a constant C > 0 such that

Mf(x)p(x)(log(e + Mf(x)))q(x) ≤ CMg(x)

for all x ∈ G, where g(y) = f(y)p(y)(log(e + f(y)))q(y). In the above, the constant
C is independent of f .

Proof. Let

H = Hx,r = −
∫

B(x,r)

g(y) dy.

We shall show

−
∫

B(x,r)

f(y) dy ≤ CH1/p(x)(log(e + H))−q(x)/p(x) (4.3)

for all x ∈ G and 0 < r < dG. Then

Mf(x) ≤ CMg(x)1/p(x)(log(e + Mg(x)))−q(x)/p(x).

This implies the desired conclusion.
To show (4.3), first consider the case when H ≥ 1. Set

k = H1/p(x)(log(e + H))−q(x)/p(x).

Then we have

−
∫

B(x,r)

f(y) dy ≤ k + C −
∫

B(x,r)

f(y)

(
f(y)

k

)p(y)−1 (
log(e + f(y))

log(e + k)

)q(y)

dy

= k + C −
∫

B(x,r)

g(y)k−p(y)+1(log(e + k))−q(y)dy.
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Since
H ≤ r−ν(x)(log(e + 1/r))−β(x)

for all x ∈ G and 0 < r < dG, we obtain for y ∈ B(x, r), as in the proof of
Lemma 2.5,

k−p(y) ≤ Ck−p(x) = CH−1(log(e + H))q(x)

and
(log(e + k))−q(y) ≤ C(log(e + k))−q(x) ≤ C(log(e + H))−q(x).

Consequently (4.3) follows.
In the case H ≤ 1, we find

H ≤ CH1/p(x)(log(e + H))−q(x)/p(x).

Since f(y) ≥ 1 or f(y) = 0 for each y ∈ G, we have

g(y) = f(y) · f(y)p(y)−1(log(e + f(y)))q(y) ≥ Cf(y)

for some C > 0 and hence

−
∫

B(x,r)

f(y) dy ≤ CH.

This shows (4.3).

Proof of Theorem 4.1. We may assume that f ≥ 0. Write

f = fχ{y:f(y)≥1} + fχ{y:f(y)<1} = f1 + f2,

where χE denotes the characteristic function of E. Take p0 such that 1 < p0 < p−.
Since

−
∫

B(x,r)

f1(y)p(y)/p0(log(e + f1(y)))q(y)/p0dy

≤ C −
∫

B(x,r)

f1(y)p(y)(log(e + f1(y)))q(y) dy ≤ Cr−ν(x)(log(e + 1/r))−β(x)

for all x ∈ G and 0 < r < dG, applying Lemma 4.4 with p(x) and q(x) replaced by
p(x)/p0 and q(x)/p0, respectively, we obtain

Mf1(x)p(x)/p0(log(e + Mf1(x)))q(x)/p0 ≤ CMg1(x),

where g1(y) = f1(y)p(y)/p0(log(e + f1(y)))q(y)/p0 . Note that g1 satisfies (4.1). Since
Mf2 ≤ 1, it follows that

Mf(x)p(x)(log(e + Mf(x)))q(x) ≤ C(1 + Mg1(x)p0).

Hence, by Lemma 4.3, we see that

−
∫

B(z,r)

Mf(x)p(x)(log(e + Mf(x)))q(x) dx ≤ C −
∫

B(z,r)

(1 + Mg1(x)p0) dx

≤ Cr−ν(z)(log(e + 1/r))−β(z)

for all z ∈ G and 0 < r < dG, as required.
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Now we give a Morrey version of Sobolev’s inequality for Riesz potentials. Let
p∗ and Ψ be as in (2.2) and (2.3), respectively.

Theorem 4.5. Suppose that p− > 1 and (2.1) holds. Then there exists a constant
C > 0 such that

−
∫

B(z,r)

Ψ(x, |Iα(x)f(x)|)dx ≤ Cr−ν(z)(log(e + 1/r))−β(z)

for all z ∈ G, 0 < r < dG and f satisfying ‖f‖LΦ,ν,β(G) ≤ 1.

This theorem gives the following norm version, which is simpler than Corollaries
2.4 and 3.2 .

Corollary 4.6 (cf. [16, Theorem 4.3]). Suppose that p− > 1 and (2.1) holds.
Then there exists a constant C > 0 such that

‖Iα(·)f‖LΨ,ν,β(G) ≤ C‖f‖LΦ,ν,β(G).

Remark 4.7. If p(x) = p > 1, q(x) = q ∈ R, ν(x) = n and β(x) = 0,
then p∗ = np/(n − αp) and the operator Iα is bounded from Lp(log L)q(G) to
Lp∗(log L)p∗q/p(G), which is shown by O’Neil [26, Theorem 4.7].

For further related results, we refer the reader to the papers [3, 16, 17].

Remark 4.8. Theorem 4.5 is best possible as to the exponents appearing in the
Morrey condition.

Proof of Theorem 4.5. We may assume that f ≥ 0, as before. By Lemma 2.8, we
find

Iα(x)f(x) =

∫
B(x,δ)

|x − y|α(x)−nf(y)dy +

∫
G\B(x,δ)

|x − y|α(x)−nf(y)dy

≤ C

{
δα(x)Mf(x) + δα(x)−ν(x)/p(x)(log(e + 1/δ))−(q(x)+β(x))/p(x)

}
.

Considering

δ = min
{
dG,Mf(x)−p(x)/ν(x)(log(e + Mf(x)))−(q(x)+β(x))/ν(x)

}
,

we have

Iα(x)f(x) ≤ C

{
1 + Mf(x)1−α(x)p(x)/ν(x)(log(e + Mf(x)))−α(x)(q(x)+β(x))/ν(x)

}
= C

{
1 + Mf(x)p(x)/p∗(x)(log(e + Mf(x)))−α(x)(q(x)+β(x))/ν(x)

}
.

Then we find

Ψ(x, Iα(x)f(x)) ≤ C
{
1 + Mf(x)p(x)(log(e + Mf(x)))q(x)

}
for all x ∈ G. It follows from Theorem 4.1 that

−
∫

B(z,r)

Ψ(x, Iα(x)f(x)) dx ≤ Cr−ν(z)(log(e + 1/r))−β(z)

for all z ∈ G and 0 < r < dG, as required.
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5 Trudinger’s inequality

This section is concerned with Morrey version of Trudinger’s type exponential
integrability for Riesz potentials, in case

ess inf
x∈Rn

(α(x) − ν(x)/p(x)) ≥ 0, (5.1)

which is equivalent to

ess sup
x∈Rn

(1/p(x) − α(x)/ν(x)) ≤ 0.

Set

Γ(x, r) = c0

∫ r

1

(log(e + t))−(q(x)+β(x))/p(x)dt

t

for x ∈ Rn and r ≥ 2, where we choose c0 such that infx∈Rn Γ(x, 2) = 2. For
convenience, set Γ(x, r) = (Γ(x, 2)/2)r when r < 2. Note that there exists a
constant C > 0 such that

C−1 ≤ Γ(x, r2)

Γ(x, r)
≤ C for x ∈ Rn and r ≥ 2,

since −(q(x) + β(x))/p(x) is bounded. Let

sx = sup
r≥2

Γ(x, r) = c0

∫ ∞

1

(log(1 + t))−(q(x)+β(x))/p(x)dt

t
.

Then 2 < sx ≤ ∞ and Γ(x, ·) is bijective from [0,∞) to [0, sx). We denote by
Γ−1(x, ·) the inverse function of Γ(x, ·). If sx < ∞, we set Γ−1(x, r) = ∞ for
r ≥ sx.

Theorem 5.1. Suppose ν− > 0 and (5.1) holds. Let ε be a measurable function on
Rn such that

ess inf
x∈Rn

(ν(x)/p(x) − ε(x)) > 0 and 0 < ε− ≤ ε+ < α−. (5.2)

Then there exist constants c1, c2 > 0 such that

−
∫

B(z,r)

Γ−1

(
x,

|Iα(x)f(x)|
c1

)
dx ≤ c2 rε(z)−ν(z)/p(z)

for all z ∈ G, 0 < r < dG and f satisfying ‖f‖LΦ,ν,β(G) ≤ 1. In the above
|Iα(x)f(x)|/c1 < sx for a.e. x ∈ B(z, r).

Remark 5.2. Let α, p, q, ν, β, ε be all constants and 0 < ε < α.

(1) If q + β < p, then, for r ≥ 2,

C−1Γ(r) ≤ (log(e + r))1−(q+β)/p ≤ CΓ(r)

and
Γ−1(C−1r) ≤ exp(rp/(p−q−β)) ≤ Γ−1(Cr).
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(2) If q + β = p, then, for r ≥ 2,

C−1Γ(r) ≤ log(log(e + r)) ≤ CΓ(r)

and
Γ−1(C−1r) ≤ exp exp(r) ≤ Γ−1(Cr).

Corollary 5.3. Under the assumptions in Theorem 5.1, there exist constants
c1, c2 > 0 such that

(1) in case ess supx∈Rn (q(x) + β(x))/p(x) < 1,

−
∫

B(z,r)

exp

(
|Iαf(x)|p(x)/(p(x)−q(x)−β)

c1

)
dx ≤ c2r

ε(z)−ν/p(z);

(2) in case ess infx∈Rn (q(x) + β(x))/p(x) ≥ 1,

−
∫

B(z,r)

exp

(
exp

(
|Iαf(x)|

c1

))
dx ≤ c2r

ε(z)−ν/p(z)

for all z ∈ G, 0 < r < dG and f satisfying ‖f‖LΦ,ν,β(G) ≤ 1.

Remark 5.4. When p, q, β, α, ν are all constants such that p = 1, q = 0, β < 1
and α = ν, this is due to Corollaries 4.6 and 4.8 in [12]. In particular, the case
p = 1, q = β = 0, α = ν = 1 and r = dG coincides with the result by Trudinger
[30]. A weaker result is shown by Mizuta and Shimomura [15, Theorem 4.4].

To prove the theorem, we use the following lemmas. The first lemma can be
proved with minor changes of the proof of Lemma 2.8.

Lemma 5.5. Suppose that ν− > 0 and (5.1) holds. Then there exists a constant
C > 0 such that ∫

G\B(x,δ)

|x − y|α(x)−nf(y) dy ≤ CΓ(x, 1/δ)

for all x ∈ G, 0 < δ < dG and f ≥ 0 satisfying ‖f‖LΦ,ν,β(G) ≤ 1.

Lemma 5.6. Let ε be a measurable function on G satisfying (5.2). Setting ρ(z, r) =
rε(z)(log(e + 1/r))(q(z)+β(z))/p(z), define

Iρ(z)f(x) =

∫
G

ρ(z, |x − y|)
|x − y|n

f(y) dy.

Then there exists a constant C > 0 such that

−
∫

B(z,r)

Iρ(z)f(x)dx ≤ Crε(z)−ν(z)/p(z)

for all z ∈ G, 0 < r < dG and f ≥ 0 satisfying ‖f‖LΦ,ν,β(G) ≤ 1.
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Proof. Write

Iρ(z)f(x) =

∫
B(z,2r)

ρ(z, |x − y|)
|x − y|n

f(y) dy +

∫
G\B(z,2r)

ρ(z, |x − y|)
|x − y|n

f(y) dy

= I1(x) + I2(x).

By Fubini’s theorem and Lemma 2.6, we have∫
B(z,r)

I1(x) dx =

∫
B(z,2r)

(∫
B(z,r)

ρ(z, |x − y|)
|x − y|n

dx

)
f(y) dy

≤
∫

B(z,2r)

(∫
B(y,3r)

ρ(z, |x − y|)
|x − y|n

dx

)
f(y) dy

= nσn

∫
B(z,2r)

(∫ 3r

0

ρ(z, t)

t
dt

)
f(y) dy

≤ Cρ(z, 3r)

∫
B(z,2r)

f(y)dy

≤ Cρ(z, 3r)(2r)n−ν(z)/p(z)(log(e + 1/(2r)))−(q(z)+β(z))/p(z)

≤ Crn+ε(z)−ν(z)/p(z).

For I2, note that

I2(x) ≤ C

∫
G\B(z,2r)

ρ(z, |z − y|)
|z − y|n

f(y) dy for x ∈ B(z, r),

since there exists a constant C > 0 such that

C−1 ≤ ρ(z, r)

ρ(z, s)
≤ C for z ∈ G,

1

2
≤ r

s
≤ 2.

Hence we have by Lemmas 2.6 and 2.7

I2(x) ≤ C

∫ 2dG

2r

ρ(z, t)

tn
tn−ν(z)/p(z)(log(e + 1/t))−(q(z)+β(z))/p(z)dt

t

≤ C

∫ 2dG

2r

tε(z)−ν(z)/p(z)dt

t

≤ Crε(z)−ν(z)/p(z).

Thus this lemma is proved.

Proof of Theorem 5.1. We have only to treat nonnegative f with ‖f‖LΦ,ν,β(G) ≤ 1.
By Lemma 5.5 we find

Iα(x)f(x) =

∫
B(x,δ)

|x − y|α(x)−nf(y) dy +

∫
G\B(x,δ)

|x − y|α(x)−nf(y) dy

=

∫
B(x,δ)

|x − y|α(x)−ε(z)(log(e + 1/|x − y|))−(q(z)+β(z))/p(z)ρ(z, |x − y|)
|x − y|n

f(y) dy

+CΓ(x, 1/δ)

≤ C
{
δα(x)−ε(z)(log(e + 1/δ))−(q(z)+β(z))/p(z)Iρ(z)f(x) + Γ(x, 1/δ)

}
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for δ > 0. Considering

δ = min

{
dG,

(
Γ(x, Iρ(z)f(x))(log(e + Iρ(z)f(x)))(q(z)+β(z))/p(z)

Iρ(z)f(x)

)1/(α(x)−ε(z)) }
,

we have the inequality

Iα(x)f(x) ≤ c1 max
{
1, Γ(x, Iρ(z)f(x))

}
,

for some constant c1 > 0. Since 1 ≤ Γ(x, 1) = Γ(x, 2)/2, Γ−1(x, 1) ≤ 1. Then

−
∫

B(z,r)

Γ−1

(
x,

Iα(x)f(x)

c1

)
dx ≤ −

∫
B(z,r)

{
1 + Iρ(z)f(x)

}
dx

for all z ∈ G and 0 < r < dG. Hence Lemma 5.6 gives the conclusion.

6 Continuity

In this section we are concerned with continuity for Riesz potentials when (5.1)
and the following condition hold:

H(x, r) ≡
∫ r

0

tα(x)−ν(x)/p(x)(log(e + 1/t))−(q(x)+β(x))/p(x)dt

t
< ∞.

In this case H(x, r) → 0 as r → 0 and H(x, r) ≤ H(x, 2r) ≤ CH(x, r) for some
constant C > 0 independent of x ∈ Rn and 0 < r < ∞.

Theorem 6.1. Let 0 < θ ≤ 1 and γ(x) = α(x) − ν(x)/p(x). Suppose that α ∈
Lipθ(G), ν− > 0 and 0 ≤ γ− ≤ γ+ < θ. If f is a measurable function on G
satisfying ‖f‖LΦ,ν,β(G) ≤ 1, then Iα(x)f is continuous on G. Moreover, there exists
a constant C > 0 such that

|Iα(x)f(x) − Iα(z)f(z)| ≤ C{H(x, |x − z|) + H(z, |x − z|)}

for all x, z ∈ G, where the constant C is independent of f satisfying ‖f‖LΦ,ν,β(G) ≤
1. That is, the operator Iα(·) is bounded from LΦ,ν,β(G) to ΛH(G).

Corollary 6.2. Let 0 < θ ≤ 1 and γ(x) = α(x) − n/p(x). Suppose α ∈ Lipθ(G)
and 0 < γ− ≤ γ+ < θ. Then the operator Iα(·) is bounded from Lp(·)(G) to
Lipγ(·)(G).

Remark 6.3. The case when α, p are constants and n = 1 is the result of Hardy-
Littlewood [6, Theorem 12].

Corollary 6.4. Let α, ν and β be constants. Suppose

0 ≤ α − ν/p− ≤ α − ν/p+ < 1, β > ess sup
x∈Rn

(p(x) − q(x)).
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Then there exists a constant C > 0 such that

|Iαf(x) − Iαf(z)|
≤ C

{
|x − z|α−ν/p(x)(log(e + 1/|x − z|))−(q(x)+β)/p(x)+1

+ |x − z|α−ν/p(z)(log(e + 1/|x − z|))−(q(z)+β)/p(z)+1
}
,

for all x, z ∈ G and for all f satisfying ‖f‖LΦ,ν,β(G) ≤ 1.

Remark 6.5. If p(x) = 1 and q(x) = 0, the corollary above is a special case of [21,
Theorem 3.3]. If p(x) = 1, q(x) = 0, α = ν and β > 1, the corollary above is [11,
Theorem 1.1 (3)], where α, ν and β are constants. See also [21, 29].

To prove the theorems, we need the following lemmas.

Lemma 6.6. Let 0 < θ ≤ 1. Suppose α ∈ Lipθ(G). Then there exists a constant
C > 0 such that

||x − y|α(x)−n − |z − y|α(z)−n| ≤ C(|x − z||x − y|α(x)−n−1 + |x − z|θ|x − y|α(x)−n−θ),

for all x, y, z ∈ G satisfying |x − y| ≥ 2|x − z|.

Proof. Let r = |x − y| and s = |z − y|. Then 1/2 ≤ r/s ≤ 2 and

|rα(x)−n − sα(z)−n| ≤ |rα(x)−n − sα(x)−n| + |sα(x)−n − sα(z)−n|
= |r − s||α(x) − n| r̃ α(x)−n−1 + |α(x) − α(z)|| log s| sα̃−n

≤ C(|x − z|rα(x)−n−1 + |x − z|θsα(x)−n−θsα̃−α(x))

≤ C(|x − z|rα(x)−n−1 + |x − z|θrα(x)−n−θ),

where r̃ = (1 − t)r + ts and α̃ = (1 − u)α(x) + uα(z) for some 0 < t, u < 1.

The following two lemmas can be proved in the same manner as Lemma 2.8.

Lemma 6.7. Suppose ν− > 0. Then there exists a constant C > 0 such that∫
B(x,r)\B(x,s)

|x−y|α(x)−nf(y)dy ≤ C

∫ r

s

tα(x)−ν(x)/p(x)(log(e+1/t))−(q(x)+β(x))/p(x)dt

t

for all x ∈ G, 0 < 2s < r < ∞ and for all f ≥ 0 satisfying ‖f‖LΦ,ν,β(G) ≤ 1.

Lemma 6.8. Let θ > 0. Suppose ν− > 0 and

ess sup
x∈G

(α(x) − ν(x)/p(x)) < θ.

Then there exists a constant C > 0 such that∫
Rn\B(x,r)

|x − y|α(x)−n−θf(y) dy ≤ Crα(x)−ν(x)/p(x)−θ(log(e + 1/r))−(q(x)+β(x))/p(x),

for all x ∈ G, r > 0 and for all f ≥ 0 satisfying ‖f‖LΦ,ν,β(G) ≤ 1.
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Proof of Theorem 6.1. We may assume that f ≥ 0. Write

Iα(x)f(x) − Iα(z)f(z)

=

∫
B(x,2|x−z|)

|x − y|α(x)−nf(y) dy −
∫

B(x,2|x−z|)
|z − y|α(z)−nf(y) dy

+

∫
G\B(x,2|x−z|)

(|x − y|α(x)−n − |z − y|α(z)−n)f(y) dy

for x, z ∈ G. Using Lemma 6.7, we have∫
B(x,2|x−z|)

|x − y|α(x)−nf(y) dy ≤ C

∫ 2|x−z|

0

tα(x)−ν(x)/p(x)(log(e + 1/t))−(q(x)+β(x))/p(x)dt

t

≤ CH(x, |x − z|),

and ∫
B(x,2|x−z|)

|x − y|α(z)−nf(y) dy ≤
∫

B(z,3|x−z|)
|x − y|α(z)−nf(y) dy

≤ CH(z, |x − z|).

On the other hand, by Lemmas 6.6 and 6.8, we have∫
G\B(x,2|x−z|)

||x − y|α(x)−n − |z − y|α(z)−n|f(y) dy

≤ C

{
|x − z|

∫
G\B(x,2|x−z|)

|x − y|α(x)−n−1f(y) dy

+ |x − z|θ
∫

G\B(x,2|x−z|)
|x − y|α(x)−n−θf(y) dy

}
≤ C|x − z|α(x)−ν(x)/p(x)(log(e + 1/|x − z|))−(q(x)+β(x))/p(x)

≤ CH(x, |x − z|).

Then we have the conclusion.

References

[1] D. R. Adams, A note on Riesz potentials, Duke Math. J. 42 (1975), 765–778.

[2] D. R. Adams and L. I. Hedberg, Function spaces and potential theory,
Springer-Verlag, Berlin, Heidelberg, 1996.

[3] A. Almeida, J. Hasanov and S. Samko, Maximal and potential operators in
variable exponent Morrey spaces, Georgian Math. J. 15 (2008), 195-208.

[4] F. Chiarenza and M. Frasca, Morrey spaces and Hardy-Littlewood maximal
function, Rend. Mat. Apple. (7) 7 (1987), 273–279.

23



[5] D. Cruz-Uribe and A. Fiorenza, L log L results for the maximal operator in
variable Lp spaces, Trans. Amer. Math. Soc. 361 (2009), 2631–2647.

[6] G. H. Hardy and J. E. Littlewood, Some properties of fractional integrals. I.,
Math. Z. 27 (1928), 565–606.
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