
Integrability of maximal functions for generalized
Lebesgue spaces with variable exponent

Yoshihiro Mizuta, Takao Ohno and Tetsu Shimomura

Abstract

Our aim in this paper is to deal with integrability of maximal functions
for generalized Lebesgue spaces with variable exponent. Our exponent ap-
proaches 1 on some part of the domain, and hence the integrability depends
on the shape of that part and the speed of the exponent approaching 1.

1 Introduction

Let G be a bounded open set in the n-dimensional Euclidean space Rn. Following
Orlicz [8] and Kováčik and Rákosńık [6], we consider a positive continuous function
p(·) on G and the space of all measurable functions f on G satisfying∫

G

∣∣∣∣f(y)λ

∣∣∣∣p(y) dy < ∞

for some λ > 0. We define the norm on this space by

∥f∥p(·) = inf

{
λ > 0 :

∫
G

∣∣∣∣f(y)λ

∣∣∣∣p(y) dy ≤ 1

}
.

In recent years, the generalized Lebesgue spaces Lp(·) have attracted more and
more attention, in connection with the study of elasticity, fluid mechanics and

differential equations with p(·)-growth; see R
◦
užička [9].

We denote by B(x, r) the open ball centered at x of radius r. For a locally
integrable function f on a bounded open set G ⊂ Rn, we consider the maximal
function on G defined by

Mf(x) = sup
r>0

1

|B(x, r)|

∫
G∩B(x,r)

|f(y)|dy.
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In this paper we study the boundedness of Hardy-Littlewood maximal operator
in variable exponent Lebesgue spaces. The Hardy-Littlewood maximal operator is
effectively used in many fields of real analysis.

In classical (constant exponent) Lebesgue spaces, we know the following basic
facts about the maximal operator (see the book by Stein [11, Chapter 1]): if q > 1,
then

∥Mf∥q ≤ C∥f∥q
for all f ∈ Lq(G). Since this is not true when q = 1, we consider the space
L logL(G) of measurable functions f on G whose norm

∥f∥L logL = inf

{
λ > 0 :

∫
G

∣∣∣∣f(y)λ

∣∣∣∣ log(2 + ∣∣∣∣f(y)λ

∣∣∣∣) dy ≤ 1

}
is finite. It is known from Stein [10] and [11, Sections I.1 and I.5] that the maximal
operator has the following weaker integrability for q = 1, that is,

∥Mf∥1 ≤ C∥f∥L logL.

Conversely, if ∥Mf∥1 < ∞, then we deduce that f ∈ L logL(G).
In connection with these classical results, a natural question arises about con-

ditions on p(·) implying the inequality

∥Mf∥p(·) ≤ C∥f∥p(·).

Diening [3] has shown that this remains true for variable exponents p(·) satisfying
so called a log-Hölder condition, which is stated in the following:

Theorem A. Suppose p(·) is a continuous function onG satisfying the following
conditions:

(p1) 1 < ess infG p(x) ≤ ess supG p(x) < ∞;

(p2) |p(x)− p(y)| ≤ c

− log |x− y|
whenever x ∈ G, y ∈ G and |x− y| < 1/2.

Then M is bounded on Lp(·)(G), i.e.

∥Mf∥p(·) ≤ C∥f∥p(·) whenever f ∈ Lp(·)(G).

The conclusion of Theorem A implies that

∥Mf∥1 ≤ C∥f∥p(·) whenever f ∈ Lp(·)(G). (1.1)

If p(·) approaches 1 on a compact set K in G, that is, ess infG p(x) = 1, then
this is not always true (see Cruz-Uribe, Fiorenza and Neugebauer [2, Theorem
1.7]). In this case, Hästö [5] has obtained an interesting class of variable exponents
for which (1.1) is still valid. We are also interested in the shape of K, which is
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characterized by use of Minkowski content. When p(·) and K are given, our aim
in this paper is to show that the maximal operator maps Lp(·) into an Orlicz space;
as a consequence it is shown that the maximal operator maps Lp(·) into L1.

As in Hästö [5], letting log(1) t = log t and log(m+1) t = log(log(m) t) for m =
1, 2, ..., we consider a function p(·) satisfying a log-Hölder condition such that
p(0) = 1,

p(r) = 1 +
a

log(1/r)
+

b log(2)(1/r)

log(1/r)
+

c log(3)(1/r)

log(1/r)
(1.2)

for 0 < r ≤ r0 and p(r) = p(r0) for r > r0, where the numbers a, b, c and r0 are
chosen so that p(r) is nondecreasing on [0,∞). For a compact set K in Rn, we
define

K(r) = {x ∈ Rn : δK(x) < r},
where δK(x) denotes the distance of x from K. For α ≥ 0, we say that the
Minkowski (n− α)-content of K is finite if

|K(r)| ≤ Crα for small r > 0,

where |E| denotes the Lebesgue measure of a set E. Note here that if K is a
singleton, then its Minkowski 0-content is finite, and if K is a spherical surface,
then its Minkowski (n − 1)-content is finite. As another examples of K, we may
consider fractal type sets like Cantor sets or Koch curves. Now we define a variable
exponent p(·) by

p(x) = p(δK(x)) (1.3)

for x ∈ Rn; set p(x) = 1 on K.
We are ready to state the result by Hästö [5].

Theorem B (cf. Hästö [5]). Let K be a compact subset of a bounded open set
G and p(·) be given as above. If b > 1, c = 0 and the Minkowski (n − 1)-content
of K is finite, then (1.1) is satisfied for all f ∈ Lp(·)(G).

Futamura and the first author [4] have proved that the conclusion is still valid
when b = 1 and c = 0. They have also proved that the conclusion is not true when
b = 1 and c < 0. Our aim in this paper is to establish the following result.

Theorem C. Let p(r) be of the form (1.2). For a compact set K ⊂ G whose
Minkowski (n− α)-content is finite, set p(x) = p(δK(x)) for x ∈ G, as in (1.3).

(i) If b > 0, then∫
G

|f(x)|(log(1 + |f(x)|))bα(log(1 + (log(1 + |f(x)|))))cα dx ≤ C,

or equivalently,∫
G

Mf(x)(log(1 +Mf(x)))bα−1(log(1 + (log(1 +Mf(x)))))cα dx ≤ C

for all functions f on G with ∥f∥p(·) ≤ 1.
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(ii) If b = 0 and c > 0, then∫
G

|f(x)|(log(1 + (log(1 + |f(x)|))))cα dx ≤ C,

or equivalently,∫
G

Mf(x)(log(1 +Mf(x)))−1(log(1 + (log(1 +Mf(x)))))cα−1 dx ≤ C

for all functions f on G with ∥f∥p(·) ≤ 1.

Part (i) with b = 1/α and c = 0 gives an extension of Theorem B by Hästö [5]
as well as Futamura and the first author [4].

2 Maximal functions

Throughout this paper, let C denote various constants independent of the variables
in question. Further let G denote a bounded open set in Rn.

For a positive continuous nonincreasing function k on (0,∞), assume that there
exist ε0 > 0 and r0 > 0 such that k(0) = ∞ and

(k) (log(1/r))−ε0k(r) is nondecreasing on (0, r0).

Here we may assume that
k(r0) ≥ eε0 . (2.1)

By (k) we see that

C−1k(r) ≤ k(r2) ≤ Ck(r) whenever 0 < r < r0, (2.2)

which implies the doubling condition on k. Our typical example of k is of the form

k(r) = a(log(1)(1/r))
b(log(2)(1/r))

c

for r ∈ (0, r0), where the numbers a, b, c and r0 are chosen so that k(r) is nonin-
creasing and positive on (0, r0].

Lemma 2.1. There exists 0 < r∗ < r0 such that log k(r)/ log(1/r) is nondecreasing
on (0, r∗).

Proof. Let 0 < r1 < r2 < r0. By (k), we have

log k(r1)

log(1/r1)
≤ ε0

log(2)(1/r1)− log(2)(1/r2)

log(1/r1)
+

log k(r2)

log(1/r1)

= ε0
log(2)(1/r1)− log(2)(1/r2)

log(1/r1)
+

log k(r2)

log(1/r2)

(
1 +

log(r1/r2)

log(1/r1)

)
=

log k(r2)

log(1/r2)
+

1

log(1/r1)

{
ε0 log

(
log(1/r1)

log(1/r2)

)
+

log(r1/r2)

log(1/r2)
log k(r2)

}
.
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Since log(1 + t) < t for t > 0,

log

(
log(1/r1)

log(1/r2)

)
≤ log(r2/r1)

log(1/r2)
,

so that

log k(r1)

log(1/r1)
− log k(r2)

log(1/r2)
≤ 1

log(1/r1)

(
log(r2/r1)

log(1/r2)

)
(ε0 − log k(r2)) < 0

by (2.1).

Consider a positive continuous function p(·) such that p(0) = 1,

p(r) = pk,α(r) = 1 +
log k(r)

α log(1/r)
(2.3)

for 0 < r ≤ r0 and p(r) = p(r0) when r > r0. Here we choose r0 so small that p(r)
is nondecreasing on [0,∞). Then it is worth to see that p(·) is continuous on the
interval [0,∞), which is stated as follows:

Lemma 2.2. p(·) is continuous at r = 0 ( from the right).

Lemma 2.3. (cf. [4, Lemma 2.1]). Let K be a compact set in G whose Minkowski
(n− α)-content is finite. Then∫

G

δK(x)
−α(log(1 + δK(x)

−1))−β dx < ∞

for every β > 1.

Proof. For each integer j, set Kj = {x ∈ G : 2−j ≤ δK(x) < 2−j+1}. Then we have
for β > 1∫
G

δK(x)
−α(log(1 + δK(x)

−1))−β dx =
∞∑

j=−j0

∫
Kj

δK(x)
−α(log(1 + δK(x)

−1))−β dx

≤
∞∑

j=−j0

(2−j)−α(log(1 + 2j−1))−β|K(2−j+1)|

≤
∞∑

j=−j0

Cj−β < ∞,

as required.

Let K be a compact set in G. For p(x) = p(δK(x)) with p(r) = pk,α(r), consider
the Lp(·)(G) norm defined by

∥f∥p(·) = ∥f∥p(·),G = inf

{
λ > 0 :

∫
G

∣∣∣∣f(y)λ

∣∣∣∣p(y) dy ≤ 1

}
.
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We denote by Lp(·)(G) the space of all measurable functions f on G with ∥f∥p(·) <
∞.

Lemma 2.4. (cf. [4, Lemma 2.3]). Suppose the Minkowski (n − α)-content of K
is finite. If f is a measurable function on G with ∥f∥p(·) ≤ 1, then∫

G

|f(x)|k(|f(x)|−1) dx ≤ C.

Proof. Consider the set

G′ = {x ∈ K(r0) : |f(x)| < δ(x)−α(log(1/δ(x)))−β}

for β > 1 + ε0; here we set δ(x) = δK(x) for simplicity. If x ∈ G′, then we have by
(k)

|f(x)|k(|f(x)|−1) ≤ δ(x)−α(log(1/δ(x)))−βk(δ(x)α(log(1/δ(x)))β)

≤ Cδ(x)−α(log(1/δ(x)))−β+ε0 .

Hence it follows from Lemma 2.3 that∫
G′
|f(x)|k(|f(x)|−1) dx ≤ C

since β > 1 + ε0.
If x ̸∈ G′ and δ(x) < r0, then |f(x)| ≥ δ(x)−α(log(1/δ(x)))−β, so that

δ(x) ≥ C|f(x)|−1/α(log |f(x)|)−β/α.

Hence, in view of Lemma 2.1 and (2.2), we see that

log k(δ(x))

α log(1/δ(x))
log |f(x)| ≥ log k(C|f(x)|−1/α(log |f(x)|)−β/α)

α log(C|f(x)|1/α(log |f(x)|)β/α)
log |f(x)|

≥ log(Ck(|f(x)|−1))

log |f(x)|+ β log(C log |f(x)|)
log |f(x)|

= log(Ck(|f(x)|−1))

(
1− β log(C log |f(x)|)

log |f(x)|+ β log(C log |f(x)|)

)
≥ log k(|f(x)|−1)− C,

which yields

|f(x)|p(x)−1 = exp

(
log k(δ(x))

α log(1/δ(x))
log |f(x)|

)
≥ exp(log k(|f(x)|−1)− C)

= Ck(|f(x)|−1).

Thus it follows that∫
K(r0)\G′

|f(x)|k(|f(x)|−1) dx ≤ C

∫
G

|f(x)|p(x) dx ≤ C.
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Finally, since p(x) ≥ p1 > 1 when δ(x) ≥ r0, we find∫
G\K(r0)

|f(x)|k(|f(x)|−1) dx ≤ C

∫
G

|f(x)|p(x) dx+ C ≤ C.

The required assertion is now proved.

Let Φk be a nonnegative and nondecreasing function on [0,∞) such that

Φk(2t) ≤ CΦk(t)

and

C−1k(t−1) ≤
∫ t

1

Φk(s)

s2
ds ≤ Ck(t−1)

for all t > 2. Then note that

C−1

∫ t

1

Φk(s)

s2
ds ≤

∫ t

1

s−1dΦk(s) ≤ C

∫ t

1

Φk(s)

s2
ds (2.4)

for all t > 2, since t−1Φk(t) ≤ C
∫ t

1
Φk(s)s

−2ds by the doubling property of Φk.

The next lemma is an extension of Stein [11, Chapter 1], whose proof will be
done along the same lines as in Stein [11, Chapter 1]; for another proof, see Cianchi
[1].

Lemma 2.5. For a locally integrable function f on G, the following are equivalent:

(i)

∫
G

|f(x)|k(|f(x)|−1) dx ≤ C;

(ii)

∫
G

Φk(Mf(x)) dx ≤ C.

Proof. Note that ∫
G

Φk(Mf(x)) dx =

∫ ∞

0

λ(t)dΦk(t),

where λ(t) = |{x ∈ G : Mf(x) > t}|.
First suppose (i) holds. We note from [11, Theorem 1, Chapter 1] that

λ(t) ≤ Ct−1

∫
{x∈G:|f(x)|>t/2}

|f(x)| dx
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for t > 1. Hence we obtain by Fubini’s Theorem and (2.2)∫
G

Φk(Mf(x)) dx ≤ C

∫
{x∈G:|f(x)|>1/2}

|f(x)|

{∫ 2|f(x)|

1

t−1dΦk(t)

}
dx+ C

≤ C

∫
G

|f(x)|k(|f(x)|−1) dx+ C,

which implies (ii).
Conversely, suppose (ii) holds. In view of [11, 5.2 (b) of Section 5, Chapter 1],

we find γ > 0 such that

λ(t) ≥ Ct−1

∫
{x∈G:|f(x)|>γt}

|f(x)| dx

for t > 1. Hence the implication (ii) ⇒ (i) follows by the same argument as
before.

3 Proof of Theorem C

By Lemmas 2.4 and 2.5, we have the following result.

Theorem 3.1. Let Φk be as in Lemma 2.5. Suppose the Minkowski (n−α)-content
of K is finite. If p(x) = pk,α(x) and ∥f∥p(·) ≤ 1, then∫

G

|f(x)|k(|f(x)|−1) dx ≤ C,

or equivalently, ∫
G

Φk(Mf(x)) dx ≤ C.

Remark 3.2. Let k(1/t) = A(log t)b(log(2) t)
c for large t, where A > 0.

(i) If b > 0, then we can take

Φk(t) = t(log t)b−1(log(log t))c

for large t.

(ii) If b = 0 and c > 0, then we can take

Φk(t) = t(log t)−1(log(log t))c−1

for large t.

Thus Theorem 3.1 gives Theorem C in the Introduction.
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4 Further remarks

In this section, we give some remarks on Theorem C.

Remark 4.1. If k(t) = log(1 + 1/t), then we can take Φk(t) = t, so that Theo-
rem 3.1 implies that the maximal operator M maps Lp(·)(G) into L1(G). One of
the referees kindly informed us that the integrability also follows from a result by
Musielak [7, §8]; more precisely, if we find a constant C > 0 and g ∈ L1(G) such
that

t log(1 + t) ≤ Ctp(x) + g(x) for all t ≥ 0, (4.1)

then Mf ∈ L1(G) for all f ∈ Lp(·)(G). Further he suggested us to take t such that
t log(1 + t) ≥ 2Ctp(x) and obtain the integrability of the maximal operator. In fact,
letting

t(x) =

(
ε(p(x)− 1)

− log(ε(p(x)− 1))

)−1/(p(x)−1)

for ε > 0, we see that

t log(1 + t) ≤ Ctp(x) for all t ≥ t(x),

because

(p(x)− 1) log t− log(log t) ≥ (p(x)− 1) log t(x)− log(log t(x)) ≥ logC

when ε(p(x)− 1) is small. Now, since (4.1) holds for g(x) = t(x) log(1+ t(x)), the
problem is to discuss when g is integrable. If

p(r) = 1 +
b log(2)(1/r)

log(1/r)

with b > 1/ε and p(x) = p(δK(x)), then

g(x) ≤ CδK(x)
−1/b(log δK(x)

−1)−2

whenever δK(x) is small enough, say δK(x) ≤ r0, and our Lemma 2.3 would be
applicable.

However, it seems that our discussions are simple and straightforward.

Remark 4.2. Let K be a compact subset of Rn and 0 < α < n.

(i) If there is a finite Borel measure µ on K such that

µ(B(x, r)) ≥ Crn−α whenever 0 < r < r0 and x ∈ K,

then
lim sup

r→0
|K(r)|/rα < ∞.
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(ii) If there is a finite Borel measure µ on K such that µ(K) > 0 and

µ(B(x, r)) ≤ Crn−α whenever 0 < r < r0 and x ∈ K,

then
lim inf
r→0

|K(r)|/rα > 0.

To prove these facts, noting that K(r) =
∪

x∈K B(x, r), by a covering lemma
(see [11, Lemma 1.6, Chapter 1], we can find a disjoint family {B(xj, r)} such that∪

j

B(xj, 5r) ⊇ K(r).

By our assumption,

|K(r)| ≤ C
∑
j

(5r)n ≤ C
∑
j

rαµ(B(xj, r)) ≤ Crαµ
(∪

j

B(xj, r)
)
≤ Crαµ(K),

which implies
lim sup

r→0
|K(r)|/rα ≤ Cµ(K) < ∞.

Thus (i) follows.
Since K(r) ⊃

∪
j B(xj, r), we find

|K(r)| ≥ C
∑
j

rn ≥ C
∑
j

rαµ(B(xj, 5r)) ≥ Crα
∑
j

µ(B(xj, 5r)) ≥ Crαµ(K),

which gives
lim inf
r→0

|K(r)|/rα ≥ Cµ(K) > 0.

Thus (ii) is proved.

Remark 4.3. For α > 0, let K be a compact subset of G such that

C−1rα ≤ |K(r)| ≤ Crα for 0 < r < r0.

Set δ(x) = δK(x) for simplicity. Then Theorem C is seen to be sharp in the
following sense: if b > 0, c > 0,

p(x) = 1 +
b log(2)(1/δ(x))

log(1/δ(x))
−

c log(3)(1/δ(x))

log(1/δ(x))

when δ(x) ≤ r0 and inf{x:δ(x)>r0} p(x) > 1, then we can find f ∈ Lp(·)(G) satisfying∫
G

|f(x)|(log(1 + |f(x)|))bα dx = ∞,
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which implies that ∫
G

Mf(x)(log(1 +Mf(x)))bα−1 dx = ∞.

For this purpose, we consider the function

f(x) = δ(x)−α(log 1/δ(x))−bα−1(log(2)(1/δ(x)))
−1

(
≤ δ(x)−α

)
for x ∈ G with δ(x) ≤ r0; set f(x) = 0 when δ(x) > r0. Then∫

G

f(x)(log(1 + f(x)))bα dx ≥ C

∫ r0

0

t−1(log(1/t))−1(log(2)(1/t))
−1dt = ∞.

Further, we have for t = δ(x) ≤ r0

f(x)p(x)−1 ≤ exp

(
α log(1/t)

b log(2)(1/t)− c log(3)(1/t)

log(1/t)

)
= (log(1/t))bα(log(2)(1/t))

−cα,

so that ∫
G

f(x)p(x) dx ≤ C

∫ r0

0

t−1(log(1/t))−1(log(2)(1/t))
−cα−1dt < ∞.

Remark 4.4. Let p(r) be a continuous function on [0,∞) such that p(0) = p0 > 1,

p(r) = p0 +
a

log(1/r)
+

b log(2)(1/r)

log(1/r)
+

c log(3)(1/r)

log(1/r)
,

for 0 < r ≤ r0 < 1/4 and p(r) = p(r0) for r > r0; here the numbers a, b ≥ 0,
c and r0 > 0 are chosen so that p(r) is nondecreasing on [0,∞). For a compact
set K ⊂ G whose Minkowski (n − α)-content is finite, define p(x) = p(δK(x)) for
x ∈ G. Then, letting

k(1/r) = eaα(log r)bα(log(2) r)
cα

for large r > 0, we see as in Lemma 2.4 that∫
G

|f(x)|p0k(|f(x)|−1)1/p0dx ≤ C

for all functions f on G with ∥f∥p(·) ≤ 1. Hence, in the same way as Theorem 3.1,
we can prove that∫

G

|f(x)|p0(log(1 + |f(x)|))bα/p0(log(1 + (log(1 + |f(x)|))))cα/p0 dx ≤ C, (4.2)

or equivalently,∫
G

Mf(x)p0(log(1 +Mf(x)))bα/p0(log(1 + (log(1 +Mf(x)))))cα/p0 dx ≤ C

for all functions f on G with ∥f∥p(·) ≤ 1.
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Remark 4.5. We here show that (4.2) is good in as far as the exponents are
concerned. For this purpose, let K = ∂B(0, 1), whose Minkowski (n − 1)-content
is finite. Consider

p(r) = p0 +
a

log(1/r)
+

b log(2)(1/r)

log(1/r)

for 0 < r ≤ r0 < 1/4 and p(r) = p(r0) for r > r0. Define

p(x) = p(δK(x)) = p(|1− |x||).

Further define

f(x) =

{
δK(x)

−1/p0(log(1/δK(x)))
−β when δK(x) ≤ r0,

0 when δK(x) > r0.

Then the following are equivalent:

(i)

∫
B(0,2)

|f(x)|p(x) dx < ∞;

(ii)

∫
B(0,2)

|f(x)|p0(log(1 + |f(x)|))b/p0 dx < ∞;

(iii) −βp0 + b/p0 < −1.

We next give another example. Let K be a set of one point, say, K = {0},
whose Minkowski 0-content is finite. Consider p(x) = p(δK(x)) = p(|x|) and

f(x) =

{
|x|−n/p0(log(1/|x|))−β when |x| ≤ r0,
0 when |x| > r0.

Then the following are equivalent:

(i)

∫
B(0,1)

|f(x)|p(x) dx < ∞;

(ii)

∫
B(0,1)

|f(x)|p0(log(1 + |f(x)|))bn/p0 dx < ∞;

(iii) −βp0 + bn/p0 < −1.

We may further consider many types of fractal sets as examples of compact sets
K. But we do not go into details.
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