# Exponential integrability for logarithmic potentials of functions in generalized Lebesgue spaces $L(\log L)^{q(\cdot)}$ over non-doubling measure spaces 

Sachihiro Kanemori, Takao Ohno and Tetsu Shimomura


#### Abstract

In this paper, we are concerned with exponential integrability for $\log$ arithmic potentials of functions in generalized Lebesgue spaces $L(\log L)^{q(\cdot)}$ over non-doubling measure spaces. Here $q$ satisfies the loglog-Hölder condition.


## 1 Introduction

The properties of the logarithmic potentials were studied by some authors (see e.g. [7], [8], [9], [10] and [12]). Our aim in this paper is to establish exponential integrability for logarithmic potentials of functions in generalized Lebesgue spaces $L(\log L)^{q(\cdot)}$ over non-doubling measure spaces, as an extension of [11, Theorem 8.1] in the Euclidean setting.

We denote by $(X, d, \mu)$ a metric measure spaces, where $X$ is a bounded set, $d$ is a metric on $X$ and $\mu$ is a nonnegative complete Borel regular outer measure on $X$ which is finite in every bounded set. For simplicity, we often write $X$ instead of $(X, d, \mu)$. For $x \in X$ and $r>0$, we denote by $B(x, r)$ the open ball centered at $x$ with radius $r$ and $d_{X}=\sup \{d(x, y): x, y \in X\}$. We assume that $0<d_{X}<\infty$,

$$
\mu(\{x\})=0
$$

for $x \in X$ and $\mu(B(x, r))>0$ for $x \in X$ and $r>0$ for simplicity. In the present paper, we do not postulate on $\mu$ the "so called" doubling condition. Recall that a Radon measure $\mu$ is said to be doubling if there exists a constant $C>0$ such that $\mu(B(x, 2 r)) \leq C \mu(B(x, r))$ for all $x \in \operatorname{supp}(\mu)(=X)$ and $r>0$. Otherwise $\mu$

[^0]is said to be non-doubling. Assume that there exist positive constants $K_{0}$ and $s$ such that, for all balls $B(x, r)$ with center $x \in X$ and of radius $0<r<d_{X}$,
\[

$$
\begin{equation*}
\mu(B(x, r)) \leq K_{0} r^{s} \tag{1.1}
\end{equation*}
$$

\]

(see e.g. [1], [5] and [6]).
Variable exponent Lebesgue spaces and Sobolev spaces were introduced to discuss nonlinear partial differential equations with non-standard growth conditions. For a survey, see [3] and [4].

In this paper, following Cruz-Uribe and Fiorenza [2], we consider a variable exponent $q(\cdot): X \rightarrow[0,1)$ such that

$$
\begin{equation*}
|q(x)-q(y)| \leq \frac{C_{q}}{\log (e+\log (e+1 / d(x, y)))} \quad \text { for all } x, y \in X \tag{1.2}
\end{equation*}
$$

with a constant $C_{q} \geq 0$.
Define the norm by

$$
\|f\|_{L(\log L)^{q(\cdot)}(X)}=\inf \left\{\lambda>0: \int_{X}\left|\frac{f(x)}{\lambda}\right|\left(\log \left(e+\left|\frac{f(x)}{\lambda}\right|\right)\right)^{q(x)} d \mu(x) \leq 1\right\}
$$

and denote by $L(\log L)^{q(\cdot)}(X)$ the space of all measurable functions $f$ on $X$ with $\|f\|_{L(\log L)^{q(\cdot)}(X)}<\infty$.

We define the logarithmic potential for a locally integrable function $f$ on $X$ by

$$
L f(x)=\int_{X}\left(\log ^{+}(1 / d(x, y))\right) f(y) d \mu(y)
$$

where $\log ^{+} r=\max \{0, \log r\}$. Here it is natural to assume that

$$
\begin{equation*}
\int_{X}\left(\log \left(e+d\left(x_{0}, y\right)\right)\right)|f(y)| d \mu(y)<\infty \tag{1.3}
\end{equation*}
$$

for some $x_{0} \in X$ since this implies

$$
\left|\int_{X} \log (1 / d(x, y)) f(y) d \mu(y)\right|<\infty
$$

for $\mu$-a.e. in $X$ (see [7, Lemma 1] and [9, Theorem 6.1, Chapter 2]).
In [11], we studied exponential integrability for logarithmic potentials of functions in $L(\log L)^{q(\cdot)}\left(\mathbf{R}^{N}\right)$ in the Euclidean setting. Our main aim in the present paper is to establish exponential integrability for $L f$ in generalized Lebesgue spaces $L(\log L)^{q \cdot \cdot}(X)$ over non-doubling measure spaces, as an extension of [11, Theorem 8.1].

Theorem 1.1. There exist constants $c_{1}, c_{2}>0$ such that

$$
\int_{X} \exp \left(\left(c_{1} L f(x)\right)^{1 /(1-q(x))}\right) d \mu(x) \leq c_{2}
$$

for all nonnegative measurable functions $f$ on $X$ with $\|f\|_{L(\log L)^{q(\cdot)}(X)} \leq 1$.

Corollary 1.2. There exists a constant $c_{3}>0$ such that

$$
\int_{X}\left\{\exp \left(\left(c_{3} L f(x)\right)^{1 /(1-q(x))}\right)-1\right\} d \mu(x) \leq 1
$$

for all nonnegative measurable functions $f$ on $X$ with $\|f\|_{L(\log L)^{q(\cdot)(X)}} \leq 1$.
Our strategy is to give an estimate of $L f$ by use of a logarithmic type potential

$$
\int_{X} \mu(B(x, 4 r))^{-1}(\log (e+1 / r))^{-\beta} f(y)(\log (e+f(y)))^{q(y)} d \mu(y)
$$

with $\beta>1$, which plays a role of maximal functions.
The sharpness of the exponent will be discussed in Section 4.
In the final section, we show the continuity for logarithmic potentials of functions in $L^{p(\cdot)}(\log L)^{r(\cdot)}(X)$ over non-doubling measure spaces, as an extension of [11, Theorem 8.4] and [9, Theorem 9.1, Section 5.9] (see Section 5 for the definition of $\left.L^{p(\cdot)}(\log L)^{r(\cdot)}(X)\right)$. For related results, see [12].

## 2 Preliminary lemmas

Throughout this paper, let $C$ denote various positive constants independent of the variables in question.

To prove Theorem 1.1, we estimate $L f$ by the logarithmic potential

$$
J=\int_{X} \rho_{-\beta}(d(x, y)) g(y) d \mu(y)
$$

where $\rho_{-\beta}(r)=\mu(B(x, 4 r))^{-1}(\log (e+1 / r))^{-\beta}$ with $\beta>1$ and $g(y)=f(y)(\log (e+$ $f(y)))^{q(y)}$.

Lemma 2.1. Let $f$ be a nonnegative measurable function on $X$ with $\|f\|_{L(\log L)^{q(\cdot)}(X)} \leq$ 1. Then there is a constant $C>0$ such that

$$
F \equiv \int_{B(x, \delta)} \rho_{-\beta}(d(x, y)) f(y) d \mu(y) \leq C J\left\{(\log (e+J))^{-q(x)}+(\log (e+1 / \delta))^{-q(x)}\right\}
$$

for all $x \in X$ and $0<\delta<d_{X}$.
Proof. Let $f$ be a nonnegative measurable function on $X$ with $\|f\|_{L(\log L)^{q(\cdot)}(X)} \leq 1$. We have for $k>0$

$$
F \leq k \int_{B\left(x, d_{X}\right)} \rho_{-\beta}(d(x, y)) d \mu(y)+\int_{B(x, \delta)} \rho_{-\beta}(d(x, y)) f(y)\left(\frac{\log (e+f(y))}{\log (e+k)}\right)^{q(y)} d \mu(y) .
$$

Since $\beta>1$, we have

$$
\begin{aligned}
& \int_{B\left(x, d_{X}\right)} \rho_{-\beta}(d(x, y)) d \mu(y) \\
= & \sum_{j=1}^{\infty} \int_{X \cap\left(B\left(x, 2^{-j+1} d_{X}\right) \backslash B\left(x, 2^{-j} d_{X}\right)\right)} \mu(B(x, 4 d(x, y)))^{-1}(\log (e+1 / d(x, y)))^{-\beta} d \mu(y) \\
\leq & \sum_{j=1}^{\infty} \int_{X \cap\left(B\left(x, 2^{-j+1} d_{X}\right) \backslash B\left(x, 2^{-j} d_{X}\right)\right)} \mu\left(B\left(x, 2^{-j+2} d_{X}\right)\right)^{-1}\left(\log \left(e+1 /\left(2^{-j+1} d_{X}\right)\right)\right)^{-\beta} d \mu(y) \\
\leq & \sum_{j=1}^{\infty}\left(\log \left(e+1 /\left(2^{-j+1} d_{X}\right)\right)\right)^{-\beta} \\
\leq & C .
\end{aligned}
$$

If $J \leq \delta^{-1}$, then we set $k=J(\log (e+J))^{-q(x)}$. Since $\delta \leq J^{-1}$, we see from (1.2) that

$$
(\log (e+k))^{-q(y)} \leq C(\log (e+J))^{-q(x)}
$$

for $y \in B(x, \delta)$. Consequently it follows that

$$
F \leq C J(\log (e+J))^{-q(x)} .
$$

If $J>\delta^{-1}$, then we set $k=\delta^{-1}(\log (e+1 / \delta))^{-q(x)}$ and obtain

$$
\begin{aligned}
F & \leq C\left\{\delta^{-1}(\log (e+1 / \delta))^{-q(x)}+J(\log (e+1 / \delta))^{-q(x)}\right\} \\
& \leq C J(\log (e+1 / \delta))^{-q(x)}
\end{aligned}
$$

Now the result follows.

Lemma 2.2. Let $f$ be a nonnegative measurable function on $X$ with $\|f\|_{L(\log L)^{q(\cdot)}(X)} \leq$ 1. Then there is a constant $C>0$ such that

$$
\int_{X \backslash B(x, \delta)} \log ^{+}(1 / d(x, y)) f(y) d \mu(y) \leq C(\log (e+1 / \delta))^{-q(x)+1}
$$

for all $x \in X$ and $0<\delta<d_{X}$.

Proof. Let $f$ be a nonnegative measurable function on $X$ with $\|f\|_{L(\log L)^{q(\cdot)}(X)} \leq 1$. Let $0<\gamma<s$, where $s$ is a constant appearing in (1.1). For $y \in X \backslash B(x, \delta)$ and $0<\delta<d_{X}$, set $N(x, y)=d(x, y)^{-\gamma}$. Let $j_{0}$ be the smallest integer such that
$2^{j 0} \delta \geq d_{X}$. We have by (1.1)

$$
\begin{aligned}
& \int_{X \backslash B(x, \delta)} \log ^{+}(1 / d(x, y)) N(x, y) d \mu(y) \\
= & \sum_{j=1}^{j_{0}} \int_{X \cap\left(B\left(x, 2^{j} \delta\right) \backslash B\left(x, 2^{j-1} \delta\right)\right)} \log ^{+}(1 / d(x, y)) N(x, y) d \mu(y) \\
\leq & \sum_{j=1}^{j_{0}} \int_{X \cap\left(B\left(x, 2^{j} \delta\right) \backslash B\left(x, 2^{j-1} \delta\right)\right)} \log ^{+}\left(1 /\left(2^{j-1} \delta\right)\right)\left(2^{j-1} \delta\right)^{-\gamma} d \mu(y) \\
\leq & C \sum_{j=1}^{j_{0}} \log ^{+}\left(1 /\left(2^{j-1} \delta\right)\right)\left(2^{j-1} \delta\right)^{s-\gamma} \\
\leq & C
\end{aligned}
$$

since $\gamma<s$. Hence, we see from (1.2) that

$$
\begin{aligned}
& \int_{X \backslash B(x, \delta)} \log ^{+}(1 / d(x, y)) f(y) d \mu(y) \\
\leq & \int_{X \backslash B(x, \delta)} \log ^{+}(1 / d(x, y)) N(x, y) d \mu(y) \\
& +\int_{X \backslash B(x, \delta)} \log ^{+}(1 / d(x, y)) f(y)\left(\frac{\log (e+f(y))}{\log (e+N(x, y))}\right)^{q(y)} d \mu(y) \\
\leq & C\left\{1+\int_{X \backslash B(x, \delta)}(\log (e+1 / d(x, y)))^{-q(y)+1} g(y) d \mu(y)\right\} \\
\leq & C\left\{1+(\log (e+1 / \delta))^{-q(x)+1} \int_{X \backslash B(x, \delta)} g(y) d \mu(y)\right\} \\
\leq & C(\log (e+1 / \delta))^{-q(x)+1},
\end{aligned}
$$

where $g(y)=f(y)(\log (e+f(y)))^{q(y)}$. Thus this lemma is proved.

## 3 Proof of Theorem 1.1.

Let $f$ be a nonnegative measurable function on $X$ with $\|f\|_{L(\log L)^{q(\cdot)}(X)} \leq 1$. For $x \in X$ and $0<\delta<d_{X}$, write

$$
\begin{aligned}
L f(x) & =\int_{B(x, \delta)} \log ^{+}(1 / d(x, y)) f(y) d \mu(y)+\int_{X \backslash B(x, \delta)} \log ^{+}(1 / d(x, y)) f(y) d \mu(y) \\
& =I_{1}+I_{2}
\end{aligned}
$$

For $\beta>1$, we infer from Lemma 2.1 and (1.1) that

$$
\begin{aligned}
I_{1} & \leq C \delta^{s}(\log (e+1 / \delta))^{1+\beta} \int_{B(x, \delta)} \rho_{-\beta}(d(x, y)) f(y) d \mu(y) \\
& \leq C \delta^{s}(\log (e+1 / \delta))^{1+\beta} J\left\{(\log (e+1 / \delta))^{-q(x)}+(\log (e+J))^{-q(x)}\right\}
\end{aligned}
$$

Hence, in view of Lemma 2.2, we find

$$
\begin{aligned}
L f(x) \leq & C\left[\delta^{s}(\log (e+1 / \delta))^{1+\beta} J\left\{(\log (e+1 / \delta))^{-q(x)}+(\log (e+J))^{-q(x)}\right\}\right. \\
& \left.+(\log (e+1 / \delta))^{-q(x)+1}\right]
\end{aligned}
$$

Now, considering $\delta=\min \left\{d_{X}, J^{-1 / s}(\log (e+J))^{-\beta / s}\right\}$, we find

$$
L f(x) \leq C(\log (e+J))^{-q(x)+1}
$$

Hence

$$
\exp \left(\left(c_{1} L f(x)\right)^{1 /(1-q(x))}\right) \leq e+J
$$

By using Fubini's theorem, we obtain

$$
\begin{aligned}
& \int_{X} \exp \left(\left(c_{1} L f(x)\right)^{1 /(1-q(x))}\right) d \mu(x) \\
\leq & \int_{X}(e+J) d \mu(x) \\
\leq & \int_{X} g(y)\left(\int_{X} \frac{(\log (e+1 / d(x, y)))^{-\beta}}{\mu(B(x, 4 d(x, y)))} d \mu(x)\right) d \mu(y)+C \\
\leq & \int_{X} g(y)\left(\sum_{j=1}^{\infty} \int_{X \cap\left(B\left(y, 2^{-j+1} d_{X}\right) \backslash B\left(y, 2^{-j} d_{X}\right)\right)} \frac{(\log (e+1 / d(x, y)))^{-\beta}}{\mu(B(y, 2 d(x, y)))} d \mu(x)\right) d \mu(y)+C \\
\leq & \int_{X} g(y)\left(\sum_{j=1}^{\infty} \int_{X \cap\left(B\left(y, 2^{-j+1} d_{X}\right) \backslash B\left(y, 2^{-j} d_{X}\right)\right)} \frac{\left(\log \left(e+1 /\left(2^{-j+1} d_{X}\right)\right)\right)^{-\beta}}{\mu\left(B\left(y, 2^{-j+1} d_{X}\right)\right)} d \mu(x)\right) d \mu(y)+C \\
\leq & \int_{X} g(y)\left(\sum_{j=1}^{\infty}\left(\log \left(e+1 /\left(2^{-j+1} d_{X}\right)\right)\right)^{-\beta}\right) d \mu(y)+C \\
\leq & c_{2}
\end{aligned}
$$

since $\beta>1$. This completes the proof of the theorem.

## 4 Sharpness

Let $X=B(0,1) \subset \mathbf{R}^{N}$ and $q(\cdot)=q$. For $\delta>0$, consider the function

$$
u(x)=\int_{B(0,1)} \log ^{+}(1 /|x-y|) f(y) d y
$$

with

$$
f(y)=|y|^{-N}(\log (e /|y|))^{\delta-2} \quad \text { for } y \in B(0,1)
$$

Then $f$ satisfies

$$
\begin{equation*}
\int_{B(0,1)} f(y)(\log (e+f(y)))^{q} d y<\infty \tag{4.1}
\end{equation*}
$$

if and only if $\delta-1+q<0$. We see that

$$
u(x) \geq C \int_{\{y \in B(0,1 / 2):|y|>|x|\}} \log ^{+}(1 /|y|) f(y) d y \geq C(\log (e /|x|))^{\delta}
$$

for $|x|<1 / 2$. Hence, if $\beta \delta>1$, then

$$
\begin{equation*}
\int_{B(0,1)} \exp \left(u(x)^{\beta}\right) d x=\infty \tag{4.2}
\end{equation*}
$$

If $\beta>1 /(1-q)$, then we can choose $\delta$ such that

$$
1 / \beta<\delta<1-q .
$$

In this case, both (4.1) and (4.2) hold. This implies that the exponent $1 /(1-q)$ in Theorem 1.1 is sharp.

## 5 Continuity

In this section, we consider variable exponents $p(\cdot): X \rightarrow[1, \infty)$ and $r(\cdot): X \rightarrow$ $(-\infty, \infty)$ such that

$$
\begin{equation*}
-\infty<\inf _{x \in X} r(x) \leq \sup _{x \in X} r(x)<\infty \tag{5.1}
\end{equation*}
$$

Define the norm by
$\|f\|_{L^{p(\cdot)}(\log L)^{r \cdot()}(X)}=\inf \left\{\lambda>0: \int_{X}\left|\frac{f(x)}{\lambda}\right|^{p(x)}\left(\log \left(e+\left|\frac{f(x)}{\lambda}\right|\right)\right)^{r(x)} d \mu(x) \leq 1\right\}$
and denote by $L^{p(\cdot)}(\log L)^{r(\cdot)}(X)$ the space of all measurable functions $f$ on $X$ with $\|f\|_{L^{p \cdot(\cdot)}(\log L)^{r \cdot()}(X)}<\infty$.

Theorem 5.1 (cf. [9, Theorem 9.1, Section 5.9]). Let $p(\cdot)$ and $r(\cdot)$ be two variable exponents on $X$ satisfying (5.1) such that

$$
p(x)>1 \quad \text { or } \quad r(x) \geq 1
$$

for all $x \in X$. If $f$ is a nonnegative measurable function on $X$ with $\|f\|_{L^{p(\cdot)}(\log L)^{r \cdot()}(X)}<$ $\infty$, then Lf is continuous on $X$.

Proof. Let $f$ be a nonnegative measurable function on $X$ with $\|f\|_{L^{p(\cdot)}(\log L)^{r(\cdot)}(X)}<$ $\infty$. Then note that

$$
\int_{X} f(y)(\log (e+f(y))) d \mu(y)<\infty
$$

Hence, it follows from [7, Theorem 1] that $L f$ is continuous on $X$ by (1.3).

## References

[1] A. Björn and J. Björn, Nonlinear potential theory on metric spaces. EMS Tracts in Mathematics, 17. European Mathematical Society (EMS), Zurich, 2011.
[2] D. Cruz-Uribe and A. Fiorenza, $L \log L$ results for the maximal operator in variable $L^{p}$ spaces, Trans. Amer. Math. Soc. 361 (2009), 2631-2647.
[3] D. Cruz-Uribe and A. Fiorenza, Variable Lebesgue spaces. Foundations and harmonic analysis. Applied and Numerical Harmonic Analysis. Birkhauser/Springer, Heidelberg, 2013.
[4] L. Diening, P. Harjulehto, P. Hästö and M. Ružiččka, Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Math. 2017, Springer-Verlag, Berlin, 2011.
[5] J. Garciá-Cuerva and A. E. Gatto, Boundedness properties of fractional integral operators associated to non-doubling measures, Studia Math. 162 (2004), 245-261.
[6] P. Hajłasz and P. Koskela, Sobolev met Poincaré, Mem. Amer. Math. Soc. 145, 2000.
[7] M. G. Hajibayov, Continuity of logarithmic potentials, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb. 25 (2006), 41-46.
[8] N. S. Landkof, Foundations of modern potential theory, Springer-Verlag, Berlin Heidelberg New York, 1972.
[9] Y. Mizuta, Potential theory in Euclidean spaces, Gakkōtosho, Tokyo, 1996.
[10] Y. Mizuta, Continuity properties of potentials and Beppo-Levi-Deny functions. Hiroshima Math. J. 23 (1993), no. 1, 79-153.
[11] Y. Mizuta, T. Ohno and T. Shimomura, Sobolev embeddings for Riesz potential spaces of variable exponents near 1 and Sobolev's exponent, Bull. Sci. Math. 134 (2010), 12-36.
[12] T. Ohno, Continuity properties for logarithmic potentials of functions in Morrey spaces of variable exponent, Hiroshima Math. J. 38 (2008), 363-383.

Department of Mathematics<br>Graduate School of Education<br>Hiroshima University<br>Higashi-Hiroshima 739-8524, Japan and<br>Faculty of Education and Welfare Science<br>Oita University<br>Dannoharu Oita-city 870-1192, Japan<br>E-mail: t-ohno@oita-u.ac.jp and Department of Mathematics Graduate School of Education<br>Hiroshima University<br>Higashi-Hiroshima 739-8524, Japan<br>E-mail: tshimo@hiroshima-u.ac.jp


[^0]:    2000 Mathematics Subject Classification : Primary 46E35; Secondary 46E30.
    Key words and phrases : exponential integrability, logarithmic potential, variable exponent, metric measure space, non-doubling measure

