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Abstract

In this paper, we are concerned with exponential integrability for log-
arithmic potentials of functions in generalized Lebesgue spaces L(logL)q(·)

over non-doubling measure spaces. Here q satisfies the loglog-Hölder condi-
tion.

1 Introduction

The properties of the logarithmic potentials were studied by some authors (see
e.g. [7], [8], [9], [10] and [12]). Our aim in this paper is to establish exponential
integrability for logarithmic potentials of functions in generalized Lebesgue spaces
L(logL)q(·) over non-doubling measure spaces, as an extension of [11, Theorem 8.1]
in the Euclidean setting.

We denote by (X, d, µ) a metric measure spaces, where X is a bounded set, d
is a metric on X and µ is a nonnegative complete Borel regular outer measure on
X which is finite in every bounded set. For simplicity, we often write X instead of
(X, d, µ). For x ∈ X and r > 0, we denote by B(x, r) the open ball centered at x
with radius r and dX = sup{d(x, y) : x, y ∈ X}. We assume that 0 < dX < ∞,

µ({x}) = 0

for x ∈ X and µ(B(x, r)) > 0 for x ∈ X and r > 0 for simplicity. In the present
paper, we do not postulate on µ the “so called” doubling condition. Recall that
a Radon measure µ is said to be doubling if there exists a constant C > 0 such
that µ(B(x, 2r)) ≤ Cµ(B(x, r)) for all x ∈ supp(µ)(= X) and r > 0. Otherwise µ
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is said to be non-doubling. Assume that there exist positive constants K0 and s
such that, for all balls B(x, r) with center x ∈ X and of radius 0 < r < dX ,

µ(B(x, r)) ≤ K0r
s (1.1)

(see e.g. [1], [5] and [6]).
Variable exponent Lebesgue spaces and Sobolev spaces were introduced to dis-

cuss nonlinear partial differential equations with non-standard growth conditions.
For a survey, see [3] and [4].

In this paper, following Cruz-Uribe and Fiorenza [2], we consider a variable
exponent q(·) : X → [0, 1) such that

|q(x) − q(y)| ≤ Cq

log(e + log(e + 1/d(x, y)))
for all x, y ∈ X (1.2)

with a constant Cq ≥ 0.
Define the norm by

∥f∥L(logL)q(·)(X) = inf

{
λ > 0 :

∫
X

∣∣∣∣f(x)

λ

∣∣∣∣ (log

(
e +

∣∣∣∣f(x)

λ

∣∣∣∣))q(x)

dµ(x) ≤ 1

}
and denote by L(logL)q(·)(X) the space of all measurable functions f on X with
∥f∥L(logL)q(·)(X) < ∞.

We define the logarithmic potential for a locally integrable function f on X by

Lf(x) =

∫
X

(
log+(1/d(x, y))

)
f(y) dµ(y),

where log+ r = max{0, log r}. Here it is natural to assume that∫
X

(log(e + d(x0, y)))|f(y)| dµ(y) < ∞ (1.3)

for some x0 ∈ X since this implies∣∣∣∣∫
X

log(1/d(x, y))f(y) dµ(y)

∣∣∣∣ < ∞

for µ-a.e. in X (see [7, Lemma 1] and [9, Theorem 6.1, Chapter 2]).
In [11], we studied exponential integrability for logarithmic potentials of func-

tions in L(logL)q(·)(RN) in the Euclidean setting. Our main aim in the present
paper is to establish exponential integrability for Lf in generalized Lebesgue spaces
L(logL)q(·)(X) over non-doubling measure spaces, as an extension of [11, Theorem
8.1].

Theorem 1.1. There exist constants c1, c2 > 0 such that∫
X

exp
(
(c1Lf(x))1/(1−q(x))

)
dµ(x) ≤ c2

for all nonnegative measurable functions f on X with ∥f∥L(logL)q(·)(X) ≤ 1.
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Corollary 1.2. There exists a constant c3 > 0 such that∫
X

{
exp

(
(c3Lf(x))1/(1−q(x))

)
− 1
}
dµ(x) ≤ 1

for all nonnegative measurable functions f on X with ∥f∥L(logL)q(·)(X) ≤ 1.

Our strategy is to give an estimate of Lf by use of a logarithmic type potential∫
X

µ(B(x, 4r))−1(log(e + 1/r))−βf(y)(log(e + f(y)))q(y) dµ(y)

with β > 1, which plays a role of maximal functions.

The sharpness of the exponent will be discussed in Section 4.

In the final section, we show the continuity for logarithmic potentials of func-
tions in Lp(·)(logL)r(·)(X) over non-doubling measure spaces, as an extension of [11,
Theorem 8.4] and [9, Theorem 9.1, Section 5.9] (see Section 5 for the definition of
Lp(·)(logL)r(·)(X)). For related results, see [12].

2 Preliminary lemmas

Throughout this paper, let C denote various positive constants independent of the
variables in question.

To prove Theorem 1.1, we estimate Lf by the logarithmic potential

J =

∫
X

ρ−β(d(x, y))g(y) dµ(y),

where ρ−β(r) = µ(B(x, 4r))−1(log(e+ 1/r))−β with β > 1 and g(y) = f(y)(log(e+
f(y)))q(y).

Lemma 2.1. Let f be a nonnegative measurable function onX with ∥f∥L(logL)q(·)(X) ≤
1. Then there is a constant C > 0 such that

F ≡
∫
B(x,δ)

ρ−β(d(x, y))f(y) dµ(y) ≤ CJ
{

(log(e + J))−q(x) + (log(e + 1/δ))−q(x)
}

for all x ∈ X and 0 < δ < dX .

Proof. Let f be a nonnegative measurable function on X with ∥f∥L(logL)q(·)(X) ≤ 1.
We have for k > 0

F ≤ k

∫
B(x,dX)

ρ−β(d(x, y)) dµ(y)+

∫
B(x,δ)

ρ−β(d(x, y))f(y)

(
log(e + f(y))

log(e + k)

)q(y)

dµ(y).
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Since β > 1, we have∫
B(x,dX)

ρ−β(d(x, y)) dµ(y)

=
∞∑
j=1

∫
X∩(B(x,2−j+1dX)\B(x,2−jdX))

µ(B(x, 4d(x, y)))−1(log(e + 1/d(x, y)))−β dµ(y)

≤
∞∑
j=1

∫
X∩(B(x,2−j+1dX)\B(x,2−jdX))

µ(B(x, 2−j+2dX))−1(log(e + 1/(2−j+1dX)))−β dµ(y)

≤
∞∑
j=1

(log(e + 1/(2−j+1dX)))−β

≤ C.

If J ≤ δ−1, then we set k = J(log(e + J))−q(x). Since δ ≤ J−1, we see from (1.2)
that

(log(e + k))−q(y) ≤ C(log(e + J))−q(x)

for y ∈ B(x, δ). Consequently it follows that

F ≤ CJ(log(e + J))−q(x).

If J > δ−1, then we set k = δ−1(log(e + 1/δ))−q(x) and obtain

F ≤ C
{
δ−1(log(e + 1/δ))−q(x) + J(log(e + 1/δ))−q(x)

}
≤ CJ(log(e + 1/δ))−q(x).

Now the result follows.

Lemma 2.2. Let f be a nonnegative measurable function onX with ∥f∥L(logL)q(·)(X) ≤
1. Then there is a constant C > 0 such that∫

X\B(x,δ)

log+(1/d(x, y))f(y) dµ(y) ≤ C(log(e + 1/δ))−q(x)+1

for all x ∈ X and 0 < δ < dX .

Proof. Let f be a nonnegative measurable function on X with ∥f∥L(logL)q(·)(X) ≤ 1.
Let 0 < γ < s, where s is a constant appearing in (1.1). For y ∈ X \ B(x, δ) and
0 < δ < dX , set N(x, y) = d(x, y)−γ. Let j0 be the smallest integer such that
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2j0δ ≥ dX . We have by (1.1)∫
X\B(x,δ)

log+(1/d(x, y))N(x, y)dµ(y)

=

j0∑
j=1

∫
X∩(B(x,2jδ)\B(x,2j−1δ))

log+(1/d(x, y))N(x, y) dµ(y)

≤
j0∑
j=1

∫
X∩(B(x,2jδ)\B(x,2j−1δ))

log+(1/(2j−1δ))(2j−1δ)−γdµ(y)

≤ C

j0∑
j=1

log+(1/(2j−1δ))(2j−1δ)s−γ

≤ C

since γ < s. Hence, we see from (1.2) that∫
X\B(x,δ)

log+(1/d(x, y))f(y) dµ(y)

≤
∫
X\B(x,δ)

log+(1/d(x, y))N(x, y) dµ(y)

+

∫
X\B(x,δ)

log+(1/d(x, y))f(y)

(
log(e + f(y))

log(e + N(x, y))

)q(y)

dµ(y)

≤ C

{
1 +

∫
X\B(x,δ)

(log(e + 1/d(x, y)))−q(y)+1g(y) dµ(y)

}
≤ C

{
1 + (log(e + 1/δ))−q(x)+1

∫
X\B(x,δ)

g(y) dµ(y)

}
≤ C(log(e + 1/δ))−q(x)+1,

where g(y) = f(y)(log(e + f(y)))q(y). Thus this lemma is proved.

3 Proof of Theorem 1.1.

Let f be a nonnegative measurable function on X with ∥f∥L(logL)q(·)(X) ≤ 1. For
x ∈ X and 0 < δ < dX , write

Lf(x) =

∫
B(x,δ)

log+(1/d(x, y))f(y) dµ(y) +

∫
X\B(x,δ)

log+(1/d(x, y))f(y) dµ(y)

= I1 + I2.

For β > 1, we infer from Lemma 2.1 and (1.1) that

I1 ≤ Cδs(log(e + 1/δ))1+β

∫
B(x,δ)

ρ−β(d(x, y))f(y) dµ(y)

≤ Cδs(log(e + 1/δ))1+βJ
{

(log(e + 1/δ))−q(x) + (log(e + J))−q(x)
}
.
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Hence, in view of Lemma 2.2, we find

Lf(x) ≤ C

[
δs(log(e + 1/δ))1+βJ

{
(log(e + 1/δ))−q(x) + (log(e + J))−q(x)

}
+ (log(e + 1/δ))−q(x)+1

]
.

Now, considering δ = min{dX , J−1/s(log(e + J))−β/s}, we find

Lf(x) ≤ C(log(e + J))−q(x)+1.

Hence
exp

(
(c1Lf(x))1/(1−q(x))

)
≤ e + J.

By using Fubini’s theorem, we obtain∫
X

exp
(
(c1Lf(x))1/(1−q(x))

)
dµ(x)

≤
∫
X

(e + J) dµ(x)

≤
∫
X

g(y)

(∫
X

(log(e + 1/d(x, y)))−β

µ(B(x, 4d(x, y)))
dµ(x)

)
dµ(y) + C

≤
∫
X

g(y)

(
∞∑
j=1

∫
X∩(B(y,2−j+1dX)\B(y,2−jdX))

(log(e + 1/d(x, y)))−β

µ(B(y, 2d(x, y)))
dµ(x)

)
dµ(y) + C

≤
∫
X

g(y)

(
∞∑
j=1

∫
X∩(B(y,2−j+1dX)\B(y,2−jdX))

(log(e + 1/(2−j+1dX)))−β

µ(B(y, 2−j+1dX))
dµ(x)

)
dµ(y) + C

≤
∫
X

g(y)

(
∞∑
j=1

(log(e + 1/(2−j+1dX)))−β

)
dµ(y) + C

≤ c2,

since β > 1. This completes the proof of the theorem.

4 Sharpness

Let X = B(0, 1) ⊂ RN and q(·) = q. For δ > 0, consider the function

u(x) =

∫
B(0,1)

log+(1/|x− y|)f(y) dy

with
f(y) = |y|−N(log(e/|y|))δ−2 for y ∈ B(0, 1).

Then f satisfies ∫
B(0,1)

f(y) (log(e + f(y)))q dy < ∞ (4.1)
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if and only if δ − 1 + q < 0. We see that

u(x) ≥ C

∫
{y∈B(0,1/2):|y|>|x|}

log+(1/|y|)f(y) dy ≥ C(log(e/|x|))δ

for |x| < 1/2. Hence, if βδ > 1, then∫
B(0,1)

exp
(
u(x)β

)
dx = ∞. (4.2)

If β > 1/(1 − q), then we can choose δ such that

1/β < δ < 1 − q.

In this case, both (4.1) and (4.2) hold. This implies that the exponent 1/(1 − q)
in Theorem 1.1 is sharp.

5 Continuity

In this section, we consider variable exponents p(·) : X → [1,∞) and r(·) : X →
(−∞,∞) such that

−∞ < inf
x∈X

r(x) ≤ sup
x∈X

r(x) < ∞. (5.1)

Define the norm by

∥f∥Lp(·)(logL)r(·)(X) = inf

{
λ > 0 :

∫
X

∣∣∣∣f(x)

λ

∣∣∣∣p(x)(log

(
e +

∣∣∣∣f(x)

λ

∣∣∣∣))r(x)

dµ(x) ≤ 1

}

and denote by Lp(·)(logL)r(·)(X) the space of all measurable functions f on X with
∥f∥Lp(·)(logL)r(·)(X) < ∞.

Theorem 5.1 (cf. [9, Theorem 9.1, Section 5.9]). Let p(·) and r(·) be two variable
exponents on X satisfying (5.1) such that

p(x) > 1 or r(x) ≥ 1

for all x ∈ X. If f is a nonnegative measurable function onX with ∥f∥Lp(·)(logL)r(·)(X) <
∞, then Lf is continuous on X.

Proof. Let f be a nonnegative measurable function on X with ∥f∥Lp(·)(logL)r(·)(X) <
∞. Then note that ∫

X

f(y)(log(e + f(y))) dµ(y) < ∞.

Hence, it follows from [7, Theorem 1] that Lf is continuous on X by (1.3).
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[5] J. Garciá-Cuerva and A. E. Gatto, Boundedness properties of fractional inte-
gral operators associated to non-doubling measures, Studia Math. 162 (2004),
245–261.

[6] P. Haj lasz and P. Koskela, Sobolev met Poincaré, Mem. Amer. Math. Soc.
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