Boundary limits of monotone Sobolev functions with variable exponent on uniform domains in a metric space

Toshihide Futamura, Takao Ohno and Tetsu Shimomura

Abstract

Our aim in this paper is to deal with boundary limits of monotone Sobolev functions with variable exponent on uniform domains in a metric space.

1 Introduction

A continuous function u on an open set D in the n-dimensional Euclidean space \mathbf{R}^{n} is called monotone in the sense of Lebesgue (see [10]) if the equalities

$$
\max _{\bar{G}} u=\max _{\partial G} u \quad \text { and } \quad \min _{\bar{G}} u=\min _{\partial G} u
$$

hold whenever G is a domain with compact closure $\bar{G} \subset D$. If u is a monotone function on D satisfying

$$
\int_{D}|\nabla u(z)|^{p} d z<\infty \quad \text { for some } \quad p>n-1
$$

then

$$
\begin{equation*}
|u(x)-u(y)| \leq C(n, p) r^{1-n / p}\left(\int_{2 B(x, r)}|\nabla u(z)|^{p} d z\right)^{1 / p} \tag{1.1}
\end{equation*}
$$

whenever $y \in B(x, r)$ with $2 B(x, r) \subset D$, where $C(n, p)$ is a positive constant depending only on n and p (see [13, Chapter 8$]$ and [18, Section 16]). Using this inequality (1.1), the first author and Mizuta proved Lindelöf theorems for monotone Sobolev functions on the half space of \mathbf{R}^{n} in [5], as an extension of Mizuta [14, Theorem 2] and Manfredi-Villamor [11, 12]. This result was extended to a uniform domain by the first author [4]. Mizuta studied tangential boundary limits of monotone Sobolev functions with finite Dirichlet integral in the half space in [14]. Recently, Di Biase, the first author and the third author [1] gave Lindelöf theorems for monotone Sobolev functions in Orlicz spaces.

Variable exponent spaces have been studied in many articles over the past decade; for a survey see the recent book by Diening, Harjulehto, Hästö and Ružička [3]. Let B

[^0]be the unit ball in \mathbf{R}^{n}. Lindelöf theorems for monotone Sobolev functions on variable exponent Lebesgue spaces $L^{p(\cdot)}(\mathbf{B})$ was investigated in [7].

For related results, see Koskela-Manfredi-Villamor [9], Villamor-Li [17], Mizuta [13] and the first author and Mizuta [6].

We denote by (X, d, μ) a metric measure spaces, where X is a set, d is a metric on X and μ is a Borel measure on X which is positive and finite in every balls. We write $d(x, y)=|x-y|$ for simplicity. A domain D in X with $\partial D \neq \emptyset$ is a uniform domain if there exist constants $A_{1} \geq 1$ and $A_{2} \geq 1$ such that each pair of points $x, y \in D$ can be joined by a rectifiable curve γ in D for which

$$
\begin{gather*}
\ell(\gamma) \leq A_{1}|x-y| \tag{1.2}\\
\delta_{D}(z) \geq A_{2} \min \{\ell(\gamma(x, z)), \ell(\gamma(y, z))\} \quad \text { for all } z \in \gamma, \tag{1.3}
\end{gather*}
$$

where $\ell(\gamma), \delta_{D}(z)$ and $\gamma(x, z)$ denote the length of γ, the distance from z to ∂D and the subarc of γ connecting x and z, respectively (see [16]). We denote by $B(x, r)$ the open ball centered at x with radius r and set $\lambda B(x, r)=B(x, \lambda r)$ for $\lambda>0$.

In this paper, for $p>1$, we are concerned with a positive continuous function $p(\cdot)$ on X satisfying the following conditions:
(p1) $p \leq p_{-} \equiv \inf _{x \in D} p(x) \leq p_{+} \equiv \sup _{x \in D} p(x)<\infty$,
(p2) $|p(x)-p(y)| \leq \frac{C}{\log (e+1 /|x-y|)} \quad$ for all $x, y \in \bar{D}$.
If $p(\cdot)$ satisfies (p2), we say that $p(\cdot)$ satisfies a log-Hölder condition.
In this paper, we are concerned with boundary limits of functions u on a uniform domain D for which there exist a constant $\alpha \in \mathbf{R}$ and a nonnegative function $g \in$ $L_{l o c}^{p}(D ; \mu)$ such that

$$
\begin{equation*}
\left|u(x)-u\left(x^{\prime}\right)\right| \leq C r\left(f_{\sigma B} g(z)^{p} d \mu(z)\right)^{1 / p} \tag{1.4}
\end{equation*}
$$

for every $x, x^{\prime} \in B$ with $\sigma B \subset D$, where $\sigma>1, B=B(y, r)$ and

$$
\begin{equation*}
\int_{D} g(z)^{p(z)} \delta_{D}(z)^{\alpha} d \mu(z)<1 \tag{1.5}
\end{equation*}
$$

Here we used the standard notation

$$
f_{E} u(z) d \mu(z)=\frac{1}{\mu(E)} \int_{E} u(z) d \mu(z)
$$

for a measurable set E with $0<\mu(E)<\infty$. Let μ be a Borel measure on X satisfying the doubling condition:

$$
\mu(2 B) \leq c_{0} \mu(B)
$$

for every ball $B \subset X$. We further assume that

$$
\begin{equation*}
\frac{\mu\left(B^{\prime}\right)}{\mu(B)} \geq C\left(\frac{r^{\prime}}{r}\right)^{s} \tag{1.6}
\end{equation*}
$$

for all balls $B^{\prime}=B\left(x^{\prime}, r^{\prime}\right)$ and $B=B(x, r)$ with $x^{\prime}, x \in \bar{D}$ and $B^{\prime} \subset B$, where $s>1$ (see e.g. [8]). Here note that if μ satisfies the doubling condition, then

$$
\frac{\mu\left(B^{\prime}\right)}{\mu(B)} \geq c_{0}^{-2}\left(\frac{r^{\prime}}{r}\right)^{\log _{2} c_{0}}
$$

for all balls $B^{\prime}=B\left(x^{\prime}, r^{\prime}\right)$ and $B=B(x, r)$ with $x^{\prime}, x \in \bar{D}$ and $B^{\prime} \subset B$ (see e.g. [2, Lemma 3.3]).

Let u be a function on D and let $\xi \in \partial D$. For $\beta \geq 1$ and $c>0$, set

$$
T_{\beta}(\xi ; c)=\left\{x \in D:|x-\xi|^{\beta} \leq c \delta_{D}(x)\right\}
$$

We say u has a tangential limit of order β at ξ if the limit

$$
\lim _{T_{\beta}(\xi ; c) \ni x \rightarrow \xi} u(x)
$$

exists for every $c>0$. In particular, a tangential limit of order 1 is called nontangential limit.

Our first aim in this note is to establish the following theorem, as an extension of [14, Theorem 4]. See [1, Remark 3.1] for Orlicz spaces.

Theorem 1.1. Let u be a function on a uniform domain D with $g \geq 0$ satisfying (1.4) and (1.5) and let $\beta \geq 1$. Suppose $p_{+}<s+\alpha$ and set
$E_{\beta}=\left\{\xi \in \partial D: \limsup _{r \rightarrow 0}\left(r^{\beta(-p(\xi)+s+\alpha)-s} \mu(B(\xi, r))\right)^{-1} \int_{B(\xi, r) \cap D} g(z)^{p(z)} \delta_{D}(z)^{\alpha} d \mu(z)>0\right\}$.
If $\xi \in \partial D \backslash E_{\beta}$ and there exists a rectifiable curve γ in $T_{\beta}(\xi ; c)$ tending to ξ along which u has a finite limit L, then u has a tangential limit L of order β at ξ.

Next we give the following result concerning the Lindelöf-type theorem, as an extension of [4], [5], [11] and [14] in the constant exponent case and the authors [7] in the variable exponent case. See [1, Theorem 1.1] for Orlicz spaces.

Theorem 1.2. Let u be a function on a uniform domain D with $g \geq 0$ satisfying (1.4) and (1.5). Suppose $p_{-}>s+\alpha-1$. If $\xi \in \partial D \backslash E_{1}$ and there exists a rectifiable curve γ in D tending to ξ along which u has a finite limit L, then u has a nontangential limit L at ξ.

Theorems 1.1 and 1.2 are proved in the same way as Remark 3.1 and Theorem 1.1 in [1]. The key lemmas for our results are Lemmas 2.3 and 2.7 below.

Remark 1.3. Let $\beta \geq 1$. Let $h_{\beta}(r ; x)=r^{\beta(-p(x)+s+\alpha)-s} \mu(B(x, r))$ for $x \in \partial D$ and $0<r<\tilde{r}$, where $\tilde{r}>0$. Assume that $h_{\beta}(\cdot ; x)$ is non-decreasing on $(0, \tilde{r})$ for each $x \in \partial D$. For $E \subset X$ and $0<r_{0}<\tilde{r}$, let

$$
H_{h_{\beta}}^{\left(r_{0}\right)}(E)=\inf \left\{\sum_{j} h_{\beta}\left(r_{j} ; x_{j}\right) ; E \subset \bigcup_{j} B\left(x_{j}, r_{j}\right), 0<r_{j} \leq r_{0}\right\}
$$

Since $H_{h_{\beta}}^{\left(r_{0}\right)}(E)$ increases as r_{0} decreases, we define the generalized Hausdorff measure with respect to h_{β} by

$$
H_{h_{\beta}}(E)=\lim _{r_{0} \rightarrow+0} H_{h_{\beta}}^{\left(r_{0}\right)}(E) .
$$

Clearly, $H_{h_{\beta}}^{\left(r_{0}\right)}(E)$ and $H_{h_{\beta}}(E)$ are measures on X.
If g satisfies (1.5) and $p_{-}>s(1-1 / \beta)+\alpha$, then $H_{h_{\beta}}\left(E_{\beta}\right)=0$. In particular, if g satisfies (1.5) and $p_{-}>\alpha$, then $H_{h_{1}}\left(E_{1}\right)=0$.

Corollary 1.4. Let u be a monotone Sobolev function on a uniform domain D in \mathbf{R}^{n} satisfying

$$
\begin{equation*}
\int_{D}|\nabla u(z)|^{p(z)} \delta_{D}(z)^{\alpha} d z<\infty \tag{1.7}
\end{equation*}
$$

Suppose $n-1<p_{-} \leq p_{+}<n+\alpha$. Set

$$
E_{\beta}^{\prime}=\left\{\xi \in \partial D: \limsup _{r \rightarrow 0} r^{\beta(p(\xi)-n-\alpha)} \int_{B(\xi, r) \cap D}|\nabla u(z)|^{p^{p(z)}} \delta_{D}(z)^{\alpha} d z>0\right\} .
$$

If $\xi \in \partial D \backslash E_{\beta}^{\prime}$ and there exists a rectifiable curve γ in $T_{\beta}(\xi ; c)$ tending to ξ along which u has a finite limit L, then u has a tangential limit L of order β at ξ.

Corollary 1.5. Let u be a monotone Sobolev function on a uniform domain D in \mathbf{R}^{n} satisfying (1.7). Suppose $p_{-}>\max \{n-1, n+\alpha-1\}$. Set

$$
E^{\prime}=\left\{\xi \in \partial D: \limsup _{r \rightarrow 0} r^{p(\xi)-\alpha-n} \int_{B(\xi, r) \cap D}|\nabla u(z)|^{p(z)} \delta_{D}(z)^{\alpha} d z>0\right\} .
$$

If $\xi \in \partial D \backslash E^{\prime}$ and there exists a rectifiable curve γ in D tending to ξ along which u has a finite limit L, then u has a nontangential limit L at ξ.

2 Preliminary lemmas

Throughout this paper, let C denote various constants independent of the variables in question.

Let us begin with the following result borrowed from [7, Lemma 3].
Lemma 2.1. Let $\left\{p_{j}\right\}$ be a sequence such that $p_{*}=\inf p_{j}>1$ and $p^{*}=\sup p_{j}<\infty$. Then

$$
\sum\left|a_{j} b_{j}\right| \leqq 2\left(\sum\left|a_{j}\right|^{p_{j}}\right)^{1 / q}\left(\sum\left|b_{j}\right|^{p_{j}^{\prime}}\right)^{1 / q^{\prime}}
$$

where $1 / p_{j}+1 / p_{j}^{\prime}=1, q=p_{*}$ if $\sum\left|a_{j}\right|^{p_{j}} \geq \sum\left|b_{j}\right|^{p_{j}^{\prime}}$ and $q=p^{*}$ if $\sum\left|a_{j}\right|^{p_{j}} \leq \sum\left|b_{j}\right|^{p_{j}^{\prime}}$.
Lemma 2.2. (cf. [4, Lemma 1]) Let D be a uniform domain. Then for each $\xi \in \partial D$ there exists a rectifiable curve γ_{ξ} in D ending at ξ such that

$$
\begin{equation*}
\delta_{D}(z) \geq A_{3} \ell\left(\gamma_{\xi}(\xi, z)\right) \tag{2.1}
\end{equation*}
$$

for all $z \in \gamma_{\xi}$, where A_{3} is a constant depending only on A_{1} and A_{2}.

Fix $\xi \in \partial D$. For $x \in D$ such that x is close to ξ, set

$$
r(x)=|\xi-x|
$$

Now, we give the following estimate of

$$
F_{u}(x, y)=\min \left\{|u(x)-u(y)|^{p_{-}},|u(x)-u(y)|^{p_{+}}\right\},
$$

whenever x and y can be joined by a rectifiable curve γ in D such that

$$
\begin{equation*}
\delta_{D}(z) \geq A_{0} \ell(\gamma(x, z)) \quad \text { and } \quad \sigma B(z) \subset B\left(\xi, c_{0} r(x)\right) \tag{2.2}
\end{equation*}
$$

for all $z \in \gamma$, where A_{0} and c_{0} are positive constants and $B(z)=B\left(z, \delta_{D}(z) /(2 \sigma)\right)$.
Lemma 2.3. (cf. [1, Lemma 2.2]) Let $\lambda \in \mathbf{R}$. Let u be a function on D with $g \geq 0$ satisfying (1.4) and (1.5). Suppose x and y can be joined by a rectifiable curve γ in D satisfying (2.2) and $r(x)<1$.
(1) If $p_{+}<s-\lambda$, then for each $x \in T_{\beta}(\xi ; c)$

$$
\begin{aligned}
F_{u}(x, y) \leq & C r(x)^{\beta(p(\xi)-s+\lambda)+s} \mu(B(\xi, r(x)))^{-1} \int_{B\left(\xi, c_{0} r(x)\right) \cap D} g(z)^{p(z)} \delta_{D}(z)^{-\lambda} d \mu(z) \\
& +C r(x)^{p_{-}} .
\end{aligned}
$$

(2) If $p_{-}>s-\lambda$, then for each $x \in D$

$$
\begin{aligned}
F_{u}(x, y) \leq & C r(x)^{p(\xi)+\lambda} \mu(B(\xi, r(x)))^{-1} \int_{B\left(\xi, c_{0} r(x)\right) \cap D} g(z)^{p(z)} \delta_{D}(z)^{-\lambda} d \mu(z) \\
& +C r(x)^{p_{-}} .
\end{aligned}
$$

Proof. We can take a finite chain of balls $B_{0}, B_{1}, \ldots, B_{N}$ such that
(i) $B_{j}=B\left(x_{j}\right), x_{j} \in \gamma, x_{0}=x$ and $y \in B_{N}$;
(ii) $\ell\left(\gamma\left(x_{j}, x_{j+1}\right)\right) \geq \delta_{D}\left(x_{j}\right) /(2 \sigma)$ and $\ell\left(\gamma\left(x, x_{j+1}\right)\right)>\ell\left(\gamma\left(x, x_{j}\right)\right)$;
(iii) $B_{j} \cap B_{k} \neq \emptyset$ if and only if $|j-k| \leq 1$.

See [6, Lemma 2.2]. By (ii) and (2.2), we have

$$
\delta_{D}\left(x_{j}\right) \geq A_{0} \ell\left(\gamma\left(x, x_{j}\right)\right) \geq A_{0} \ell\left(\gamma\left(x, x_{1}\right)\right) \geq \frac{A_{0}}{2 \sigma} \delta_{D}(x)
$$

for $1 \leq j \leq N$ and

$$
\delta_{D}\left(x_{j}\right) \leq\left|x_{j}-\xi\right| \leq c_{0} r(x)
$$

for $0 \leq j \leq N$, so that
(iv) $c_{1} \delta_{D}(x) \leq \delta_{D}\left(x_{j}\right) \leq c_{0} r(x)$, where c_{1} is a positive constant depending only on A_{0} and σ.

Take a subsequence $\left\{x_{j_{k}}\right\}_{k=0}^{n}$ of $\left\{x_{j}\right\}_{j=0}^{N}$ such that $t<\delta_{D}\left(x_{j_{k}}\right) \leq 2 t$ for $t>0$. Then we have by (ii)

$$
\frac{1}{2 \sigma} t \leq \frac{1}{2 \sigma} \delta_{D}\left(x_{j_{k}}\right) \leq \ell\left(\gamma\left(x_{j_{k}}, x_{j_{k+1}}\right)\right)
$$

Since

$$
\frac{1}{2 \sigma} t(n-1) \leq \ell\left(\gamma\left(x_{j_{1}}, x_{j_{n}}\right)\right) \leq \ell\left(\gamma\left(x, x_{j_{n}}\right)\right) \leq \frac{1}{A_{0}} \delta_{D}\left(x_{j_{n}}\right) \leq \frac{2 t}{A_{0}}
$$

by (2.2), we have
(v) For each $t>0$, the number of x_{j} such that $t<\delta_{D}\left(x_{j}\right) \leq 2 t$ is less than c_{2}, where c_{2} is a positive constant depending only on A_{0} and σ.
As in the proof of [6, Lemma 2.1], we see from (iii) that
(vi) $\sum_{j=0}^{N} \chi_{B_{j}}(z) \leq c_{3}$, where χ_{E} denotes the characteristic function of E and c_{3} is a positive constant depending only on the doubling constant of μ and σ.
Consider the function $p_{*}\left(x_{j}\right)=\inf _{z \in \sigma B_{j}} p(z)$. Since $p_{*}\left(x_{j}\right) \geq p$, we see that

$$
\left|u\left(\zeta_{1}\right)-u\left(\zeta_{2}\right)\right| \leq C \delta_{D}\left(x_{j}\right)\left(\frac{1}{\mu\left(\sigma B_{j}\right)} \int_{\sigma B_{j}} g(z)^{p_{*}\left(x_{j}\right)} d \mu(z)\right)^{1 / p_{*}\left(x_{j}\right)}
$$

for every $\zeta_{1}, \zeta_{2} \in B_{j}$. Set $G_{j}=\left\{z \in \sigma B_{j}: g(z) \geq 1\right\}$. Then

$$
\begin{aligned}
\int_{\sigma B_{j}} g(z)^{p_{*}\left(x_{j}\right)} d \mu(z) & =\int_{G_{j}} g(z)^{p(z)} g(z)^{p_{*}\left(x_{j}\right)-p(z)} d \mu(z)+\int_{\sigma B_{j} \backslash G_{j}} g(z)^{p_{*}\left(x_{j}\right)} d \mu(z) \\
& \leq \int_{\sigma B_{j}} g(z)^{p(z)} d z+\mu\left(\sigma B_{j}\right)
\end{aligned}
$$

so that we obtain by (1.5)

$$
\begin{aligned}
& \left|u\left(\zeta_{1}\right)-u\left(\zeta_{2}\right)\right| \\
\leq & C \delta_{D}\left(x_{j}\right) \mu\left(\sigma B_{j}\right)^{-1 / p_{*}\left(x_{j}\right)}\left(\int_{\sigma B_{j}} g(z)^{p(z)} d \mu(z)\right)^{1 / p_{*}\left(x_{j}\right)}+C \delta_{D}\left(x_{j}\right) \\
\leq & C \delta_{D}\left(x_{j}\right)^{1-\alpha / p_{*}\left(x_{j}\right)} \mu\left(\sigma B_{j}\right)^{-1 / p_{*}\left(x_{j}\right)}\left(\int_{\sigma B_{j}} g(z)^{p(z)} \delta_{D}(z)^{\alpha} d \mu(z)\right)^{1 / p_{*}\left(x_{j}\right)}+C \delta_{D}\left(x_{j}\right) \\
\leq & C \delta_{D}\left(x_{j}\right)^{1-\alpha / p_{*}\left(x_{j}\right)} \mu\left(\sigma B_{j}\right)^{-1 / p_{*}\left(x_{j}\right)}\left(\int_{\sigma B_{j}} g(z)^{p(z)} \delta_{D}(z)^{\alpha} d \mu(z)\right)^{1 / p\left(x_{j}\right)}+C \delta_{D}\left(x_{j}\right)
\end{aligned}
$$

since $\delta_{D}\left(x_{j}\right) / 2 \leq \delta_{D}(z) \leq 3 \delta_{D}\left(x_{j}\right) / 2$ for $z \in \sigma B_{j}$. Here note from (1.6) that

$$
\begin{aligned}
\mu\left(\sigma B_{j}\right)^{-1 / p_{*}\left(x_{j}\right)} & =\mu\left(\sigma B_{j}\right)^{-1 / p\left(x_{j}\right)} \mu\left(\sigma B_{j}\right)^{-\left(p\left(x_{j}\right)-p_{*}\left(x_{j}\right)\right) /\left(p\left(x_{j}\right) p_{*}\left(x_{j}\right)\right)} \\
& \leq \mu\left(\sigma B_{j}\right)^{-1 / p\left(x_{j}\right)}\left\{C \mu\left(B\left(\xi, c_{0}\right)\right)\left(\frac{\delta_{D}\left(x_{j}\right)}{2 c_{0}}\right)\right\}^{-s\left(p\left(x_{j}\right)-p_{*}\left(x_{j}\right)\right) /\left(p\left(x_{j}\right) p_{*}\left(x_{j}\right)\right)} \\
& \leq C \mu\left(\sigma B_{j}\right)^{-1 / p\left(x_{j}\right)} \delta_{D}\left(x_{j}\right)^{-C / \log \left(1 /\left(e+\delta_{D}\left(x_{j}\right)\right)\right)} \\
& \leq C \mu\left(\sigma B_{j}\right)^{-1 / p\left(x_{j}\right)}
\end{aligned}
$$

since $\delta_{D}\left(x_{j}\right) \leq 2 c_{0}$ by $\sigma B_{j} \subset B\left(\xi, c_{0} r(x)\right) \subset B\left(\xi, c_{0}\right)$. Similarly, we have

$$
C^{-1} \delta_{D}\left(x_{j}\right)^{1 / p_{*}\left(x_{j}\right)} \leq \delta_{D}\left(x_{j}\right)^{1 / p\left(x_{j}\right)} \leq C \delta_{D}\left(x_{j}\right)^{1 / p_{*}\left(x_{j}\right)}
$$

Therefore, for $\lambda \in \mathbf{R}$, we find

$$
\begin{aligned}
& \left|u\left(\zeta_{1}\right)-u\left(\zeta_{2}\right)\right| \\
\leq & C \delta_{D}\left(x_{j}\right)^{1-\alpha / p\left(x_{j}\right)}\left(f_{\sigma B_{j}} g(z)^{p(z)} \delta_{D}(z)^{\alpha} d \mu(z)\right)^{1 / p\left(x_{j}\right)}+C \delta_{D}\left(x_{j}\right) \\
\leq & C \delta_{D}\left(x_{j}\right)^{1+\lambda / p\left(x_{j}\right)}\left(f_{\sigma B_{j}} g(z)^{p(z)} \delta_{D}(z)^{-\lambda} d \mu(z)\right)^{1 / p\left(x_{j}\right)}+C \delta_{D}\left(x_{j}\right)
\end{aligned}
$$

since $\delta_{D}\left(x_{j}\right) / 2 \leq \delta_{D}(z) \leq 3 \delta_{D}\left(x_{j}\right) / 2$ for $z \in \sigma B_{j}$.
Set $p_{j}=p\left(x_{j}\right)$ and pick $z_{j} \in B_{j-1} \cap B_{j}$ for $1 \leq j \leq N$; set $z_{0}=x$ and $z_{N+1}=y$. By the above inequality, we see that

$$
\begin{align*}
& |u(x)-u(y)| \\
\leq & \sum_{j=0}^{N}\left|u\left(z_{j+1}\right)-u\left(z_{j}\right)\right| \\
\leq & C \sum_{j=0}^{N} \delta_{D}\left(x_{j}\right)^{1+\lambda / p_{j}} \mu\left(\sigma B_{j}\right)^{-1 / p_{j}}\left(\int_{\sigma B_{j}} g(z)^{p(z)} \delta_{D}(z)^{-\lambda} d \mu(z)\right)^{1 / p_{j}} \\
& +C \sum_{j=0}^{N} \delta_{D}\left(x_{j}\right) . \tag{2.3}
\end{align*}
$$

Taking integers k_{0} and k_{1} such that $2^{-k_{0}-1} \leq c_{0} r(x)<2^{-k_{0}}$ and $2^{-k_{1}-1} \leq c_{1} \delta_{D}(x)<2^{-k_{1}}$, we see from (iv) and (v) that

$$
\begin{aligned}
\sum_{j=0}^{N} \delta_{D}\left(x_{j}\right) & \leq \sum_{k=k_{0}}^{k_{1}}\left(\sum_{2^{-k-1} \leq \delta_{D}\left(x_{j}\right)<2^{-k}} \delta_{D}\left(x_{j}\right)\right) \\
& \leq c_{2} \sum_{k=k_{0}}^{k_{1}} 2^{-k} \leq 2 c_{2} \int_{2^{-k_{1}-1}}^{2^{-k_{0}}} d t \leq C \int_{c_{1} \delta_{D}(x) / 2}^{2 c_{0} r(x)} d t \leq \operatorname{Cr}(x) .
\end{aligned}
$$

Hence we have by Lemma 2.1

$$
\begin{aligned}
& |u(x)-u(y)| \\
\leq & C\left(\sum_{j=0}^{N} \delta_{D}\left(x_{j}\right)^{p_{j}^{\prime}\left(1+\lambda / p_{j}\right)} \mu\left(\sigma B_{j}\right)^{-p_{j}^{\prime} / p_{j}}\right)^{1 / q^{\prime}}\left(\sum_{j=0}^{N} \int_{\sigma B_{j}} g(z)^{p(z)} \delta_{D}(z)^{-\lambda} d \mu(z)\right)^{1 / q}+C r(x) \\
\leq & C\left(I^{q-1} \int_{\cup \sigma B_{j}} g(z)^{p(z)} \delta_{D}(z)^{-\lambda} d \mu(z)\right)^{1 / q}+C r(x),
\end{aligned}
$$

where q is a number in $\left\{\min p_{j}, \max p_{j}\right\}$ and

$$
I=\sum_{j=0}^{N} \delta_{D}\left(x_{j}\right)^{p_{j}^{\prime}\left(1+\lambda / p_{j}\right)} \mu\left(\sigma B_{j}\right)^{-p_{j}^{\prime} / p_{j}} .
$$

Since

$$
\delta_{D}\left(x_{j}\right) \geq A_{0} \ell\left(\gamma\left(x, x_{j}\right)\right) \geq A_{0}\left|x-x_{j}\right|
$$

by (2.2), we have

$$
\begin{aligned}
\left|\frac{p_{j}+\lambda}{p_{j}-1}-\frac{p(x)+\lambda}{p(x)-1}\right| & =\left|\frac{(\lambda+1)\left(p(x)-p_{j}\right)}{(p(x)-1)\left(p_{j}-1\right)}\right| \\
& \leq C\left|p(x)-p_{j}\right| \leq \frac{C}{\log \left(1 /\left|x-x_{j}\right|\right)} \leq \frac{C}{\log \left(1 / \delta_{D}\left(x_{j}\right)\right)}
\end{aligned}
$$

and

$$
\left|\frac{p_{j}^{\prime}}{p_{j}}-\frac{p(x)^{\prime}}{p(x)}\right|=\left|\frac{p(x)-p_{j}}{(p(x)-1)\left(p_{j}-1\right)}\right| \leq \frac{C}{\log \left(1 /\left|x-x_{j}\right|\right)} \leq \frac{C}{\log \left(1 / \delta_{D}\left(x_{j}\right)\right)}
$$

Therefore we obtain by (1.6)

$$
\begin{aligned}
I & \leq C \sum_{j=0}^{N} \delta_{D}\left(x_{j}\right)^{(p(x)+\lambda) /(p(x)-1)} \mu\left(\sigma B_{j}\right)^{-p^{\prime}(x) / p(x)} \\
& \leq C \sum_{j=0}^{N} \delta_{D}\left(x_{j}\right)^{(p(x)+\lambda) /(p(x)-1)} \mu(B(\xi, r(x)))^{-p^{\prime}(x) / p(x)} r(x)^{s p^{\prime}(x) / p(x)} \delta_{D}\left(x_{j}\right)^{-s p^{\prime}(x) / p(x)} \\
& =C \mu(B(\xi, r(x)))^{-p^{\prime}(x) / p(x)} r(x)^{s p^{\prime}(x) / p(x)} \sum_{j=0}^{N} \delta_{D}\left(x_{j}\right)^{(p(x)+\lambda-s) /(p(x)-1)} \\
& \leq C\left(\mu(B(\xi, r(x)))^{-1} r(x)^{s}\right)^{\frac{1}{p(x)-1}} \int_{c_{1} \delta_{D}(x) / 2}^{2 c_{0} r(x)} t^{\frac{p(x)-s+\lambda}{p(x)-1}} \frac{d t}{t}
\end{aligned}
$$

where $1 / p(x)+1 / p^{\prime}(x)=1$. First consider the case $p_{+}<s-\lambda$ and $x \in T_{\beta}(\xi ; c)$. Since $r(x)^{\beta} \leq c \delta_{D}(x)$ and $\left|x-x_{j}\right| \leq\left(1+c_{0}\right) r(x)$, we see that

$$
\begin{aligned}
& \left|\frac{(p(x)-s+\lambda)(q-1)}{p(x)-1}-(p(\xi)-s+\lambda)\right| \\
= & \left|\frac{(p(x)-s+\lambda)(q-p(x))}{p(x)-1}+(p(x)-p(\xi))\right| \\
\leq & C|q-p(x)|+|p(x)-p(\xi)| \\
\leq & \frac{C}{\log (1 / r(x))} \leq \frac{C}{\log \left(1 / \delta_{D}(x)\right)}
\end{aligned}
$$

and

$$
\left|\frac{q-1}{p(x)-1}-1\right| \leq C|q-p(x)| \leq \frac{C}{\log (1 / r(x))} \leq \frac{C}{\log \left(1 / \delta_{D}(x)\right)}
$$

Then we have

$$
\begin{aligned}
I^{q-1} & \leq C\left(\mu(B(\xi, r(x)))^{-1} r(x)^{s}\right)^{\frac{q-1}{p(x)-1}} \delta_{D}(x)^{(p(x)-s+\lambda)(q-1) /(p(x)-1)} \\
& \leq C \mu(B(\xi, r(x)))^{-1} r(x)^{s} \delta_{D}(x)^{p(\xi)-s+\lambda}
\end{aligned}
$$

since

$$
\left(\frac{\mu(B(\xi, r(x)))}{\mu(B(\xi, 1))}\right)^{-C|q-p(x)|} \leq C r(x)^{-C|q-p(x)|} \leq C
$$

by (1.6). Hence we obtain by (vi)

$$
\begin{aligned}
F_{u}(x, y) \leq & |u(x)-u(y)|^{q} \\
\leq & C \mu(B(\xi, r(x)))^{-1} r(x)^{s} \delta_{D}(x)^{p(\xi)-s+\lambda} \int_{\cup \sigma B_{j}} g(z)^{p(z)} \delta_{D}(z)^{-\lambda} d \mu(z) \\
& +C r(x)^{q} \\
\leq & C \mu(B(\xi, r(x)))^{-1} r(x)^{\beta(p(\xi)-s+\lambda)+s} \int_{B\left(\xi, c_{0} r(x)\right) \cap D} g(z)^{p(z)} \delta_{D}(z)^{-\lambda} d \mu(z) \\
& +C r(x)^{p_{-}} .
\end{aligned}
$$

Next consider the case $p_{-}>s-\lambda$. Noting that

$$
\left|\frac{(p(x)-s+\lambda)(q-1)}{p(x)-1}-(p(\xi)-s+\lambda)\right| \leq \frac{C}{\log (1 / r(x))}
$$

we have

$$
\begin{aligned}
I^{q-1} & \leq C\left((B(\xi, r(x)))^{-1} r(x)^{s}\right)^{\frac{q-1}{p(x)-1}} r(x)^{(p(x)-s+\lambda)(q-1) /(p(x)-1)} \\
& \leq C\left(\mu(B(\xi, r(x)))^{-1} r(x)^{p(\xi)+\lambda} .\right.
\end{aligned}
$$

Thus we can show the second part, in the same manner as the first part.
Remark 2.4. Let γ_{1} be a rectifiable curve in D joining x and w satisfying (2.2), and let γ_{2} be a rectifiable curve in D joining y and w satisfying (2.2). Suppose $r(x)=r(y)<1$.
(1) If $p_{+}<s-\lambda$, then for each $x, y \in T_{\beta}(\xi ; c)$

$$
\begin{aligned}
F_{u}(x, y) \leq & C r(x)^{\beta(p(\xi)-s+\lambda)+s} \mu(B(\xi, r(x)))^{-1} \int_{B\left(\xi, c_{0} r(x)\right) \cap D} g(z)^{p(z)} \delta_{D}(z)^{-\lambda} d \mu(z) \\
& +C r(x)^{p_{-}} .
\end{aligned}
$$

(2) If $p_{-}>s-\lambda$, then for each $x, y \in D$

$$
\begin{aligned}
F_{u}(x, y) \leq & C r(x)^{p(\xi)+\lambda} \mu(B(\xi, r(x)))^{-1} \int_{B\left(\xi, c_{0} r(x)\right) \cap D} g(z)^{p(z)} \delta_{D}(z)^{-\lambda} d \mu(z) \\
& +C r(x)^{p_{-}}
\end{aligned}
$$

Remark 2.5. In Lemma 2.3, we can replace

$$
\int_{B\left(\xi, c_{0} r(x)\right) \cap D} g(z)^{p(z)} \delta_{D}(z)^{-\lambda} d \mu(z)
$$

by

$$
\int_{B\left(\xi, c_{0} r(x)\right) \cap D} g(z)^{p(z)} \delta_{D}(z)^{\alpha}\left|r(x)-|z-\xi|^{-\lambda-\alpha} d \mu(z)\right.
$$

if $\alpha+\lambda>0$.
In fact, in the proof of Lemma 2.3, we can replace

$$
\int_{\sigma B_{j}} g(z)^{p(z)} \delta_{D}(z)^{-\lambda} d \mu(z)
$$

by

$$
\int_{\sigma B_{j}} g(z)^{p(z)} \delta_{D}(z)^{\alpha}|r(x)-|z-\xi||^{-\lambda-\alpha} d \mu(z),
$$

since
$|r(x)-|z-\xi|| \leq|x-z| \leq\left|x-x_{j}\right|+\left|x_{j}-z\right| \leq \ell\left(\gamma\left(x, x_{j}\right)\right)+\frac{\delta_{D}\left(x_{j}\right)}{2} \leq\left(A_{0}+\frac{1}{2}\right) \delta_{D}\left(x_{j}\right)$
and $\delta_{D}\left(x_{j}\right) \leq 2 \delta_{D}(z)$ for $z \in \sigma B_{j}$.
Remark 2.6. The number of balls $B_{0}, B_{1}, \ldots, B_{N}$ in Lemma 2.3 is less than

$$
\frac{c_{2}}{\log 2} \log \left(\frac{4 c r(x)}{c_{1} \delta_{D}(x)}\right) .
$$

In fact,

$$
\begin{aligned}
N+1 & =\sum_{k=k_{0}}^{k_{1}} \#\left\{j: 2^{-k-1} \leq \delta_{D}\left(x_{j}\right)<2^{-k}\right\} \\
& \leq \sum_{k=k_{0}}^{k_{1}} c_{2}=\frac{c_{2}}{\log 2} \int_{2^{-k_{1}-1}}^{2^{-k_{0}}} \frac{d t}{t} \leq \frac{c_{2}}{\log 2} \int_{c_{1} \delta_{D}(x) / 2}^{2 c r(x)} \frac{d t}{t}=\frac{c_{2}}{\log 2} \log \left(\frac{4 c r(x)}{c_{1} \delta_{D}(x)}\right),
\end{aligned}
$$

where we take k_{0} and k_{1} as in the proof of Lemma 2.3.
The following lemma can be proved using inequality (2.3) in the proof of Lemma 2.3.
Lemma 2.7. (cf. [1, Lemma 2.5]) Let u be a function on a uniform domain D with $g \geq 0$ satisfying (1.4) and (1.5). If $\xi \in \partial D \backslash E_{1}$ and there exist a rectifiable curve γ_{ξ} in D ending at ξ satisfying (2.1) and a sequence $\left\{y_{j}\right\}$ such that $y_{j} \in \gamma_{\xi}$ and $2^{-j-1} \leq\left|\xi-y_{j}\right|<2^{-j}$ and $u\left(y_{j}\right)$ has a finite limit L, then u has a nontangential limit L at ξ.

Proof. Fix $\xi \in \partial D \backslash E_{1}$. Take $x_{j} \in T_{1}(\xi ; c)$ with $2^{-j-1} \leq\left|x_{j}-\xi\right|<2^{-j}$. Let γ be a rectifiable curve in D joining x_{j} and y_{j} satisfying (1.2) and (1.3). Take $y \in \gamma$ such that
$\ell\left(\gamma\left(x_{j}, y\right)\right)=\ell\left(\gamma\left(y_{j}, y\right)\right)$, and set $\gamma_{1}=\gamma\left(x_{j}, y\right)$ and $\gamma_{2}=\gamma\left(y_{j}, y\right)$. Then γ_{i} satisfies (2.2) with $A_{0}=A_{2}$ and $c_{0}=3\left(3 A_{1}+1\right) / 2$. In fact, we have by (1.3)

$$
\delta_{D}(z) \geq A_{2} \min \left\{\ell\left(\gamma\left(x_{j}, z\right)\right), \ell\left(\gamma\left(z, y_{j}\right)\right)\right\}=A_{2} \ell\left(\gamma_{1}\left(x_{j}, z\right)\right)
$$

for $z \in \gamma_{1}$. Take $w \in \sigma B(z)$ for $z \in \gamma_{1}$. Then note that

$$
|w-\xi| \leq|w-z|+|z-\xi| \leq \frac{3}{2}|z-\xi| \leq \frac{3}{2}\left(r\left(x_{j}\right)+\ell(\gamma)\right) \leq \frac{3\left(3 A_{1}+1\right)}{2} r\left(x_{j}\right)
$$

since we have by (1.2)

$$
\ell(\gamma) \leq A_{1}\left|x_{j}-y_{j}\right| \leq 3 A_{1} r\left(x_{j}\right)
$$

Similarly, we have

$$
\delta_{D}(z) \geq A_{2} \ell\left(\gamma_{2}\left(y_{j}, z\right)\right)
$$

and $\sigma B(z) \subset B\left(\xi, c_{o} r\left(y_{j}\right)\right)$ for $z \in \gamma_{2}$.
Then, for γ_{i}, we can take a finite chain of balls $B_{0}^{i}, B_{1}^{i}, \ldots, B_{N_{i}}^{i}$ with $B_{k}^{i}=B\left(w_{k}^{i}\right)$ as in the proof of Lemma 2.3. By Remark 2.6, we note that N_{i} is less than a positive constant C_{1}, since

$$
\frac{r\left(x_{j}\right)}{\delta_{D}\left(x_{j}\right)} \leq \frac{c r\left(x_{j}\right)}{\left|x_{j}-\xi\right|}=c
$$

and

$$
\frac{r\left(y_{j}\right)}{\delta_{D}\left(y_{j}\right)} \leq \frac{r\left(y_{j}\right)}{A_{3}\left|\xi-y_{j}\right|}=\frac{1}{A_{3}}
$$

by (2.1). Further we note from the fact that $x_{j} \in T_{1}(\xi ; c)$, (iv), (2.1) and (2.2) that

$$
\begin{array}{r}
2^{-j-1} \leq\left|x_{j}-\xi\right| \leq c \delta_{D}\left(x_{j}\right) \leq \frac{c}{c_{1}} \delta_{D}\left(w_{k}^{1}\right) \leq \frac{c}{c_{1}}\left|w_{k}^{1}-\xi\right| \leq \frac{c c_{0}}{c_{1}} r\left(x_{j}\right) \leq \frac{c c_{0}}{c_{1}} 2^{-j}, \\
2^{-j-1} \leq\left|y_{j}-\xi\right| \leq \frac{1}{A_{3}} \delta_{D}\left(y_{j}\right) \leq \frac{1}{c_{1} A_{3}} \delta_{D}\left(w_{k}^{2}\right) \leq \frac{1}{c_{1} A_{3}}\left|w_{k}^{2}-\xi\right| \leq \frac{c_{0}}{c_{1} A_{3}} r\left(y_{j}\right) \leq \frac{c_{0}}{c_{1} A_{3}} 2^{-j}, \\
\left|w_{k}^{1}-\xi\right| \leq\left|w_{k}^{1}-x_{j}\right|+\left|x_{j}-\xi\right| \leq \frac{1}{A_{0}} \delta_{D}\left(w_{k}^{1}\right)+c \delta_{D}\left(x_{j}\right) \leq\left(\frac{1}{A_{0}}+\frac{c}{c_{1}}\right) \delta_{D}\left(w_{k}^{1}\right)
\end{array}
$$

and

$$
\left|w_{k}^{2}-\xi\right| \leq\left|w_{k}^{2}-y_{j}\right|+\left|y_{j}-\xi\right| \leq \frac{1}{A_{0}} \delta_{D}\left(w_{k}^{2}\right)+\frac{1}{A_{3}} \delta_{D}\left(y_{j}\right) \leq\left(\frac{1}{A_{0}}+\frac{1}{c_{1} A_{3}}\right) \delta_{D}\left(w_{k}^{2}\right)
$$

where c_{0}, c_{1} are positive constants appearing in the proof of Lemma 2.3. Therefore

$$
C^{-1} 2^{-j} \leq \delta_{D}\left(w_{k}^{i}\right) \leq C 2^{-j}
$$

and

$$
C^{-1}\left|w_{k}^{i}-\xi\right| \leq \delta_{D}\left(w_{k}^{i}\right) \leq\left|w_{k}^{i}-\xi\right| .
$$

Here we see from (1.6) that

$$
\frac{\mu\left(\sigma B_{k}^{1}\right)}{\mu\left(B\left(\xi, c_{0} r\left(x_{j}\right)\right)\right)} \geq C\left(\frac{\delta_{D}\left(w_{k}^{1}\right)}{2 c_{0} r\left(x_{j}\right)}\right)^{s} \geq C
$$

and

$$
\frac{\mu\left(\sigma B_{k}^{2}\right)}{\mu\left(B\left(\xi, c_{0} r\left(y_{j}\right)\right)\right)} \geq C\left(\frac{\delta_{D}\left(w_{k}^{2}\right)}{2 c_{0} r\left(y_{j}\right)}\right)^{s} \geq C .
$$

Hence, we obtain by (2.3) and (vi) in the proof of Lemma 2.3

$$
\begin{aligned}
& \left|u\left(x_{j}\right)-u\left(y_{j}\right)\right| \\
\leq & \left|u\left(x_{j}\right)-u(y)\right|+\left|u\left(y_{j}\right)-u(y)\right| \\
\leq & C \sum_{i=1}^{2} \sum_{k=0}^{N_{i}} \delta_{D}\left(w_{k}^{i}\right)^{1-\alpha / p\left(w_{k}^{i}\right)}\left(f_{\sigma B_{k}^{i}} g(z)^{p(z)} \delta_{D}(z)^{\alpha} d \mu(z)\right)^{1 / p\left(w_{k}^{i}\right)}+C \sum_{i=1}^{2} \sum_{k=0}^{N_{i}} \delta_{D}\left(w_{k}^{i}\right) \\
\leq & C \sum_{i=1}^{2} \sum_{k=0}^{N_{i}}\left(\delta_{D}\left(w_{k}^{i}\right)^{p(\xi)-\alpha} \mu\left(\sigma B_{k}^{i}\right)^{-1} \int_{\sigma B_{k}^{i}} g(z)^{p(z)} \delta_{D}(z)^{\alpha} d \mu(z)\right)^{1 / p\left(w_{k}^{i}\right)} \\
& +C \sum_{i=1}^{2} \sum_{k=0}^{N_{i}} \delta_{D}\left(w_{k}^{i}\right) \\
\leq & C 2^{-j}+C\left(2^{-j(p(\xi)-\alpha)} \mu\left(B\left(\xi, 2^{-j}\right)\right)^{-1} \int_{B\left(\xi, c_{0} 2^{-j)}\right.} g(z)^{p(z)} \delta_{D}(z)^{\alpha} d \mu(z)\right)^{1 / p_{+}}
\end{aligned}
$$

since we have by (p 2)

$$
\delta_{D}\left(w_{k}^{i}\right)^{-\left|p(\xi)-p\left(w_{k}^{i}\right)\right|} \leq \delta_{D}\left(w_{k}^{i}\right)^{-C / \log \left(e+1 /\left|w_{k}^{i}-\xi\right|\right)} \leq C .
$$

Since $\xi \in \partial \mathbf{B} \backslash E_{1}$ and $\lim _{j \rightarrow \infty} u\left(y_{j}\right)=L, u$ has a nontangential limit L at ξ.

3 Proof of Theorem 1.1

We may assume that for each $x \in T_{\beta}(\xi ; c)$, there exists a point $y(x) \in \gamma$ such that $r(x)=r(y(x))<1$. As in the proof of Lemma 2.7, let γ_{0} be a rectifiable curve in D joining x and $y(x)$ satisfying (1.2) and (1.3). Take $w \in \gamma_{0}$ such that $\ell\left(\gamma_{0}(x, w)\right)=\ell\left(\gamma_{0}(y(x), w)\right)$, and set $\gamma_{1}=\gamma_{0}(x, w)$ and $\gamma_{2}=\gamma_{0}(y(x), w)$. Since $\xi \notin E_{\beta}$, we have by Lemma 2.3(1) with $\lambda=-\alpha$ and Remark 2.4

$$
\lim _{T_{\beta}(\xi ; c) \ni x \rightarrow \xi} F_{u}(x, y(x))=0,
$$

so that

$$
\lim _{T_{\beta}(\xi ; c) \ni x \rightarrow \xi}|u(x)-u(y(x))|=0 .
$$

Since $\lim _{x \rightarrow \xi} u(y(x))=L$ by our assumption,

$$
\lim _{T_{\beta}(\xi ; c) \ni x \rightarrow \xi} u(x)=L,
$$

as required.

4 Proof of Theorem 1.2

Take $\lambda \in \mathbf{R}$ such that $s+\alpha-p_{-}<\lambda+\alpha<1$. Let γ_{ξ} be as in Lemma 2.2. For $r>0$ sufficiently small, take $x(r) \in \gamma \cap \partial B(\xi, r)$ and $y(r) \in \gamma_{\xi} \cap \partial B(\xi, r)$. As in the proof of Lemma 2.7, let γ_{0} be a rectifiable curve in D joining $x(r)$ and $y(r)$ satisfying (1.2) and (1.3). Take $w \in \gamma_{0}$ such that $\ell\left(\gamma_{0}(x(r), w)\right)=\ell\left(\gamma_{0}(y(r), w)\right)$, and set $\gamma_{1}=\gamma_{0}(x(r), w)$ and $\gamma_{2}=\gamma_{0}(y(r), w)$. By Lemma 2.3(2), Remark 2.4 and Remark 2.5, we have

$$
\begin{aligned}
F_{u}(x(r), y(r)) \leq & C r^{p(\xi)+\lambda} \mu(B(\xi, r))^{-1} \int_{B\left(\xi, c_{0} r\right) \cap D} g(z)^{p(z)} \delta_{D}(z)^{\alpha}\left|r-|z-\xi|^{-\lambda-\alpha} d \mu(z)\right. \\
& +C r^{p_{-}}
\end{aligned}
$$

Moreover, since $0<\lambda+\alpha<1$, we see that

$$
\int_{2^{-j-1}}^{2^{-j}}|r-|z-\xi||^{-\lambda-\alpha} d r \leq C 2^{-j(1-\lambda-\alpha)} .
$$

Hence it follows that

$$
\begin{aligned}
& \inf _{2^{-j-1} \leq r<2^{-j}} F_{u}(x(r), y(r)) \\
\leq & C \int_{2^{-j-1}}^{2^{-j}}\left(r^{p(\xi)+\lambda} \mu(B(\xi, r))^{-1} \int_{B\left(\xi, c_{0} r\right) \cap D} g(z)^{p(z)} \delta_{D}(z)^{\alpha}|r-| z-\xi \|^{-\lambda-\alpha} d \mu(z)\right) \frac{d r}{r} \\
& +C\left(2^{-j}\right)^{p-} \\
\leq & C 2^{-j\{p(\xi)+\lambda-1\}} \mu\left(B\left(\xi, 2^{-j}\right)\right)^{-1} \int_{B\left(\xi, c_{0} 2^{-j}\right) \cap D} g(z)^{p(z)} \delta_{D}(z)^{\alpha}\left(\int_{2^{-j-1}}^{2^{-j}}\left|r-|z-\xi|^{-\lambda-\alpha} d r\right) d \mu(z)\right. \\
& +C\left(2^{-j}\right)^{p-} \\
\leq & C\left(2^{-j\{-p(\xi)+\alpha\}} \mu\left(B\left(\xi, 2^{-j}\right)\right)^{-1} \int_{B\left(\xi, c_{0} 2^{-j}\right) \cap D} g(z)^{p(z)} \delta_{D}(z)^{\alpha} d \mu(z)+C\left(2^{-j}\right)^{p_{-} .} .\right.
\end{aligned}
$$

Since $\xi \notin E_{1}$, we see that

$$
\lim _{j \rightarrow \infty} \inf _{2^{-j-1} \leq r<2^{-j}} F_{u}(x(r), y(r))=0
$$

Hence we find a sequence $\left\{r_{j}\right\}$ such that $2^{-j-1} \leq r_{j}<2^{-j}$ and

$$
\lim _{j \rightarrow \infty} F_{u}\left(x\left(r_{j}\right), y\left(r_{j}\right)\right)=0
$$

Since u has a finite limit L at ξ along γ, we have

$$
\lim _{j \rightarrow \infty} u\left(y\left(r_{j}\right)\right)=\lim _{j \rightarrow \infty} u\left(x\left(r_{j}\right)\right)=L .
$$

Thus u has a nontangential limit L at ξ by Lemma 2.7.
Acknowledgements We would like to express our thanks to the referees for their kind comments and suggestions.

References

[1] F. Di Biase, T. Futamura and T. Shimomura, Lindelöf theorems for monotone Sobolev functions in Orlicz spaces, to appear in Illinois J. Math.
[2] A. Björn and J. Björn, Nonlinear potential theory on metric spaces. EMS Tracts in Mathematics, 17. European Mathematical Society (EMS), Zurich, 2011.
[3] L. Diening, P. Harjulehto, P. Hästö, M. Ružžička, Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Mathematics, vol. 2017, Springer-Verlag, Heidelberg, 2011.
[4] T. Futamura, Lindelöf theorems for monotone Sobolev functions on uniform domains, Hiroshima Math. J. 34 (2004), 413-422.
[5] T. Futamura and Y. Mizuta, Lindelöf theorems for monotone Sobolev functions, Ann. Acad. Sci. Fenn. Math. 28 (2003), 271-277.
[6] T. Futamura and Y. Mizuta, Boundary behavior of monotone Sobolev functions on John domains in a metric space, Complex Variables 50 (2005), 441-451.
[7] T. Futamura and T. Shimomura, Lindelöf theorems for monotone Sobolev functions with variable exponent, Proc. Japan Acad. Ser. A Math. Sci. 84 (2008), 25-28.
[8] P. Hajłasz and P. Koskela, Sobolev met Poincaré, Mem.Amer.Math.Soc. 145, 2000.
[9] P. Koskela, J. J. Manfredi and E. Villamor, Regularity theory and traces of \mathcal{A} harmonic functions, Trans. Amer. Math. Soc. 348 (1996), 755-766.
[10] H. Lebesgue, Sur le probléme de Dirichlet, Rend. Cir. Mat. Palermo 24 (1907), 371-402.
[11] J. J. Manfredi and E. Villamor, Traces of monotone Sobolev functions, J. Geom. Anal. 6 (1996), 433-444.
[12] J. J. Manfredi and E. Villamor, Traces of monotone Sobolev functions in weighted Sobolev spaces, Illinois J. Math. 45 (2001), 403-422.
[13] Y. Mizuta, Potential theory in Euclidean spaces, Gakkōtosyo, Tokyo, 1996.
[14] Y. Mizuta, Tangential limits of monotone Sobolev functions, Ann. Acad. Sci. Fenn. Ser. A. I. Math. 20 (1995), 315-326.
[15] Y. Mizuta, T. Ohno and T. Shimomura, Sobolev's inequalities and vanishing integrability for Riesz potentials of functions in the generalized Lebesgue space $L^{p(\cdot)}(\log L)^{q(\cdot)}$, J. Math. Anal. Appl. 345 (2008), 70-85.
[16] J. Väisälä, Uniform domains, Tohoku Math. J. 40 (1988), 101-118.
[17] E. Villamor and B. Q. Li, Boundary limits for bounded quasiregular mappings, J. Geom. Anal. 19 (2009), 708-718.
[18] M. Vuorinen, Conformal geometry and quasiregular mappings, Lectures Notes in Math. 1319, Springer, 1988.

Department of Mathematics
Daido University
Nagoya 457-8530, Japan
E-mail : futamura@daido-it.ac.jp and

Faculty of Education and Welfare Science Oita University
Dannoharu Oita-city 870-1192, Japan
E-mail: t-ohno@oita-u.ac.jp and
Department of Mathematics
Graduate School of Education
Hiroshima University
Higashi-Hiroshima 739-8524, Japan
E-mail : tshimo@hiroshima-u.ac.jp

[^0]: 2000 Mathematics Subject Classification : Primary 31B25, 46E35
 Key words and phrases : monotone Sobolev functions, nontangential limits, tangential limits, Lindelöf theorem, variable exponent, uniform domains

