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Abstract

Our aim in this paper is to deal with boundary limits of monotone Sobolev
functions with variable exponent on uniform domains in a metric space.

1 Introduction

A continuous function u on an open set D in the n-dimensional Euclidean space Rn is
called monotone in the sense of Lebesgue (see [10]) if the equalities

max
G

u = max
∂G

u and min
G

u = min
∂G

u

hold whenever G is a domain with compact closure G ⊂ D. If u is a monotone function
on D satisfying ∫

D

|∇u(z)|p dz < ∞ for some p > n− 1,

then

|u(x) − u(y)| ≤ C(n, p)r1−n/p

(∫
2B(x,r)

|∇u(z)|p dz

)1/p

(1.1)

whenever y ∈ B(x, r) with 2B(x, r) ⊂ D, where C(n, p) is a positive constant depending
only on n and p (see [13, Chapter 8] and [18, Section 16]). Using this inequality (1.1), the
first author and Mizuta proved Lindelöf theorems for monotone Sobolev functions on the
half space of Rn in [5], as an extension of Mizuta [14, Theorem 2] and Manfredi-Villamor
[11, 12]. This result was extended to a uniform domain by the first author [4]. Mizuta
studied tangential boundary limits of monotone Sobolev functions with finite Dirichlet
integral in the half space in [14]. Recently, Di Biase, the first author and the third author
[1] gave Lindelöf theorems for monotone Sobolev functions in Orlicz spaces.

Variable exponent spaces have been studied in many articles over the past decade;

for a survey see the recent book by Diening, Harjulehto, Hästö and R
◦
užička [3]. Let B
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be the unit ball in Rn. Lindelöf theorems for monotone Sobolev functions on variable
exponent Lebesgue spaces Lp(·)(B) was investigated in [7].

For related results, see Koskela-Manfredi-Villamor [9], Villamor-Li [17], Mizuta [13]
and the first author and Mizuta [6].

We denote by (X, d, µ) a metric measure spaces, where X is a set, d is a metric on
X and µ is a Borel measure on X which is positive and finite in every balls. We write
d(x, y) = |x − y| for simplicity. A domain D in X with ∂D ̸= ∅ is a uniform domain if
there exist constants A1 ≥ 1 and A2 ≥ 1 such that each pair of points x, y ∈ D can be
joined by a rectifiable curve γ in D for which

ℓ(γ) ≤ A1|x− y|, (1.2)

δD(z) ≥ A2 min{ℓ(γ(x, z)), ℓ(γ(y, z))} for all z ∈ γ, (1.3)

where ℓ(γ), δD(z) and γ(x, z) denote the length of γ, the distance from z to ∂D and the
subarc of γ connecting x and z, respectively (see [16]). We denote by B(x, r) the open
ball centered at x with radius r and set λB(x, r) = B(x, λr) for λ > 0.

In this paper, for p > 1, we are concerned with a positive continuous function p(·) on
X satisfying the following conditions:

(p1) p ≤ p− ≡ infx∈D p(x) ≤ p+ ≡ supx∈D p(x) < ∞,

(p2) |p(x) − p(y)| ≤ C

log(e + 1/|x− y|)
for all x, y ∈ D.

If p(·) satisfies (p2), we say that p(·) satisfies a log-Hölder condition.
In this paper, we are concerned with boundary limits of functions u on a uniform

domain D for which there exist a constant α ∈ R and a nonnegative function g ∈
Lp
loc(D;µ) such that

|u(x) − u(x′)| ≤ Cr

(
−
∫
σB

g(z)pdµ(z)

)1/p

(1.4)

for every x, x′ ∈ B with σB ⊂ D, where σ > 1, B = B(y, r) and∫
D

g(z)p(z)δD(z)αdµ(z) < 1. (1.5)

Here we used the standard notation

−
∫
E

u(z)dµ(z) =
1

µ(E)

∫
E

u(z)dµ(z)

for a measurable set E with 0 < µ(E) < ∞. Let µ be a Borel measure on X satisfying
the doubling condition:

µ(2B) ≤ c0µ(B)

for every ball B ⊂ X. We further assume that

µ(B′)

µ(B)
≥ C

(
r′

r

)s

(1.6)
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for all balls B′ = B(x′, r′) and B = B(x, r) with x′, x ∈ D and B′ ⊂ B, where s > 1 (see
e.g. [8]). Here note that if µ satisfies the doubling condition, then

µ(B′)

µ(B)
≥ c−2

0

(
r′

r

)log2 c0

for all balls B′ = B(x′, r′) and B = B(x, r) with x′, x ∈ D and B′ ⊂ B (see e.g. [2,
Lemma 3.3]).

Let u be a function on D and let ξ ∈ ∂D. For β ≥ 1 and c > 0, set

Tβ(ξ; c) = {x ∈ D : |x− ξ|β ≤ cδD(x)}.

We say u has a tangential limit of order β at ξ if the limit

lim
Tβ(ξ;c)∋x→ξ

u(x)

exists for every c > 0. In particular, a tangential limit of order 1 is called nontangential
limit.

Our first aim in this note is to establish the following theorem, as an extension of
[14, Theorem 4]. See [1, Remark 3.1] for Orlicz spaces.

Theorem 1.1. Let u be a function on a uniform domain D with g ≥ 0 satisfying (1.4)
and (1.5) and let β ≥ 1. Suppose p+ < s + α and set

Eβ =

{
ξ ∈ ∂D : lim sup

r→0
(rβ(−p(ξ)+s+α)−sµ(B(ξ, r)))−1

∫
B(ξ,r)∩D

g(z)p(z)δD(z)α dµ(z) > 0

}
.

If ξ ∈ ∂D \Eβ and there exists a rectifiable curve γ in Tβ(ξ; c) tending to ξ along which
u has a finite limit L, then u has a tangential limit L of order β at ξ.

Next we give the following result concerning the Lindelöf-type theorem, as an exten-
sion of [4], [5], [11] and [14] in the constant exponent case and the authors [7] in the
variable exponent case. See [1, Theorem 1.1] for Orlicz spaces.

Theorem 1.2. Let u be a function on a uniform domain D with g ≥ 0 satisfying (1.4)
and (1.5). Suppose p− > s + α− 1. If ξ ∈ ∂D \ E1 and there exists a rectifiable curve γ
in D tending to ξ along which u has a finite limit L, then u has a nontangential limit L
at ξ.

Theorems 1.1 and 1.2 are proved in the same way as Remark 3.1 and Theorem 1.1
in [1]. The key lemmas for our results are Lemmas 2.3 and 2.7 below.

Remark 1.3. Let β ≥ 1. Let hβ(r; x) = rβ(−p(x)+s+α)−sµ(B(x, r)) for x ∈ ∂D and
0 < r < r̃, where r̃ > 0. Assume that hβ(·;x) is non-decreasing on (0, r̃) for each
x ∈ ∂D. For E ⊂ X and 0 < r0 < r̃, let

H
(r0)
hβ

(E) = inf

{∑
j

hβ(rj;xj);E ⊂
∪
j

B(xj, rj), 0 < rj ≤ r0

}
.
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Since H
(r0)
hβ

(E) increases as r0 decreases, we define the generalized Hausdorff measure
with respect to hβ by

Hhβ
(E) = lim

r0→+0
H

(r0)
hβ

(E).

Clearly, H
(r0)
hβ

(E) and Hhβ
(E) are measures on X.

If g satisfies (1.5) and p− > s(1 − 1/β) + α, then Hhβ
(Eβ) = 0. In particular, if g

satisfies (1.5) and p− > α, then Hh1(E1) = 0.

Corollary 1.4. Let u be a monotone Sobolev function on a uniform domain D in Rn

satisfying ∫
D

|∇u(z)|p(z)δD(z)αdz < ∞. (1.7)

Suppose n− 1 < p− ≤ p+ < n + α. Set

E ′
β =

{
ξ ∈ ∂D : lim sup

r→0
rβ(p(ξ)−n−α)

∫
B(ξ,r)∩D

|∇u(z)|p(z)δD(z)α dz > 0

}
.

If ξ ∈ ∂D \E ′
β and there exists a rectifiable curve γ in Tβ(ξ; c) tending to ξ along which

u has a finite limit L, then u has a tangential limit L of order β at ξ.

Corollary 1.5. Let u be a monotone Sobolev function on a uniform domain D in Rn

satisfying (1.7). Suppose p− > max{n− 1, n + α− 1}. Set

E ′ =

{
ξ ∈ ∂D : lim sup

r→0
rp(ξ)−α−n

∫
B(ξ,r)∩D

|∇u(z)|p(z)δD(z)α dz > 0

}
.

If ξ ∈ ∂D \E ′ and there exists a rectifiable curve γ in D tending to ξ along which u has
a finite limit L, then u has a nontangential limit L at ξ.

2 Preliminary lemmas

Throughout this paper, let C denote various constants independent of the variables in
question.

Let us begin with the following result borrowed from [7, Lemma 3].

Lemma 2.1. Let {pj} be a sequence such that p∗ = inf pj > 1 and p∗ = sup pj < ∞.
Then ∑

|ajbj| ≦ 2
(∑

|aj|pj
)1/q (∑

|bj|p
′
j

)1/q′
,

where 1/pj + 1/p′j = 1, q = p∗ if
∑

|aj|pj ≥
∑

|bj|p
′
j and q = p∗ if

∑
|aj|pj ≤

∑
|bj|p

′
j .

Lemma 2.2. (cf. [4, Lemma 1]) Let D be a uniform domain. Then for each ξ ∈ ∂D
there exists a rectifiable curve γξ in D ending at ξ such that

δD(z) ≥ A3ℓ(γξ(ξ, z)) (2.1)

for all z ∈ γξ, where A3 is a constant depending only on A1 and A2.
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Fix ξ ∈ ∂D. For x ∈ D such that x is close to ξ, set

r(x) = |ξ − x|.

Now, we give the following estimate of

Fu(x, y) = min{|u(x) − u(y)|p− , |u(x) − u(y)|p+},

whenever x and y can be joined by a rectifiable curve γ in D such that

δD(z) ≥ A0ℓ(γ(x, z)) and σB(z) ⊂ B(ξ, c0r(x)) (2.2)

for all z ∈ γ, where A0 and c0 are positive constants and B(z) = B(z, δD(z)/(2σ)).

Lemma 2.3. (cf. [1, Lemma 2.2]) Let λ ∈ R. Let u be a function on D with g ≥ 0
satisfying (1.4) and (1.5). Suppose x and y can be joined by a rectifiable curve γ in D
satisfying (2.2) and r(x) < 1.

(1) If p+ < s− λ, then for each x ∈ Tβ(ξ; c)

Fu(x, y) ≤ Cr(x)β(p(ξ)−s+λ)+sµ(B(ξ, r(x)))−1

∫
B(ξ,c0r(x))∩D

g(z)p(z)δD(z)−λdµ(z)

+Cr(x)p− .

(2) If p− > s− λ, then for each x ∈ D

Fu(x, y) ≤ Cr(x)p(ξ)+λµ(B(ξ, r(x)))−1

∫
B(ξ,c0r(x))∩D

g(z)p(z)δD(z)−λdµ(z)

+Cr(x)p− .

Proof. We can take a finite chain of balls B0, B1, . . . , BN such that

(i) Bj = B(xj), xj ∈ γ, x0 = x and y ∈ BN ;

(ii) ℓ(γ(xj, xj+1)) ≥ δD(xj)/(2σ) and ℓ(γ(x, xj+1)) > ℓ(γ(x, xj));

(iii) Bj ∩Bk ̸= ∅ if and only if |j − k| ≤ 1.

See [6, Lemma 2.2]. By (ii) and (2.2), we have

δD(xj) ≥ A0ℓ(γ(x, xj)) ≥ A0ℓ(γ(x, x1)) ≥
A0

2σ
δD(x)

for 1 ≤ j ≤ N and
δD(xj) ≤ |xj − ξ| ≤ c0r(x)

for 0 ≤ j ≤ N , so that

(iv) c1δD(x) ≤ δD(xj) ≤ c0r(x), where c1 is a positive constant depending only on A0

and σ.
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Take a subsequence {xjk}nk=0 of {xj}Nj=0 such that t < δD(xjk) ≤ 2t for t > 0. Then we
have by (ii)

1

2σ
t ≤ 1

2σ
δD(xjk) ≤ ℓ(γ(xjk , xjk+1

)).

Since
1

2σ
t(n− 1) ≤ ℓ(γ(xj1 , xjn)) ≤ ℓ(γ(x, xjn)) ≤ 1

A0

δD(xjn) ≤ 2t

A0

by (2.2), we have

(v) For each t > 0, the number of xj such that t < δD(xj) ≤ 2t is less than c2, where
c2 is a positive constant depending only on A0 and σ.

As in the proof of [6, Lemma 2.1], we see from (iii) that

(vi)
∑N

j=0 χBj
(z) ≤ c3, where χE denotes the characteristic function of E and c3 is a

positive constant depending only on the doubling constant of µ and σ.

Consider the function p∗(xj) = infz∈σBj
p(z). Since p∗(xj) ≥ p, we see that

|u(ζ1) − u(ζ2)| ≤ CδD(xj)

(
1

µ(σBj)

∫
σBj

g(z)p∗(xj)dµ(z)

)1/p∗(xj)

for every ζ1, ζ2 ∈ Bj. Set Gj = {z ∈ σBj : g(z) ≥ 1}. Then∫
σBj

g(z)p∗(xj)dµ(z) =

∫
Gj

g(z)p(z)g(z)p∗(xj)−p(z)dµ(z) +

∫
σBj\Gj

g(z)p∗(xj)dµ(z)

≤
∫
σBj

g(z)p(z)dz + µ(σBj),

so that we obtain by (1.5)

|u(ζ1) − u(ζ2)|

≤ CδD(xj)µ(σBj)
−1/p∗(xj)

(∫
σBj

g(z)p(z)dµ(z)

)1/p∗(xj)

+ CδD(xj)

≤ CδD(xj)
1−α/p∗(xj)µ(σBj)

−1/p∗(xj)

(∫
σBj

g(z)p(z)δD(z)αdµ(z)

)1/p∗(xj)

+ CδD(xj)

≤ CδD(xj)
1−α/p∗(xj)µ(σBj)

−1/p∗(xj)

(∫
σBj

g(z)p(z)δD(z)αdµ(z)

)1/p(xj)

+ CδD(xj)

since δD(xj)/2 ≤ δD(z) ≤ 3δD(xj)/2 for z ∈ σBj. Here note from (1.6) that

µ(σBj)
−1/p∗(xj) = µ(σBj)

−1/p(xj)µ(σBj)
−(p(xj)−p∗(xj))/(p(xj)p∗(xj))

≤ µ(σBj)
−1/p(xj)

{
Cµ(B(ξ, c0))

(
δD(xj)

2c0

)}−s(p(xj)−p∗(xj))/(p(xj)p∗(xj))

≤ Cµ(σBj)
−1/p(xj)δD(xj)

−C/ log(1/(e+δD(xj)))

≤ Cµ(σBj)
−1/p(xj)
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since δD(xj) ≤ 2c0 by σBj ⊂ B(ξ, c0r(x)) ⊂ B(ξ, c0). Similarly, we have

C−1δD(xj)
1/p∗(xj) ≤ δD(xj)

1/p(xj) ≤ CδD(xj)
1/p∗(xj).

Therefore, for λ ∈ R, we find

|u(ζ1) − u(ζ2)|

≤ CδD(xj)
1−α/p(xj)

(
−
∫
σBj

g(z)p(z)δD(z)αdµ(z)

)1/p(xj)

+ CδD(xj)

≤ CδD(xj)
1+λ/p(xj)

(
−
∫
σBj

g(z)p(z)δD(z)−λdµ(z)

)1/p(xj)

+ CδD(xj)

since δD(xj)/2 ≤ δD(z) ≤ 3δD(xj)/2 for z ∈ σBj.
Set pj = p(xj) and pick zj ∈ Bj−1 ∩ Bj for 1 ≤ j ≤ N ; set z0 = x and zN+1 = y. By

the above inequality, we see that

|u(x) − u(y)|

≤
N∑
j=0

|u(zj+1) − u(zj)|

≤ C

N∑
j=0

δD(xj)
1+λ/pjµ(σBj)

−1/pj

(∫
σBj

g(z)p(z)δD(z)−λdµ(z)

)1/pj

+ C
N∑
j=0

δD(xj). (2.3)

Taking integers k0 and k1 such that 2−k0−1 ≤ c0r(x) < 2−k0 and 2−k1−1 ≤ c1δD(x) < 2−k1 ,
we see from (iv) and (v) that

N∑
j=0

δD(xj) ≤
k1∑

k=k0

 ∑
2−k−1≤δD(xj)<2−k

δD(xj)


≤ c2

k1∑
k=k0

2−k ≤ 2c2

∫ 2−k0

2−k1−1

dt ≤ C

∫ 2c0r(x)

c1δD(x)/2

dt ≤ Cr(x).

Hence we have by Lemma 2.1

|u(x) − u(y)|

≤ C

(
N∑
j=0

δD(xj)
p′j(1+λ/pj)µ(σBj)

−p′j/pj

)1/q′ ( N∑
j=0

∫
σBj

g(z)p(z)δD(z)−λdµ(z)

)1/q

+ Cr(x)

≤ C

(
Iq−1

∫
∪σBj

g(z)p(z)δD(z)−λdµ(z)

)1/q

+ Cr(x),
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where q is a number in {min pj,max pj} and

I =
N∑
j=0

δD(xj)
p′j(1+λ/pj)µ(σBj)

−p′j/pj .

Since
δD(xj) ≥ A0ℓ(γ(x, xj)) ≥ A0|x− xj|

by (2.2), we have∣∣∣∣pj + λ

pj − 1
− p(x) + λ

p(x) − 1

∣∣∣∣ =

∣∣∣∣(λ + 1)(p(x) − pj)

(p(x) − 1)(pj − 1)

∣∣∣∣
≤ C|p(x) − pj| ≤

C

log(1/|x− xj|)
≤ C

log(1/δD(xj))

and ∣∣∣∣p′jpj − p(x)′

p(x)

∣∣∣∣ =

∣∣∣∣ p(x) − pj
(p(x) − 1)(pj − 1)

∣∣∣∣ ≤ C

log(1/|x− xj|)
≤ C

log(1/δD(xj))
.

Therefore we obtain by (1.6)

I ≤ C

N∑
j=0

δD(xj)
(p(x)+λ)/(p(x)−1)µ(σBj)

−p′(x)/p(x)

≤ C
N∑
j=0

δD(xj)
(p(x)+λ)/(p(x)−1)µ(B(ξ, r(x)))−p′(x)/p(x)r(x)sp

′(x)/p(x)δD(xj)
−sp′(x)/p(x)

= Cµ(B(ξ, r(x)))−p′(x)/p(x)r(x)sp
′(x)/p(x)

N∑
j=0

δD(xj)
(p(x)+λ−s)/(p(x)−1)

≤ C
(
µ(B(ξ, r(x)))−1r(x)s

) 1
p(x)−1

∫ 2c0r(x)

c1δD(x)/2

t
p(x)−s+λ
p(x)−1

dt

t
,

where 1/p(x) + 1/p′(x) = 1. First consider the case p+ < s − λ and x ∈ Tβ(ξ; c). Since
r(x)β ≤ cδD(x) and |x− xj| ≤ (1 + c0)r(x), we see that∣∣∣∣(p(x) − s + λ)(q − 1)

p(x) − 1
− (p(ξ) − s + λ)

∣∣∣∣
=

∣∣∣∣(p(x) − s + λ)(q − p(x))

p(x) − 1
+ (p(x) − p(ξ))

∣∣∣∣
≤ C|q − p(x)| + |p(x) − p(ξ)|

≤ C

log(1/r(x))
≤ C

log(1/δD(x))

and ∣∣∣∣ q − 1

p(x) − 1
− 1

∣∣∣∣ ≤ C|q − p(x)| ≤ C

log(1/r(x))
≤ C

log(1/δD(x))
.
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Then we have

Iq−1 ≤ C
(
µ(B(ξ, r(x)))−1r(x)s

) q−1
p(x)−1 δD(x)(p(x)−s+λ)(q−1)/(p(x)−1)

≤ Cµ(B(ξ, r(x)))−1r(x)sδD(x)p(ξ)−s+λ

since (
µ(B(ξ, r(x)))

µ(B(ξ, 1))

)−C|q−p(x)|

≤ Cr(x)−C|q−p(x)| ≤ C

by (1.6). Hence we obtain by (vi)

Fu(x, y) ≤ |u(x) − u(y)|q

≤ Cµ(B(ξ, r(x)))−1r(x)sδD(x)p(ξ)−s+λ

∫
∪σBj

g(z)p(z)δD(z)−λdµ(z)

+Cr(x)q

≤ Cµ(B(ξ, r(x)))−1r(x)β(p(ξ)−s+λ)+s

∫
B(ξ,c0r(x))∩D

g(z)p(z)δD(z)−λdµ(z)

+Cr(x)p− .

Next consider the case p− > s− λ. Noting that∣∣∣∣(p(x) − s + λ)(q − 1)

p(x) − 1
− (p(ξ) − s + λ)

∣∣∣∣ ≤ C

log(1/r(x))
,

we have

Iq−1 ≤ C
(
(B(ξ, r(x)))−1r(x)s

) q−1
p(x)−1 r(x)(p(x)−s+λ)(q−1)/(p(x)−1)

≤ C(µ(B(ξ, r(x)))−1r(x)p(ξ)+λ.

Thus we can show the second part, in the same manner as the first part.

Remark 2.4. Let γ1 be a rectifiable curve in D joining x and w satisfying (2.2), and let
γ2 be a rectifiable curve in D joining y and w satisfying (2.2). Suppose r(x) = r(y) < 1.

(1) If p+ < s− λ, then for each x, y ∈ Tβ(ξ; c)

Fu(x, y) ≤ Cr(x)β(p(ξ)−s+λ)+sµ(B(ξ, r(x)))−1

∫
B(ξ,c0r(x))∩D

g(z)p(z)δD(z)−λdµ(z)

+Cr(x)p− .

(2) If p− > s− λ, then for each x, y ∈ D

Fu(x, y) ≤ Cr(x)p(ξ)+λµ(B(ξ, r(x)))−1

∫
B(ξ,c0r(x))∩D

g(z)p(z)δD(z)−λdµ(z)

+Cr(x)p− .
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Remark 2.5. In Lemma 2.3, we can replace∫
B(ξ,c0r(x))∩D

g(z)p(z)δD(z)−λdµ(z)

by ∫
B(ξ,c0r(x))∩D

g(z)p(z)δD(z)α|r(x) − |z − ξ||−λ−αdµ(z)

if α + λ > 0.
In fact, in the proof of Lemma 2.3, we can replace∫

σBj

g(z)p(z)δD(z)−λdµ(z)

by ∫
σBj

g(z)p(z)δD(z)α|r(x) − |z − ξ||−λ−αdµ(z),

since

|r(x)− |z− ξ|| ≤ |x− z| ≤ |x− xj|+ |xj − z| ≤ ℓ(γ(x, xj)) +
δD(xj)

2
≤
(
A0 +

1

2

)
δD(xj)

and δD(xj) ≤ 2δD(z) for z ∈ σBj.

Remark 2.6. The number of balls B0, B1, . . . , BN in Lemma 2.3 is less than

c2
log 2

log

(
4cr(x)

c1δD(x)

)
.

In fact,

N + 1 =

k1∑
k=k0

#{j : 2−k−1 ≤ δD(xj) < 2−k}

≤
k1∑

k=k0

c2 =
c2

log 2

∫ 2−k0

2−k1−1

dt

t
≤ c2

log 2

∫ 2cr(x)

c1δD(x)/2

dt

t
=

c2
log 2

log

(
4cr(x)

c1δD(x)

)
,

where we take k0 and k1 as in the proof of Lemma 2.3.

The following lemma can be proved using inequality (2.3) in the proof of Lemma 2.3.

Lemma 2.7. (cf. [1, Lemma 2.5]) Let u be a function on a uniform domain D with g ≥ 0
satisfying (1.4) and (1.5). If ξ ∈ ∂D\E1 and there exist a rectifiable curve γξ in D ending
at ξ satisfying (2.1) and a sequence {yj} such that yj ∈ γξ and 2−j−1 ≤ |ξ − yj| < 2−j

and u(yj) has a finite limit L, then u has a nontangential limit L at ξ.

Proof. Fix ξ ∈ ∂D \ E1. Take xj ∈ T1(ξ; c) with 2−j−1 ≤ |xj − ξ| < 2−j. Let γ be a
rectifiable curve in D joining xj and yj satisfying (1.2) and (1.3). Take y ∈ γ such that
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ℓ(γ(xj, y)) = ℓ(γ(yj, y)), and set γ1 = γ(xj, y) and γ2 = γ(yj, y). Then γi satisfies (2.2)
with A0 = A2 and c0 = 3(3A1 + 1)/2. In fact, we have by (1.3)

δD(z) ≥ A2 min{ℓ(γ(xj, z)), ℓ(γ(z, yj))} = A2ℓ(γ1(xj, z))

for z ∈ γ1. Take w ∈ σB(z) for z ∈ γ1. Then note that

|w − ξ| ≤ |w − z| + |z − ξ| ≤ 3

2
|z − ξ| ≤ 3

2
(r(xj) + ℓ(γ)) ≤ 3(3A1 + 1)

2
r(xj)

since we have by (1.2)
ℓ(γ) ≤ A1|xj − yj| ≤ 3A1r(xj).

Similarly, we have
δD(z) ≥ A2ℓ(γ2(yj, z))

and σB(z) ⊂ B(ξ, cor(yj)) for z ∈ γ2 .
Then, for γi, we can take a finite chain of balls Bi

0, B
i
1, . . . , Bi

Ni
with Bi

k = B(wi
k)

as in the proof of Lemma 2.3. By Remark 2.6, we note that Ni is less than a positive
constant C1, since

r(xj)

δD(xj)
≤ cr(xj)

|xj − ξ|
= c

and
r(yj)

δD(yj)
≤ r(yj)

A3|ξ − yj|
=

1

A3

by (2.1). Further we note from the fact that xj ∈ T1(ξ; c), (iv), (2.1) and (2.2) that

2−j−1 ≤ |xj − ξ| ≤ cδD(xj) ≤
c

c1
δD(w1

k) ≤ c

c1
|w1

k − ξ| ≤ cc0
c1

r(xj) ≤
cc0
c1

2−j,

2−j−1 ≤ |yj − ξ| ≤ 1

A3

δD(yj) ≤
1

c1A3

δD(w2
k) ≤ 1

c1A3

|w2
k − ξ| ≤ c0

c1A3

r(yj) ≤
c0

c1A3

2−j,

|w1
k − ξ| ≤ |w1

k − xj| + |xj − ξ| ≤ 1

A0

δD(w1
k) + cδD(xj) ≤

(
1

A0

+
c

c1

)
δD(w1

k)

and

|w2
k − ξ| ≤ |w2

k − yj| + |yj − ξ| ≤ 1

A0

δD(w2
k) +

1

A3

δD(yj) ≤
(

1

A0

+
1

c1A3

)
δD(w2

k),

where c0, c1 are positive constants appearing in the proof of Lemma 2.3. Therefore

C−12−j ≤ δD(wi
k) ≤ C2−j

and
C−1|wi

k − ξ| ≤ δD(wi
k) ≤ |wi

k − ξ|.

Here we see from (1.6) that

µ(σB1
k)

µ(B(ξ, c0r(xj)))
≥ C

(
δD(w1

k)

2c0r(xj)

)s

≥ C
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and
µ(σB2

k)

µ(B(ξ, c0r(yj)))
≥ C

(
δD(w2

k)

2c0r(yj)

)s

≥ C.

Hence, we obtain by (2.3) and (vi) in the proof of Lemma 2.3

|u(xj) − u(yj)|
≤ |u(xj) − u(y)| + |u(yj) − u(y)|

≤ C

2∑
i=1

Ni∑
k=0

δD(wi
k)1−α/p(wi

k)

(
−
∫
σBi

k

g(z)p(z)δD(z)αdµ(z)

)1/p(wi
k)

+ C

2∑
i=1

Ni∑
k=0

δD(wi
k)

≤ C
2∑

i=1

Ni∑
k=0

(
δD(wi

k)p(ξ)−αµ(σBi
k)−1

∫
σBi

k

g(z)p(z)δD(z)αdµ(z)

)1/p(wi
k)

+C
2∑

i=1

Ni∑
k=0

δD(wi
k)

≤ C2−j + C

(
2−j(p(ξ)−α)µ(B(ξ, 2−j))−1

∫
B(ξ,c02−j)

g(z)p(z)δD(z)αdµ(z)

)1/p+

since we have by (p2)

δD(wi
k)−|p(ξ)−p(wi

k)| ≤ δD(wi
k)−C/ log(e+1/|wi

k−ξ|) ≤ C.

Since ξ ∈ ∂B \ E1 and limj→∞ u(yj) = L, u has a nontangential limit L at ξ.

3 Proof of Theorem 1.1

We may assume that for each x ∈ Tβ(ξ; c), there exists a point y(x) ∈ γ such that
r(x) = r(y(x)) < 1. As in the proof of Lemma 2.7, let γ0 be a rectifiable curve in D joining
x and y(x) satisfying (1.2) and (1.3). Take w ∈ γ0 such that ℓ(γ0(x,w)) = ℓ(γ0(y(x), w)),
and set γ1 = γ0(x,w) and γ2 = γ0(y(x), w). Since ξ ̸∈ Eβ, we have by Lemma 2.3(1)
with λ = −α and Remark 2.4

lim
Tβ(ξ;c)∋x→ξ

Fu(x, y(x)) = 0,

so that
lim

Tβ(ξ;c)∋x→ξ
|u(x) − u(y(x))| = 0.

Since limx→ξ u(y(x)) = L by our assumption,

lim
Tβ(ξ;c)∋x→ξ

u(x) = L,

as required.
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4 Proof of Theorem 1.2

Take λ ∈ R such that s + α − p− < λ + α < 1. Let γξ be as in Lemma 2.2. For r > 0
sufficiently small, take x(r) ∈ γ ∩ ∂B(ξ, r) and y(r) ∈ γξ ∩ ∂B(ξ, r). As in the proof of
Lemma 2.7, let γ0 be a rectifiable curve in D joining x(r) and y(r) satisfying (1.2) and
(1.3). Take w ∈ γ0 such that ℓ(γ0(x(r), w)) = ℓ(γ0(y(r), w)), and set γ1 = γ0(x(r), w)
and γ2 = γ0(y(r), w). By Lemma 2.3(2), Remark 2.4 and Remark 2.5, we have

Fu(x(r), y(r)) ≤ Crp(ξ)+λµ(B(ξ, r))−1

∫
B(ξ,c0r)∩D

g(z)p(z)δD(z)α|r − |z − ξ||−λ−αdµ(z)

+Crp− .

Moreover, since 0 < λ + α < 1, we see that∫ 2−j

2−j−1

|r − |z − ξ||−λ−α dr ≤ C2−j(1−λ−α).

Hence it follows that

inf
2−j−1≤r<2−j

Fu(x(r), y(r))

≤ C

∫ 2−j

2−j−1

(
rp(ξ)+λµ(B(ξ, r))−1

∫
B(ξ,c0r)∩D

g(z)p(z)δD(z)α |r − |z − ξ||−λ−α dµ(z)

)
dr

r

+C(2−j)p−

≤ C2−j{p(ξ)+λ−1}µ(B(ξ, 2−j))−1

∫
B(ξ,c02−j)∩D

g(z)p(z)δD(z)α

(∫ 2−j

2−j−1

|r − |z − ξ||−λ−α dr

)
dµ(z)

+C(2−j)p−

≤ C(2−j{−p(ξ)+α}µ(B(ξ, 2−j))−1

∫
B(ξ,c02−j)∩D

g(z)p(z)δD(z)αdµ(z) + C(2−j)p− .

Since ξ ̸∈ E1, we see that

lim
j→∞

inf
2−j−1≤r<2−j

Fu(x(r), y(r)) = 0.

Hence we find a sequence {rj} such that 2−j−1 ≤ rj < 2−j and

lim
j→∞

Fu(x(rj), y(rj)) = 0.

Since u has a finite limit L at ξ along γ, we have

lim
j→∞

u(y(rj)) = lim
j→∞

u(x(rj)) = L.

Thus u has a nontangential limit L at ξ by Lemma 2.7.
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