Boundary limits of monotone Sobolev functions with variable exponent on uniform domains in a metric space

Toshihide Futamura, Takao Ohno and Tetsu Shimomura

Abstract

Our aim in this paper is to deal with boundary limits of monotone Sobolev functions with variable exponent on uniform domains in a metric space.

1 Introduction

A continuous function u on an open set D in the *n*-dimensional Euclidean space \mathbb{R}^n is called monotone in the sense of Lebesgue (see [10]) if the equalities

$$\max_{\overline{G}} u = \max_{\partial G} u \quad \text{and} \quad \min_{\overline{G}} u = \min_{\partial G} u$$

hold whenever G is a domain with compact closure $\overline{G} \subset D$. If u is a monotone function on D satisfying

$$\int_D |\nabla u(z)|^p \, dz < \infty \qquad \text{for some} \quad p > n-1,$$

then

$$|u(x) - u(y)| \le C(n, p) r^{1-n/p} \left(\int_{2B(x, r)} |\nabla u(z)|^p \, dz \right)^{1/p} \tag{1.1}$$

whenever $y \in B(x, r)$ with $2B(x, r) \subset D$, where C(n, p) is a positive constant depending only on n and p (see [13, Chapter 8] and [18, Section 16]). Using this inequality (1.1), the first author and Mizuta proved Lindelöf theorems for monotone Sobolev functions on the half space of \mathbb{R}^n in [5], as an extension of Mizuta [14, Theorem 2] and Manfredi-Villamor [11, 12]. This result was extended to a uniform domain by the first author [4]. Mizuta studied tangential boundary limits of monotone Sobolev functions with finite Dirichlet integral in the half space in [14]. Recently, Di Biase, the first author and the third author [1] gave Lindelöf theorems for monotone Sobolev functions in Orlicz spaces.

Variable exponent spaces have been studied in many articles over the past decade; for a survey see the recent book by Diening, Harjulehto, Hästö and Růžička [3]. Let **B**

²⁰⁰⁰ Mathematics Subject Classification : Primary 31B25, 46E35

Key words and phrases : monotone Sobolev functions, nontangential limits, tangential limits, Lindelöf theorem, variable exponent, uniform domains

be the unit ball in \mathbb{R}^n . Lindelöf theorems for monotone Sobolev functions on variable exponent Lebesgue spaces $L^{p(\cdot)}(\mathbb{B})$ was investigated in [7].

For related results, see Koskela-Manfredi-Villamor [9], Villamor-Li [17], Mizuta [13] and the first author and Mizuta [6].

We denote by (X, d, μ) a metric measure spaces, where X is a set, d is a metric on X and μ is a Borel measure on X which is positive and finite in every balls. We write d(x, y) = |x - y| for simplicity. A domain D in X with $\partial D \neq \emptyset$ is a uniform domain if there exist constants $A_1 \ge 1$ and $A_2 \ge 1$ such that each pair of points $x, y \in D$ can be joined by a rectifiable curve γ in D for which

$$\ell(\gamma) \le A_1 |x - y|,\tag{1.2}$$

$$\delta_D(z) \ge A_2 \min\{\ell(\gamma(x, z)), \ell(\gamma(y, z))\} \quad \text{for all } z \in \gamma,$$
(1.3)

where $\ell(\gamma)$, $\delta_D(z)$ and $\gamma(x, z)$ denote the length of γ , the distance from z to ∂D and the subarc of γ connecting x and z, respectively (see [16]). We denote by B(x, r) the open ball centered at x with radius r and set $\lambda B(x, r) = B(x, \lambda r)$ for $\lambda > 0$.

In this paper, for p > 1, we are concerned with a positive continuous function $p(\cdot)$ on X satisfying the following conditions:

(p1)
$$p \le p_- \equiv \inf_{x \in D} p(x) \le p_+ \equiv \sup_{x \in D} p(x) < \infty$$
,

(p2)
$$|p(x) - p(y)| \le \frac{C}{\log(e+1/|x-y|)}$$
 for all $x, y \in \overline{D}$.

If $p(\cdot)$ satisfies (p2), we say that $p(\cdot)$ satisfies a log-Hölder condition.

In this paper, we are concerned with boundary limits of functions u on a uniform domain D for which there exist a constant $\alpha \in \mathbf{R}$ and a nonnegative function $g \in L^p_{loc}(D;\mu)$ such that

$$|u(x) - u(x')| \le Cr \left(\oint_{\sigma B} g(z)^p d\mu(z) \right)^{1/p}$$
(1.4)

for every $x, x' \in B$ with $\sigma B \subset D$, where $\sigma > 1, B = B(y, r)$ and

$$\int_D g(z)^{p(z)} \delta_D(z)^{\alpha} d\mu(z) < 1.$$

$$(1.5)$$

Here we used the standard notation

$$\int_E u(z)d\mu(z) = \frac{1}{\mu(E)} \int_E u(z)d\mu(z)$$

for a measurable set E with $0 < \mu(E) < \infty$. Let μ be a Borel measure on X satisfying the doubling condition:

$$\mu(2B) \le c_0 \mu(B)$$

for every ball $B \subset X$. We further assume that

$$\frac{\mu(B')}{\mu(B)} \ge C \left(\frac{r'}{r}\right)^s \tag{1.6}$$

for all balls B' = B(x', r') and B = B(x, r) with $x', x \in \overline{D}$ and $B' \subset B$, where s > 1 (see e.g. [8]). Here note that if μ satisfies the doubling condition, then

$$\frac{\mu(B')}{\mu(B)} \ge c_0^{-2} \left(\frac{r'}{r}\right)^{\log_2 c_0}$$

for all balls B' = B(x', r') and B = B(x, r) with $x', x \in \overline{D}$ and $B' \subset B$ (see e.g. [2, Lemma 3.3]).

Let u be a function on D and let $\xi \in \partial D$. For $\beta \ge 1$ and c > 0, set

$$T_{\beta}(\xi;c) = \{x \in D : |x - \xi|^{\beta} \le c\delta_D(x)\}.$$

We say u has a tangential limit of order β at ξ if the limit

$$\lim_{T_{\beta}(\xi;c)\ni x\to\xi} u(x)$$

exists for every c > 0. In particular, a tangential limit of order 1 is called nontangential limit.

Our first aim in this note is to establish the following theorem, as an extension of [14, Theorem 4]. See [1, Remark 3.1] for Orlicz spaces.

THEOREM 1.1. Let u be a function on a uniform domain D with $g \ge 0$ satisfying (1.4) and (1.5) and let $\beta \ge 1$. Suppose $p_+ < s + \alpha$ and set

$$E_{\beta} = \left\{ \xi \in \partial D : \limsup_{r \to 0} (r^{\beta(-p(\xi)+s+\alpha)-s} \mu(B(\xi,r)))^{-1} \int_{B(\xi,r)\cap D} g(z)^{p(z)} \delta_D(z)^{\alpha} d\mu(z) > 0 \right\}.$$

If $\xi \in \partial D \setminus E_{\beta}$ and there exists a rectifiable curve γ in $T_{\beta}(\xi; c)$ tending to ξ along which u has a finite limit L, then u has a tangential limit L of order β at ξ .

Next we give the following result concerning the Lindelöf-type theorem, as an extension of [4], [5], [11] and [14] in the constant exponent case and the authors [7] in the variable exponent case. See [1, Theorem 1.1] for Orlicz spaces.

THEOREM 1.2. Let u be a function on a uniform domain D with $g \ge 0$ satisfying (1.4) and (1.5). Suppose $p_- > s + \alpha - 1$. If $\xi \in \partial D \setminus E_1$ and there exists a rectifiable curve γ in D tending to ξ along which u has a finite limit L, then u has a nontangential limit L at ξ .

Theorems 1.1 and 1.2 are proved in the same way as Remark 3.1 and Theorem 1.1 in [1]. The key lemmas for our results are Lemmas 2.3 and 2.7 below.

REMARK 1.3. Let $\beta \geq 1$. Let $h_{\beta}(r; x) = r^{\beta(-p(x)+s+\alpha)-s}\mu(B(x,r))$ for $x \in \partial D$ and $0 < r < \tilde{r}$, where $\tilde{r} > 0$. Assume that $h_{\beta}(\cdot; x)$ is non-decreasing on $(0, \tilde{r})$ for each $x \in \partial D$. For $E \subset X$ and $0 < r_0 < \tilde{r}$, let

$$H_{h_{\beta}}^{(r_0)}(E) = \inf \left\{ \sum_{j} h_{\beta}(r_j; x_j); E \subset \bigcup_{j} B(x_j, r_j), 0 < r_j \le r_0 \right\}.$$

Since $H_{h_{\beta}}^{(r_0)}(E)$ increases as r_0 decreases, we define the generalized Hausdorff measure with respect to h_{β} by

$$H_{h_{\beta}}(E) = \lim_{r_0 \to +0} H_{h_{\beta}}^{(r_0)}(E).$$

Clearly, $H_{h_{\beta}}^{(r_0)}(E)$ and $H_{h_{\beta}}(E)$ are measures on X.

If g satisfies (1.5) and $p_- > s(1 - 1/\beta) + \alpha$, then $H_{h_\beta}(E_\beta) = 0$. In particular, if g satisfies (1.5) and $p_- > \alpha$, then $H_{h_1}(E_1) = 0$.

COROLLARY 1.4. Let u be a monotone Sobolev function on a uniform domain D in \mathbb{R}^n satisfying

$$\int_{D} |\nabla u(z)|^{p(z)} \delta_D(z)^{\alpha} dz < \infty.$$
(1.7)

Suppose $n-1 < p_{-} \leq p_{+} < n + \alpha$. Set

$$E'_{\beta} = \left\{ \xi \in \partial D : \limsup_{r \to 0} r^{\beta(p(\xi) - n - \alpha)} \int_{B(\xi, r) \cap D} |\nabla u(z)|^{p(z)} \delta_D(z)^{\alpha} \, dz > 0 \right\}.$$

If $\xi \in \partial D \setminus E'_{\beta}$ and there exists a rectifiable curve γ in $T_{\beta}(\xi; c)$ tending to ξ along which u has a finite limit L, then u has a tangential limit L of order β at ξ .

COROLLARY 1.5. Let u be a monotone Sobolev function on a uniform domain D in \mathbb{R}^n satisfying (1.7). Suppose $p_- > \max\{n-1, n+\alpha-1\}$. Set

$$E' = \left\{ \xi \in \partial D : \limsup_{r \to 0} r^{p(\xi) - \alpha - n} \int_{B(\xi, r) \cap D} |\nabla u(z)|^{p(z)} \delta_D(z)^{\alpha} \, dz > 0 \right\}.$$

If $\xi \in \partial D \setminus E'$ and there exists a rectifiable curve γ in D tending to ξ along which u has a finite limit L, then u has a nontangential limit L at ξ .

2 Preliminary lemmas

Throughout this paper, let C denote various constants independent of the variables in question.

Let us begin with the following result borrowed from [7, Lemma 3].

LEMMA 2.1. Let $\{p_j\}$ be a sequence such that $p_* = \inf p_j > 1$ and $p^* = \sup p_j < \infty$. Then

$$\sum |a_j b_j| \le 2 \left(\sum |a_j|^{p_j} \right)^{1/q} \left(\sum |b_j|^{p'_j} \right)^{1/q'}$$

where $1/p_j + 1/p'_j = 1$, $q = p_*$ if $\sum |a_j|^{p_j} \ge \sum |b_j|^{p'_j}$ and $q = p^*$ if $\sum |a_j|^{p_j} \le \sum |b_j|^{p'_j}$.

LEMMA 2.2. (cf. [4, Lemma 1]) Let D be a uniform domain. Then for each $\xi \in \partial D$ there exists a rectifiable curve γ_{ξ} in D ending at ξ such that

$$\delta_D(z) \ge A_3 \ell(\gamma_{\xi}(\xi, z)) \tag{2.1}$$

for all $z \in \gamma_{\xi}$, where A_3 is a constant depending only on A_1 and A_2 .

Fix $\xi \in \partial D$. For $x \in D$ such that x is close to ξ , set

$$r(x) = |\xi - x|.$$

Now, we give the following estimate of

$$F_u(x,y) = \min\{|u(x) - u(y)|^{p_-}, |u(x) - u(y)|^{p_+}\},\$$

whenever x and y can be joined by a rectifiable curve γ in D such that

$$\delta_D(z) \ge A_0 \ell(\gamma(x, z)) \quad \text{and} \quad \sigma B(z) \subset B(\xi, c_0 r(x))$$

$$(2.2)$$

for all $z \in \gamma$, where A_0 and c_0 are positive constants and $B(z) = B(z, \delta_D(z)/(2\sigma))$.

LEMMA 2.3. (cf. [1, Lemma 2.2]) Let $\lambda \in \mathbf{R}$. Let u be a function on D with $g \ge 0$ satisfying (1.4) and (1.5). Suppose x and y can be joined by a rectifiable curve γ in D satisfying (2.2) and r(x) < 1.

(1) If
$$p_{+} < s - \lambda$$
, then for each $x \in T_{\beta}(\xi; c)$
 $F_{u}(x, y) \leq Cr(x)^{\beta(p(\xi) - s + \lambda) + s} \mu(B(\xi, r(x)))^{-1} \int_{B(\xi, c_{0}r(x)) \cap D} g(z)^{p(z)} \delta_{D}(z)^{-\lambda} d\mu(z)$
 $+ Cr(x)^{p_{-}}.$

(2) If
$$p_{-} > s - \lambda$$
, then for each $x \in D$
 $F_{u}(x,y) \leq Cr(x)^{p(\xi)+\lambda} \mu(B(\xi,r(x)))^{-1} \int_{B(\xi,c_{0}r(x))\cap D} g(z)^{p(z)} \delta_{D}(z)^{-\lambda} d\mu(z)$
 $+Cr(x)^{p_{-}}.$

Proof. We can take a finite chain of balls B_0, B_1, \ldots, B_N such that

- (i) $B_j = B(x_j), x_j \in \gamma, x_0 = x \text{ and } y \in B_N;$
- (ii) $\ell(\gamma(x_j, x_{j+1})) \ge \delta_D(x_j)/(2\sigma)$ and $\ell(\gamma(x, x_{j+1})) > \ell(\gamma(x, x_j));$
- (iii) $B_j \cap B_k \neq \emptyset$ if and only if $|j k| \le 1$.

See [6, Lemma 2.2]. By (ii) and (2.2), we have

$$\delta_D(x_j) \ge A_0 \ell(\gamma(x, x_j)) \ge A_0 \ell(\gamma(x, x_1)) \ge \frac{A_0}{2\sigma} \delta_D(x)$$

for $1 \leq j \leq N$ and

$$\delta_D(x_j) \le |x_j - \xi| \le c_0 r(x)$$

for $0 \leq j \leq N$, so that

(iv) $c_1 \delta_D(x) \leq \delta_D(x_j) \leq c_0 r(x)$, where c_1 is a positive constant depending only on A_0 and σ . Take a subsequence $\{x_{j_k}\}_{k=0}^n$ of $\{x_j\}_{j=0}^N$ such that $t < \delta_D(x_{j_k}) \le 2t$ for t > 0. Then we have by (ii)

$$\frac{1}{2\sigma}t \le \frac{1}{2\sigma}\delta_D(x_{j_k}) \le \ell(\gamma(x_{j_k}, x_{j_{k+1}})).$$

Since

$$\frac{1}{2\sigma}t(n-1) \le \ell(\gamma(x_{j_1}, x_{j_n})) \le \ell(\gamma(x, x_{j_n})) \le \frac{1}{A_0}\delta_D(x_{j_n}) \le \frac{2t}{A_0}$$

by (2.2), we have

(v) For each t > 0, the number of x_j such that $t < \delta_D(x_j) \le 2t$ is less than c_2 , where c_2 is a positive constant depending only on A_0 and σ .

As in the proof of [6, Lemma 2.1], we see from (iii) that

(vi) $\sum_{j=0}^{N} \chi_{B_j}(z) \leq c_3$, where χ_E denotes the characteristic function of E and c_3 is a positive constant depending only on the doubling constant of μ and σ .

Consider the function $p_*(x_j) = \inf_{z \in \sigma B_j} p(z)$. Since $p_*(x_j) \ge p$, we see that

$$|u(\zeta_1) - u(\zeta_2)| \le C\delta_D(x_j) \left(\frac{1}{\mu(\sigma B_j)} \int_{\sigma B_j} g(z)^{p_*(x_j)} d\mu(z)\right)^{1/p_*(x_j)}$$

for every $\zeta_1, \zeta_2 \in B_j$. Set $G_j = \{z \in \sigma B_j : g(z) \ge 1\}$. Then

$$\begin{aligned} \int_{\sigma B_j} g(z)^{p_*(x_j)} d\mu(z) &= \int_{G_j} g(z)^{p(z)} g(z)^{p_*(x_j) - p(z)} d\mu(z) + \int_{\sigma B_j \setminus G_j} g(z)^{p_*(x_j)} d\mu(z) \\ &\leq \int_{\sigma B_j} g(z)^{p(z)} dz + \mu(\sigma B_j), \end{aligned}$$

so that we obtain by (1.5)

$$\begin{aligned} &|u(\zeta_{1}) - u(\zeta_{2})| \\ \leq & C\delta_{D}(x_{j})\mu(\sigma B_{j})^{-1/p_{*}(x_{j})} \left(\int_{\sigma B_{j}} g(z)^{p(z)} d\mu(z)\right)^{1/p_{*}(x_{j})} + C\delta_{D}(x_{j}) \\ \leq & C\delta_{D}(x_{j})^{1 - \alpha/p_{*}(x_{j})}\mu(\sigma B_{j})^{-1/p_{*}(x_{j})} \left(\int_{\sigma B_{j}} g(z)^{p(z)} \delta_{D}(z)^{\alpha} d\mu(z)\right)^{1/p_{*}(x_{j})} + C\delta_{D}(x_{j}) \\ \leq & C\delta_{D}(x_{j})^{1 - \alpha/p_{*}(x_{j})}\mu(\sigma B_{j})^{-1/p_{*}(x_{j})} \left(\int_{\sigma B_{j}} g(z)^{p(z)} \delta_{D}(z)^{\alpha} d\mu(z)\right)^{1/p(x_{j})} + C\delta_{D}(x_{j}) \end{aligned}$$

since $\delta_D(x_j)/2 \leq \delta_D(z) \leq 3\delta_D(x_j)/2$ for $z \in \sigma B_j$. Here note from (1.6) that $\mu(\sigma B_j)^{-1/p_*(x_j)} = \mu(\sigma B_j)^{-1/p(x_j)}\mu(\sigma B_j)^{-(p(x_j)-p_*(x_j))/(p(x_j)p_*(x_j))}$ $\leq \mu(\sigma B_j)^{-1/p(x_j)} \left\{ C\mu(B(\xi, c_0)) \left(\frac{\delta_D(x_j)}{2c_0} \right) \right\}^{-s(p(x_j)-p_*(x_j))/(p(x_j)p_*(x_j))}$ $\leq C\mu(\sigma B_j)^{-1/p(x_j)}\delta_D(x_j)^{-C/\log(1/(e+\delta_D(x_j)))}$ $\leq C\mu(\sigma B_j)^{-1/p(x_j)}$ since $\delta_D(x_j) \leq 2c_0$ by $\sigma B_j \subset B(\xi, c_0 r(x)) \subset B(\xi, c_0)$. Similarly, we have

$$C^{-1}\delta_D(x_j)^{1/p_*(x_j)} \le \delta_D(x_j)^{1/p(x_j)} \le C\delta_D(x_j)^{1/p_*(x_j)}.$$

Therefore, for $\lambda \in \mathbf{R}$, we find

$$|u(\zeta_1) - u(\zeta_2)| \leq C\delta_D(x_j)^{1-\alpha/p(x_j)} \left(\int_{\sigma B_j} g(z)^{p(z)} \delta_D(z)^{\alpha} d\mu(z) \right)^{1/p(x_j)} + C\delta_D(x_j) \leq C\delta_D(x_j)^{1+\lambda/p(x_j)} \left(\int_{\sigma B_j} g(z)^{p(z)} \delta_D(z)^{-\lambda} d\mu(z) \right)^{1/p(x_j)} + C\delta_D(x_j)$$

since $\delta_D(x_j)/2 \le \delta_D(z) \le 3\delta_D(x_j)/2$ for $z \in \sigma B_j$.

Set $p_j = p(x_j)$ and pick $z_j \in B_{j-1} \cap B_j$ for $1 \le j \le N$; set $z_0 = x$ and $z_{N+1} = y$. By the above inequality, we see that

$$|u(x) - u(y)| \le \sum_{j=0}^{N} |u(z_{j+1}) - u(z_{j})| \le C \sum_{j=0}^{N} \delta_{D}(x_{j})^{1+\lambda/p_{j}} \mu(\sigma B_{j})^{-1/p_{j}} \left(\int_{\sigma B_{j}} g(z)^{p(z)} \delta_{D}(z)^{-\lambda} d\mu(z) \right)^{1/p_{j}} + C \sum_{j=0}^{N} \delta_{D}(x_{j}).$$

$$(2.3)$$

Taking integers k_0 and k_1 such that $2^{-k_0-1} \leq c_0 r(x) < 2^{-k_0}$ and $2^{-k_1-1} \leq c_1 \delta_D(x) < 2^{-k_1}$, we see from (iv) and (v) that

$$\begin{split} \sum_{j=0}^{N} \delta_D(x_j) &\leq \sum_{k=k_0}^{k_1} \left(\sum_{2^{-k-1} \leq \delta_D(x_j) < 2^{-k}} \delta_D(x_j) \right) \\ &\leq c_2 \sum_{k=k_0}^{k_1} 2^{-k} \leq 2c_2 \int_{2^{-k_1-1}}^{2^{-k_0}} dt \leq C \int_{c_1 \delta_D(x)/2}^{2c_0 r(x)} dt \leq Cr(x). \end{split}$$

Hence we have by Lemma 2.1

$$\begin{aligned} &|u(x) - u(y)| \\ &\leq C \left(\sum_{j=0}^{N} \delta_D(x_j)^{p'_j(1+\lambda/p_j)} \mu(\sigma B_j)^{-p'_j/p_j} \right)^{1/q'} \left(\sum_{j=0}^{N} \int_{\sigma B_j} g(z)^{p(z)} \delta_D(z)^{-\lambda} d\mu(z) \right)^{1/q} + Cr(x) \\ &\leq C \left(I^{q-1} \int_{\cup \sigma B_j} g(z)^{p(z)} \delta_D(z)^{-\lambda} d\mu(z) \right)^{1/q} + Cr(x), \end{aligned}$$

where q is a number in $\{\min p_j, \max p_j\}$ and

$$I = \sum_{j=0}^{N} \delta_D(x_j)^{p'_j(1+\lambda/p_j)} \mu(\sigma B_j)^{-p'_j/p_j}.$$

Since

$$\delta_D(x_j) \ge A_0 \ell(\gamma(x, x_j)) \ge A_0 |x - x_j|$$

by (2.2), we have

$$\begin{vmatrix} \frac{p_j + \lambda}{p_j - 1} - \frac{p(x) + \lambda}{p(x) - 1} \end{vmatrix} = \left| \frac{(\lambda + 1)(p(x) - p_j)}{(p(x) - 1)(p_j - 1)} \right| \\ \leq C|p(x) - p_j| \leq \frac{C}{\log(1/|x - x_j|)} \leq \frac{C}{\log(1/\delta_D(x_j))}$$

and

$$\left|\frac{p'_j}{p_j} - \frac{p(x)'}{p(x)}\right| = \left|\frac{p(x) - p_j}{(p(x) - 1)(p_j - 1)}\right| \le \frac{C}{\log(1/|x - x_j|)} \le \frac{C}{\log(1/\delta_D(x_j))}.$$

Therefore we obtain by (1.6)

$$I \leq C \sum_{j=0}^{N} \delta_{D}(x_{j})^{(p(x)+\lambda)/(p(x)-1)} \mu(\sigma B_{j})^{-p'(x)/p(x)}$$

$$\leq C \sum_{j=0}^{N} \delta_{D}(x_{j})^{(p(x)+\lambda)/(p(x)-1)} \mu(B(\xi, r(x)))^{-p'(x)/p(x)} r(x)^{sp'(x)/p(x)} \delta_{D}(x_{j})^{-sp'(x)/p(x)}$$

$$= C \mu(B(\xi, r(x)))^{-p'(x)/p(x)} r(x)^{sp'(x)/p(x)} \sum_{j=0}^{N} \delta_{D}(x_{j})^{(p(x)+\lambda-s)/(p(x)-1)}$$

$$\leq C \left(\mu(B(\xi, r(x)))^{-1} r(x)^{s} \right)^{\frac{1}{p(x)-1}} \int_{c_{1}\delta_{D}(x)/2}^{2c_{0}r(x)} t^{\frac{p(x)-s+\lambda}{p(x)-1}} \frac{dt}{t},$$

where 1/p(x) + 1/p'(x) = 1. First consider the case $p_+ < s - \lambda$ and $x \in T_{\beta}(\xi; c)$. Since $r(x)^{\beta} \leq c\delta_D(x)$ and $|x - x_j| \leq (1 + c_0)r(x)$, we see that

$$\left| \frac{(p(x) - s + \lambda)(q - 1)}{p(x) - 1} - (p(\xi) - s + \lambda) \right|$$

= $\left| \frac{(p(x) - s + \lambda)(q - p(x))}{p(x) - 1} + (p(x) - p(\xi)) \right|$
 $\leq C |q - p(x)| + |p(x) - p(\xi)|$
 $\leq \frac{C}{\log(1/r(x))} \leq \frac{C}{\log(1/\delta_D(x))}$

and

$$\left|\frac{q-1}{p(x)-1} - 1\right| \le C|q-p(x)| \le \frac{C}{\log(1/r(x))} \le \frac{C}{\log(1/\delta_D(x))}.$$

Then we have

$$I^{q-1} \leq C \left(\mu(B(\xi, r(x)))^{-1} r(x)^s \right)^{\frac{q-1}{p(x)-1}} \delta_D(x)^{(p(x)-s+\lambda)(q-1)/(p(x)-1)} \\ \leq C \mu(B(\xi, r(x)))^{-1} r(x)^s \delta_D(x)^{p(\xi)-s+\lambda}$$

since

$$\left(\frac{\mu(B(\xi, r(x)))}{\mu(B(\xi, 1))}\right)^{-C|q-p(x)|} \le Cr(x)^{-C|q-p(x)|} \le C$$

by (1.6). Hence we obtain by (vi)

$$F_{u}(x,y) \leq |u(x) - u(y)|^{q}$$

$$\leq C\mu(B(\xi, r(x)))^{-1}r(x)^{s}\delta_{D}(x)^{p(\xi)-s+\lambda}\int_{\cup\sigma B_{j}}g(z)^{p(z)}\delta_{D}(z)^{-\lambda}d\mu(z)$$

$$+Cr(x)^{q}$$

$$\leq C\mu(B(\xi, r(x)))^{-1}r(x)^{\beta(p(\xi)-s+\lambda)+s}\int_{B(\xi,c_{0}r(x))\cap D}g(z)^{p(z)}\delta_{D}(z)^{-\lambda}d\mu(z)$$

$$+Cr(x)^{p-}.$$

Next consider the case $p_{-} > s - \lambda$. Noting that

$$\left|\frac{(p(x) - s + \lambda)(q - 1)}{p(x) - 1} - (p(\xi) - s + \lambda)\right| \le \frac{C}{\log(1/r(x))},$$

we have

$$I^{q-1} \leq C \left((B(\xi, r(x)))^{-1} r(x)^s \right)^{\frac{q-1}{p(x)-1}} r(x)^{(p(x)-s+\lambda)(q-1)/(p(x)-1)} \\ \leq C(\mu(B(\xi, r(x)))^{-1} r(x)^{p(\xi)+\lambda}.$$

Thus we can show the second part, in the same manner as the first part.

REMARK 2.4. Let γ_1 be a rectifiable curve in D joining x and w satisfying (2.2), and let γ_2 be a rectifiable curve in D joining y and w satisfying (2.2). Suppose r(x) = r(y) < 1.

(1) If $p_+ < s - \lambda$, then for each $x, y \in T_\beta(\xi; c)$

$$F_{u}(x,y) \leq Cr(x)^{\beta(p(\xi)-s+\lambda)+s} \mu(B(\xi,r(x)))^{-1} \int_{B(\xi,c_{0}r(x))\cap D} g(z)^{p(z)} \delta_{D}(z)^{-\lambda} d\mu(z) + Cr(x)^{p-1}.$$

(2) If $p_{-} > s - \lambda$, then for each $x, y \in D$

$$F_{u}(x,y) \leq Cr(x)^{p(\xi)+\lambda} \mu(B(\xi,r(x)))^{-1} \int_{B(\xi,c_{0}r(x))\cap D} g(z)^{p(z)} \delta_{D}(z)^{-\lambda} d\mu(z) + Cr(x)^{p_{-}}.$$

REMARK 2.5. In Lemma 2.3, we can replace

$$\int_{B(\xi,c_0r(x))\cap D} g(z)^{p(z)} \delta_D(z)^{-\lambda} d\mu(z)$$

by

$$\int_{B(\xi,c_0r(x))\cap D} g(z)^{p(z)} \delta_D(z)^{\alpha} |r(x) - |z - \xi||^{-\lambda - \alpha} d\mu(z)$$

 $\text{ if } \alpha+\lambda>0. \\$

In fact, in the proof of Lemma 2.3, we can replace

$$\int_{\sigma B_j} g(z)^{p(z)} \delta_D(z)^{-\lambda} d\mu(z)$$

by

$$\int_{\sigma B_j} g(z)^{p(z)} \delta_D(z)^{\alpha} |r(x) - |z - \xi||^{-\lambda - \alpha} d\mu(z),$$

since

$$|r(x) - |z - \xi|| \le |x - z| \le |x - x_j| + |x_j - z| \le \ell(\gamma(x, x_j)) + \frac{\delta_D(x_j)}{2} \le \left(A_0 + \frac{1}{2}\right)\delta_D(x_j)$$

and $\delta_D(x_j) \leq 2\delta_D(z)$ for $z \in \sigma B_j$.

REMARK 2.6. The number of balls B_0, B_1, \ldots, B_N in Lemma 2.3 is less than

$$\frac{c_2}{\log 2} \log \left(\frac{4cr(x)}{c_1 \delta_D(x)} \right).$$

In fact,

$$N+1 = \sum_{k=k_0}^{k_1} \#\{j: 2^{-k-1} \le \delta_D(x_j) < 2^{-k}\}$$

$$\le \sum_{k=k_0}^{k_1} c_2 = \frac{c_2}{\log 2} \int_{2^{-k_0}}^{2^{-k_0}} \frac{dt}{t} \le \frac{c_2}{\log 2} \int_{c_1\delta_D(x)/2}^{2cr(x)} \frac{dt}{t} = \frac{c_2}{\log 2} \log\left(\frac{4cr(x)}{c_1\delta_D(x)}\right),$$

where we take k_0 and k_1 as in the proof of Lemma 2.3.

The following lemma can be proved using inequality (2.3) in the proof of Lemma 2.3.

LEMMA 2.7. (cf. [1, Lemma 2.5]) Let u be a function on a uniform domain D with $g \ge 0$ satisfying (1.4) and (1.5). If $\xi \in \partial D \setminus E_1$ and there exist a rectifiable curve γ_{ξ} in D ending at ξ satisfying (2.1) and a sequence $\{y_j\}$ such that $y_j \in \gamma_{\xi}$ and $2^{-j-1} \le |\xi - y_j| < 2^{-j}$ and $u(y_j)$ has a finite limit L, then u has a nontangential limit L at ξ .

Proof. Fix $\xi \in \partial D \setminus E_1$. Take $x_j \in T_1(\xi; c)$ with $2^{-j-1} \leq |x_j - \xi| < 2^{-j}$. Let γ be a rectifiable curve in D joining x_j and y_j satisfying (1.2) and (1.3). Take $y \in \gamma$ such that

 $\ell(\gamma(x_j, y)) = \ell(\gamma(y_j, y))$, and set $\gamma_1 = \gamma(x_j, y)$ and $\gamma_2 = \gamma(y_j, y)$. Then γ_i satisfies (2.2) with $A_0 = A_2$ and $c_0 = 3(3A_1 + 1)/2$. In fact, we have by (1.3)

$$\delta_D(z) \ge A_2 \min\{\ell(\gamma(x_j, z)), \ell(\gamma(z, y_j))\} = A_2 \ell(\gamma_1(x_j, z))$$

for $z \in \gamma_1$. Take $w \in \sigma B(z)$ for $z \in \gamma_1$. Then note that

$$|w - \xi| \le |w - z| + |z - \xi| \le \frac{3}{2}|z - \xi| \le \frac{3}{2}(r(x_j) + \ell(\gamma)) \le \frac{3(3A_1 + 1)}{2}r(x_j)$$

since we have by (1.2)

$$\ell(\gamma) \le A_1 |x_j - y_j| \le 3A_1 r(x_j).$$

Similarly, we have

$$\delta_D(z) \ge A_2\ell(\gamma_2(y_j, z))$$

and $\sigma B(z) \subset B(\xi, c_o r(y_j))$ for $z \in \gamma_2$.

Then, for γ_i , we can take a finite chain of balls B_0^i , B_1^i , ..., $B_{N_i}^i$ with $B_k^i = B(w_k^i)$ as in the proof of Lemma 2.3. By Remark 2.6, we note that N_i is less than a positive constant C_1 , since

$$\frac{r(x_j)}{\delta_D(x_j)} \le \frac{cr(x_j)}{|x_j - \xi|} = c$$

and

$$\frac{r(y_j)}{\delta_D(y_j)} \le \frac{r(y_j)}{A_3|\xi - y_j|} = \frac{1}{A_3}$$

by (2.1). Further we note from the fact that $x_j \in T_1(\xi; c)$, (iv), (2.1) and (2.2) that

$$2^{-j-1} \le |x_j - \xi| \le c\delta_D(x_j) \le \frac{c}{c_1}\delta_D(w_k^1) \le \frac{c}{c_1}|w_k^1 - \xi| \le \frac{cc_0}{c_1}r(x_j) \le \frac{cc_0}{c_1}2^{-j},$$

$$2^{-j-1} \le |y_j - \xi| \le \frac{1}{A_3}\delta_D(y_j) \le \frac{1}{c_1A_3}\delta_D(w_k^2) \le \frac{1}{c_1A_3}|w_k^2 - \xi| \le \frac{c_0}{c_1A_3}r(y_j) \le \frac{c_0}{c_1A_3}2^{-j},$$

$$|w_k^1 - \xi| \le |w_k^1 - x_j| + |x_j - \xi| \le \frac{1}{A_0}\delta_D(w_k^1) + c\delta_D(x_j) \le \left(\frac{1}{A_0} + \frac{c}{c_1}\right)\delta_D(w_k^1)$$

and

$$|w_k^2 - \xi| \le |w_k^2 - y_j| + |y_j - \xi| \le \frac{1}{A_0} \delta_D(w_k^2) + \frac{1}{A_3} \delta_D(y_j) \le \left(\frac{1}{A_0} + \frac{1}{c_1 A_3}\right) \delta_D(w_k^2),$$

where c_0, c_1 are positive constants appearing in the proof of Lemma 2.3. Therefore

$$C^{-1}2^{-j} \le \delta_D(w_k^i) \le C2^{-j}$$

and

$$C^{-1}|w_k^i - \xi| \le \delta_D(w_k^i) \le |w_k^i - \xi|.$$

Here we see from (1.6) that

$$\frac{\mu(\sigma B_k^1)}{\mu(B(\xi, c_0 r(x_j)))} \ge C\left(\frac{\delta_D(w_k^1)}{2c_0 r(x_j)}\right)^s \ge C$$

and

$$\frac{\mu(\sigma B_k^2)}{\mu(B(\xi, c_0 r(y_j)))} \ge C\left(\frac{\delta_D(w_k^2)}{2c_0 r(y_j)}\right)^s \ge C.$$

Hence, we obtain by (2.3) and (vi) in the proof of Lemma 2.3

$$\begin{aligned} &|u(x_{j}) - u(y_{j})| \\ &\leq |u(x_{j}) - u(y)| + |u(y_{j}) - u(y)| \\ &\leq C \sum_{i=1}^{2} \sum_{k=0}^{N_{i}} \delta_{D}(w_{k}^{i})^{1-\alpha/p(w_{k}^{i})} \left(\int_{\sigma B_{k}^{i}} g(z)^{p(z)} \delta_{D}(z)^{\alpha} d\mu(z) \right)^{1/p(w_{k}^{i})} + C \sum_{i=1}^{2} \sum_{k=0}^{N_{i}} \delta_{D}(w_{k}^{i}) \\ &\leq C \sum_{i=1}^{2} \sum_{k=0}^{N_{i}} \left(\delta_{D}(w_{k}^{i})^{p(\xi)-\alpha} \mu(\sigma B_{k}^{i})^{-1} \int_{\sigma B_{k}^{i}} g(z)^{p(z)} \delta_{D}(z)^{\alpha} d\mu(z) \right)^{1/p(w_{k}^{i})} \\ &+ C \sum_{i=1}^{2} \sum_{k=0}^{N_{i}} \delta_{D}(w_{k}^{i}) \\ &\leq C 2^{-j} + C \left(2^{-j(p(\xi)-\alpha)} \mu(B(\xi, 2^{-j}))^{-1} \int_{B(\xi, c_{0}2^{-j})} g(z)^{p(z)} \delta_{D}(z)^{\alpha} d\mu(z) \right)^{1/p_{i}} \end{aligned}$$

since we have by (p2)

$$\delta_D(w_k^i)^{-|p(\xi)-p(w_k^i)|} \le \delta_D(w_k^i)^{-C/\log(e+1/|w_k^i-\xi|)} \le C.$$

Since $\xi \in \partial \mathbf{B} \setminus E_1$ and $\lim_{j\to\infty} u(y_j) = L$, u has a nontangential limit L at ξ .

3 Proof of Theorem 1.1

We may assume that for each $x \in T_{\beta}(\xi; c)$, there exists a point $y(x) \in \gamma$ such that r(x) = r(y(x)) < 1. As in the proof of Lemma 2.7, let γ_0 be a rectifiable curve in D joining x and y(x) satisfying (1.2) and (1.3). Take $w \in \gamma_0$ such that $\ell(\gamma_0(x, w)) = \ell(\gamma_0(y(x), w))$, and set $\gamma_1 = \gamma_0(x, w)$ and $\gamma_2 = \gamma_0(y(x), w)$. Since $\xi \notin E_{\beta}$, we have by Lemma 2.3(1) with $\lambda = -\alpha$ and Remark 2.4

$$\lim_{T_{\beta}(\xi;c)\ni x\to\xi}F_u(x,y(x))=0,$$

so that

$$\lim_{T_{\beta}(\xi;c)\ni x\to\xi}|u(x)-u(y(x))|=0$$

Since $\lim_{x\to\xi} u(y(x)) = L$ by our assumption,

$$\lim_{T_{\beta}(\xi;c)\ni x\to\xi}u(x)=L,$$

as required.

4 Proof of Theorem 1.2

Take $\lambda \in \mathbf{R}$ such that $s + \alpha - p_{-} < \lambda + \alpha < 1$. Let γ_{ξ} be as in Lemma 2.2. For r > 0sufficiently small, take $x(r) \in \gamma \cap \partial B(\xi, r)$ and $y(r) \in \gamma_{\xi} \cap \partial B(\xi, r)$. As in the proof of Lemma 2.7, let γ_0 be a rectifiable curve in D joining x(r) and y(r) satisfying (1.2) and (1.3). Take $w \in \gamma_0$ such that $\ell(\gamma_0(x(r), w)) = \ell(\gamma_0(y(r), w))$, and set $\gamma_1 = \gamma_0(x(r), w)$ and $\gamma_2 = \gamma_0(y(r), w)$. By Lemma 2.3(2), Remark 2.4 and Remark 2.5, we have

$$F_{u}(x(r), y(r)) \leq Cr^{p(\xi) + \lambda} \mu(B(\xi, r))^{-1} \int_{B(\xi, c_{0}r) \cap D} g(z)^{p(z)} \delta_{D}(z)^{\alpha} |r - |z - \xi||^{-\lambda - \alpha} d\mu(z) + Cr^{p_{-}}.$$

Moreover, since $0 < \lambda + \alpha < 1$, we see that

$$\int_{2^{-j-1}}^{2^{-j}} |r - |z - \xi||^{-\lambda - \alpha} \, dr \le C 2^{-j(1-\lambda - \alpha)}$$

Hence it follows that

$$\inf_{2^{-j-1} \le r < 2^{-j}} F_u(x(r), y(r)) \\
\le C \int_{2^{-j-1}}^{2^{-j}} \left(r^{p(\xi)+\lambda} \mu(B(\xi, r))^{-1} \int_{B(\xi, c_0 r) \cap D} g(z)^{p(z)} \delta_D(z)^{\alpha} |r - |z - \xi||^{-\lambda - \alpha} d\mu(z) \right) \frac{dr}{r} \\
+ C(2^{-j})^{p_-} \\
\le C 2^{-j\{p(\xi)+\lambda-1\}} \mu(B(\xi, 2^{-j}))^{-1} \int_{B(\xi, c_0 2^{-j}) \cap D} g(z)^{p(z)} \delta_D(z)^{\alpha} \left(\int_{2^{-j-1}}^{2^{-j}} |r - |z - \xi||^{-\lambda - \alpha} dr \right) d\mu(z) \\
+ C(2^{-j})^{p_-} \\
\le C (2^{-j\{-p(\xi)+\alpha\}} \mu(B(\xi, 2^{-j}))^{-1} \int_{B(\xi, c_0 2^{-j}) \cap D} g(z)^{p(z)} \delta_D(z)^{\alpha} d\mu(z) + C(2^{-j})^{p_-}.$$

Since $\xi \notin E_1$, we see that

$$\lim_{j \to \infty} \inf_{2^{-j-1} \le r < 2^{-j}} F_u(x(r), y(r)) = 0.$$

Hence we find a sequence $\{r_j\}$ such that $2^{-j-1} \leq r_j < 2^{-j}$ and

$$\lim_{j \to \infty} F_u(x(r_j), y(r_j)) = 0.$$

Since u has a finite limit L at ξ along γ , we have

$$\lim_{j \to \infty} u(y(r_j)) = \lim_{j \to \infty} u(x(r_j)) = L.$$

Thus u has a nontangential limit L at ξ by Lemma 2.7.

Acknowledgements We would like to express our thanks to the referees for their kind comments and suggestions.

References

- [1] F. Di Biase, T. Futamura and T. Shimomura, Lindelöf theorems for monotone Sobolev functions in Orlicz spaces, to appear in Illinois J. Math.
- [2] A. Björn and J. Björn, Nonlinear potential theory on metric spaces. EMS Tracts in Mathematics, 17. European Mathematical Society (EMS), Zurich, 2011.
- [3] L. Diening, P. Harjulehto, P. Hästö, M. Ružička, Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Mathematics, vol. 2017, Springer-Verlag, Heidelberg, 2011.
- [4] T. Futamura, Lindelöf theorems for monotone Sobolev functions on uniform domains, Hiroshima Math. J. 34 (2004), 413–422.
- [5] T. Futamura and Y. Mizuta, Lindelöf theorems for monotone Sobolev functions, Ann. Acad. Sci. Fenn. Math. 28 (2003), 271–277.
- [6] T. Futamura and Y. Mizuta, Boundary behavior of monotone Sobolev functions on John domains in a metric space, Complex Variables 50 (2005), 441–451.
- [7] T. Futamura and T. Shimomura, Lindelöf theorems for monotone Sobolev functions with variable exponent, Proc. Japan Acad. Ser. A Math. Sci. 84 (2008), 25–28.
- [8] P. Hajłasz and P. Koskela, Sobolev met Poincaré, Mem. Amer. Math. Soc. 145, 2000.
- [9] P. Koskela, J. J. Manfredi and E. Villamor, Regularity theory and traces of Aharmonic functions, Trans. Amer. Math. Soc. 348 (1996), 755–766.
- [10] H. Lebesgue, Sur le probléme de Dirichlet, Rend. Cir. Mat. Palermo 24 (1907), 371–402.
- [11] J. J. Manfredi and E. Villamor, Traces of monotone Sobolev functions, J. Geom. Anal. 6 (1996), 433–444.
- [12] J. J. Manfredi and E. Villamor, Traces of monotone Sobolev functions in weighted Sobolev spaces, Illinois J. Math. 45 (2001), 403–422.
- [13] Y. Mizuta, Potential theory in Euclidean spaces, Gakkōtosyo, Tokyo, 1996.
- [14] Y. Mizuta, Tangential limits of monotone Sobolev functions, Ann. Acad. Sci. Fenn. Ser. A. I. Math. 20 (1995), 315–326.
- [15] Y. Mizuta, T. Ohno and T. Shimomura, Sobolev's inequalities and vanishing integrability for Riesz potentials of functions in the generalized Lebesgue space $L^{p(\cdot)}(\log L)^{q(\cdot)}$, J. Math. Anal. Appl. **345** (2008), 70–85.
- [16] J. Väisälä, Uniform domains, Tohoku Math. J. 40 (1988), 101–118.
- [17] E. Villamor and B. Q. Li, Boundary limits for bounded quasiregular mappings, J. Geom. Anal. 19 (2009), 708–718.

[18] M. Vuorinen, Conformal geometry and quasiregular mappings, Lectures Notes in Math. 1319, Springer, 1988.

> Department of Mathematics Daido University Nagoya 457-8530, Japan E-mail : futamura@daido-it.ac.jp and Faculty of Education and Welfare Science Oita University Dannoharu Oita-city 870-1192, Japan E-mail : t-ohno@oita-u.ac.jp and Department of Mathematics Graduate School of Education Hiroshima University Higashi-Hiroshima 739-8524, Japan E-mail : tshimo@hiroshima-u.ac.jp