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Abstract. We study the integrability of maximal functions for generalized Lebesgue spaces
Lp(·)(logL)q(·), where the exponent p(·) approaches 1 on some part of the domain. Our
integrability results depend on the shape of that part and the speed of the exponent approaching

1.

1. Introduction

A crucial tool in the development of the function space theory is the boundedness of Hardy-
Littlewood maximal operator. For a locally integrable function f on Rn, the maximal function
is defined by

Mf(x) = sup
r>0

1

|B(x, r)|

∫
B(x,r)

|f(y)|dy,

where |B(x, r)| denotes the volume of the open ball B(x, r) centered at x of radius r > 0.
In the classical Lebesgue Lp spaces, we know (see the book by Stein [14, Chapter 1]) that if

p > 1, then

∥Mf∥Lp(Rn) ≤ C∥f∥Lp(Rn)

for all f ∈ Lp(Rn). Unfortunately, this is not true when p = 1 even if we are restricted to a
bounded domain G in Rn. Thus we need to consider the space L logL(G) of measurable functions
f on G whose norm

∥f∥L logL(G) = inf

{
λ > 0 :

∫
G

|f(y)|
λ

log

(
e+

|f(y)|
λ

)
dy ≤ 1

}
is finite. It is known from Stein [13] and [14, Sections I.1 and I.5] that Mf ∈ L1(G) if and only
if f ∈ L logL(G).

Following Orlicz [11], Kováčik-Rákosńık [6] and Musielak [10], we consider a positive continu-
ous function p(·) on G whose value is not less than 1, and the space of all measurable functions
f on G satisfying ∫

G

∣∣∣∣f(y)λ
∣∣∣∣p(y) dy <∞

for some λ > 0. We define the norm on this space by

∥f∥Lp(·)(G) = inf

{
λ > 0 :

∫
G

∣∣∣∣f(y)λ
∣∣∣∣p(y) dy ≤ 1

}
.

In recent years, the generalized Lebesgue spaces Lp(·) have attracted more and more attention,
in connection with the study of elasticity, fluid mechanics and differential equations with p(·)-
growth; see R

◦
užička [12].

In this paper we study the integrability of the maximal operator in the Lebesgue space of
variable exponent approaching 1 in some part ofG. Recently, Hästö [5] has obtained an interesting
class of variable exponents approaching 1 in some part of G such that Mf ∈ L1(G) for all
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f ∈ Lp(·)(G). As in Hästö [5], letting log(1) t = log t and log(m+1) t = log(log(m) t) form = 1, 2, ...,

we consider a function ω on the interval [0,∞) such that ω(0) = 0 and

ω(r) =
a1

log(1/r)
+
a2 log(2)(1/r)

log(1/r)
+
a3 log(3)(1/r)

log(1/r)

for 0 < r ≤ r1, where the numbers a1, a2, a3 and 0 < r1 < 1/e are chosen so that ω(r) is
nondecreasing on [0, r1]; set ω(r) = ω(r1) for r > r1.

Theorem A (cf. Hästö [5]). Let x0 ∈ G and consider a variable exponent p(·) such that

(1.1) p(x) = 1 + ω(|x− x0|)

for x ∈ G. If a2 > 1/n, then the maximal operator M : f → Mf is bounded from Lp(·)(G) into
L1(G), that is,

∥Mf∥L1(G) ≤ C∥f∥Lp(·)(G).

Futamura and Mizuta [4] have proved that the conclusion is still valid when a2 = 1/n and
a3 ≥ 0.

In this paper, following Cruz-Uribe, Fiorenza and Neugebauer [2], we further consider a func-
tion q(·) such that q(0) = q0 ∈ R and

(1.2) q(x) = q0 + η(|x− x0|)

for x ∈ G, where η(r) =
b1

log(2)(1/r)
+
b2 log(3)(1/r)

log(2)(1/r)
for 0 < r ≤ r2, and η(r) = η(r2) for r > r2.

Here the numbers b1, b2 and 0 < r2 < 1/e are chosen so that η(r) is nondecreasing on (0,∞).
Now we set

Φ(x, t) = tp(x)(log(c0 + t))q(x),

where c0 is chosen that Φ(·, t) is a convex function of t. Define the norm

∥f∥Lp(·)(logL)q(·)(G) = inf

{
λ > 0 :

∫
G

Φ(x, |f(x)|/λ) dx ≤ 1

}
for a measurable function f on G. We denote by Lp(·)(logL)q(·)(G) the family of all measurable
functions f on G such that ∥f∥Lp(·)(logL)q(·)(G) <∞.

Our aim in this paper is to establish the following result, as an extension of the recent result
by Cruz-Uribe, Fiorenza and Neugebauer [2].

Theorem B. Let p(·) and q(·) be of the form (1.1) and (1.2).

(i) If na2 + q0 > 0, then∫
G

Mf(x)(log(1 +Mf(x)))na2+q0−1(log(1 + (log(1 +Mf(x)))))na3+b2 dx ≤ C;

(ii) if na2 + q0 = 0 and na3 + b2 > 0, then∫
G

Mf(x)(log(1 +Mf(x)))−1(log(1 + (log(1 +Mf(x)))))na3+b2−1 dx ≤ C

for all measurable functions f on G with ∥f∥Lp(·)(logL)q(·)(G) ≤ 1, where C denotes a positive
constant independent of f .

This also gives extensions of Theorem A by Hästö [5], Futamura-Mizuta [4] and Mizuta-Ohno-
Shimomura [9].
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2. Variable exponents

Throughout this paper, let C denote various positive constants independent of the variables
in question. Further let G denote a bounded open set in Rn.

We say that a positive nondecreasing function φ on the interval [0,∞) satisfies (φ) if there
exist ε1 > 0 and 0 < r1 < 1 such that

(φ) (log(1/r))−ε1φ(1/r) is nondecreasing on (0, r1).

Similarly, a positive nondecreasing function ψ on the interval [0,∞) is said to satisfy (ψ) if there
exist ε2 > 0 and 0 < r2 < 1/e such that

(ψ) (log(2)(1/r))
−ε2ψ(1/r) is nondecreasing on (0, r2).

Consider positive nondecreasing functions φ and ψ satisfying (φ) and (ψ), respectively. Set

ε0 = max{ε1, ε2}.
For the sake of convenience, we assume that

(φ′) φ(t) ≥ eε0 for all t > 0,
(ψ′) ψ(t) ≥ eε0 for all t > 0.

First we give the following results, which can be derived by conditions (φ) and (φ′).

Lemma 1. ([8, Lemma 3.1, Section 5.3], [9, Lemmas 2.1 and 2.2]).

(i) φ(r) is of log-type, that is, there exists C > 0 such that

(2.1) C−1φ(r) ≤ φ(r2) ≤ Cφ(r) whenever r > 0.

(ii) For γ > 0, there exists C > 0 such that

t−γφ(t) ≤ Cs−γφ(s) whenever t ≥ s > 0.

(iii) There exists 0 < r̃1 < r1 such that ω(r) = logφ(1/r)/ log(1/r) is nondecreasing on [0, r̃1].

Further, we see from (ψ) and (ψ′) that ψ satisfies (i), (ii) and

(iv) there exists 0 < r̃2 < r2 such that η(r) = logψ(1/r)/ log(log(1/r)) is nondecreasing on
[0, r̃2].

Condition (2.1) implies the doubling condition on φ, that is, there exists a constant C > 1
such that

φ(r) ≤ φ(2r) ≤ Cφ(r) whenever r > 0.

Our typical example of φ is of the form

φ(r) = a1(log r)
a2(log(2) r)

a3

for large r, where a1 > 0, a2 ≥ 0 and a3 ∈ R; similarly, that of ψ is of the form

ψ(r) = b1(log(2) r)
b2

for large r, where b1 > 0 and b2 ≥ 0.
For simplicity, set

r0 = min{r̃1, r̃2}.
Consider

ω(r) =
logφ(1/r)

log(1/r)

for 0 < r ≤ r0; set ω(r) = ω(r0) for r > r0. We further consider

η(r) =
logψ(1/r)

log(2)(1/r)

for 0 < r ≤ r0; set η(r) = η(r0) for r > r0.
For a compact set K in Rn, we define

K(r) = {x ∈ Rn : δK(x) ≤ r}
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for r ≥ 0, where δK(x) denotes the distance of x from K. For 0 < α ≤ n, we say that the
(n− α)-dimensional upper Minkowski content of K is finite if

|K(r)| ≤ Crα for small r > 0;

see the book by Mattila [7]. Note here that if K is a singleton, then its 0-dimensional upper
Minkowski content is finite, and if K is a spherical surface, then its (n − 1)-dimensional upper
Minkowski content is finite. As examples of K, we may consider fractal type sets like Cantor sets
or Koch curves.

Now we define variable exponents p(·) and q(·) by

p(x) = 1 + ω(δK(x))

and

q(x) = q0 + η(δK(x))

for x ∈ Rn and q0 ∈ R.
We here remark the following easy result.

Lemma 2. (cf. [9, Lemma 2.2]). p(·) and q(·) are continuous on Rn.

3. Integrability results

Let us begin with the following result.

Lemma 3. ([9, Lemma 2.3]). Let K be a compact set in G whose (n − α)-dimensional upper
Minkowski content is finite. Then∫

G

δK(x)−α(log(1 + δK(x)−1))−β dx <∞

for every β > 1.

Lemma 4. (cf. [4, Lemma 2.3], [9, Lemma 2.4]). Suppose the (n − α)-dimensional upper
Minkowski content of K is finite. If f is a measurable function on G with ∥f∥Lp(·)(logL)q(·)(G) ≤ 1,
then ∫

G

|f(x)|(log(e+ |f(y)|))q0φ(|f(x)|)αψ(|f(x)|) dx ≤ C.

Proof. Consider the set

G′ = {x ∈ K(r0) ∩G : |f(x)| < δ(x)−α(log(1/δ(x)))−β},

where the constant β is determined later and δ(x) = δK(x) for simplicity. If x ∈ G′, then we
have by (φ) and (ψ)

|f(x)|(log(e+ |f(x)|))q0φ(|f(x)|)αψ(|f(x)|)
≤ Cδ(x)−α(log(1/δ(x)))−β(log(1/δ(x)))q0φ(1/δ(x))αψ(1/δ(x))

≤ Cδ(x)−α(log(1/δ(x)))−β+q0+ε3 ,

where ε3 > ε1α. If we take β so large that β > 1 + q0 + ε3, then it follows from Lemma 3 that∫
G′

|f(x)|(log(e+ |f(x)|))q0φ(|f(x)|)αψ(|f(x)|)dx ≤ C.

If x ̸∈ G′ and δ(x) < r0, then |f(x)| ≥ δ(x)−α(log(1/δ(x)))−β , so that

δ(x) ≥ C|f(x)|−1/α(log |f(x)|)−β/α.
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Hence, in view of Lemma 1, we see that

logφ(1/δ(x))

log(1/δ(x))
log |f(x)| ≥ logφ(C|f(x)|1/α(log |f(x)|)β/α)

log(C|f(x)|1/α(log |f(x)|)β/α)
log |f(x)|

≥ α log(Cφ(|f(x)|))
log |f(x)|+ C log(C log |f(x)|)

log |f(x)|

= α log(Cφ(|f(x)|))
(
1− C log(C log |f(x)|)

log |f(x)|+ C log(C log |f(x)|)

)
≥ α logφ(|f(x)|)− C,

which yields

|f(x)|p(x)−1 = exp

(
logφ(1/δ(x))

log(1/δ(x))
log |f(x)|

)
≥ exp (α logφ(|f(x)|)− C)

= Cφ(|f(x)|)α.

Similarly, we have
logψ(1/δ(x))

log(2)(1/δ(x))
log(2) |f(x)| ≥ logψ(|f(x)|)− C,

which yields

(log |f(x)|)q(x)−q0 ≥ Cψ(|f(x)|).
Thus it follows that ∫

K(r0)\G′
|f(x)|(log(e+ |f(x)|))q0φ(|f(x)|)αψ(|f(x)|)dx

≤ C

∫
G

|f(x)|p(x)(log(c0 + |f(x)|))q(x) dx ≤ C.

Finally, since p(x) ≥ p1 > 1 when δ(x) ≥ r0, we find∫
G\K(r0)

|f(x)|(log(e+ |f(x)|))q0φ(|f(x)|)αψ(|f(x)|)dx

≤ C

∫
G

|f(x)|p(x)(log(c0 + |f(x)|))q(x) dx+ C ≤ C.

The required assertion is now proved. �

For simplicity, set

λ(t) = t(log(e+ t))q0φ(t)αψ(t)

and consider a continuous function Λ such that

C−1λ(t)

t
≤
∫ t

1

Λ(s)

s2
ds ≤ C

λ(t)

t
whenever t > 2.

The next lemma is an extension of Stein [14, Chapter 1], whose proof will be done along the
same lines as in Stein [14, Chapter 1] (see [9]); for another proof, see Cianchi [1].

Lemma 5. ([9, Lemma 2.5]). For a locally integrable function f on G, the following are equiv-
alent:

(i)

∫
G

λ(|f(x)|) dx ≤ A1;

(ii)

∫
G

Λ(Mf(x)) dx ≤ A2,

where A1, A2 > 1 are constants (independent of f) such that C−1A1 ≤ A2 ≤ CA1.
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4. Proof of Theorem B

By Lemmas 4 and 5, we have the following result.

Theorem 1. Let λ and Λ be as before Lemma 5. Suppose the (n − α)-dimensional upper
Minkowski content of K is finite. If ∥f∥Lp(·)(logL)q(·)(G) ≤ 1, then∫

G

λ(|f(x)|) dx ≤ C,

or equivalently, ∫
G

Λ(Mf(x)) dx ≤ C.

Remark 1. Let φ(r) = A(log r)a2(log(2) r)
a3 for large r, where A, a2 and a3 are chosen so that φ

is nondecreasing. Moreover, let ψ(r) = B(log(2) r)
b2 for large r, where B > 0 and b2 ≥ 0. In this

case, we can take

λ(r) = r(log r)a2α+q0(log(2) r)
a3α+b2

for large r.

(i) If a2α+ q0 > 0, then we can take

Λ(r) = r(log r)a2α+q0−1(log(2) r)
a3α+b2

for large r.
(ii) If a2α+ q0 = 0 and a3α+ b2 > 0, then we can take

Λ(r) = r(log r)−1(log(2) r)
a3α+b2−1

for large r.

Thus Theorem 1 gives Theorem B in the Introduction and the following corollary.

Corollary 1. For α > 0, let K be a compact subset of G whose (n − α)-dimensional upper
Minkowski content is finite. Consider the exponents

p(x) = 1 +
a1

log(1/δK(x))
+
a2 log(2)(1/δK(x))

log(1/δK(x))

and

q(x) = q0 +
b1

log(2)(1/δK(x))
+
b2 log(3)(1/δK(x))

log(2)(1/δK(x))

when δ(x) ≤ r0. If a2, b2 > 0 and a1, b1, q0 ∈ R are chosen so that a2α + q0 > 0, ω(r) =
a1/ log(1/r) + a2(log(2)(1/r))/ log(1/r) and η(r) = b1/ log(2)(1/r) + b2(log(3)(1/r))/ log(2)(1/r)

are nondecreasing on (0, r0], then

(4.1)

∫
G

|f(x)|(log(1 + |f(x)|))a2α+q0(log(2)(1 + |f(x)|))b2 dx <∞,

or equivalently,∫
G

Mf(x)(log(1 +Mf(x)))a2α+q0−1(log(2)(1 +Mf(x)))b2 dx <∞

for all f ∈ Lp(·)(logL)q(·)(G).
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5. Further remarks

In this section, we discuss the sharpness of Theorem 1 (Corollary 1).
If K is a compact subset of G, then we write

δ(x) = δK(x)

for simplicity.

Remark 2. We show that the exponents in (4.1) are sharp under the condition that

C−1rα ≤ |K(r)| ≤ Crα for 0 < r < r0.

In fact, if we replace q(x) by

q̃(x) = q0 +
b1

log(2)(1/δ(x))
+
b2 log(3)(1/δ(x))

log(2)(1/δ(x))
−
b3 log(4)(1/δ(x))

log(2)(1/δ(x))

with b3 > 0, then we can find f ∈ Lp(·)(logL)q̃(·)(G) such that∫
G

|f(x)|(log(1 + |f(x)|))a2α+q0(log(2)(1 + |f(x)|))b2 dx = ∞.

To show this, we consider the function

f(x) = δ(x)−α(log(1/δ(x)))−a2α−q0−1(log(2)(1/δ(x)))
−b2−1(log(3)(1/δ(x)))

−1

for x ∈ G with δ(x) ≤ r0; set f(x) = 0 when δ(x) > r0. Then∫
G

f(x)(log(1 + f(x)))a2α+q0(log(2)(1 + f(x)))b2 dx

≥ C

∫ r0

0

t−1(log(1/t))−1(log(2)(1/t))
−1(log(3)(1/t))

−1dt = ∞.

Further, since f(x) ≤ δ(x)−α, we have for t = δ(x) ≤ r0

f(x)p(x)−1 ≤ exp

(
α log(1/t)

a1 + a2 log(2)(1/t)

log(1/t)

)
= C(log(1/t))a2α

and

(log f(x))q̃(x)−q0 ≤ C exp

(
log(2)(1/t)

b1 + b2 log(3)(1/t)− b3 log(4)(1/t)

log(2)(1/t)

)
= C(log(2)(1/t))

b2(log(3)(1/t))
−b3 ,

so that ∫
G

f(x)p(x)(log(c0 + f(x)))q̃(x) dx

≤ C

∫ r0

0

t−1(log(1/t))−1(log(2)(1/t))
−1(log(3)(1/t))

−b3−1dt <∞.

Remark 3. Let

p(x) = 1 +
a1

log(1/|x|)
+
a2 log(2)(1/|x|)

log(1/|x|)
+
a3 log(3)(1/|x|)

log(1/|x|)
and

q(x) = q0 +
b1

log(2)(1/|x|)
+
b2 log(3)(1/|x|)
log(2)(1/|x|)

for x ∈ B0 = B(0, r0) with 0 < r0 < 1/e, where a2, a3, b2 > 0, a1, b1, q0 ∈ R, a2n + q0 > 0,
ω(r) = {a1+a2 log(2)(1/r)+a3 log(3)(1/r)}/ log(1/r) and η(r) = {b1+b2 log(3)(1/r)}/ log(2)(1/r)
are nondecreasing on (0, r0]. Then we can find f ∈ Lp(·)(logL)q(·)(B0) such that Mf fails to
belong to Lp(·)(logL)q(·)(B0).
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For this purpose, consider
f(y) = |y|−n(log(1/|y|))−β

for y ∈ B0 and β such that a2n+q0+1 < β < a2n+q0+2 or β = a2n+q0+1 and a3n+b2 < −1.
Then we see that

|f(y)|p(y)−1 ≤ C(log(1/|y|))a2n(log(2)(1/|y|))a3n

and
(log |f(y)|)q(y)−q0 ≤ C(log(1/|y|))b2

for y ∈ B0, so that ∫
B0

|f(y)|p(y)(log(c0 + |f(y)|))q(y) dy

≤ C

∫ 1/e

0

t−1(log(1/t))−β+a2n+q0(log(2)(1/t))
a3n+b2dt <∞

by our assumption on β.
On the other hand,

Mf(x) ≥ 1

|B(x, 2|x|)|

∫
B(x,2|x|)

|y|−n(log(1/|y|))−βdy ≥ C|x|−n(log(1/|x|))−β+1

since β > 1. Hence ∫
B0

Mf(x)p(x)(log(c0 +Mf(x)))q(x) dx

≥ C

∫ 1/e

0

t−1(log(1/t))−β+a2n+q0+1(log(2)(1/t))
a3n+b2dt = ∞,

which implies that Mf ̸∈ Lp(·)(logL)q(·)(B0).

Remark 4. Let
p(x) = p0 +

a1
log(1/|x|)

and

q(x) = q0 +
b1

log(2)(1/|x|)
for x ∈ B0 = B(0, r0) with 0 < r0 < 1/e, where a1, b1, q0 ∈ R, p0 > 1 and infx∈B0 p(x) > 1. Then,
in view of Diening [3], we see that f ∈ Lp(·)(logL)q(·)(B0) if and only ifMf ∈ Lp(·)(logL)q(·)(B0).
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[6] O. Kováčik and J. Rákosńık, On spaces Lp(x) and Wk,p(x), Czechoslovak Math. J. 41 (1991), 592–618.
[7] P. Mattila, Geometry of sets and measures in Euclidean spaces, Cambridge Studies in Advanced Mathematics,

44. Cambridge University Press, Cambridge, 1995.

[8] Y. Mizuta, Potential theory in Euclidean spaces, Gakkōtosyo, Tokyo, 1996.
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