INTEGRABILITY OF MAXIMAL FUNCTIONS FOR GENERALIZED LEBESGUE SPACES $L^{p(\cdot)}(\log L)^{q(\cdot)}$

YOSHIHIRO MIZUTA, TAKAO OHNO AND TETSU SHIMOMURA

Abstract

We study the integrability of maximal functions for generalized Lebesgue spaces $L^{p(\cdot)}(\log L)^{q(\cdot)}$, where the exponent $p(\cdot)$ approaches 1 on some part of the domain. Our integrability results depend on the shape of that part and the speed of the exponent approaching 1.

1. Introduction

A crucial tool in the development of the function space theory is the boundedness of HardyLittlewood maximal operator. For a locally integrable function f on \mathbf{R}^{n}, the maximal function is defined by

$$
M f(x)=\sup _{r>0} \frac{1}{|B(x, r)|} \int_{B(x, r)}|f(y)| d y
$$

where $|B(x, r)|$ denotes the volume of the open ball $B(x, r)$ centered at x of radius $r>0$.
In the classical Lebesgue L^{p} spaces, we know (see the book by Stein [14, Chapter 1]) that if $p>1$, then

$$
\|M f\|_{L^{p}\left(\mathbf{R}^{n}\right)} \leq C\|f\|_{L^{p}\left(\mathbf{R}^{n}\right)}
$$

for all $f \in L^{p}\left(\mathbf{R}^{n}\right)$. Unfortunately, this is not true when $p=1$ even if we are restricted to a bounded domain G in \mathbf{R}^{n}. Thus we need to consider the space $L \log L(G)$ of measurable functions f on G whose norm

$$
\|f\|_{L \log L(G)}=\inf \left\{\lambda>0: \int_{G} \frac{|f(y)|}{\lambda} \log \left(e+\frac{|f(y)|}{\lambda}\right) d y \leq 1\right\}
$$

is finite. It is known from Stein [13] and [14, Sections I. 1 and I.5] that $M f \in L^{1}(G)$ if and only if $f \in L \log L(G)$.

Following Orlicz [11], Kováčik-Rákosník [6] and Musielak [10], we consider a positive continuous function $p(\cdot)$ on G whose value is not less than 1 , and the space of all measurable functions f on G satisfying

$$
\int_{G}\left|\frac{f(y)}{\lambda}\right|^{p(y)} d y<\infty
$$

for some $\lambda>0$. We define the norm on this space by

$$
\|f\|_{L^{p(\cdot)}(G)}=\inf \left\{\lambda>0: \int_{G}\left|\frac{f(y)}{\lambda}\right|^{p(y)} d y \leq 1\right\}
$$

In recent years, the generalized Lebesgue spaces $L^{p(\cdot)}$ have attracted more and more attention, in connection with the study of elasticity, fluid mechanics and differential equations with $p(\cdot)$ growth; see Ružička [12].

In this paper we study the integrability of the maximal operator in the Lebesgue space of variable exponent approaching 1 in some part of G. Recently, Hästö [5] has obtained an interesting class of variable exponents approaching 1 in some part of G such that $M f \in L^{1}(G)$ for all

[^0]$f \in L^{p(\cdot)}(G)$. As in Hästö [5], letting $\log _{(1)} t=\log t$ and $\log _{(m+1)} t=\log \left(\log _{(m)} t\right)$ for $m=1,2, \ldots$, we consider a function ω on the interval $[0, \infty)$ such that $\omega(0)=0$ and
$$
\omega(r)=\frac{a_{1}}{\log (1 / r)}+\frac{a_{2} \log _{(2)}(1 / r)}{\log (1 / r)}+\frac{a_{3} \log _{(3)}(1 / r)}{\log (1 / r)}
$$
for $0<r \leq r_{1}$, where the numbers a_{1}, a_{2}, a_{3} and $0<r_{1}<1 / e$ are chosen so that $\omega(r)$ is nondecreasing on $\left[0, r_{1}\right]$; set $\omega(r)=\omega\left(r_{1}\right)$ for $r>r_{1}$.

Theorem A (cf. Hästö [5]). Let $x_{0} \in G$ and consider a variable exponent $p(\cdot)$ such that

$$
\begin{equation*}
p(x)=1+\omega\left(\left|x-x_{0}\right|\right) \tag{1.1}
\end{equation*}
$$

for $x \in G$. If $a_{2}>1 / n$, then the maximal operator $\mathcal{M}: f \rightarrow M f$ is bounded from $L^{p(\cdot)}(G)$ into $L^{1}(G)$, that is,

$$
\|M f\|_{L^{1}(G)} \leq C\|f\|_{L^{p(\cdot)}(G)}
$$

Futamura and Mizuta [4] have proved that the conclusion is still valid when $a_{2}=1 / n$ and $a_{3} \geq 0$.

In this paper, following Cruz-Uribe, Fiorenza and Neugebauer [2], we further consider a function $q(\cdot)$ such that $q(0)=q_{0} \in \mathbf{R}$ and

$$
\begin{equation*}
q(x)=q_{0}+\eta\left(\left|x-x_{0}\right|\right) \tag{1.2}
\end{equation*}
$$

for $x \in G$, where $\eta(r)=\frac{b_{1}}{\log _{(2)}(1 / r)}+\frac{b_{2} \log _{(3)}(1 / r)}{\log _{(2)}(1 / r)}$ for $0<r \leq r_{2}$, and $\eta(r)=\eta\left(r_{2}\right)$ for $r>r_{2}$. Here the numbers b_{1}, b_{2} and $0<r_{2}<1 / e$ are chosen so that $\eta(r)$ is nondecreasing on $(0, \infty)$.

Now we set

$$
\Phi(x, t)=t^{p(x)}\left(\log \left(c_{0}+t\right)\right)^{q(x)}
$$

where c_{0} is chosen that $\Phi(\cdot, t)$ is a convex function of t. Define the norm

$$
\|f\|_{L^{p(\cdot)}(\log L)^{q(\cdot)}(G)}=\inf \left\{\lambda>0: \int_{G} \Phi(x,|f(x)| / \lambda) d x \leq 1\right\}
$$

for a measurable function f on G. We denote by $L^{p(\cdot)}(\log L)^{q(\cdot)}(G)$ the family of all measurable functions f on G such that $\|f\|_{L^{p(\cdot)}(\log L)^{q(\cdot)}(G)}<\infty$.

Our aim in this paper is to establish the following result, as an extension of the recent result by Cruz-Uribe, Fiorenza and Neugebauer [2].

Theorem B. Let $p(\cdot)$ and $q(\cdot)$ be of the form (1.1) and (1.2).
(i) If $n a_{2}+q_{0}>0$, then

$$
\int_{G} M f(x)(\log (1+M f(x)))^{n a_{2}+q_{0}-1}(\log (1+(\log (1+M f(x)))))^{n a_{3}+b_{2}} d x \leq C
$$

(ii) if $n a_{2}+q_{0}=0$ and $n a_{3}+b_{2}>0$, then

$$
\int_{G} M f(x)(\log (1+M f(x)))^{-1}(\log (1+(\log (1+M f(x)))))^{n a_{3}+b_{2}-1} d x \leq C
$$

for all measurable functions f on G with $\|f\|_{L^{p(\cdot)}(\log L)^{q(\cdot)}(G)} \leq 1$, where C denotes a positive constant independent of f.

This also gives extensions of Theorem A by Hästö [5], Futamura-Mizuta [4] and Mizuta-OhnoShimomura [9].

2. Variable exponents

Throughout this paper, let C denote various positive constants independent of the variables in question. Further let G denote a bounded open set in \mathbf{R}^{n}.

We say that a positive nondecreasing function φ on the interval $[0, \infty)$ satisfies (φ) if there exist $\varepsilon_{1}>0$ and $0<r_{1}<1$ such that
(φ) $(\log (1 / r))^{-\varepsilon_{1}} \varphi(1 / r)$ is nondecreasing on $\left(0, r_{1}\right)$.
Similarly, a positive nondecreasing function ψ on the interval $[0, \infty)$ is said to satisfy (ψ) if there exist $\varepsilon_{2}>0$ and $0<r_{2}<1 / e$ such that
$(\psi)\left(\log _{(2)}(1 / r)\right)^{-\varepsilon_{2}} \psi(1 / r)$ is nondecreasing on $\left(0, r_{2}\right)$.
Consider positive nondecreasing functions φ and ψ satisfying (φ) and (ψ), respectively. Set

$$
\varepsilon_{0}=\max \left\{\varepsilon_{1}, \varepsilon_{2}\right\}
$$

For the sake of convenience, we assume that
($\left.\varphi^{\prime}\right) \varphi(t) \geq e^{\varepsilon_{0}}$ for all $t>0$,
(ψ^{\prime}) $\psi(t) \geq e^{\varepsilon_{0}}$ for all $t>0$.
First we give the following results, which can be derived by conditions (φ) and (φ^{\prime}).
Lemma 1. ([8, Lemma 3.1, Section 5.3], [9, Lemmas 2.1 and 2.2]).
(i) $\varphi(r)$ is of log-type, that is, there exists $C>0$ such that

$$
\begin{equation*}
C^{-1} \varphi(r) \leq \varphi\left(r^{2}\right) \leq C \varphi(r) \quad \text { whenever } r>0 \tag{2.1}
\end{equation*}
$$

(ii) For $\gamma>0$, there exists $C>0$ such that

$$
t^{-\gamma} \varphi(t) \leq C s^{-\gamma} \varphi(s) \quad \text { whenever } t \geq s>0
$$

(iii) There exists $0<\tilde{r}_{1}<r_{1}$ such that $\omega(r)=\log \varphi(1 / r) / \log (1 / r)$ is nondecreasing on [0, $\left.\tilde{r}_{1}\right]$.

Further, we see from (ψ) and $\left(\psi^{\prime}\right)$ that ψ satisfies (i), (ii) and
(iv) there exists $0<\tilde{r}_{2}<r_{2}$ such that $\eta(r)=\log \psi(1 / r) / \log (\log (1 / r))$ is nondecreasing on [$0, \tilde{r}_{2}$].

Condition (2.1) implies the doubling condition on φ, that is, there exists a constant $C>1$ such that

$$
\varphi(r) \leq \varphi(2 r) \leq C \varphi(r) \quad \text { whenever } r>0
$$

Our typical example of φ is of the form

$$
\varphi(r)=a_{1}(\log r)^{a_{2}}\left(\log _{(2)} r\right)^{a_{3}}
$$

for large r, where $a_{1}>0, a_{2} \geq 0$ and $a_{3} \in \mathbf{R}$; similarly, that of ψ is of the form

$$
\psi(r)=b_{1}\left(\log _{(2)} r\right)^{b_{2}}
$$

for large r, where $b_{1}>0$ and $b_{2} \geq 0$.
For simplicity, set

$$
r_{0}=\min \left\{\tilde{r}_{1}, \tilde{r}_{2}\right\} .
$$

Consider

$$
\omega(r)=\frac{\log \varphi(1 / r)}{\log (1 / r)}
$$

for $0<r \leq r_{0}$; set $\omega(r)=\omega\left(r_{0}\right)$ for $r>r_{0}$. We further consider

$$
\eta(r)=\frac{\log \psi(1 / r)}{\log _{(2)}(1 / r)}
$$

for $0<r \leq r_{0}$; set $\eta(r)=\eta\left(r_{0}\right)$ for $r>r_{0}$.
For a compact set K in \mathbf{R}^{n}, we define

$$
K(r)=\left\{x \in \mathbf{R}^{n}: \delta_{K}(x) \leq r\right\}
$$

for $r \geq 0$, where $\delta_{K}(x)$ denotes the distance of x from K. For $0<\alpha \leq n$, we say that the $(n-\alpha)$-dimensional upper Minkowski content of K is finite if

$$
|K(r)| \leq C r^{\alpha} \quad \text { for small } r>0
$$

see the book by Mattila [7]. Note here that if K is a singleton, then its 0-dimensional upper Minkowski content is finite, and if K is a spherical surface, then its ($n-1$)-dimensional upper Minkowski content is finite. As examples of K, we may consider fractal type sets like Cantor sets or Koch curves.

Now we define variable exponents $p(\cdot)$ and $q(\cdot)$ by

$$
p(x)=1+\omega\left(\delta_{K}(x)\right)
$$

and

$$
q(x)=q_{0}+\eta\left(\delta_{K}(x)\right)
$$

for $x \in \mathbf{R}^{n}$ and $q_{0} \in \mathbf{R}$.
We here remark the following easy result.
Lemma 2. (cf. [9, Lemma 2.2]). $p(\cdot)$ and $q(\cdot)$ are continuous on \mathbf{R}^{n}.

3. Integrability results

Let us begin with the following result.
Lemma 3. ([9, Lemma 2.3]). Let K be a compact set in G whose ($n-\alpha$)-dimensional upper Minkowski content is finite. Then

$$
\int_{G} \delta_{K}(x)^{-\alpha}\left(\log \left(1+\delta_{K}(x)^{-1}\right)\right)^{-\beta} d x<\infty
$$

for every $\beta>1$.
Lemma 4. (cf. [4, Lemma 2.3], [9, Lemma 2.4]). Suppose the ($n-\alpha$)-dimensional upper Minkowski content of K is finite. If f is a measurable function on G with $\|f\|_{L^{p(\cdot)(\log L)^{q(\cdot)}(G)}} \leq 1$, then

$$
\int_{G}|f(x)|(\log (e+|f(y)|))^{q_{0}} \varphi(|f(x)|)^{\alpha} \psi(|f(x)|) d x \leq C .
$$

Proof. Consider the set

$$
G^{\prime}=\left\{x \in K\left(r_{0}\right) \cap G:|f(x)|<\delta(x)^{-\alpha}(\log (1 / \delta(x)))^{-\beta}\right\}
$$

where the constant β is determined later and $\delta(x)=\delta_{K}(x)$ for simplicity. If $x \in G^{\prime}$, then we have by (φ) and (ψ)

$$
\begin{aligned}
& |f(x)|(\log (e+|f(x)|))^{q_{0}} \varphi(|f(x)|)^{\alpha} \psi(|f(x)|) \\
& \leq C \delta(x)^{-\alpha}(\log (1 / \delta(x)))^{-\beta}(\log (1 / \delta(x)))^{q_{0}} \varphi(1 / \delta(x))^{\alpha} \psi(1 / \delta(x)) \\
& \leq C \delta(x)^{-\alpha}(\log (1 / \delta(x)))^{-\beta+q_{0}+\varepsilon_{3}}
\end{aligned}
$$

where $\varepsilon_{3}>\varepsilon_{1} \alpha$. If we take β so large that $\beta>1+q_{0}+\varepsilon_{3}$, then it follows from Lemma 3 that

$$
\int_{G^{\prime}}|f(x)|(\log (e+|f(x)|))^{q_{0}} \varphi(|f(x)|)^{\alpha} \psi(|f(x)|) d x \leq C .
$$

If $x \notin G^{\prime}$ and $\delta(x)<r_{0}$, then $|f(x)| \geq \delta(x)^{-\alpha}(\log (1 / \delta(x)))^{-\beta}$, so that

$$
\delta(x) \geq C|f(x)|^{-1 / \alpha}(\log |f(x)|)^{-\beta / \alpha}
$$

INTEGRABILITY OF MAXIMAL FUNCTIONS FOR GENERALIZED LEBESGUE SPACES $L^{p(\cdot)}(\log L)^{q(\cdot)} 5$
Hence, in view of Lemma 1, we see that

$$
\begin{aligned}
\frac{\log \varphi(1 / \delta(x))}{\log (1 / \delta(x))} \log |f(x)| & \geq \frac{\log \varphi\left(C|f(x)|^{1 / \alpha}(\log |f(x)|)^{\beta / \alpha}\right)}{\log \left(C|f(x)|^{1 / \alpha}(\log |f(x)|)^{\beta / \alpha}\right)} \log |f(x)| \\
& \geq \frac{\alpha \log (C \varphi(|f(x)|))}{\log |f(x)|+C \log (C \log |f(x)|)} \log |f(x)| \\
& =\alpha \log (C \varphi(|f(x)|))\left(1-\frac{C \log (C \log |f(x)|)}{\log |f(x)|+C \log (C \log |f(x)|)}\right) \\
& \geq \alpha \log \varphi(|f(x)|)-C,
\end{aligned}
$$

which yields

$$
\begin{aligned}
|f(x)|^{p(x)-1} & =\exp \left(\frac{\log \varphi(1 / \delta(x))}{\log (1 / \delta(x))} \log |f(x)|\right) \geq \exp (\alpha \log \varphi(|f(x)|)-C) \\
& =C \varphi(|f(x)|)^{\alpha}
\end{aligned}
$$

Similarly, we have

$$
\frac{\log \psi(1 / \delta(x))}{\log _{(2)}(1 / \delta(x))} \log _{(2)}|f(x)| \geq \log \psi(|f(x)|)-C
$$

which yields

$$
(\log |f(x)|)^{q(x)-q_{0}} \geq C \psi(|f(x)|)
$$

Thus it follows that

$$
\begin{aligned}
& \int_{K\left(r_{0}\right) \backslash G^{\prime}}|f(x)|(\log (e+|f(x)|))^{q_{0}} \varphi(|f(x)|)^{\alpha} \psi(|f(x)|) d x \\
& \leq C \int_{G}|f(x)|^{p(x)}\left(\log \left(c_{0}+|f(x)|\right)\right)^{q(x)} d x \leq C .
\end{aligned}
$$

Finally, since $p(x) \geq p_{1}>1$ when $\delta(x) \geq r_{0}$, we find

$$
\begin{aligned}
& \int_{G \backslash K\left(r_{0}\right)}|f(x)|(\log (e+|f(x)|))^{q_{0}} \varphi(|f(x)|)^{\alpha} \psi(|f(x)|) d x \\
& \leq C \int_{G}|f(x)|^{p(x)}\left(\log \left(c_{0}+|f(x)|\right)\right)^{q(x)} d x+C \leq C .
\end{aligned}
$$

The required assertion is now proved.

For simplicity, set

$$
\lambda(t)=t(\log (e+t))^{q_{0}} \varphi(t)^{\alpha} \psi(t)
$$

and consider a continuous function Λ such that

$$
C^{-1} \frac{\lambda(t)}{t} \leq \int_{1}^{t} \frac{\Lambda(s)}{s^{2}} d s \leq C \frac{\lambda(t)}{t} \quad \text { whenever } t>2
$$

The next lemma is an extension of Stein [14, Chapter 1], whose proof will be done along the same lines as in Stein [14, Chapter 1] (see [9]); for another proof, see Cianchi [1].

Lemma 5. ([9, Lemma 2.5]). For a locally integrable function f on G, the following are equivalent:
(i) $\int_{G} \lambda(|f(x)|) d x \leq A_{1}$;
(ii) $\int_{G}^{G} \Lambda(M f(x)) d x \leq A_{2}$,
where $A_{1}, A_{2}>1$ are constants (independent of f) such that $C^{-1} A_{1} \leq A_{2} \leq C A_{1}$.

4. Proof of Theorem B

By Lemmas 4 and 5, we have the following result.

Theorem 1. Let λ and Λ be as before Lemma 5. Suppose the $(n-\alpha)$-dimensional upper Minkowski content of K is finite. If $\|f\|_{L^{p(\cdot)}(\log L)^{q(\cdot)}(G)} \leq 1$, then

$$
\int_{G} \lambda(|f(x)|) d x \leq C
$$

or equivalently,

$$
\int_{G} \Lambda(M f(x)) d x \leq C
$$

Remark 1. Let $\varphi(r)=A(\log r)^{a_{2}}\left(\log _{(2)} r\right)^{a_{3}}$ for large r, where A, a_{2} and a_{3} are chosen so that φ is nondecreasing. Moreover, let $\psi(r)=B\left(\log _{(2)} r\right)^{b_{2}}$ for large r, where $B>0$ and $b_{2} \geq 0$. In this case, we can take

$$
\lambda(r)=r(\log r)^{a_{2} \alpha+q_{0}}\left(\log _{(2)} r\right)^{a_{3} \alpha+b_{2}}
$$

for large r.
(i) If $a_{2} \alpha+q_{0}>0$, then we can take

$$
\Lambda(r)=r(\log r)^{a_{2} \alpha+q_{0}-1}\left(\log _{(2)} r\right)^{a_{3} \alpha+b_{2}}
$$

for large r.
(ii) If $a_{2} \alpha+q_{0}=0$ and $a_{3} \alpha+b_{2}>0$, then we can take

$$
\Lambda(r)=r(\log r)^{-1}\left(\log _{(2)} r\right)^{a_{3} \alpha+b_{2}-1}
$$

for large r.
Thus Theorem 1 gives Theorem B in the Introduction and the following corollary.

Corollary 1. For $\alpha>0$, let K be a compact subset of G whose ($n-\alpha$)-dimensional upper Minkowski content is finite. Consider the exponents

$$
p(x)=1+\frac{a_{1}}{\log \left(1 / \delta_{K}(x)\right)}+\frac{a_{2} \log _{(2)}\left(1 / \delta_{K}(x)\right)}{\log \left(1 / \delta_{K}(x)\right)}
$$

and

$$
q(x)=q_{0}+\frac{b_{1}}{\log _{(2)}\left(1 / \delta_{K}(x)\right)}+\frac{b_{2} \log _{(3)}\left(1 / \delta_{K}(x)\right)}{\log _{(2)}\left(1 / \delta_{K}(x)\right)}
$$

when $\delta(x) \leq r_{0}$. If $a_{2}, b_{2}>0$ and $a_{1}, b_{1}, q_{0} \in \mathbf{R}$ are chosen so that $a_{2} \alpha+q_{0}>0, \omega(r)=$ $a_{1} / \log (1 / r)+a_{2}\left(\log _{(2)}(1 / r)\right) / \log (1 / r)$ and $\eta(r)=b_{1} / \log _{(2)}(1 / r)+b_{2}\left(\log _{(3)}(1 / r)\right) / \log _{(2)}(1 / r)$ are nondecreasing on $\left(0, r_{0}\right]$, then

$$
\begin{equation*}
\int_{G}|f(x)|(\log (1+|f(x)|))^{a_{2} \alpha+q_{0}}\left(\log _{(2)}(1+|f(x)|)\right)^{b_{2}} d x<\infty \tag{4.1}
\end{equation*}
$$

or equivalently,

$$
\int_{G} M f(x)(\log (1+M f(x)))^{a_{2} \alpha+q_{0}-1}\left(\log _{(2)}(1+M f(x))\right)^{b_{2}} d x<\infty
$$

for all $f \in L^{p(\cdot)}(\log L)^{q(\cdot)}(G)$.

5. Further remarks

In this section, we discuss the sharpness of Theorem 1 (Corollary 1).
If K is a compact subset of G, then we write

$$
\delta(x)=\delta_{K}(x)
$$

for simplicity.
Remark 2. We show that the exponents in (4.1) are sharp under the condition that

$$
C^{-1} r^{\alpha} \leq|K(r)| \leq C r^{\alpha} \quad \text { for } 0<r<r_{0} .
$$

In fact, if we replace $q(x)$ by

$$
\tilde{q}(x)=q_{0}+\frac{b_{1}}{\log _{(2)}(1 / \delta(x))}+\frac{b_{2} \log _{(3)}(1 / \delta(x))}{\log _{(2)}(1 / \delta(x))}-\frac{b_{3} \log _{(4)}(1 / \delta(x))}{\log _{(2)}(1 / \delta(x))}
$$

with $b_{3}>0$, then we can find $f \in L^{p(\cdot)}(\log L)^{\tilde{q}(\cdot)}(G)$ such that

$$
\int_{G}|f(x)|(\log (1+|f(x)|))^{a_{2} \alpha+q_{0}}\left(\log _{(2)}(1+|f(x)|)\right)^{b_{2}} d x=\infty
$$

To show this, we consider the function

$$
f(x)=\delta(x)^{-\alpha}(\log (1 / \delta(x)))^{-a_{2} \alpha-q_{0}-1}\left(\log _{(2)}(1 / \delta(x))\right)^{-b_{2}-1}\left(\log _{(3)}(1 / \delta(x))\right)^{-1}
$$

for $x \in G$ with $\delta(x) \leq r_{0}$; set $f(x)=0$ when $\delta(x)>r_{0}$. Then

$$
\begin{aligned}
& \int_{G} f(x)(\log (1+f(x)))^{a_{2} \alpha+q_{0}}\left(\log _{(2)}(1+f(x))\right)^{b_{2}} d x \\
\geq & C \int_{0}^{r_{0}} t^{-1}(\log (1 / t))^{-1}\left(\log _{(2)}(1 / t)\right)^{-1}\left(\log _{(3)}(1 / t)\right)^{-1} d t=\infty .
\end{aligned}
$$

Further, since $f(x) \leq \delta(x)^{-\alpha}$, we have for $t=\delta(x) \leq r_{0}$

$$
f(x)^{p(x)-1} \leq \exp \left(\alpha \log (1 / t) \frac{a_{1}+a_{2} \log _{(2)}(1 / t)}{\log (1 / t)}\right)=C(\log (1 / t))^{a_{2} \alpha}
$$

and

$$
\begin{aligned}
(\log f(x))^{\tilde{q}(x)-q_{0}} & \leq C \exp \left(\log _{(2)}(1 / t) \frac{b_{1}+b_{2} \log _{(3)}(1 / t)-b_{3} \log _{(4)}(1 / t)}{\log _{(2)}(1 / t)}\right) \\
& =C\left(\log _{(2)}(1 / t)\right)^{b_{2}}\left(\log _{(3)}(1 / t)\right)^{-b_{3}},
\end{aligned}
$$

so that

$$
\begin{aligned}
& \int_{G} f(x)^{p(x)}\left(\log \left(c_{0}+f(x)\right)\right)^{\tilde{q}(x)} d x \\
& \leq C \int_{0}^{r_{0}} t^{-1}(\log (1 / t))^{-1}\left(\log _{(2)}(1 / t)\right)^{-1}\left(\log _{(3)}(1 / t)\right)^{-b_{3}-1} d t<\infty
\end{aligned}
$$

Remark 3. Let

$$
p(x)=1+\frac{a_{1}}{\log (1 /|x|)}+\frac{a_{2} \log _{(2)}(1 /|x|)}{\log (1 /|x|)}+\frac{a_{3} \log _{(3)}(1 /|x|)}{\log (1 /|x|)}
$$

and

$$
q(x)=q_{0}+\frac{b_{1}}{\log _{(2)}(1 /|x|)}+\frac{b_{2} \log _{(3)}(1 /|x|)}{\log _{(2)}(1 /|x|)}
$$

for $x \in B_{0}=B\left(0, r_{0}\right)$ with $0<r_{0}<1 / e$, where $a_{2}, a_{3}, b_{2}>0, a_{1}, b_{1}, q_{0} \in \mathbf{R}, a_{2} n+q_{0}>0$, $\omega(r)=\left\{a_{1}+a_{2} \log _{(2)}(1 / r)+a_{3} \log _{(3)}(1 / r)\right\} / \log (1 / r)$ and $\eta(r)=\left\{b_{1}+b_{2} \log _{(3)}(1 / r)\right\} / \log _{(2)}(1 / r)$ are nondecreasing on $\left(0, r_{0}\right]$. Then we can find $f \in L^{p(\cdot)}(\log L)^{q(\cdot)}\left(B_{0}\right)$ such that $M f$ fails to belong to $L^{p(\cdot)}(\log L)^{q(\cdot)}\left(B_{0}\right)$.

For this purpose, consider

$$
f(y)=|y|^{-n}(\log (1 /|y|))^{-\beta}
$$

for $y \in B_{0}$ and β such that $a_{2} n+q_{0}+1<\beta<a_{2} n+q_{0}+2$ or $\beta=a_{2} n+q_{0}+1$ and $a_{3} n+b_{2}<-1$. Then we see that

$$
|f(y)|^{p(y)-1} \leq C(\log (1 /|y|))^{a_{2} n}\left(\log _{(2)}(1 /|y|)\right)^{a_{3} n}
$$

and

$$
(\log |f(y)|)^{q(y)-q_{0}} \leq C(\log (1 /|y|))^{b_{2}}
$$

for $y \in B_{0}$, so that

$$
\begin{aligned}
& \int_{B_{0}}|f(y)|^{p(y)}\left(\log \left(c_{0}+|f(y)|\right)\right)^{q(y)} d y \\
\leq & C \int_{0}^{1 / e} t^{-1}(\log (1 / t))^{-\beta+a_{2} n+q_{0}}\left(\log _{(2)}(1 / t)\right)^{a_{3} n+b_{2}} d t<\infty
\end{aligned}
$$

by our assumption on β.
On the other hand,

$$
M f(x) \geq \frac{1}{|B(x, 2|x|)|} \int_{B(x, 2|x|)}|y|^{-n}(\log (1 /|y|))^{-\beta} d y \geq C|x|^{-n}(\log (1 /|x|))^{-\beta+1}
$$

since $\beta>1$. Hence

$$
\begin{aligned}
& \int_{B_{0}} M f(x)^{p(x)}\left(\log \left(c_{0}+M f(x)\right)\right)^{q(x)} d x \\
\geq & C \int_{0}^{1 / e} t^{-1}(\log (1 / t))^{-\beta+a_{2} n+q_{0}+1}\left(\log _{(2)}(1 / t)\right)^{a_{3} n+b_{2}} d t=\infty
\end{aligned}
$$

which implies that $M f \notin L^{p(\cdot)}(\log L)^{q(\cdot)}\left(B_{0}\right)$.

Remark 4. Let

$$
p(x)=p_{0}+\frac{a_{1}}{\log (1 /|x|)}
$$

and

$$
q(x)=q_{0}+\frac{b_{1}}{\log _{(2)}(1 /|x|)}
$$

for $x \in B_{0}=B\left(0, r_{0}\right)$ with $0<r_{0}<1 / e$, where $a_{1}, b_{1}, q_{0} \in \mathbf{R}, p_{0}>1$ and $\inf _{x \in B_{0}} p(x)>1$. Then, in view of Diening [3], we see that $f \in L^{p(\cdot)}(\log L)^{q(\cdot)}\left(B_{0}\right)$ if and only if $M f \in L^{p(\cdot)}(\log L)^{q(\cdot)}\left(B_{0}\right)$.

References

[1] A. Cianchi, Strong and weak type inequalities for some classical operators in Orlicz spaces, J. London Math. Soc. (2) 60 (1999), 187-202.
[2] D. Cruz-Uribe, SFO, A. Fiorenza and C. J. Neugebauer, $L \log L$ results for the maximal operator in variable L^{p} spaces, to appear in Trans. Amer. Math. Soc.
[3] L. Diening, Maximal functions in generalized $L^{p(\cdot)}$ spaces, Math. Inequal. Appl. 7(2) (2004), 245-254.
[4] T. Futamura and Y. Mizuta, Maximal functions for Lebesgue spaces with variable exponent approaching 1, Hiroshima Math. J. 36 (2006), no. 1, 23-28.
[5] P. Hästö, The maximal operator in Lebesgue spaces with variable exponent near 1, Math. Nachr. 280 (2007), no. 1-2, 74-82.
[6] O. Kováčik and J. Rákosník, On spaces $L^{p(x)}$ and $W^{k, p(x)}$, Czechoslovak Math. J. 41 (1991), 592-618.
[7] P. Mattila, Geometry of sets and measures in Euclidean spaces, Cambridge Studies in Advanced Mathematics, 44. Cambridge University Press, Cambridge, 1995.
[8] Y. Mizuta, Potential theory in Euclidean spaces, Gakkōtosyo, Tokyo, 1996.
[9] Y. Mizuta, T. Ohno and T. Shimomura, Integrability of maximal functions for generalized Lebesgue spaces with variable exponent, Math. Nachr. 281 (2008), no. 3, 386-395.
[10] J. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Mathematics, 1034, Springer-Verlag, Berlin, 1983.

INTEGRABILITY OF MAXIMAL FUNCTIONS FOR GENERALIZED LEBESGUE SPACES $L^{p(\cdot)}(\log L)^{q(\cdot)} 9$
[11] W. Orlicz, Über konjugierte Exponentenfolgen, Studia Math. 3 (1931), 200-211.
[12] M. Rưžička, Electrorheological fluids : modeling and Mathematical theory, Lecture Notes in Math. 1748, Springer, 2000.
[13] E. M. Stein, Note on the class $L \log L$, Studia Math. 32 (1969), 305-310.
[14] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, 1970.
(Yoshihiro Mizuta) The Division of Mathematical and Information Sciences, Faculty of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, 739-8521, Japan

E-mail address: yomizuta@hiroshima-u.ac.jp
(Takao Ohno) General Arts, Hiroshima National College of Maritime Technology, Higashino, Oosakikamijima, Toyotagun, 725-0231, Japan

E-mail address: ohno@hiroshima-cmt.ac.jp
(Tetsu Shimomura) Department of Mathematics, Graduate School of Education, Hiroshima University, Higashi-Hiroshima, 739-8524, Japan

E-mail address: tshimo@hiroshima-u.ac.jp

[^0]: 2000 Mathematics Subject Classification. Primary 46E30, 42B25.
 Key words and phrases. maximal functions, Lebesgue spaces with variable exponent, Minkowski content.

