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Abstract

Our aim in this paper is to study Musielak-Orlicz-Sobolev spaces on
metric measure spaces. We consider a Haj lasz type condition and a New-
tonian type condition. We prove that Lipschitz continuous functions are
dense as well as other basic properties. We study the relationship between
these spaces, and discuss Lebesgue point theorem in these spaces. We also
deal with the boundedness of the Hardy-Littlewood maximal operator on
Musielak-Orlicz spaces. As an application of the boundedness of the Hardy-
Littlewood maximal operator, we establish a generalization of Sobolev’s in-
equality for Sobolev functions in Musielak-Orlicz-Haj lasz-Sobolev spaces.

1 Introduction

Sobolev spaces on metric measure spaces have been studied during the last two
decades, see [6, 21, 23, 33, 52], etc.. The theory was generalized to Orlicz-Sobolev
spaces on metric measure spaces in [4, 5, 54]. We refer [1, 2, 15, 55] for Sobolev
spaces on RN , [9, 14] for variable exponent Sobolev spaces, [51] for Musielak-Orlicz
spaces, [16] for the study of differential equations of divergence form in Musielak-
Sobolev spaces and [17] for the study of uniform convexity of Musielak-Orlicz-
Sobolev spaces and its applications to variational problems. In the last decade,
variable exponent Sobolev spaces on metric measure spaces have been developed,
see e.g. [19, 20, 31, 32, 49]. The purpose of this paper is to define Musielak-Orlicz-
Sobolev spaces on metric measure spaces and prove the basic properties of such
spaces.
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There are two ways to define the first order Sobolev spaces on metric measure
spaces. Haj lasz ([21]) showed that a p-integrable function u, 1 < p < ∞, belongs
to W 1,p(RN) if and only if there exists a non-negative p-integrable function g such
that

|u(x) − u(y)| ≤ |x− y|(g(x) + g(y)) (1.1)

for almost every x, y ∈ RN . If we replace |x − y| by the distance of the points x
and y, (1.1) can be stated in metric measure spaces . Spaces defined by using (1.1)
are called Haj lasz-Sobolev spaces. See also [23, 33]. The theory was generalized
to Orlicz-Sobolev spaces by Aı̈ssaoui ([4, 5]). For the Sobolev capacity on Haj lasz-
Sobolev spaces, see [37]. By the classical Lebesgue differentiation theorem, almost
every point is a Lebesgue point for a locally integrable function. For the Lebesgue
point theorem in Haj lasz-Sobolev spaces, we refer the reader to [36].

Another way is to use weak upper gradients. A nonnegative Borel measurable
function h is said to be an upper gradient of u if

|u(x) − u(y)| ≤
∫
γ

h ds (1.2)

for every x, y and curve connecting x to y. Upper gradients were introduced by
Heinonen and Koskela ([34]) as a tool to study quasiconformal maps. If (1.2)
holds for a function u on every curve not belonging to an exceptional family of
p-modulus zero in metric measure spaces, we call h a weak upper gradient of u.
We call these spaces Newtonian spaces or Newton-Sobolev spaces. The study of
Newton-Sobolev spaces was initiated by Shanmugalingam ([52]). See also [6]. The
theory was generalized to Orlicz-Sobolev spaces by Tuominen ([54]).

Variable exponent Lebesgue spaces and Sobolev spaces were introduced to dis-
cuss nonlinear partial differential equations with non-standard growth conditions
(see [9, 14]). See also [25, 26], etc.. Harjulehto, Hästö and Pere ([32]) studied basic
properties of the variable exponent Haj lasz-Sobolev space and the variable expo-
nent Newton-Sobolev space. For the Lebesgue point theorem in variable exponent
spaces, see e.g. [24].

The Hardy-Littlewood maximal operator is a classical tool in harmonic analysis
and studying Sobolev functions and partial differential equations and plays a cen-
tral role in the study of differentiation, singular integrals, smoothness of functions
and so on (see [7, 35, 41, 53], etc.). It is well known that the Hardy-Littlewood max-
imal operator is bounded on the Lebesgue space Lp(RN) if p > 1 (see [53]). See, e.g.
[8] for Orlicz spaces, [10, 11] for variable exponent Lebesgue spaces Lp(·), [43, 48] for
the two variable exponents spaces Lp(·)(logL)q(·). These spaces are special cases of
so-called Musielak-Orlicz spaces ([44, 51], etc.). We refer [16] for the study of dif-
ferential equations of divergence form in Musielak-Sobolev spaces and [17] for the
study of uniform convexity of Musielak-Orlicz-Sobolev spaces and its applications
to variational problems. For general Musielak-Orlicz spaces, see [12]. In bounded
doubling metric measure spaces, the boundedness of the Hardy-Littlewood max-
imal operator on variable exponent Lebesgue spaces Lp(·) was studied in [20, 31].
See also [3].
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One of the important applications of the boundedness of the Hardy-Littlewood
maximal operator is Sobolev’s inequality; in the classical case,

∥Iα ∗ f∥Lp∗ (RN ) ≤ C∥f∥Lp(RN )

for f ∈ Lp(RN), 0 < α < N and 1 < p < N/α, where Iα is the Riesz kernel of order
α and 1/p∗ = 1/p−α/N (see, e.g. [2, Theorem 3.1.4]). This result was extended to
Orlicz spaces in [8] and [50]. In the Euclidean setting, variable exponent versions
were discussed in [13, 39, 40, 44, 48], etc.. For variable exponent versions on metric
measure spaces, see, e.g. [20, 29].

In this paper, we define Musielak-Orlicz-Newton-Sobolev spaces as well as
Musielak-Orlicz-Haj lasz-Sobolev spaces on metric measure spaces and prove the
basic properties of such spaces.

This present paper is organized as follows. In Section 2, we define Musielak-
Orlicz spaces on metric measure spaces.

In Section 3, we study basic properties of Musielak-Orlicz-Haj lasz-Sobolev
spaces. We show that Lipschitz continuous functions are dense and study a re-
lated Sobolev type capacity. We prove that every point except in a small set is a
Lebesgue point for Sobolev functions in Musielak-Orlicz-Haj lasz-Sobolev spaces.

In Section 4, we study basic properties of Musielak-Orlicz-Newton-Sobolev
spaces. We show that Lipschitz continuous functions are dense if the measure
is doubling and study a related Sobolev type capacity. We discuss Lebesgue point
theorem in Musielak-Orlicz-Newton-Sobolev spaces.

In Section 5, we study the relationship between Musielak-Orlicz-Haj lasz-Sobolev
spaces and Musielak-Orlicz-Newton-Sobolev spaces in a metric measure space (see
Theorem 5.4).

In Section 6, we show that the Hardy-Littlewood maximal operator is bounded
on Musielak-Orlicz spaces in our setting (see Theorem 6.3).

In Section 7, as an application of the boundedness of the Hardy-Littlewood max-
imal operator, we shall give a general version of Sobolev’s inequality for Sobolev
functions in Musielak-Orlicz-Haj lasz-Sobolev spaces (see Theorem 7.7). By treat-
ing such general setting, we can obtain new results (e.g., Corollaries 7.6 and 7.8).

In Section 8, we discuss Fuglede’s theorem for Musielak-Orlicz-Sobolev spaces
in the Euclidean setting.

2 Musielak-Orlicz spaces

Throughout this paper, let C denote various positive constants independent of the
variables in question.

We denote by (X, d, µ) a metric measure space, where X is a set, d is a metric
on X and µ is a nonnegative complete Borel regular outer measure on X which is
finite in every bounded set. For simplicity, we often write X instead of (X, d, µ).
For x ∈ X and r > 0, we denote by B(x, r) the open ball centered at x with radius
r and dΩ = sup{d(x, y) : x, y ∈ Ω} for a set Ω ⊂ X.

3



For a measurable function Q(·) satisfying

0 < Q− := inf
x∈X

Q(x) ≤ sup
x∈X

Q(x) =: Q+ < ∞,

we say that a measure µ is lower Ahlfors Q(x)-regular if there exists a constant
c0 > 0 such that

µ(B(x, r)) ≥ c0r
Q(x)

for all x ∈ X and 0 < r < dX . Further, µ is Ahlfors Q(x)-regular if there exists a
constant c1 > 0 such that

c−1
1 rQ(x) ≤ µ(B(x, r)) ≤ c1r

Q(x)

for all x ∈ X and 0 < r < dX . We say that the measure µ is a doubling measure,
if there exists a constant c2 > 0 such that µ(B(x, 2r)) ≤ c2µ(B(x, r)) for every
x ∈ X and 0 < r < dX . We say that X is a doubling space if µ is a doubling
measure.

We consider a function

Φ(x, t) = tϕ(x, t) : X × [0,∞) → [0,∞)

satisfying the following conditions (Φ1) – (Φ4):

(Φ1) ϕ( · , t) is measurable on X for each t ≥ 0 and ϕ(x, · ) is continuous on [0,∞)
for each x ∈ X;

(Φ2) there exists a constant A1 ≥ 1 such that

A−1
1 ≤ ϕ(x, 1) ≤ A1 for all x ∈ X;

(Φ3) ϕ(x, ·) is uniformly almost increasing, namely there exists a constant A2 ≥ 1
such that

ϕ(x, t) ≤ A2ϕ(x, s) for all x ∈ X whenever 0 ≤ t < s;

(Φ4) there exists a constant A3 > 1 such that

ϕ(x, 2t) ≤ A3ϕ(x, t) for all x ∈ X and t > 0.

Note that (Φ2), (Φ3) and (Φ4) imply

0 < inf
x∈X

ϕ(x, t) ≤ sup
x∈X

ϕ(x, t) < ∞

for each t > 0.
Let ϕ̄(x, t) = sup0≤s≤t ϕ(x, s) and

Φ(x, t) =

∫ t

0

ϕ̄(x, r) dr
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for x ∈ X and t ≥ 0. Then Φ(x, ·) is convex and

1

2A3

Φ(x, t) ≤ Φ(x, t) ≤ A2Φ(x, t) (2.1)

for all x ∈ X and t ≥ 0.
By (Φ3), we see that

Φ(x, at)

{
≤ A2aΦ(x, t) if 0 ≤ a ≤ 1

≥ A−1
2 aΦ(x, t) if a ≥ 1.

(2.2)

We shall also consider the following conditions:

(Φ5) for every γ1, γ2 > 0, there exists a constant Bγ1,γ2 ≥ 1 such that

ϕ(x, t) ≤ Bγ1,γ2ϕ(y, t)

whenever d(x, y) ≤ γ1t
−1/γ2 and t ≥ 1;

(Φ6) there exist x0 ∈ X, a function g ∈ L1(X) and a constant B∞ ≥ 1 such that
0 ≤ g(x) < 1 for all x ∈ X and

B−1
∞ Φ(x, t) ≤ Φ(x′, t) ≤ B∞Φ(x, t)

whenever d(x′, x0) ≥ d(x, x0) and g(x) ≤ t ≤ 1.

Example 2.1. Let p(·) and qj(·), j = 1, . . . , k, be measurable functions on X such
that

(P1) 1 < p− := infx∈X p(x) ≤ supx∈X p(x) =: p+ < ∞

and

(Q1) −∞ < q−j := infx∈X qj(x) ≤ supx∈X qj(x) =: q+j < ∞

for all j = 1, . . . , k.
Set Lc(t) = log(c+t) for c ≥ e and t ≥ 0, L

(1)
c (t) = Lc(t), L

(j+1)
c (t) = Lc(L

(j)
c (t))

and

Φ(x, t) = tp(x)
k∏

j=1

(L(j)
c (t))qj(x).

Then, Φ(x, t) satisfies (Φ1), (Φ2), (Φ3) and (Φ4).
Φ(x, t) satisfies (Φ5) if

(P2) p(·) is log-Hölder continuous, namely

|p(x) − p(y)| ≤ Cp

Le(1/d(x, y))
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with a constant Cp ≥ 0 and

(Q2) qj(·) is j-log-Hölder continuous, namely

|qj(x) − qj(y)| ≤
Cqj

L
(j)
e (1/d(x, y))

with constants Cqj ≥ 0, j = 1, . . . k.

Example 2.2. Let p1(·), p2(·), q1(·) and q2(·) be measurable functions on X sat-
isfying (P1) and (Q1).

Then,

Φ(x, t) = (1 + t)p1(x)(1 + 1/t)−p2(x)Lc(t)
q1(x)Lc(1/t)

−q2(x)

satisfies (Φ1), (Φ2) and (Φ4). It satisfies (Φ3) if p−j > 1, j = 1, 2 or q−j ≥ 0,
j = 1, 2. As a matter of fact, it satisfies (Φ3) if and only if pj(·) and qj(·) satisfy
the following conditions:

(1) qj(x) ≥ 0 at points x where pj(x) = 1, j = 1, 2;

(2) supx:pj(x)>1

{
min(qj(x), 0) log(pj(x) − 1)

}
< ∞.

Moreover, we see that Φ(x, t) satisfies (Φ5) if p1(·) is log-Hölder continuous and
q1(·) is 2-log-Hölder continuous.

Example 2.3. Let Φ(·, ·) be as in Example 2.1 and fix x0 ∈ X. Let κ and c be
positive constants. If µ satisfies µ(B(x0, r)) ≤ crκ for all r ≥ 1 and

(P3) p(·) is log-Hölder continuous at ∞, namely

|p(x) − p(x′)| ≤ Cp.∞

Le(d(x, x0))
for d(x′, x0) ≥ d(x, x0)

with a constant Cp,∞ ≥ 0,

then Φ(·, ·) satisfies (Φ6) with g(x) = 1/(1 + d(x, x0))
κ+1.

Example 2.4. Let Φ(·, ·) be as in Example 2.2 and fix x0 ∈ X. Let κ and c be
positive constants. If µ satisfies µ(B(x0, r)) ≤ crκ for all r ≥ 1, p2(·) satisfies (P3)
and

(Q3) q2(·) is 2-log-Hölder continuous at ∞, namely

|q2(x) − q2(x
′)| ≤ Cq2,∞

L
(2)
c (d(x, x0))

for d(x′, x0) ≥ d(x, x0)

with a constant Cq2,∞ ≥ 0,

then Φ(·, ·) satisfies (Φ6) with g(x) = 1/(1 + d(x, x0))
κ+1.
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We say that u is a locally integrable function on X if u is an integrable function
on all balls B in X. From now on, we assume that Φ(x, t) satisfies (Φ1), (Φ2),
(Φ3) and (Φ4). Then the associated Musielak-Orlicz space

LΦ(X) =

{
f ∈ L1

loc(X) ;

∫
X

Φ
(
y, |f(y)|

)
dµ(y) < ∞

}
is a Banach space with respect to the norm

∥f∥LΦ(X) = inf

{
λ > 0 ;

∫
X

Φ
(
y, |f(y)|/λ

)
dµ(y) ≤ 1

}
(cf. [51]).

For a measurable function f on X, we define the modular ρΦ(f) by

ρΦ(f) =

∫
X

Φ(y, |f(y)|) dµ(y).

Lemma 2.5 ([46, Lemma 2.2] and [51, Theorem 8.14]). Let {fi} be a sequence in
LΦ(X). Then ρΦ(fi) converges to 0 if and only if ∥fi∥LΦ(X) converges to 0.

3 Musielak-Orlicz-Haj lasz-Sobolev spaces M 1,Φ(X)

3.1 Basic properties

We say that a function u ∈ LΦ(X) belongs to Musielak-Orlicz-Haj lasz-Sobolev
spaces M1,Φ(X) if there exists a nonnegative function g ∈ LΦ(X) such that

|u(x) − u(y)| ≤ d(x, y)(g(x) + g(y)) (3.1)

for µ-almost every x, y ∈ X. Here, we call the function g a Haj lasz gradient of u.
We define the norm

∥u∥M1,Φ(X) = ∥u∥LΦ(X) + inf ∥g∥LΦ(X),

where the infimum is taken over all Haj lasz gradients of u. For the case when
Φ(x, t) = tp, the spaces M1,p(X) were first introduced by P. Haj lasz [21] as a
generalization of the classical Sobolev spaces W 1,p(RN) to the general setting of
the quasi-metric measure spaces. For variable exponent spaces M1,p(·)(X), see [32].

Since LΦ(X) is a Banach space, standard arguments yield the following propo-
sitions (see [32]).

Proposition 3.1 (cf. [32, Proposition 3.1]). If LΦ(X) is reflexive, then for every
u ∈ M1,Φ(X), there exist Haj lasz gradients of u which minimizes the norm. More-
over, if ∥ · ∥LΦ(X) is a uniformly convex norm, then there exists a unique Haj lasz
gradient of u which minimizes the norm.
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Remark 3.2. We say that Φ(x, t) is uniformly convex on X if for any ε > 0 there
exists a constant δ > 0 such that

|a− b| ≤ εmax{|a|, |b|} or Φ

(
x,

|a + b|
2

)
≤ (1 − δ)

Φ (x, |a|) + Φ (x, |b|)
2

for all a, b ∈ R and x ∈ X. By [14, Section 2.4], if Φ(x, t) is uniformly convex on
X, then the norm ∥ · ∥LΦ(X) is a uniformly convex.

Proposition 3.3 (cf. [32, Theorem 3.3]). M1,Φ(X) is a Banach space.

Proposition 3.4 (cf. [21, Theorem 5]). For every u ∈ M1,Φ(X) and ε > 0, there
exists a Lipschitz function h ∈ M1,Φ(X) such that

(1) µ ({x ∈ X : u(x) ̸= h(x)}) ≤ ε;

(2) ∥u− h∥M1,Φ(X) ≤ ε.

Proof. For u ∈ M1,Φ(X), we take g ∈ LΦ(X) which is a Haj lasz gradient of u. Set

Eλ = {x ∈ X : |u(x)| ≤ λ and g(x) ≤ λ}.

Note that u is Lipschitz continuous with a constant 2λ on Eλ. By McShane exten-
sion [47], we extend u to a Lipschitz function ū on X, where

ū(x) = inf
y∈Eλ

{u(y) + 2λ dist(x, y)}.

We modify this extension by truncating:

uλ = (sign ū) min{|ū|, λ}.

Then uλ is Lipschitz continuous with a constant 2λ, u = uλ on Eλ and |uλ| ≤ λ.
For every λ > 1, we see from (Φ2), (Φ3), (Φ4) and (2.2) that

µ({x ∈ X : u(x) ̸= uλ(x)}) ≤ µ(X \ Eλ)

≤ A1A2

∫
X\Eλ

Φ

(
x,

|u(x)| + g(x)

λ

)
dµ(x)

≤ A1A
2
2

{∫
X\Eλ

Φ

(
x,

2|u(x)|
λ

)
dµ(x) +

∫
X\Eλ

Φ

(
x,

2g(x)

λ

)
dµ(x)

}
≤ A1A

3
2

λ

{∫
X\Eλ

Φ (x, 2|u(x)|) dµ(x) +

∫
X\Eλ

Φ (x, 2g(x)) dµ(x)

}
≤ 2A1A

3
2A3

λ

{∫
X\Eλ

Φ (x, |u(x)|) dµ(x) +

∫
X\Eλ

Φ (x, g(x)) dµ(x)

}
.
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Hence we have µ({x ∈ X : u(x) ̸= uλ(x)}) → 0 as λ → ∞. Since uλ ≤ λ ≤ |u| + g
in X \ Eλ, we find by (Φ3) and (Φ4) that∫

X

Φ(x, |u(x) − uλ(x)|) dµ(x)

=

∫
X\Eλ

Φ(x, |u(x) − uλ(x)|) dµ(x)

≤ A2

∫
X\Eλ

Φ(x, |u(x)| + |uλ(x)|) dµ(x)

≤ A2
2

∫
X\Eλ

{Φ(x, 2|u(x)|) + Φ(x, 2|uλ(x)|)} dµ(x)

≤ 2A2
2A3

∫
X\Eλ

{Φ(x, |u(x)|) + Φ(x, |uλ(x)|)} dµ(x)

≤ 2A3
2A3

∫
X\Eλ

{Φ(x, |u(x)|) + Φ(x, |u(x)| + g(x))} dµ(x)

≤ 4A4
2A

2
3

∫
X\Eλ

{Φ(x, |u(x)|) + Φ(x, |u(x)|) + Φ(x, g(x))} dµ(x)

≤ 8A4
2A

2
3

∫
X\Eλ

{Φ(x, |u(x)|) + Φ(x, g(x))} dµ(x).

Since u, g ∈ LΦ(X) and µ(X \ Eλ) → 0 as λ → ∞, ρΦ(u − uλ) converges to 0 as
λ → ∞. Therefore, we see from Lemma 2.5 and (2.1) that ∥u−uλ∥LΦ(X) converges
to 0 as λ → ∞.

Next we consider the function gλ = (g + 3λ)χX\Eλ
, where χE denotes the

characteristic function of E. Note that gλ is a Haj lasz gradient of u−uλ. We have
by (Φ3) and (Φ4) that∫

X

Φ(x, gλ(x)) dµ(x) =

∫
X\Eλ

Φ(x, g(x) + 3λ) dµ(x)

≤ 8A2A
3
3

∫
X\Eλ

{Φ(x, g(x)) + Φ(x, λ)} dµ(x)

≤ 8A2
2A

3
3

∫
X\Eλ

{Φ(x, g(x)) + Φ(x, |u(x)| + g(x))} dµ(x)

≤ 32A3
2A

4
3

∫
X\Eλ

{Φ(x, g(x)) + Φ(x, |u(x)|)} dµ(x)

and the above discussions implies that ∥gλ∥LΦ(X) converges to 0 as λ → ∞. Thus
the proposition is proved.

For a locally integrable function u on X and a ball B(x, r) ⊂ X, we define the
mean integral:

uB(x,r) = −
∫
B(x,r)

u(y) dµ(y) =
1

µ(B(x, r))

∫
B(x,r)

u(y) dµ(y).
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We introduce a fractional sharp maximal operator. For every locally integrable
function u on X, we define

u♯(x) = sup
r>0

1

r
−
∫
B(x,r)

|u(x) − uB(x,r)| dµ(x).

For a locally integrable function u on X, the Hardy-Littlewood maximal func-
tion Mu is defined by

Mu(x) = sup
r>0

1

µ(B(x, r))

∫
B(x,r)

|u(y)| dµ(y).

The following is a generalization of [22, Theorem 3.4], [23, Theorem 3.1] and
[32, Theorem 5.2] (see also [18]).

For a, b ∈ R, we write a ∼ b if C−1a ≤ b ≤ Ca for a constant C > 0.

Theorem 3.5. Let X be a doubling space. Suppose the Hardy-Littlewood max-
imal operator is bounded on LΦ(X). Then the following three statements are
equivalent:

(i) u ∈ M1,Φ(X).

(ii) u ∈ LΦ(X) and there exists a nonnegative function g ∈ LΦ(X) such that
the Poincaré inequality

−
∫
B(z,r)

|u(x) − uB(z,r)|dµ(x) ≤ Cr −
∫
B(z,r)

g(x)dµ(x)

holds for every z ∈ X and r > 0.

(iii) u ∈ LΦ(X) and u♯ ∈ LΦ(X).

Moreover, we obtain

∥u∥M1,Φ(X) ∼ ∥u∥LΦ(X) + ∥u♯∥LΦ(X)

for all u ∈ LΦ(X).

This theorem is proved as in [22, Theorem 3.4].

3.2 Sobolev capacity on Musielak-Orlicz-Haj lasz-Sobolev
spaces

For u ∈ M1,Φ(X), we define

ρ̃Φ(u) = ρΦ(u) + inf ρΦ(g),

where the infimum is taken over all Haj lasz gradients of u. For E ⊂ X, we write

SΦ(E) = {u ∈ M1,Φ(X) : u ≥ 1 in an open set containing E}.
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The Sobolev capacity in Musielak-Orlicz-Haj lasz-Sobolev spaces is defined by

CΦ(E) = inf
u∈SΦ(E)

ρ̃Φ(u).

In case SΦ(E) = ∅, we set CΦ(E) = ∞.

Remark 3.6. We can redefine the Sobolev capacity in Musielak-Orlicz-Haj lasz-
Sobolev spaces by

CΦ(E) = inf
u∈S′

Φ(E)
ρ̃Φ(u)

since M1,Φ(X) is lattice (see [37, Lemma 2.4]), where

S ′
Φ(E) = {u ∈ SΦ(X) : 0 ≤ u ≤ 1}.

The standard argument yields the following results (see [32, Theorem 3.11] and
[37, Theorem 3.2, Remark 3.3 and Lemma 3.4].

Proposition 3.7. The set function CΦ(·) satisfies the following properties:

(1) CΦ(·) is an outer measure;

(2) CΦ(∅) = 0;

(3) CΦ(E1) ≤ CΦ(E2) for E1 ⊂ E2 ⊂ X;

(4) CΦ(E) = inf
E⊂U,U:open

CΦ(U) for E ⊂ X (CΦ(·) is an outer capacity);

(5) If K1 ⊃ K2 ⊃ · · · are compact sets on X, then

lim
i→∞

CΦ(Ki) = CΦ

(
∞∩
i=1

Ki

)
.

Further, as in the proof of [38, Theorem 4.1], we have the following result by
[14, Theorem 2.2.8].

Proposition 3.8. If LΦ(X) is reflexive and E1 ⊂ E2 ⊂ · · · are subsets of X, then

lim
i→∞

CΦ(Ei) = CΦ

(
∞∪
i=1

Ei

)
.

We say that a property holds CΦ-q.e. in X, if it holds except of a set F ⊂ X
with CΦ(F ) = 0.

Theorem 3.9. For each Cauchy sequence of functions in M1,Φ(X)∩C(X), there is
a subsequence which converges pointwise CΦ-q.e. in X. Moreover, the convergence
is uniform outside a set of arbitrary small Sobolev capacity in Musielak-Orlicz-
Haj lasz-Sobolev spaces.
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Proof. Let {ui} be a Cauchy sequence of functions in M1,Φ(X)∩C(X). Since, for
all 0 < ε < 1, ∥u∥M1,Φ(X) < ε implies ρ̃Φ(u) < ε, we can take a subsequence of
{ui}, which we still denote by {ui}, such that ρ̃Φ(ui−ui+1) ≤ 2−iA−1

2 (2A3)
−i−1 for

each positive integers i. Consider the set

Ei = {x ∈ X : |ui(x) − ui+1(x)| > 2−i}

and Fj =
∪∞

i=j Ei. Here note that 2i|ui − ui+1| ∈ SΦ(Ei) by continuity of ui. Since
gi is also a Haj lasz gradient of |ui−ui+1| if gi is a Haj lasz gradient of ui−ui+1, we
have by (Φ4) and (2.1) that

CΦ(Ei) ≤ ρ̃Φ(2i|ui − ui+1|) ≤ A2(2A3)
i+1ρ̃Φ(ui − ui+1) ≤ 2−i.

Then it follows from Proposition 3.7 that

CΦ(Fj) ≤
∞∑
i=j

CΦ(Ei) ≤ 2−j+1.

Hence, we obtain

CΦ

(
∞∩
j=1

Fj

)
≤ lim

j→∞
CΦ(Fj) = 0

and {ui} converges in X \
∩∞

j=1 Fj. Moreover we find

|uj(x) − uk(x)| ≤
k−1∑
i=j

|ui(x) − ui+1(x)| ≤ 2−j+1

whenever x ∈ X \ Fj for every k > j, which implies {ui} converges uniformly in
X \ Fj.

We say that a function u is CΦ-quasicontinuous on X if, for any ε > 0, there
is a set E such that CΦ(E) < ε and u is continuous on X \E. By Proposition 3.4
and Theorem 3.9, we have the following result.

Proposition 3.10. For each u ∈ M1,Φ(X), there is a CΦ-quasicontinuous function
v ∈ M1,Φ(X) such that u = v µ-a.e. in X.

As in the proof of [37, Lemma 4.1], we have the following result.

Lemma 3.11. µ(E) ≤ CCΦ(E) for every E ⊂ X.

In fact, note that for u ∈ SΦ(E)

µ(E) ≤ A1A2

∫
X

Φ(x, |u(x)|) dµ(x) ≤ 2A1A2A3ρΦ(u)

by (2.1), (Φ2) and (Φ3).

12



Theorem 3.12. Suppose Φ(x, t) satisfies (Φ5). Then there exists a constant C > 0
such that

CΦ(B(x0, r)) ≤ CΦ(x0, r
−1)µ(B(x0, 2r))

for all x0 ∈ X and 0 < r ≤ 1.

Proof. Define

u(x) =


2r − d(x, x0)

r
x ∈ B(x0, 2r) \B(x0, r),

1 x ∈ B(x0, r),
0 x ∈ X \B(x0, 2r)

and

g(x) =

{ 1

r
x ∈ B(x0, 2r),

0 x ∈ X \B(x0, 2r).

Then note from [37, Theorem 4.6] that g is a Haj lasz gradient of u and u ∈
SΦ(B(x0, r)). Hence, we have by (Φ2), (Φ3), (Φ5) and (2.1)

CΦ(B(x0, r)) ≤
∫
B(x0,2r)

Φ(x, u(x)) dµ(x) +

∫
B(x0,2r)

Φ(x, g(x)) dµ(x)

≤ A2

∫
B(x0,2r)

Φ(x, u(x)) dµ(x) + A2

∫
B(x0,2r)

Φ(x, r−1) dµ(x)

≤ A1A
2
2µ(B(x0, 2r)) + A2B2,1Φ(x0, r

−1)µ(B(x0, 2r))

≤ A2(A
2
1A

2
2 + B2,1)Φ(x0, r

−1)µ(B(x0, 2r)),

as required.

3.3 Lebesgue points in Musielak-Orlicz-Haj lasz-Sobolev spaces

Let X be a doubling space. We recall from [36, Section 3] the definition of the
discrete maximal function. Fix r > 0 and let B(xi, r), i = 1, 2, · · · , be a family of
balls covering X such that any point x ∈ X belongs to at most θ balls B(xi, 6r).
Here, θ can be chosen to depend only on the doubling constant c2. Let {φi} be
a set of functions such that 0 ≤ φi ≤ 1, φi = 0 in the complement of B(xi, 3r),
φi ≥ c3 > 0 in B(xi, r), φi is Lipschitz with a constant c3/r and

∑∞
i=1 φi = 1 on

X. We set

ur(x) =
∞∑
i=1

φi(x)

µ(B(xi, 3r))

∫
B(xi,3r)

|u(y)| dµ(y).

Let {rj} be an enumeration of the positive rationals. For every radius rj, we choose
a covering {B(xi, rj)} as above. We define the discrete maximal function related
to covering {B(xi, rj)} by

M∗u(x) = sup
j

urj(x).
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Note that the discrete maximal function related to covering {B(xi, rj)} depends
on the chosen coverings. However, by [36, Lemma 3.1], the inequalities

c−1
M Mu(x) ≤ M∗u(x) ≤ cMMu(x) (3.2)

always hold for every x ∈ X and every u ∈ L1
loc(X). Here the constant cM ≥ 1

depends only on the doubling constant.

Lemma 3.13. Let X be a doubling space. Suppose the Hardy-Littlewood maximal
operator is bounded on LΦ(X). Then there exists a constant C > 0 such that

CΦ({x ∈ X : Mu(x) > λ}) ≤ Cλ− log2(2A3)∥u∥M1,Φ(X)

for all 0 < λ < 1 and u ∈ M1,Φ(X) with ∥u∥M1,Φ(X) ≤ 1.

Proof. Let u ∈ M1,Φ(X) with ∥u∥M1,Φ(X) ≤ 1 and let g be a Haj lasz gradient of u.
By our assumption, there exists a constant BM > 0 such that

∥Mv∥LΦ(X) ≤ BM∥v∥LΦ(X)

for all v ∈ LΦ(X).
By (3.2), we have

{x ∈ X : Mu(x) > λ} ⊂ Eλ,

where Eλ = {x ∈ X : cMM∗u(x) > λ} is open since a supremum of continuous
functions is lower semicontinuous.

Note from the proof of [36, Theorem 3.6] that cMM∗u/λ ∈ SΦ(Eλ) and cMg is
a Haj lasz gradient of M∗u for some constant c ≥ 1. We have by (Φ3), (Φ4) and
(2.2)

CΦ(Eλ)

≤
∫
X

Φ(x, cMM∗u(x)/λ) dµ(x) +

∫
X

Φ(x, ccMMg(x)/λ) dµ(x)

≤ A2

∫
X

Φ(x, cMM∗u(x)/λ) dµ(x) + A2

∫
X

Φ(x, ccMMg(x)/λ) dµ(x)

≤ 2A2
2A3

(ccM
λ

)log2(2A3)
{∫

X

Φ(x,M∗u(x)) dµ(x) +

∫
X

Φ(x,Mg(x)) dµ(x)

}
.

Since ∥Mu/BM∥LΦ(X) ≤ ∥u∥LΦ(X) ≤ 1, we find by (Φ3), (Φ4), (2.2) and (3.2) that∫
X

Φ(x,M∗u(x)) dµ(x) ≤ A2

∫
X

Φ(x, cMMu(x)) dµ(x)

≤ 2A2
2A3(cMBM)log2(2A3)

∫
X

Φ(x,Mu(x)/BM) dµ(x)

≤ 4A2
2A

2
3(cMBM)log2(2A3)

∫
X

Φ(x,Mu(x)/BM) dµ(x)

≤ 4A2
2A

2
3(cMBM)log2(2A3)∥Mu/BM∥LΦ(X)

≤ 4A2
2A

2
3(cMBM)log2(2A3)∥u∥LΦ(X).
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Similarly, we have∫
X

Φ(x,Mg(x)) dµ(x) ≤ 2A2A3(BM)log2(2A3)

∫
X

Φ(x,Mg(x)/BM) dµ(x)

≤ 4A2A
2
3(BM)log2(2A3)∥g∥LΦ(X).

Thus we obtain the required result.

As in the proof of [36, Theorem 4.5], we can show the following result by Lemma
3.13.

Theorem 3.14. Let X be a doubling space and let u ∈ M1,Φ(X). Suppose the
Hardy-Littlewood maximal operator is bounded on LΦ(X). Then there exists a set
E ⊂ X of zero Sobolev capacity in Musielak-Orlicz-Haj lasz-Sobolev spaces such
that

ũ(x) = lim
r→0

uB(x,r)

for every x ∈ X \ E, where ũ is the CΦ-quasicontinuous representative of u.

4 Musielak-Orlicz-Newton-Sobolev spaces N 1,Φ(X)

4.1 Basic properties

A curve γ in X is a nonconstant continuous map γ : I → X, where I = [a, b] is
a closed interval in R. The image of γ is denoted by |γ|. Let Γ be a family of
rectifiable curves in X. We denote by F (Γ) the set of all admissible functions, that
is, all Borel measurable functions h : X → [0,∞] such that∫

γ

h ds ≥ 1

for every γ ∈ Γ, where ds represents integration with respect to path length. We
define the Φ-modulus of Γ by

MΦ(Γ) = inf
h∈F (Γ)

ρΦ(h).

If F (Γ) = ∅, then we set MΦ(Γ) = ∞.

Lemma 4.1 (c.f. [30, Lemma 2.1]). MΦ(·) is an outer measure.

Proof. Since it is obvious that MΦ(∅) = 0 and Γ1 ⊂ Γ2 implies MΦ(Γ1) ≤ MΦ(Γ2),
we show that MΦ(·) is a countably subadditive capacity. For ε > 0, we take
hi ∈ F (Γi) such that ∫

X

Φ(x, hi(x)) dµ(x) ≤ MΦ(Γi) + ε2−i.
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We set h = supi hi. Noting that h satisfies
∫
γ
h ds ≥ 1 for every γ ∈

∪∞
i=1 Γi, we

have

MΦ

(
∞∪
i=1

Γi

)
≤ ρΦ(h) ≤

∞∑
i=1

∫
X

Φ(x, hi(x)) dµ(x) ≤
∞∑
i=1

MΦ(Γi) + ε.

Letting ε → 0, we have the required result.

A family of curves Γ is said to be exceptional if MΦ(Γ) = 0. The following
lemma is an extension of [32, Lemma 4.1]. The proof is the same as the proof of
[30, Lemma 2.2].

Lemma 4.2 (Fuglede’s lemma). Let {ui} be a sequence of nonnegative Borel func-
tions in LΦ(X) converging to zero in LΦ(X). Then there exist a subsequence {uik}
and an exceptional family Γ of rectifiable curves such that for every γ /∈ Γ we have

lim
k→∞

∫
γ

uik ds = 0.

Let u be a real valued function on X. A nonnegative Borel measurable function
h is said to be a Φ-weak upper gradient of u if there exists a family Γ of rectifiable
curves with MΦ(Γ) = 0 and

|u(x) − u(y)| ≤
∫
γ

h ds

for every rectifiable curve γ /∈ Γ with endpoints x and y. Here note that basic
properties of p-weak upper gradients can be extended to basic properties of Φ-
weak upper gradients as in the proof of [6, Chapter 1].

We define the norm

∥u∥N1,Φ(X) = ∥u∥LΦ(X) + inf ∥h∥LΦ(X),

where the infimum is taken over all Φ-weak upper gradients of u. We say that u ∈
LΦ(X) belongs to Musielak-Orlicz-Newton-Sobolev space N1,Φ(X) if ∥u∥N1,Φ(X) <
∞.

Remark 4.3. Let u be a real valued function on X and let h be a Φ-weak upper
gradient of u. Suppose Γ is a family of rectifiable curves γ satisfying that there
exists a rectifiable subcurve γ′ of γ, that is |γ′| ⊂ |γ|, such that

|u(x′) − u(y′)| ≰
∫
γ′
h ds,

where x′ and y′ are endpoints of γ′. Then note that MΦ(Γ) = 0 (see [6, Lemma
1.40]).
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Lemma 4.4 (c.f. [36, Lemma 2.6] and [28, Lemma 3]). Suppose {ui} are measurable
functions. Let gi be a Φ-weak upper gradient of ui. If u = supi ui is finite almost
everywhere, then g = supi gi is a Φ-weak upper gradient of u.

For u ∈ N1,Φ(X), we set

ρ̂Φ(u) = ρΦ(u) + inf ρΦ(h),

where the infimum is taken over all Φ-weak upper gradients of u. For E ⊂ X, we
denote

sΦ(E) = {u ∈ N1,Φ(X) : u ≥ 1 on E}.

We define the capacity in Musielak-Orlicz-Newton-Sobolev spaces by

cΦ(E) = inf
u∈sΦ(E)

ρ̂Φ(u).

In case sΦ(E) = ∅, we set cΦ(E) = ∞. For the definition of the Sobolev capacity,
see [6, Section 6.2].

By Lemma 4.4, we have the following result.

Proposition 4.5. The set function cΦ(·) is an outer measure.

Proof. Since it is obvious that cΦ(∅) = 0 and E1 ⊂ E2 implies cΦ(E1) ≤ cΦ(E2),
we only show that cΦ(·) is a countably subadditive capacity. Let Ei be subsets in
X. We may assume that

∑∞
i=1 cΦ(Ei) < ∞. For ε > 0, we take ui ∈ sΦ(Ei) such

that ∫
X

Φ(x, |ui(x)|) dµ(x) +

∫
X

Φ(x, hi(x)) dµ(x) ≤ cΦ(Ei) + ε2−i,

where hi is a Φ-weak upper gradient of ui. Set u = supi ui and h = supi hi. Noting
that u ∈ LΦ(X) and h ∈ LΦ(X), we find that h is a Φ-weak upper gradient of u
by Lemma 4.4 and u ∈ sΦ (

∪∞
i=1 Ei). Hence, we have

cΦ

(
∞∪
i=1

Ei

)
≤ ρ̂Φ(u)

≤
∞∑
i=1

{∫
X

Φ(x, |ui(x)|) dµ(x) +

∫
X

Φ(x, hi(x)) dµ(x)

}
≤

∞∑
i=1

cΦ(Ei) + ε.

Letting ε → 0, we have the required result.

We denote by ΓE the family of all rectifiable curves whose image intersects the
set E.

Lemma 4.6. Let E ⊂ X. If cΦ(E) = 0, then MΦ(ΓE) = 0.
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Proof. Let E ⊂ X with cΦ(E) = 0. Then, for all positive integers i, we choose a
functions ui ∈ N1,Φ(X) with Φ-weak upper gradients κi such that ui(x) ≥ 1 for
every x ∈ E and∫

X

Φ(x, |ui(x)|) dµ(x) +

∫
X

Φ(x, κi(x)) dµ(x) ≤ A−1
2 (2A3)

−i−1.

Set vk =
∑k

i=1 |ui|. Then note that hk =
∑k

i=1 κi is a Φ-weak upper gradient of vk.
Since ∫

X

Φ

(
x,

|ui(x)|
2−i

)
dµ(x) ≤ A2(2A3)

i

∫
X

Φ (x, |ui(x)|) dµ(x)

≤ A2(2A3)
i+1

∫
X

Φ (x, |ui(x)|) dµ(x) ≤ 1

and ∫
X

Φ

(
x,

κi(x)

2−i

)
dµ(x) ≤ 1

by (2.1) and (Φ4), we have

∥vℓ − vm∥LΦ(X) ≤
ℓ∑

i=m+1

∥ui∥LΦ(X) ≤ 2−m

and

∥hℓ − hm∥LΦ(X) ≤
ℓ∑

i=m+1

∥κi∥LΦ(X) ≤ 2−m

for every ℓ > m. Hence {vk} and {hk} are Cauchy sequences in LΦ(X). Therefore,
{hk} converges to a function h in LΦ(X), which we may assume to be a Borel
function. Setting v(x) = limk→∞ vk(x) for every x ∈ X, we find v ∈ LΦ(X). Since
vk(x) ≥ k for x ∈ E, we have

E ⊂ E∞ = {x ∈ X : v(x) = ∞}.

Hence it suffices to show that MΦ(ΓE∞) = 0.
It follows from Lemma 4.2 that there exists a subsequence {hkj} of {hk} such

that there exists an exceptional family Γ1 and

lim
j→∞

∫
γ

|hkj − h| ds = 0

for all rectifiable curves γ /∈ Γ1. Set

Γ2 =

{
γ : γ is a rectifiable curve satisfying

∫
γ

v ds = ∞
}
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and

Γ3 =

{
γ : γ is a rectifiable curve satisfying

∫
γ

h ds = ∞
}
.

We see from the convexity of Φ that

MΦ(Γ2) ≤
∫
X

Φ

(
x,

v(x)

i

)
dµ(x) ≤

∥v∥LΦ(X)

i

for all i ≥ ∥v∥LΦ(X). Hence MΦ(Γ2) = 0. Similarly, MΦ(Γ3) = 0. We denote by
Γ4,i the exceptional family of rectifiable curves for ui in Remark 4.3 and by Γ4 the
union of Γ4,i. By Remark 4.3 and Lemma 4.1, we have MΦ(Γ4) = MΦ(∪Γ4,i) = 0.
Hence we find MΦ(Γ0) = 0, where Γ0 = Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4.

To complete the proof, we show that ΓE∞ ⊂ Γ0. Suppose γ /∈ Γ0. Since γ /∈ Γ2,
there is y ∈ |γ| with v(y) < ∞. For any x ∈ |γ|, we find that

vkj(x) ≤ vkj(y) + |vkj(x) − vkj(y)| ≤ vkj(y) +

∫
γ

hkj ds

since γ /∈ Γ4. Letting j → ∞, we have

v(x) = lim
j→∞

vkj(x) ≤ v(y) +

∫
γ

h ds

since γ /∈ Γ1. Since γ /∈ Γ3 and v(y) < ∞, v(x) < ∞ for all x ∈ |γ|, which implies
γ /∈ ΓE∞ , as required.

The standard arguments and Lemma 4.6 yield the following proposition (see
[32]).

Proposition 4.7 (cf. [32, Theorem 4.4]). N1,Φ(X) is a Banach space.

We say that X supports a (1, 1)-Poincaré inequality if there exists a constant
C > 0 such that for all open balls B in X,

1

µ(B)

∫
B

|u(x) − uB| dµ(x) ≤ CdB
1

µ(B)

∫
B

h(x) dµ(x)

holds whenever h is a Φ-weak upper gradient of u on B and u is integrable on B.

Lemma 4.8. Let X be a doubling space that supports a (1, 1)-Poincaré inequality.
Assume that the Hardy-Littlewood maximal operator is bounded on LΦ(X). Then
Lipschitz continuous functions are dense in N1,Φ(X).

Proof. Let u ∈ N1,Φ(X) and let h be a Φ-weak upper gradient of u. By truncation,
we may assume that u is a bounded function on X, say |u| ≤ u0 for u0 > 1 (see
[52, Lemma 4.3]). Set

Eλ = {x ∈ X : Mh(x) > λ}.
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As in the proof of [32, Theorem 4.5], we can define

uλ(x) = lim
r→0

uB(x,r)

for all x ∈ X \Eλ and uλ is cλ-Lipschitz in X \Eλ with some constant c > 1. We
extend uλ as a Lipschitz function to all of X by McShane extension [47], by setting

uλ(x) = inf
y∈X\Eλ

{uλ(y) + cλd(x, y)}.

We may assume that uλ is still bounded by u0 by truncation. Then we have by
(Φ2), (Φ3) and (Φ4) that∫

X

Φ(x, |u(x) − uλ(x)|) dµ(x)

=

∫
Eλ

Φ(x, |u(x) − uλ(x)|) dµ(x)

≤ 2A2
2A3

{∫
Eλ

Φ(x, |u(x)|) dµ(x) +

∫
Eλ

Φ(x, |uλ(x)|) dµ(x)

}
≤ 4A3

2A3

∫
Eλ

Φ(x, u0) dµ(x)

≤ 8A1A
4
2A

2
3u

log2(2A3)
0 µ(Eλ).

Hence we see from the boundedness of the Hardy-Littlewood maximal operator on
LΦ(X), Lemma 2.5 and (2.1) that uλ → u in LΦ(X). Since Eλ is open and u− uλ

is zero µ-a.e. in X \Eλ, we may assume that the Φ-weak upper gradient of u− uλ

is zero in X \ Eλ (see [52, Lemma 4.3]). Since∫
X

Φ(x, λχEλ
(x)) dµ(x) ≤ A2

∫
X

Φ(x,Mh(x)) dµ(x) < ∞

by the boundedness of the Hardy-Littlewood maximal operator on LΦ(X), we find
that the function (cλ+h)χEλ

∈ LΦ(X) is a Φ-weak upper gradient of u−uλ. Hence
u− uλ ∈ N1,Φ(X) and therefore so is uλ. We have∫

X

Φ(x, (cλ + h)χEλ
(x)) dµ(x)

≤ 4A3
2A

2
3c

log2(2A3)

{∫
Eλ

Φ(x, λ) dµ(x) +

∫
Eλ

Φ(x, h(x)) dµ(x)

}
≤ 4A4

2A
2
3c

log2(2A3)

{∫
Eλ

Φ(x,Mh(x)) dµ(x) +

∫
Eλ

Φ(x, h(x)) dµ(x)

}
.

Then the right hand side converges to zero as λ → ∞. Hence {uλ} converges to u
in N1,Φ(X) by Lemma 2.5 and (2.1).
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4.2 Lebesgue points in Musielak-Orlicz-Newton-Sobolev spaces

Lemma 4.9. Let X be a doubling space that supports a (1, 1)-Poincaré inequality.
If the Hardy-Littlewood maximal operator is bounded on LΦ(X), then there exists
a constant C > 0 such that

cΦ({x ∈ X : Mu(x) > λ}) ≤ Cλ− log2(2A3)∥u∥N1,Φ(X)

for all 0 < λ < 1 and u ∈ N1,Φ(X) with ∥u∥N1,Φ(X) ≤ 1.

Proof. Let u ∈ N1,Φ(X) with ∥u∥N1,Φ(X) ≤ 1 and h ∈ LΦ(X) be a Φ-weak upper
gradient of u. By (3.2), we have

{x ∈ X : Mu(x) > λ} ⊂ Eλ,

where Eλ = {x ∈ X : cMM∗u(x) > λ}. Here, note from the boundedness of the
Hardy-Littlewood maximal operator on LΦ(X), Lemma 4.4 and [28, Lemma 5]
that M∗u ∈ LΦ(X) and cMh ∈ LΦ(X) is a Φ-weak upper gradient of M∗u for
some constant c ≥ 1. Since cMM∗u/λ ∈ sΦ(Eλ), we have by (Φ3), (Φ4) and (2.2)
that

cΦ(Eλ)

≤
∫
X

Φ(x, cMM∗u(x)/λ) dµ(x) +

∫
X

Φ(x, ccMMh(x)/λ) dµ(x)

≤ 2A2
2A3

(ccM
λ

)log2(2A3)
{∫

X

Φ(x,M∗u(x)) dµ(x) +

∫
X

Φ(x,Mh(x)) dµ(x)

}
.

Thus, as in the proof of Lemma 3.13, we obtain the required result.

As in the proof of [28, Theorem 1], we can show the following result by Lemma
4.9.

Theorem 4.10. Let X be a doubling space that supports a (1, 1)-Poincaré in-
equality. If the Hardy-Littlewood maximal operator is bounded on LΦ(X) and
u ∈ N1,Φ(X), then there exists a set E ⊂ X of zero Sobolev capacity in Musielak-
Orlicz-Newton-Sobolev space such that

u(x) = lim
r→0

uB(x,r)

and

lim
r→+0

−
∫
B(x,r)

|u(y) − u(x)| dµ(y) = 0

for every x ∈ X \ E.
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5 Equivalence of function spaces

Let RN be the N -dimensional Euclidean space. In the case X = RN , let µ be
the Lebesgue measure on RN and let d be the Euclidean metric. We define the
Musielak-Orlicz-Sobolev space W 1,Φ(RN) by

W 1,Φ(RN) = {u ∈ LΦ(RN) : |∇u| ∈ LΦ(RN)}.

The norm
∥u∥W 1,Φ(RN ) = ∥u∥LΦ(RN ) + ∥|∇u|∥LΦ(RN )

makes W 1,Φ(RN) a Banach space.
We prove relations between Musielak-Orlicz-Haj lasz-Sobolev space and Musielak-

Orlicz-Sobolev space W 1,Φ(RN).

Proposition 5.1. M1,Φ(RN) ⊂ W 1,Φ(RN). Moreover, if the Hardy-Littlewood
maximal operator is bounded on LΦ(RN), then M1,Φ(RN) = W 1,Φ(RN).

Proof. First we show M1,Φ(RN) ⊂ W 1,Φ(RN). Let u ∈ M1,Φ(RN) and let g ∈
LΦ(RN) be a Haj lasz gradient of u. Since t ≤ A1A2Φ(x, t) for t ≥ 1 by (Φ2)
and (2.2), we have g ∈ L1(B) for every ball B and hence ∇u exists and satisfies
|∇u(x)| ≤ Cg(x) for a.e x ∈ RN by [33, Remark 5.13]. Thus we have M1,Φ(RN) ⊂
W 1,Φ(RN).

Next we prove the second claim. Let u ∈ W 1,Φ(RN). Then we have by [21,
Section 2]

|u(x) − u(y)| ≤ |x− y|(M |∇u|(x) + M |∇u|(y))

for a.e. x, y ∈ RN . By the boundedness of the Hardy-Littlewood maximal operator
on LΦ(RN), we find M |∇u| ∈ LΦ(RN) is a Haj lasz gradients of u. Hence we obtain
the required result.

Theorem 5.2. N1,Φ(RN) ⊂ W 1,Φ(RN). Moreover, if W 1,Φ(RN) is reflexive and
C1-functions are dense in W 1,Φ(RN), then N1,Φ(RN) = W 1,Φ(RN).

Proof. The proof of the first claim is exactly the same as the proof of [32, Theorem
5.3]. Hence we only show the second claim. Let u ∈ W 1,Φ(RN). Then we can take
{ui} ⊂ W 1,Φ(X) ∩ C1(X) such that ui converges to u in W 1,Φ(X). By the proof
of [30, Theorem 4.2], we see that the sum of absolute value of the distributional
gradient of ui is a Φ-weak upper gradient of u in RN . Hence we obtain the required
results.

Remark 5.3. By [45, Theorem 3.5], we know that C1-functions are dense in
W 1,Φ(RN) if Φ(x, t) satisfies (Φ5) and (Φ6).

Theorem 5.4. For u ∈ M1,Φ(X), there exists a representative ũ of u such that

∥ũ∥N1,Φ(X) ≤ 4∥u∥M1,Φ(X)

Further, if X is a doubling space that supports a (1, 1)-Poincaré inequality and
the Hardy-Littlewood maximal operator is bounded on LΦ(X), then M1,Φ(X) ⊃
N1,Φ(X).

22



Proof. Let u ∈ M1,Φ(X) and let g ∈ LΦ(X) be a Haj lasz gradient of u. If u
is continuous on X, we find that 4g is a Φ-weak upper gradient of u as in [52,
Lemma 4.7]. Since continuous functions are dense in M1,Φ(X) by Proposition 3.4,
we can take {ui} ⊂ M1,Φ(X) such that ui is continuous on X, ui converges to u in
M1,Φ(X) and

∥un − um∥N1,Φ(X) ≤ 4∥un − um∥M1,Φ(X)

for all positive integers n,m. Therefore, {ui} ⊂ N1,Φ(X) is a Cauchy sequence.
Hence there exists a ũ ∈ N1,Φ(X) such that

∥ũ∥N1,Φ(X) ≤ 4∥u∥M1,Φ(X)

since N1,Φ(X) is a Banach space by Proposition 4.7. Noting that u(x) = ũ(x) for
a.e. x ∈ X, we find that ũ is a equivalence class of u in M1,Φ(X).

By our assumption and Theorem 3.5, we obtain that M1,Φ(X) ⊃ N1,Φ(X).

6 Boundedness of the maximal operator on LΦ

In this section, we show the boundedness of maximal operators on LΦ(X). This
proof is a minor change of [44] but, for reader’s convenience, we give the proof.

For a nonnegative f ∈ L1
loc(X), let

I(f, x, r) =
1

µ(B(x, r))

∫
X∩B(x,r)

f(y) dµ(y)

and

J(f, x, r) =
1

µ(B(x, r))

∫
X∩B(x,r)

Φ
(
y, f(y)

)
dµ(y).

Lemma 6.1 (cf. [44, Lemma 3.1]). Assume that µ is lower Ahlfors Q(x)-regular.
Suppose Φ(x, t) satisfies (Φ5). Then there exists a constant C > 0 such that

Φ
(
x, I(f ; x, r)

)
≤ CJ(f ;x, r)

for all x ∈ X, r > 0 and for all nonnegative f ∈ L1
loc(X) such that f(y) ≥ 1 or

f(y) = 0 for each y ∈ X and ∥f∥LΦ(X) ≤ 1.

Proof. Given f as in the statement of the lemma, x ∈ X and r > 0, set I =
I(f ; x, r) and J = J(f ;x, r). Note that ∥f∥LΦ(X) ≤ 1 implies

J ≤ 2A3µ(B(x, r))−1 ≤ 2A3c
−1
0 r−Q(x)

for 0 < r < dX by (2.1) and lower Ahlfors Q(x)-regularity of µ.
By (Φ2) and (2.2), Φ

(
y, f(y)

)
≥ (A1A2)

−1f(y), since f(y) ≥ 1 or f(y) = 0.
Hence I ≤ A1A2J . Thus, if J ≤ 1, then

Φ(x, I) ≤ (A1A2J)A2ϕ(x,A1A2) ≤ CJ.
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Next, suppose J > 1. Since Φ(x, t) → ∞ as t → ∞, there exists K ≥ 1 such
that

Φ(x,K) = Φ(x, 1)J.

Then K ≤ A2J by (2.2). With this K, we have∫
X∩B(x,r)

f(y) dµ(y) ≤ Kµ(B(x, r)) + A2

∫
X∩B(x,r)

f(y)
ϕ
(
y, f(y)

)
ϕ(y,K)

dµ(y).

Since
1 ≤ K ≤ A2J ≤ 2A2A3c

−1
0 r−Q(x) ≤ Cr−Q+

,

by (Φ5) there is β > 0, independent of f , x, r, such that

ϕ(x,K) ≤ βϕ(y,K) for all y ∈ B(x, r).

Thus, we have by (Φ2)∫
X∩B(x,r)

f(y) dµ(y) ≤ Kµ(B(x, r)) +
A2β

ϕ(x,K)

∫
X∩B(x,r)

f(y)ϕ
(
y, f(y)

)
dµ(y)

= Kµ(B(x, r)) + A2βµ(B(x, r))
J

ϕ(x,K)

= Kµ(B(x, r))

(
1 +

A2β

ϕ(x, 1)

)
≤ Kµ(B(x, r)) (1 + A1A2β) .

Therefore
I ≤ (1 + A1A2β)K.

By (Φ2), (Φ3) and (Φ4), we obtain

Φ(x, I) ≤ CΦ(x,K) ≤ CJ

with constants C > 0 independent of f , x, r, as required.

Lemma 6.2 (cf. [44, Lemma 3.2]). Suppose Φ(x, t) satisfies (Φ6). Then there exists
a constant C > 0 such that

Φ
(
x, I(f ;x, r)

)
≤ C {J(f ;x, r) + Φ(x, g(x))}

for all x ∈ X, r > 0 and for all nonnegative f ∈ L1
loc(X) such that g(y) ≤ f(y) ≤ 1

or f(y) = 0 for each y ∈ X, where g is the function appearing in (Φ6).

Proof. Given f as in the statement of the lemma, x ∈ X and r > 0, let I =
I(f ; x, r) and J = J(f ;x, r).

By Jensen’s inequality, we have

Φ(x, I) ≤ 1

µ(B(x, r))

∫
X∩B(x,r)

Φ
(
x, f(y)

)
dµ(y).
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In view of (2.1),

Φ(x, I) ≤ 2A2A3
1

µ(B(x, r))

∫
X∩B(x,r)

Φ
(
x, f(y)

)
dµ(y).

If d(x, x0) ≥ d(y, x0), then Φ
(
x, f(y)

)
≤ B∞Φ

(
y, f(y)

)
by (Φ6), where x0 is the

point appearing in (Φ6).
Let d(x, x0) < d(y, x0). If g(x) < f(y), then Φ

(
x, f(y)

)
≤ B∞Φ

(
y, f(y)

)
by

(Φ6) again. If g(x) ≥ f(y), then Φ
(
x, f(y)

)
≤ A2Φ

(
x, g(x)

)
by (Φ3). Hence,

Φ
(
x, f(y)

)
≤ C

{
Φ
(
y, f(y)

)
+ Φ

(
x, g(x)

)}
in any case. Therefore, we obtain the required inequality.

Theorem 6.3 (cf. [44, Theorem 4.1]). Assume that X is a doubling space and
µ is lower Ahlfors Q(x)-regular. Suppose Φ(x, t) satisfies (Φ5), (Φ6) and further
assume:

(Φ3∗) t 7→ t−ε0ϕ(x, t) is uniformly almost increasing on (0,∞) for some ε0 > 0.

Then the Hardy-Littlewood maximal operator M is bounded from LΦ(X) into
itself, namely, there is a constant C > 0 such that

∥Mf∥LΦ(X) ≤ C∥f∥LΦ(X)

for all f ∈ LΦ(X).

We use the following result which is a special case of the theorem when Φ(x, t) =
tp0 (p0 > 1) (see [33, Theorem 2.2]).

Lemma 6.4. Let p0 > 1. Suppose X is a doubling space. Then there exists a
constant c̃ > 0 depending only on p0 and c2 for which the following holds: If f is
a measurable function such that∫

X

|f(y)|p0 dµ(y) ≤ 1,

then ∫
X

[Mf(x)]p0 dµ(x) ≤ c̃.

Proof of Theorem 6.3. Set p0 = 1 + ε0 for ε0 > 0 in condition (Φ3∗) and consider
the function

Φ0(x, t) = Φ(x, t)1/p0 .

Then Φ0(x, t) also satisfies all the conditions (Φj), j = 1, 2, . . . , 6. In fact, it
trivially satisfies (Φj) for j = 1, 2, 4, 5, 6 with the same g for (Φ6). Since

Φ0(x, t) = tϕ0(x, t) with ϕ0(x, t) =
[
t−ε0ϕ(x, t)

]1/p0 ,
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condition (Φ3∗) implies that Φ0(x, t) satisfies (Φ3).
Let f ≥ 0 and ∥f∥LΦ(X) ≤ 1. Let f1 = fχ{x:f(x)≥1}, f2 = fχ{x:g(x)≤f(x)<1} with

g in (Φ6) and f3 = f − f1 − f2.
Since Φ(x, t) ≥ 1/(A1A2) for t ≥ 1 by (Φ2) and (2.2),

Φ0(x, t) ≤ (A1A2)
1−1/p0Φ(x, t)

if t ≥ 1. Hence there is a constant λ > 0 such that ∥f1∥LΦ0 (X) ≤ λ whenever
∥f∥LΦ(X) ≤ 1. Applying Lemma 6.1 to Φ0 and f1/λ, we have

Φ0

(
x,Mf1(x)

)
≤ CMΦ0

(
·, f1(·)

)
(x).

Hence
Φ
(
x,Mf1(x)

)
≤ C

[
MΦ0

(
·, f(·)

)
(x)
]p0

(6.1)

for all x ∈ X with a constant C > 0 independent of f .
Next, applying Lemma 6.2 to Φ0 and f2, we have

Φ0(x,Mf2(x)) ≤ C
[
MΦ0

(
·, f2(·)

)
(x) + Φ0

(
x, g(x)

)]
.

Noting that Φ0(x, g(x)) ≤ Cg(x) by (2.2) and (Φ2), we have

Φ
(
x,Mf2(x)

)
≤ C

{[
MΦ0

(
·, f(·)

)
(x)
]p0

+ g(x)p0
}

(6.2)

for all x ∈ X with a constant C > 0 independent of f .
Since 0 ≤ f3 ≤ g ≤ 1, 0 ≤ Mf3 ≤ Mg ≤ 1. Hence we have

Φ
(
x,Mf3(x)

)
≤ A2Φ0(x,Mg(x))p0 ≤ C[Mg(x)]p0 (6.3)

for all x ∈ X with a constant C > 0 independent of f .
Combining (6.1), (6.2) and (6.3), and noting that g(x) ≤ Mg(x) for a.e. x ∈ X,

we obtain

Φ
(
x,Mf(x)

)
≤ C

{[
MΦ0

(
·, f(·)

)
(x)
]p0

+ [Mg(x)]p0
}

(6.4)

for a.e. x ∈ X with a constant C > 0 independent of f .
In view of (2.1),∫

X

Φ0(y, f(y))p0 dµ(y) =

∫
X

Φ(y, f(y)) dµ(y) ≤ 2A3

for all x ∈ X. Hence, applying Lemma 6.4 to (2A3)
−1/p0Φ0(y, f(y)), we have∫

X

[
MΦ0

(
·, f(·)

)
(y)
]p0

dµ(y) ≤ C

with a constant C > 0 independent of f .
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By Lemma 6.4, we obtain∫
X

[Mg(y)]p0 dµ(y) ≤ C

by g ∈ Lp0(X).
Thus, by (6.4), we finally obtain∫

X

Φ
(
y,Mf(y)

)
dµ(y) ≤ C.

This completes the proof.

Corollary 6.5. Suppose µ is Ahlfors Q(x)-regular. Let Φ(x, t) be as in Examples
2.1 and 2.4. Then the Hardy-Littlewood maximal operator M is bounded from
LΦ(X) into itself.

In fact, Φ(x, t) satisfies (Φ3∗) with ε0 = (p− − 1)/2.
As in the proof of Theorem 6.3, we can show the following lemma.

Lemma 6.6. Assume that X is a bounded doubling space. Suppose Φ(x, t) satisfies
(Φ3∗) and (Φ5). Then the Hardy-Littlewood maximal operator M is bounded from
LΦ(X) into itself.

Corollary 6.7. Assume that X is a bounded doubling space. Let Φ(x, t) be as
in Example 2.1. Then the Hardy-Littlewood maximal operator M is bounded from
LΦ(X) into itself.

By Proposition 5.1 and Theorem 6.3, we have the following result.

Proposition 6.8. Suppose Φ(x, t) satisfies (Φ3∗), (Φ5) and (Φ6). Then M1,Φ(RN) =
W 1,Φ(RN).

7 Sobolev’s inequality

In this section, we show the Sobolev-type inequality on Musielak-Orlicz-Haj lasz-
Sobolev spaces . For this purpose, we first prove Sobolev’s inequality for Riesz-type
operator in Musielak-Orlicz spaces.

Lemma 7.1 (cf. [44, Lemma 5.1]). Let H(x, t) be a positive function on X×(0,∞)
satisfying the following conditions:

(H1) H(x, · ) is continuous on (0,∞) for each x ∈ X;

(H2) there exists a constant K1 ≥ 1 such that

K−1
1 ≤ H(x, 1) ≤ K1 for all x ∈ X;
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(H3) t 7→ t−ε′H(x, t) is uniformly almost increasing for ε′ > 0; namely there exists
a constant K2 ≥ 1 such that

t−ε′H(x, t) ≤ K2s
−ε′H(x, s) for all x ∈ X whenever 0 < t < s;

Set
H−1(x, s) = sup{t > 0 ; H(x, t) < s}

for x ∈ X and s > 0. Then:

(1) H−1(x, ·) is nondecreasing.

(2)
H−1(x, λs) ≤ (K2λ)1/ε

′
H−1(x, s)

for all x ∈ X, s > 0 and λ ≥ 1.

(3)
H(x,H−1(x, t)) = t

for all x ∈ X and t > 0.

(4)

K
−1/ε′

2 t ≤ H−1(x,H(x, t)) ≤ K
2/ε′

2 t

for all x ∈ X and t > 0.

(5)

min

{
1,

(
s

K1K2

)1/ε′
}

≤ H−1(x, s) ≤ max{1, (K1K2s)
1/ε′}

for all x ∈ X and s > 0.

Remark 7.2. H(x, t) = Φ(x, t) satisfies (H1), (H2) and (H3) with K1 = A1, K2 =
A2 and ε′ = 1.

Lemma 7.3. Assume that X is a bounded space. Suppose µ is lower Ahlfors
Q(x)-regular and Φ(x, t) satisfies (Φ5). Then there exists a constant C > 0 such
that

1

µ(B(x, r))

∫
X∩B(x,r)

f(y) dµ(y) ≤ CΦ−1(x, r−Q(x))

for all x ∈ X, 0 < r < dX and f ≥ 0 satisfying ∥f∥LΦ(X) ≤ 1.

Proof. Let f be a nonnegative function on X such that ∥f∥LΦ(X) ≤ 1. Then we
have

∫
X

Φ(y, f(y)) dµ(y) ≤ 2A3 by (2.1). By Lemma 6.1, (Φ2), (Φ3) and (Φ4), we
obtain

Φ

(
x,

1

µ(B(x, r))

∫
X∩B(x,r)

f(y) dµ(y)

)
≤ C(1 + µ(B(x, r))−1)

≤ C(1 + r−Q(x)) ≤ C1r
−Q(x)
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for some constant C1 > 1 and for all x ∈ X and 0 < r < dX . Hence, we find by
Lemma 7.1 with H = Φ

1

µ(B(x, r))

∫
X∩B(x,r)

f(y) dµ(y) ≤ A2Φ
−1
(
x,C1r

−Q(x)
)
≤ C1A

2
2Φ

−1
(
x, r−Q(x)

)
,

as required.

For an open set Ω ⊂ X, f ∈ L1
loc(X) and α > 0, we define the Riesz-type

operator JΩ
α f of order α by

JΩ
α f(x) =

∑
2i≤2dΩ

2iα

µ(B(x, 2i))

∫
Ω∩B(x,2i)

|f(y)| dµ(y).

If µ is a doubling measure, then IΩα f(x) ≤ CJΩ
α f(x) for a.e x ∈ X, where

IΩα f(x) =

∫
Ω

d(x, y)α|f(y)|
µ(B(x, r))

dµ(y)

is the usual Riesz potential of order α (see e.g. [23]).

Lemma 7.4. Suppose X is a bounded space and µ is lower Ahlfors Q(x)-regular.
Assume that Φ(x, t) satisfies (Φ5) and

(Φµ) there exist constants γ > 0 and A4 ≥ 1 such that

sγ+αΦ−1(x, s−Q(x)) ≤ A4t
γ+αΦ−1(x, t−Q(x))

for all x ∈ X whenever 0 ≤ t < s.

Then there exists a constant C > 0 such that∑
δ<2i≤2dX

2iα

µ(B(x, 2i))

∫
X∩B(x,2i)

f(y) dµ(y) ≤ CδαΦ−1(x, δ−Q(x))

for all x ∈ X, 0 < δ < dX and f ≥ 0 satisfying ∥f∥LΦ(X) ≤ 1.

Proof. Let f be a nonnegative function on X such that ∥f∥LΦ(X) ≤ 1. By Lemmas
7.1 and 7.3 and (Φµ), we have∑

δ<2i≤2dX

2iα

µ(B(x, 2i))

∫
X∩B(x,2i)

f(y) dµ(y) ≤ C
∑

δ<2i≤2dX

2iαΦ−1(x, 2−iQ(x))

≤ C

∫ ∞

δ

tαΦ−1(x, t−Q(x))
dt

t

≤ CδαΦ−1(x, δ−Q(x)),

as required.
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Note that (Φµ) implies

lim
t→∞

tΦ(x, t)−α/Q(x) = ∞ uniformly in x ∈ X. (7.1)

We consider a function Ψα(x, t) : X × [0,∞) → [0,∞) satisfying the following
conditions:

(Ψ1) Ψα(·, t) is measurable on X for each t ≥ 0 and Ψα(x, ·) is continuous on
[0,∞) for each x ∈ X;

(Ψ2) there is a constant A5 ≥ 1 such that

Ψα(x, at) ≤ A5aΨα(x, t)

for all x ∈ X, t > 0 and 0 ≤ a ≤ 1;

(ΨΦµ) there exists a constant A6 ≥ 1 such that

Ψα

(
x, tΦ(x, t)−α/Q(x)

)
≤ A6Φ(x, t)

for all x ∈ X and t > 0.

Note: (Ψ2) implies that Ψα(x, ·) is uniformly almost increasing on [0,∞); (Ψ2),
(7.1) and (ΨΦµ) imply that Ψα(·, t) is bounded on X for each t > 0.

Theorem 7.5. Assume that X is a bounded doubling space and µ is lower Ahlfors
Q(x)-regular. Suppose Φ(x, t) satisfies (Φ3∗), (Φ5) and (Φµ); Ψα(x, t) satisfies
(Ψ1), (Ψ2) and (ΨΦµ). Then there exist constants C1, C2 > 0, such that∫

X

Ψα(x, JX
α f(x)/C1) dµ(x) ≤ C2

for all f ≥ 0 satisfying ∥f∥LΦ(X) ≤ 1.

Proof. Let f be a nonnegative measurable function on X satisfying ∥f∥LΦ(X) ≤ 1.
Write

JX
α f(x) =

∑
2i≤δ

2iα

µ(B(x, 2i))

∫
X∩B(x,2i)

f(y) dµ(y)

+
∑

δ<2i<2dX

2iα

µ(B(x, 2i))

∫
X∩B(x,2i)

f(y) dµ(y)

=: J1 + J2.

We have by Lemma 7.4
J2 ≤ CδαΦ−1(x, δ−Q(x)).

Since J1 ≤ CδαMf(x), we find that

JX
α f(x) ≤ C

{
δαMf(x) + δαΦ−1(x, δ−Q(x))

}
.
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Here, let δ = min{dX ,Φ(x,Mf(x))−1/Q(x)}.
If dX ≤ Φ(x,Mf(x))−1/Q(x), then note from Lemma 7.1 that

Mf(x) ≤ A2Φ
−1(x, d

−Q(x)
X ) ≤ A2 max{1, A1A2d

−Q(x)
X } ≤ C.

Therefore JX
α f(x) ≤ C.

Next, if dX > Φ(x,Mf(x))−1/Q(x), then we have

Φ−1(x, δ−Q(x)) = Φ−1(x,Φ(x,Mf(x))) ≤ A2
2Mf(x)

in view of Lemma 7.1. Hence we see that

JX
α f(x) ≤ C1 max

{
Mf(x)Φ(x,Mf(x))−α/Q(x), 1

}
for some constant C1 > 0. By (Ψ2) and (ΨΦµ), we find

Ψα(x, JX
α f(x)/C1) ≤ A5

{
Ψα(x,Mf(x)Φ(x,Mf(x))−α/Q(x)) + Ψα(x, 1)

}
≤ C {Φ(x,Mf(x)) + 1} .

Hence, by Lemma 6.6∫
X

Ψα(x, JX
α f(x)/C1) dµ(x) ≤ C

{∫
X

Φ(x,Mf(x)) dµ(x) + µ(X)

}
≤ C2

for some constant C2 > 0, as required.

Corollary 7.6. Assume that X is a bounded doubling space and µ is lower
Ahlfors Q(x)-regular. Let Φ(x, t) be as in Example 2.1 and set

Ψα(x, t) =

(
t

k∏
j=1

(L(j)
c (t))qj(x)/p(x)

)p♯(x)

for all x ∈ X and t > 0, where 1/p♯(x) = 1/p(x) − α/Q(x). Suppose

ess supx∈X(αp(x) −Q(x)) < 0. (7.2)

Then there exists a constant C > 0 such that∫
X

Ψα(x, JX
α f(x)) dµ(x) ≤ C

for all f ≥ 0 satisfying ∥f∥LΦ(X) ≤ 1.

Proof. First note that

Φ−1(x, t) ∼ t1/p(x)
k∏

j=1

(L(j)
c (t))−qj(x)/p(x)
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for all x ∈ X and t > 0. Therefore, by (7.2), there exists a constant γ > 0 such
that

tγ+αΦ−1(x, t−Q(x)) ∼ tγ+α−Q(x)/p(x)

k∏
j=1

(L(j)
c (t−1))−qj(x)/p(x)

is uniformly almost decreasing on t. Hence Φ(x, t) satisfies (Φµ). Similarly, since
t−1Ψα(x, t) is uniformly almost increasing on t, we see that Ψα(x, t) satisfies (Ψ2).

Finally, since

Ψα

(
x, tΦ(x, t)−α/Q(x)

)
= Ψα

(
x, tp(x)/p

♯(x)

k∏
j=1

(L(j)
c (t))−αqj(x)/Q(x)

)
≤ CΦ(x, t)

for all x ∈ X and t > 0, we see that Ψα(x, t) satisfies (ΨΦµ). Hence we obtain the
required result by Theorem 7.5.

Theorem 7.7. Assume that X is a bounded doubling space and µ is lower Ahlfors
Q(x)-regular. Suppose Φ(x, t) satisfies (Φ3∗), (Φ5) and (Φµ); Ψ1(x, t) satisfies
(Ψ1), (Ψ2) and (ΨΦµ). Then for each ball B ⊂ X, there exist constants C1, C2 > 0
such that ∫

B

Ψ1(x, |u(x) − uB| /C1) dµ(x) ≤ C2

for all u satisfying ∥u∥M1,Φ(X) ≤ 1.

Proof. Let u ∈ M1,Φ(X) and let g ∈ LΦ(X) be a Haj lasz gradient of u. Integrating
both sides in (3.1) over y and x, we obtain the Poincaré inequality∫

B

|u(x) − uB| dµ(x) ≤ CdB

∫
B

g(x) dµ(x)

for every ball B ⊂ X. Here if µ is a doubling measure, then we have by [23,
Theorem 5.2]

|u(x) − uB| ≤ CJX
1 g(x)

for µ-a.e. x ∈ B. Hence we obtain the Sobolev-type inequality on Musielak-Orlicz-
Haj lasz-Sobolev spaces by Theorem 7.5.

Corollary 7.8. Assume that X is a bounded doubling space and µ is lower
Ahlfors Q(x)-regular. Let Φ(x, t) and Ψ1(x, t) be as in Corollary 7.6. Suppose

ess supx∈X(p(x) −Q(x)) < 0.

Then for each ball B ⊂ X, there exists a constant C > 0 such that∫
B

Ψ1(x, |u(x) − uB|) dµ(x) ≤ C

for all u satisfying ∥u∥M1,Φ(X) ≤ 1.
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8 Appendix

8.1 Musielak-Orlicz-Sobolev capacity in RN

For u ∈ W 1,Φ(RN), we define

ρ̆Φ(u) = ρΦ(u) + ρΦ(∇u).

For E ⊂ RN , we denote

TΦ(E) = {u ∈ W 1,Φ(RN) : u ≥ 1 in an open set containing E}.

The Musielak-Orlicz-Sobolev CapΦ-capacity is defined by

CapΦ(E) = inf
u∈TΦ(E)

ρ̆Φ(u).

In case TΦ(E) = ∅, we set CapΦ(E) = ∞.

Remark 8.1. Let u, v ∈ W 1,Φ(RN). Since∫
B(x,1)

|u(x)| dx +

∫
B(x,1)

|∇u(x)| dx

≤ 2|B(x, 1)| + A1A2

{∫
B(x,1)

Φ(x, |u(x)|) dx +

∫
B(x,1)

Φ(x, |∇u(x)|) dx
}

≤ 2|B(x, 1)| + 2A1A2A3ρ̆Φ(u)

for all x ∈ RN by (2.1), (Φ2) and (Φ3), we find u ∈ W 1,1
loc (RN), where |E| denotes

its Lebesgue measure for a set E ⊂ RN . As in the proof of [27, Theorem 2.2], we
have min{u, v},max{u, v} ∈ W 1,Φ(RN),

∇min{u, v}(x) =

{
∇u(x) for a.e. x ∈ {u ≤ v}
∇v(x) for a.e. x ∈ {u ≥ v}

and

∇max{u, v}(x) =

{
∇u(x) for a.e. x ∈ {u ≥ v}
∇v(x) for a.e. x ∈ {u ≤ v}.

Lemma 8.2. Let {uj} and {vj} be sequences in W 1,Φ(RN). Assume that {ρ̆Φ(uj)}
is bounded. If {ρ̆Φ(uj − vj)} converges to zero, then {ρ̆Φ(uj) − ρ̆Φ(vj)} converges
to zero.

Proof. We have by (Φ3) and (Φ4) that

Φ(x, |vj(x)|) ≤ A2Φ(x, |uj(x) − vj(x)| + |uj(x)|)
≤ 2A2

2A3 {Φ(x, |uj(x) − vj(x)|) + Φ(x, |uj(x)|)}
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for all x ∈ RN . Hence {ρ̆Φ(vj)} is also bounded. By [42, Lemma 1.5], for any
ε > 0, there exists a constant C(ε) > 0 such that

|Φ(x, t1) − Φ(x, t2)| ≤ ε
{

Φ(x, t1) + Φ(x, t2)
}

+ C(ε)Φ(x, |t1 − t2|)

for all x ∈ RN and t1, t2 ≥ 0. Therefore we have

|ρ̆Φ(uj) − ρ̆Φ(vj)| ≤ ε {ρ̆Φ(uj) + ρ̆Φ(vj)} + C(ε)ρ̆Φ(uj − vj)

≤ 2Mε + C(ε)ρ̆Φ(uj − vj)

since ρ̆Φ(uj) ≤ M and ρ̆Φ(vj) ≤ M for some constant M > 0. Hence we find

lim
j→∞

|ρ̆Φ(uj) − ρ̆Φ(vj)| ≤ 2Mε,

as required.

The standard argument and Lemma 8.2 yield the following results (see [27,
Theorems 3.1 and 3.2]).

Proposition 8.3. The set function CapΦ(·) satisfies the following conditions:

(1) CapΦ(∅) = 0;

(2) if E1 ⊂ E2 ⊂ RN , then CapΦ(E1) ≤ CapΦ(E2);

(3) CapΦ(·) is an outer capacity;

(4) for E1, E2 ⊂ RN ,

CapΦ(E1 ∪ E2) + CapΦ(E1 ∩ E2) ≤ CapΦ(E1) + CapΦ(E2);

(5) if K1 ⊃ K2 ⊃ · · · are compact sets on RN , then

lim
i→∞

CapΦ(Ki) = CapΦ

(
∞∩
i=1

Ki

)
;

(6) if W 1,Φ(RN) is reflexive and E1 ⊂ E2 ⊂ · · · are subsets of RN , then

lim
i→∞

CapΦ(Ei) = CapΦ

(
∞∪
i=1

Ei

)
;

(7) if W 1,Φ(RN) is reflexive and Ei ⊂ RN for i = 1, 2, · · · , then

CapΦ

(
∞∪
i=1

Ei

)
≤

∞∑
i=1

CapΦ (Ei) .
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We say that a property holds CapΦ-q.e. in RN , if it holds except of a set
F ⊂ RN with CapΦ(F ) = 0. As in the proof of Theorem 3.9, we have the following
result.

Theorem 8.4 (c.f. [27, Lemma 5.1]). Suppose W 1,Φ(RN) is reflexive. Then, for
each Cauchy sequence of functions in W 1,Φ(RN) ∩ C(RN), there is a subsequence
which converges pointwise CapΦ-q.e. in RN . Moreover, the convergence is uniform
outside a set of arbitrary small Musielak-Orlicz-Sobolev CapΦ-capacity.

We say that a function u : RN → R is CapΦ-quasicontinuous if for every ε > 0,
there exists a open set E with CapΦ(E) < ε such that u restricted to RN \ E is
continuous.

Corollary 8.5 (c.f. [27, Theorem 5.2]). Suppose W 1,Φ(RN) is reflexive and C1-
functions are dense in W 1,Φ(RN). Then u ∈ W 1,Φ(RN) has a CapΦ-quasicontinuous
representative of u.

8.2 Fuglede’s theorem in RN

Lemma 8.6 (c.f. [30, Lemma 3.1]). Suppose C1-functions are dense in W 1,Φ(RN).
Let E ⊂ RN . If CapΦ(E) = 0, then MΦ(ΓE) = 0.

Proof. Let E ⊂ X with CapΦ(E) = 0. Then, for all positive integer i, we choose
functions ui ∈ W 1,Φ(RN) ∩ C1(RN) such that ui(x) ≥ 1 for every x ∈ E and
ρ̆Φ(ui) ≤ A−1

2 (2A3)
−i−1. Set vk =

∑k
i=1 |ui|. Since

ρ̆Φ

( ui

2−i

)
≤ A2(2A3)

i+1ρ̆Φ(ui) ≤ 1

by (2.1) and (Φ4), we have ∥ui∥W 1,Φ(RN ) ≤ 2−i. Therefore

∥vℓ − vm∥W 1,Φ(RN ) ≤
ℓ∑

i=m+1

∥ui∥W 1,Φ(RN ) ≤ 2−m

for every ℓ > m. Hence {vk} is a Cauchy sequence in W 1,Φ(RN). Setting v(x) =
limk→∞ vk(x) for every x ∈ X, we see that v ∈ W 1,Φ(RN) is a Borel function.
Thus, as in the proof of Lemma 4.6, we have the required result.

We say that u : RN → R is absolutely continuous on lines, u ∈ ACL(RN),
if u is absolutely continuous on almost every line segment in RN parallel to the
coordinate axes. Note that an ACL function has classical derivatives almost ev-
erywhere. An ACL function is said to belong to ACLΦ(RN) if |∇u| ∈ LΦ(RN).
Since W 1,Φ(RN) ↪→ W 1,1(RN) locally, we obtain the following result.

Lemma 8.7.
ACLΦ(RN) ∩ LΦ(RN) = W 1,Φ(RN).
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Let u : RN → R and Γ be the family on rectifiable curves γ : [0, ℓ(γ)] →
RN such that u ◦ γ is not absolutely continuous on [0, ℓ(γ)]. We say that u is
absolutely continuous on curves, u ∈ ACCΦ(RN), if MΦ(Γ) = 0. It is clear that
ACCΦ(RN) ⊂ ACL(RN). An ACCΦ function is said to belong to ACCΦ(RN) if
|∇u| ∈ LΦ(RN).

The proof of the following theorem is the same as the proof of [30, Theorem
4.2].

Theorem 8.8 (c.f. [30, Theorem 4.2]). Suppose W 1,Φ(RN) is reflexive and C1-
functions are dense in W 1,Φ(RN). Then

ACCΦ(RN) ∩ LΦ(RN) = W 1,Φ(RN).
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[22] P. Haj lasz and J. Kinnunen, Hölder quasicontinuity of Sobolev functions
on metric spaces, Rev. Mat. Iberoamericana 14 (1998), no. 3, 601–622. Zbl
1155.46306, MR1681586

37



[23] P. Haj lasz and P. Koskela, Sobolev met Poincaré, Mem. Amer. Math. Soc.
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[28] P. Harjulehto, P. Hästö and V. Latvala, Lebesgue points in variable expo-
nent Sobolev spaces on metric measure spaces, Complex Analysis and Free
Boundary Flows, Transactions of the Institute of Mathematics of the National
Academy of Sciences of Ukraine, 1 (2004), no. 3, 87–99. Zbl 1199.46079
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