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Abstract. In this paper we first study the boundedness of the max-
imal operator in grand Morrey spaces of variable exponent. As an ap-
plication of the boundedness of maximal operator, we give Sobolev’s

inequality for Riesz potentials of functions in grand Morrey spaces
of variable exponent, as an extension of Meskhi [19]. Further we
are concerned with Trudinger’s type exponential integrability and the
continuity for Riesz potentials.

1. Introduction

LetRN denote theN -dimensional Euclidean space. We denote byB(x, r)
the open ball centered at x of radius r and denote by |E| the Lebesgue
measure of a measurable set E ⊂ RN . In our discussions, the boundedness
of the Hardy-Littlewood maximal operator is a crucial tool as in Hedberg
[14]. It is well known that the maximal operator is bounded on the Lebesgue
space Lp(RN ) if p > 1 (see [27]).

In 1938, Morrey [21] considered the integral growth condition on deriva-
tives over balls, in order to study the existence and regularity for partial
differential equations. A family of functions with the integral growth condi-
tion is then called a Morrey space after his name. A systematical study for
Morrey spaces was done by Peetre [23] in 1969. Chiarenza-Frasca [4] gen-
eralized the boundedness of the maximal operator by replacing Lebesgue
spaces by Morrey spaces Lp,ν(RN ), where Morrey space Lp,ν(RN ) is a fam-
ily of f ∈ L1

loc(R
N ) satisfying the Morrey condition

sup
x∈RN ,r>0

rν

(
1

|B(x, r)|

∫
B(x,r)

|f(y)|pdy

)1/p

< ∞
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for ν > 0 (see also Nakai [22] and Mizuta-Shimomura [20]).
In [5], Diening showed that the maximal operator was bounded on the

variable exponent Lebesgue space Lp(·)(RN ) if the variable exponent p(·),
which is a constant outside a ball, satisfies the locally log-Hölder condi-
tion and inf p(x) > 1 (see condition (P2) in Section 2). In the mean time,
variable exponent Lebesgue spaces and Sobolev spaces were introduced to
discuss nonlinear partial differential equations with non-standard growth
condition. These spaces have attracted more and more attention, in con-
nection with the study of elasticity, fluid mechanics; see [24]. In the case of
bounded open sets, Almeida-Hasanov-Samko [2], Guliyev-Hasanov-Samko
[12, 13] and Mizuta-Shimomura [20] studied the boundedness of the maxi-
mal operator for the variable exponent Morrey spaces.

Grand Lebesgue spaces were introduced in [15] for the sake of study of the
integrability of the Jacobian. Grand Lebesgue spaces have been considered
in various fields: in the theory of partial differential equations (see e.g.
[16, 17, 25, 26]) and in the study of maximal operators (see e.g. [8]). In
particular, in the theory of partial differential equations, it turns out that
they are the right spaces in whichN -harmonic equations div(|∇u|N−2∇u) =
µ have to be considered (see [9, 11]). Further they have been studied in their
own (see e.g. [3, 10]). Fiorenza-Gupta-Jain [7] studied the boundedness of
the maximal operator in the grand Lebesgue spaces Lp)([0, 1]) (see also
[18]). Meskhi [19] generalized the boundedness of the maximal operator by
replacing grand Lebesgue spaces by grand Morrey spaces Lp),ν,θ(G), where
G is bounded open set in RN and grand Morrey space Lp),ν,θ(G) is a family
of f ∈ L1

loc(G) satisfying the grand Morrey condition

sup
x∈G,0<r<dG,0<ε<p−1

εθrν

(
1

|B(x, r)|

∫
G∩B(x,r)

|f(y)|p−ε dy

)1/(p−ε)

< ∞

for ν > 0 and θ > 0.
Our first aim in this paper is to establish the boundedness of the maximal

operator in grand Morrey spaces of variable exponent, as an extension of
Meskhi [19].

For 0 < α < N and a locally integrable function f on G, we define the
Riesz potential Uαf of order α by

Uαf(x) =

∫
G

|x− y|α−Nf(y) dy.

One of important applications of the boundedness of the maximal operator
is Sobolev’s inequality; in the classical case,

∥Uαf∥Lp∗ (RN ) ≤ C∥f∥Lp(RN )
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for f ∈ Lp(RN ), 0 < α < N and 1 < p < N/α, where 1/p∗ = 1/p −
α/N . Sobolev’s inequality has been studied in many articles and settings.
If f ∈ Lp,ν(RN ), then it is shown (see Adams [1] and Peetre [23]) that Uαf
satisfies Sobolev’s inequality whenever ν > α and 1 < p < ∞. Diening
[6] dealt with Sobolev’s embeddings for Riesz potentials with functions in
Lp(·)(RN ). In the case of bounded open sets, Almeida-Hasanov-Samko [2]
and Mizuta-Shimomura [20] have established embedding results for Riesz
potentials of functions in the variable exponent Morrey spaces. The version
for the generalized variable exponent Morrey space Lp(·),ω(G) was discussed
by Guliyev-Hasanov-Samko [12, 13]. Further, Meskhi [19] studied Sobolev’s
embeddings for Riesz potentials of functions in the grand Morrey spaces.

Our second aim in this paper, as an application of the boundedness of
maximal operator, is to establish Sobolev type inequalities for Riesz poten-
tials of functions in grand Morrey spaces of variable exponent, as an exten-
sion of Meskhi [19]. Further, in Sections 5 and 6, we are concerned with
Trudinger’s type exponential integrability and the continuity for Uαf(x).

2. Preliminaries

Let G be a bounded open set in RN whose diameter is denoted by dG.
Consider a function p(·) on G such that

(P1) 1 < p− := infx∈G p(x) ≤ supx∈G p(x) =: p+ < ∞; and

(P2) p(·) is log-Hölder continuous, namely

|p(x)− p(y)| ≤ cp
log(e+ 1/|x− y|)

forx, y ∈ G

with a constant cp ≥ 0; p(·) is referred to as a variable exponent.
For a locally integrable function f on G, set

∥f∥Lp(·)(G) = inf

{
λ > 0 :

∫
G

(
|f(y)|
λ

)p(y)

dy ≤ 1

}
.

In what follows, set f = 0 outside G. We denote by Lp(·)(G) the class of
locally integrable functions f on G satisfying ∥f∥Lp(·)(G) < ∞.

For 0 < ε < p−−1, set pε(x) = p(x)− ε. For ν > 0 and θ > 0, we denote
by Lp(·)−0,ν,θ(G) the class of locally integrable functions f on G satisfying

∥f∥Lp(·)−0,ν,θ(G) = sup
x∈G,0<r<dG,0<ε<p−−1

εθrν
(

1

|B(x, r)|

)1/pε(x)

× ∥f∥Lpε(·)(B(x,r)) < ∞.
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The space Lp(·)−0,ν,θ(G) is referred to as a grand Morrey space of variable
exponent.

Throughout this paper, let C denote various constants independent of
the variables in question. The symbol g ∼ h means that C−1h ≤ g ≤ Ch
for some constant C > 0.

Lemma 2.1. Let 0 < ε0 < p− − 1. Then

sup
x∈G,0<r<dG,0<ε≤ε0

εθrν
(

1

|B(x, r)|

)1/pε(x)

∥f∥Lpε(·)(B(x,r)) ∼ ∥f∥Lp(·)−0,ν,θ(G)

for all f ∈ L1
loc(G).

Proof. We may assume that f ≥ 0 and

sup
x∈G,0<r<dG,0<ε≤ε0

εθrν
(

1

|B(x, r)|

)1/pε(x)

∥f∥Lpε(·)(B(x,r)) ≤ 1.

Then note from (P1) and (P2) that

1

|B(x, r)|

∫
B(x,r)

f(y)pε0 (y) dy ≤ Cr−νpε0 (x)

for all x ∈ G and 0 < r < dG, since rp(y) ≤ Crp(x) whenever |x− y| < r by
(P2). If x ∈ G, 0 < r < dG and ε0 < ε < p− − 1, then we obtain

1

|B(x, r)|

∫
B(x,r)

f(y)pε(y) dy ≤ 1

|B(x, r)|

∫
B(x,r)

r−νpε(y) dy

+
1

|B(x, r)|

∫
B(x,r)

f(y)pε(y)

(
f(y)

r−ν

)pε0 (y)−pε(y)

dy

≤ Cr−νpε(x) + rν(ε0−ε) 1

|B(x, r)|

∫
B(x,r)

f(y)pε0 (y)dy ≤ Cr−νpε(x),

which proves the lemma. □

3. Boundedness of maximal functions

We present the boundedness of maximal functions in grand Morrey spaces
of variable exponent, as an extension of Meskhi [19]. We recall the notion
of maximal functions of locally integrable functions f on G, which are in
fact defined by

Mf(x) = sup
r>0

1

|B(x, r)|

∫
B(x,r)

|f(y)| dy.
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Lemma 3.1. Let f be a nonnegative function on G such that
∥f∥Lp(·)−0,ν,θ(G) ≤ 1. Then there exists a constant C > 0 such that

1

|B(x, r)|

∫
B(x,r)

g(y) dy ≤ Cr−ν

for all x ∈ G, 0 < r < dG and 0 < ε < p− − 1, where g(y) = εθf(y).

Here, taking ε = (p− − 1)(log(e+ dG/r))
−1, we find

(1)
1

|B(x, r)|

∫
B(x,r)

f(y) dy ≤ Cr−ν(log(2dG/r))
θ.

Proof of Lemma 3.1. Let f be a nonnegative function on G such that
∥f∥Lp(·)−0,ν,θ(G) ≤ 1. Then note from (P2) that

1

|B(x, r)|

∫
B(x,r)

g(y)pε(y) dy ≤ Cr−νpε(x)

for all x ∈ G, 0 < r < dG and 0 < ε < p− − 1. Hence, we find from (P2)

1

|B(x, r)|

∫
B(x,r)

g(y) dy ≤ r−ν +
1

|B(x, r)|

∫
B(x,r)

g(y)

(
g(y)

r−ν

)pε(y)−1

dy

≤ r−ν + Crν(pε(x)−1) 1

|B(x, r)|

∫
B(x,r)

g(y)pε(y) dy ≤ Cr−ν ,

as required. □

We denote by χE the characteristic function of E.

Lemma 3.2. Let f be a nonnegative function on G such that
∥f∥Lp(·)−0,ν,θ(G) ≤ 1. Set gj(y) = εθf(y)χB(x,2j+1r)\B(x,2jr) for 0 < ε <

p− − 1 and j ≥ 1. Then there exists a constant C > 0 such that

Mgj(z) ≤ Cr−ν2−νj

for all z ∈ B(x, r) and 0 < ε < p− − 1.

Proof. Let z ∈ B(x, r). Noting that gj(y) = 0 for y ∈ B(z, (2j − 1)r), we
have by Lemma 3.1 and (P2)

Mgj(z) = sup
t>(2j−1)r

1

|B(z, t)|

∫
B(z,t)

gj(y) dy ≤ C sup
t>(2j−1)r

t−ν ≤ C2−νjr−ν ,

as required. □
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Lemma 3.3 ([5, Theorem 3.5]). Suppose that p0(·) is a function on G such
that

1 < p−0 := inf
x∈G

p0(x) ≤ sup
x∈G

p0(x) =: p+0 < ∞; and

|p0(x)− p0(y)| ≤
cp0

log(2dG/|x− y|)
for all x, y ∈ G, where cp0 ≥ 0 is a constant. Then there exists a constant
c0 > 0 depending only on p−0 , p

+
0 , cp0 and |G| such that

∥Mf∥Lp0(·)(G) ≤ c0∥f∥Lp0(·)(G)

for all f ∈ Lp0(·)(G).

Theorem 3.4 (cf. [19, Theorem 3.1]). The maximal operator : f → Mf is
bounded from Lp(·)−0,ν,θ(G) to Lp(·)−0,ν,θ(G), that is,

∥Mf∥Lp(·)−0,ν,θ(G) ≤ C∥f∥Lp(·)−0,ν,θ(G) for all f ∈ Lp(·)−0,ν,θ(G).

Proof. Let f be a nonnegative function on G such that ∥f∥Lp(·)−0,ν,θ(G) ≤ 1.

Let x ∈ G, 0 < r < dG and 0 < ε < (p− − 1)/2 be fixed. Set g(y) = εθf(y).
For each positive integer j, set gj = gχB(x,2j+1r)\B(x,2jr) and g0 =

gχB(x,2r). Here, we find by (P2) and Lemma 3.2

∥Mgj∥Lpε(·)(B(x,r)) ≤ C2−νjr−ν |B(x, r)|1/pε(x)

for j ≥ 1. By Lemma 3.3, we have

∥Mg0∥Lpε(·)(B(x,r)) ≤ C∥g∥Lpε(·)(B(x,2r)),

where the constant C does not depend on ε with 0 < ε < (p−−1)/2. Hence

∥Mg∥Lpε(·)(B(x,r)) ≤ ∥Mg0∥Lpε(·)(B(x,r)) +
∞∑
j=1

∥Mgj∥Lpε(·)(B(x,r))

≤ C

∥g∥Lpε(·)(B(x,2r)) + |B(x, r)|1/pε(x)r−ν
∞∑
j=1

2−νj


≤ C

{
|B(x, 2r)|1/pε(x)(2r)−ν + |B(x, r)|1/pε(x)r−ν

}
,

so that

sup
x∈G,0<r<dG,0<ε<(p−−1)/2

rν
(

1

|B(x, r)|

)1/pε(x)

∥Mg∥Lpε(·)(B(x,r)) ≤ C

for all x ∈ G, 0 < r < dG and 0 < ε < (p− − 1)/2. Hence, we obtain the
required results by Lemma 2.1. □
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4. Sobolev’s inequality

Now we show the Sobolev type inequality for Riesz potentials in grand
Morrey spaces of variable exponent, as an extension of Meskhi [19].

Theorem 4.1 (cf. [19, Theorems 5.3 and 5.4]). Suppose α < ν ≤ N and
1/p∗(x) = (ν − α)/(νp(x)). Then there exists a constant C > 0 such that

∥Uαf∥Lp∗(·)−0,ν−α,θ(G) ≤ C∥f∥Lp(·)−0,ν,θ(G).

Proof. Let f be a nonnegative function on G such that ∥f∥Lp(·)−0,ν,θ(G) ≤ 1.

Let x ∈ G, 0 < r < dG and 0 < ε < min{p− − 1, ((p∗)− − 1)(ν − α)/ν} be
fixed. For z ∈ B(x, r) and δ > 0, we write

Uαf(z) =

∫
B(z,δ)

|z − y|α−Nf(y) dy +

∫
G\B(z,δ)

|z − y|α−Nf(y) dy

= U1(z) + U2(z).

First note that U1(z) ≤ CδαMf(z). To estimate U2, set g(y) = εθf(y).
Then we have by Lemma 3.1

εθU2(z) =
∞∑
j=1

∫
B(z,2jδ)\B(z,2j−1δ)

|z − y|α−Ng(y) dy

≤ C
∞∑
j=1

(2jδ)α
1

|B(x, 2jδ)|

∫
B(z,2jδ)

g(y) dy ≤ C
∞∑
j=1

(2jδ)α−ν ≤ Cδα−ν .

Hence

Uαg(z) ≤ C
{
δαMg(z) + δα−ν

}
.

Here, letting δ = {Mg(z)}−1/ν , we establish

Uαg(z) ≤ CMg(z)1−α/ν .

Now Theorem 3.4 gives∫
B(x,r)

{εθUαf(z)}(pε)
∗(z) dz ≤ C

∫
B(x,r)

{Mg(z)}pε(z) dz ≤ CrN−νpε(x),

where 1/(pε)
∗(x) = (ν−α)/(ν(pε(x)) by definition. Since (pε)

∗(z) = p∗(z)−
νε/(ν − α) = (p∗)νε/(ν−α)(z), we find

1

|B(x, r)|

∫
B(x,r)

{εθUαf(z)}(p
∗)νε/(ν−α)(z) dz ≤ Cr−(ν−α)(p∗(z))νε/(ν−α)(x),

so that we obtain the required results by Lemma 2.1. □
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5. Exponential integrability

Lemma 5.1. Let f be a nonnegative function on G satisfying (1) with ν = α
for all x ∈ G and 0 < r < dG. For 0 < η < α, there exists a constant C > 0
such that

1

|B(z, r)|

∫
B(z,r)

Iηf(x) dx ≤ Crη−α(log(2dG/r))
θ

for z ∈ G and 0 < r < dG.

Proof. For x ∈ B(z, r), write

Iηf(x) =

∫
B(z,2r)

|x− y|η−Nf(y) dy +

∫
G\B(z,2r)

|x− y|η−Nf(y) dy

= I1(x) + I2(x).

By Fubini’s theorem and (1), we have∫
B(z,r)

I1(x) dx =

∫
B(z,2r)

(∫
B(z,r)

|x− y|η−N dx

)
f(y) dy

≤
∫
B(z,2r)

(∫
B(y,3r)

|x− y|η−N dx

)
f(y) dy

≤ Crη
∫
B(z,2r)

f(y) dy ≤ Crη−α|B(z, r)|(log(2dG/r))θ.

For I2, note that

I2(x) ≤ C

∫
G\B(z,2r)

|z − y|η−Nf(y) dy

for x ∈ B(z, r). Hence we have

I2(x) ≤ C

∫ 4dG

2r

tη−N

(∫
B(z,t)

f(y) dy

)
dt

t

≤ C

∫ 4dG

2r

tη−α(log(2dG/t))
θ dt

t
≤ Crη−α(log(2dG/r))

θ.

Thus this lemma is proved. □
Theorem 5.2. For 0 < η < α there exist constants c1, c2 > 0 such that

1

|B(z, r)|

∫
B(z,r)

exp
(
c1Uαf(x)

1/(θ+1)
)
dx ≤ c2r

η−α

for all z ∈ G and 0 < r < dG, whenever f is a nonnegative measurable
function on G satisfying ∥f∥Lp(·)−0,α,θ(G) ≤ 1.
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Proof. Let f be a nonnegative measurable function on G satisfying
∥f∥Lp(·)−0,α,θ(G) ≤ 1. Then we have by (1)

1

|B(x, r)|

∫
B(x,r)

f(y) dy ≤ Cr−α(log(2dG/r))
θ

for all x ∈ G and 0 < r < dG.
For x ∈ B(z, r), 0 < δ < dG and 0 < η < α, write

Uαf(x) =

∫
B(x,δ)

|x− y|α−Nf(y) dy +

∫
G\B(x,δ)

|x− y|α−Nf(y) dy

= U1(x) + U2(x).

Then we have U1(x) ≤ δα−ηIηf(x), and by (1)

U2(x) ≤ C

∫ 2dG

δ

tα−N

(∫
B(x,t)

f(y) dy

)
dt

t

≤ C

∫ 2dG

δ

(log(2dG/t))
θ dt

t
≤ C(log(2dG/δ))

θ+1.

Hence it follows that

Uαf(x) ≤ C
{
δα−ηIηf(x) + (log(2dG/δ))

θ+1
}
.

Here, letting δ = min{dG, {Iηf(x)}−1/(α−η)(log(e + Iηf(x)))
(θ+1)/(α−η)},

we have the inequality

Uαf(x) ≤ C(log(e+ Iηf(x)))
θ+1.

Then, in view of Lemma 5.1, there exist constants c1, c3 > 0 such that

1

|B(z, r)|

∫
B(z,r)

exp
(
c1Uαf(x)

1/(θ+1)
)
dx

≤ 1

|B(z, r)|

∫
B(z,r)

{e+ Iηf(x)} dx ≤ c3r
η−α(log(2dG/r))

θ

for all z ∈ G and 0 < r < dG. Since c3r
η−α(log(2dG/r))

θ ≤ c2(η
′)rη

′−α

for all 0 < r < dG when 0 < η′ < η, the proof of the present theorem is
completed. □

6. Continuity

Theorem 6.1. If α − 1 < ν < α, then there exists a constant C > 0 such
that

|Uαf(x)− Uαf(z)| ≤ C|x− z|α−ν(log(2dG/|x− z|))θ
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for all x, z ∈ G, whenever f is a nonnegative measurable function on G
satisfying ∥f∥Lp(·)−0,ν,θ(G) ≤ 1.

Proof. Let f be a nonnegative measurable function on G satisfying
∥f∥Lp(·)−0,ν,θ(G) ≤ 1. For x, z ∈ G write ρ = |x− z| and

|Uαf(x)− Uαf(z)| ≤
∫
B(x,2ρ)

|x− y|α−Nf(y) dy +

∫
B(x,2ρ)

|z − y|α−Nf(y) dy

+

∫
G\B(x,2ρ)

∣∣|x− y|α−N − |z − y|α−N
∣∣ f(y) dy = U1 + U2 + U3.

Using (1), we have

U1 ≤ Cρα−ν(log(2dG/ρ))
θ

and

U2 ≤
∫
B(z,3ρ)

|z − y|α−Nf(y) dy ≤ Cρα−ν(log(2dG/ρ))
θ.

Moreover, by (1), we have

U3 ≤ Cρ

∫
G\B(x,2ρ)

|x− y|α−1−Nf(y) dy ≤ Cρα−ν(log(2dG/ρ))
θ.

Thus we have the conclusion. □
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