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Abstract

In this paper, we are concerned with Sobolev embeddings for Riesz po-
tentials of functions in grand Morrey spaces of variable exponents over non-
doubling measure spaces.

1 Introduction

The space introduced by Morrey [37] in 1938 has become a useful tool of the study
for the existence and regularity of partial differential equations (see also [39]). The
maximal operator is a classical tool in harmonic analysis and studying Sobolev
functions and partial differential equations and plays a central role in the study of
differentiation, singular integrals, smoothness of functions and so on (see [4], [29],
[44], etc.). Boundedness properties of the maximal operator and Riesz potentials of
functions in Morrey spaces were investigated in [1], [5] and [38]. The same problem
for the maximal operator and Riesz potentials of functions in Morrey spaces with
non-doubling measure was studied in [41] (see also [23] and [40], etc.).

In the mean time, variable exponent Lebesgue spaces and Sobolev spaces were
introduced to discuss nonlinear partial differential equations with non-standard
growth condition. For a survey, see [9]. The boundedness of the maximal oper-
ator on variable exponent Lebesgue spaces LP() was studied in [6], [7] and [24]. In
8], Sobolev’s inequality for variable exponent Lebesgue spaces LP() was studied.
Then such properties were investigated on variable exponent Morrey spaces in [3],
[21], [17], [22] and [35]. For variable exponent Morrey spaces with non-doubling
measure in [30].

Grand Lebesgue spaces were introduced in [27] for the sake of study of the Jaco-
bian. The grand Lebesgue spaces play an important role also in the theory of partial
differential equations (see [19], [28] and [43], etc.). The generalized grand Lebesgue
spaces appeared in [20], where the existence and uniqueness of the non-homogeneous
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N-harmonic equations div (|Vu|¥~=2Vu) = u were studied. The boundedness of the
maximal operator on the grand Lebesgue spaces was studied in [14]. The bound-
edness of the maximal operator and Sobolev’s inequality for grand Morrey spaces
with doubling measure were also studied in [32]. See also [15] and [31], etc..

Our first aim in this paper is to establish the boundedness of the maximal
operator on grand Morrey spaces of variable exponents over non-doubling measure
spaces. As an application of the boundedness of the maximal operator by use of
Hedberg’s trick [25], we shall give Sobolev type inequalities for Riesz potentials of
functions in these spaces.

A famous Trudinger inequality ([45]) insists that Sobolev functions in W1V (G)
satisfy finite exponential integrability, where G is an open bounded set in R (see
also [2] and [46]). Great progress on Trudinger type inequalities has been made
for Riesz potentials of order o (0 < o < N) in the limiting case ap = N (see e.g.
[10], [11], [12], [13], [42]). Trudinger type exponential integrability was investigated
on variable exponent Lebesgue spaces LP() in [16], [17] and [18] and on variable
exponent Morrey spaces in [35]. For related results, see e.g. [33], [34] and [36].

Our second aim in this paper is to establish Trudinger’s type exponential integra-
bility for Riesz potentials of functions in grand Morrey spaces of variable exponents
over non-doubling measure spaces. Further, in the final section, we are concerned
with the continuity for Riesz potentials in our setting.

2 Preliminaries

By a quasi-metric measure space, we mean a triple (X, p, 1), where X is a set, p is
a quasi-metric on X and p is a complete measure on X. Here, we say that p is a
quasi-metric on X if p satisfies the following conditions:

(pl) p(z,y) > 0 and p(x,y) = 0 if and only if = = y;
(p2) there exists a constant ag > 1 such that p(z,y) < agp(y, x) for all z,y € X;

(p3) there exists a constant a; > 0 such that p(x,y) < a1(p(z, 2) + p(z,y)) for all
x,y,z € X.

We denote B(z,r) = {y € X : p(z,y) < r} and dx = sup{p(z,y) : z,y € X}. In
this paper, we assume that 0 < dx < oo and 0 < u(B(z,r)) < oo for all x € X and
r > 0. This implies p(X) < 0.
We say that a measure p is lower Ahlfors g-regular if there exists a constant
co > 0 such that
w(B(z, 1)) > cor? (2.1)

for all x € X and 0 < r < dx. Further, p is said to be a doubling measure if
there exists a constant ¢; > 0 such that pu(B(z,2r)) < c;u(B(x,r)) for every x € X
and 0 < r < dx. By the doubling property, if 0 < r < R < dx, then there exist
constants Cp > 0 and ) > 0 such that

(B(z,r) > ¢, (ﬁ)Q (2.2)



for all z € X (see e.g. [26]).
For @ > 0,k > 1 and a locally integrable function f on X, we define the Riesz
potential U, f of order a by

_ p(r,y)”
Uarfl@) = /X u(B(z, krp(x?y)))f(y) duly).

Let p(:) be a measurable function on X such that
(P1) 1<p :=infexp(z) <sup,eyxp(z) = pt < o0
and

(P2) p(-) is log-Holder continuous, namely

Cp
p(x) —ply)| < forx,y e X
P =P Gl 1ol )
with a constant ¢, > 0. Here note from (p2) that
(P2))
% f X
plz) —py)| = orw,y €
Ip(z) = #ly) log(e +1/p(y, ))

with a constant ¢, > 0.
For a locally integrable function f on X, set

p(y)
£l 2ot () :inf{A>O:/X <@) du(y) < 1},

For0<e<p —1, set
pe(x) = p(z) —e.
For v > 0,0 > 0 and k¥ > 1, we denote by LPO)=0%%k(X) the class of locally
integrable functions f on X satisfying

v ]-/pa(x)
r
“f“LP(')—OM@;k(X) = sup e’ (m) ||f||LP5(')(B(z7r)) < o0.

zeX,0<r<dx,0<e<p——1

Throughout this paper, let C' denote various constants independent of the vari-
ables in question. g ~ h means that C~'h < g < Ch for some constant C' > 0.

LEMMA 2.1. Let k > 1. If y is lower Ahlfors g-reqular, then
(B, kr))P=W ~ u(B(w, kr))r®
whenever y € B(z,r).

Proof. Since p.(-) satisfies the condition (P2), we see from (2.1) that

(M)—wx)—mwlgew (log( Cp log ) )

(X) e+1/p(z,y)) 7 w(B(z,kr))
c 1(X)
< d 1 <C
= &P (log(e +1/r) o8 co(kr)e ) —
whenever y € B(z,r). Hence, we obtain the required result. O
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LEMMA 2.2. Let k > 1. If pu is lower Ahlfors q-regular and 0 < g9 < p~ — 1, then

14

0 r 1/pe(x)
< ) (W) HfHLpE(')(B(%T)) ~ HfHLP(')*O,u,B;k(X)

zeX,0<r<dx,0<e<eg
for all f € Lj,.(X).
Proof. We may assume that

v

0 r 1/p6($)
Sup < — Fllzeeo) Bz < 1.
peX,0<rsdy 0ce<es (M(B(x,k'r))) 1F 1l o (e

Then note from Lemma 2.1 that

; Peg/2(¥) —v

for all x € X and 0 < r < dx. To end the proof, it is sufficient to show that there
exists a constant C' > 0 such that

; pey (¥) _
pu(B(x, kr)) /B(mf (y)F™ dp(y) < Cr

for all ¢g < &7 < p~ — 1. For this, we see that

; Peq (Y)
B k) /B - f(y) du(y)

<1+ Fy)P=or2® dpu(y) < Cr=".

),
,LL(B(ZE, kr)) B(x,r)
Thus the required result is proved. O]
LEMMA 2.3. If v is lower Ahlfors g-regular, then

”1HLPE('>(B(9C,T)) ~ ,U/(B(.T, r))l/pg(z)

forallz € X,0<r<dx and)<e<p —1.
Proof. By Lemma 2.1, we have

1 Pe(y)
/B(x,r) (M(B(x,r))l/pa(w)> du(y) ~ 1

forallz € X,0<r <dy and 0 < e < p~ — 1, as required. O

3 Boundedness of the maximal operator

From now on, we assume that u is lower Ahlfors ¢g-regular. For a locally integrable
functions f on X, we consider the maximal function M, f defined by

1
Maf(@) =sup s [ 1f0)]duty)
r>0 f(B(z,2r)) B(z,r)
We first show the boundedness of the maximal operator on grand Morrey spaces

of variable exponents over non-doubling measure spaces, as an extension of Meskhi
(32, Theorem 3.1].
Let jo be the smallest integer satisfying 270 > a;.
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THEOREM 3.1. The maximal operator : f — Msf is bounded from LPU)=0%:2(X)
to Lp(')_o"”e??m“(X), that is,

||M2f”Lp(')70'V'9;2j0+1(X) S CHfHLp(-)fo,u,QQ(X) fOI" al] f 6 Lp(‘)_07y79;2(X>.

To show Theorem 3.1, we need the following results.

LEMMA 3.2. Let k > 1. Let f be a nonnegative function on X such that || || poc)-ow0i(x) <
1. Then there exists a constant C' > 0 such that

1 / _
) du(y) < Crv/ve@
M(B(SL’, /{57’)) B(z,r) g( ) Iu( )

forallz € X,0 <r <dx and 0 <e <p~ — 1, where g(y) = £’ f(y).

Proof. Let f be a nonnegative function on X such that Hf||Lp(~)—O,u,6;k(X) < 1. Then

note that )

=Y T pe(y) v
w(B(x, kr)) /]3(””)9(9) du(y) < C

forallz € X,0<r <dyx and 0 < e < p~ — 1. Hence, we find

1
(Bl ) /B - 9(y) du(y)

- 1 (Z/) pe(y)—1
< v/pe(x) —/ g— d
ST LB ) Jaen 1Y (MPE(@ #ly)

1
< pvlpe@) . Cppe@)-1/pe(a) / ()P dyu(y)
M(B(x7 k"l")) B(z,r)
< Oy v/veo)
as required. O

We denote by xg the characteristic function of E.

LEMMA 3.3. Let j > jo. Let f be a nonnegative function on X such that || f[| js)-ow02(x) <
1. Set g;(y) = €° f(Y)XB(w2i+1r)\B(a,2im) (y) for 0 < e < p~ — 1. Then there exists a
constant C' > 0 such that

Myg;(2) < 2~ Vi/pt —v/pe(x)
for all z € B(x,r) and 0 <e <p~ — 1.
Proof. Let z € B(x,r). Noting that g;(y) = 0 for y € B(z,(27/a; — 1)r), we have
by Lemma 3.2 and (P2)

1
Msgj(z) = sup —/ 9i(y) du(y
20;(2) t>(21 Jar—1)r H(B(2,21)) Jp(zp) 3(9) diy)

t>(29/a1—1)r

< CQ—Vj/erT—V/ps(l‘)’

as required. O



LEMMA 3.4 (cf. [30, Theorem 3.1]). Suppose that py(-) is a function on X such that

L <py = migf(po(x) < Sg}l?po(if) =:pg <00

and
Cpy

= log(e +1/p(x,y))

for all x,y € X and some constant c,, > 0. Then there exists a constant cy > 0
depending only on py , pg , ¢y, and p(X) such that

[po() — po(y)|

HMQfHLPO<'>(X) < COHf”Lpo(')(X)
for all f € LP0)(X),

Proof of Theorem 3.1. Let f be a nonnegative function on X such that || f[| o) -0.v02(x) <
L. Let z € X,0<r <dy and 0 <e < (p~ —1)/2 be fixed. Set g(y) =&’ f(y).
For positive integers j > jg, set

9i = 9XB@2 1)\ B(w2ir) (Y)

and go = gX Bz 200r) (¥)-
Here, we find by Lemmas 3.3 and 2.3

—vj/pt —v/pe(x
| Mag; || Loeor By < C279P PO Loty (B2
< CQ*VJ‘/}D*T*V/IJE(I)M(B(:C’ T))l/ps(:v)

for j > jo. Since p- > (p~ +1)/2 > 1, we see from Lemma 3.4 that
HM29||LPE(‘)(B(x,r))

< HMQQOHLPE(‘)(B(x,r)) + Z HMzgjuLpam(B(x,r))

J=jo

<C {HgOHLPa(‘)(B(xQJ'Or)) + u(B(z,r))/Pe@pmr/p=(®) Z Q—Vj/zﬁ}
J=jo

<C {,U(B(x, 2j0+17"))1/p8(x)(2j°7°)_y/p€(”) + M(B(w,r))l/pf(x)r_”/pf(x)}

< Cp(B(x, 200 y))V/pe(@)ymv/p=(@)

so that

TV

sup

0 1/pe (=)
< : M f || oeo) (Basy < C-
2€X,0<r<dy,0<e<(p~—1)/2 (N(B($,230+17’))) H -0 (B

Hence, we obtain the required result by Lemma 2.2. O



4 Sobolev’s inequality

Now we show the Sobolev type inequality for Riesz potentials in grand Morrey
spaces of variable exponents over non-doubling measure spaces, as an extension of
Meskhi [32, Theorems 5.3 and 5.4].

THEOREM 4.1. Suppose 1/p*(x) = 1/p(z) — a/v > 1/p™ — a/v > 0. Then there
exists a constant C' > 0 such that

”Ua74f||Lp*(-)—0,v,6;2j0+1(x) < OHfHLP(')—O’”ﬁ??(X)'

Proof. Let f be a nonnegative function on X such that ||f||Lp(A)_o,y,9;2(X) < 1. Let
reX,0<r<dyand0<e<min{p™ —1,((p*)” —1)/7} be fixed, where

= Sw ) @)/ (e (2)p(2).

For z € B(z,r) and § > 0, we write

_ p(zy)" p(zy)°
0l = [ T e YD [ Ty )

= Ui(2) + Us(2).

First we have

U1(2> =

j=1

> (27j+15)a
< Z/ e oivagy) ] W) ()

le B(z,2‘j+15

<3 IS M f ()

j=1

< C5 Myf(2).

p(z,y)
I - o 7o AL

To estimate U, set g(y) = € f(yy). Then we have by Lemma 3.2

€0U2(Z) =

j=1

/ p(z,y)"
XN(B(2,296)\B(z,29~16)) p(B(z,4p(z,y)))

< O30 s ey [, sy

9(y) du(y)

<C Z(Qj(;)a—V/ps(Z)

j=1
< O §ev/pe(2)

Hence

Unag(2) < C {6 Myg(z) + 6277/} |
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Here, letting 6 = M29<Z)—p5(z)/zx’ we establish
Un19(2) < CMag(2)'—or=)/Y,

Now Theorem 3.1 gives

1
(B, 27777)
¢ 2) 1= dpu(z
< B o, M i)

< Crv.

/ ICCRVCNERTE
B(x,r

Here one sees that

Setting € = ~ve, we have

1 ) Yol
w(B(z, 200+ 1r)) /B(z,n{geUaAﬂz)}(p O dule)

1 ) .
< - (p)"(2) .
=¢ |:/L(B(x’2m+1r)) /B(w){g Uaaf(2)} du(z) +

<Cr™

forallz € X,0 <r <dy and 0 < e <min{p~ —1,((p*)~ —1)/7}, so that we obtain
the required result by Lemma 2.2. O]

5 Exponential integrability

In this section, we assume that
esssup (1/p(x) — a/v) <0. (5.1)
zeX

Our aim in this section is to give an exponential integrability of Trudinger type.
Recall that jg is the smallest integer satisfying 270 > a, where a; > 0 is the constant
in (p3). Set

ko = max{2aga;(ag + 1), ai(ag + 270T) /(2% — ay), 2},
where ap > 1 is the constant in (p2).

THEOREM 5.1. Let 0 < 1 < a. Suppose that (5.1) holds. Then there exist constants
c1,co > 0 such that

1

—_— U, 1/(6+1) d < n—a
p(B(z,2%r)) /B(z,r) xp (€10 f (2) ) du(z) < cor

for all z € X and 0 < r < dx, whenever f is a nonnegative measurable function on
X satisfying ||f||Lp(<)7O,V,0;1(X) < 1.



To prove the theorem, we prepare some lemmas.

LEMMA 5.2. Let k> 2,0 >0 and 0 < n < a. Let f be a nonnegative function on
X such that there exists a constant C' > 0 such that

__ —a 9
u(B(x, 1)) /B(w) F(y) duly) < Cr=(log(e + 1/7))’. (5.2)

Then there exists a constant C' > 0 such that

p(z,y)" e (los(e )
/X\B(g:,é) (B, kple, y)))f(y)du(y)écci (log(e +1/4))

forx € X and § > 0.

Proof. Let f be anonnegative function on X satisfying (5.2). We choose the smallest
integer j; such that 291§ > dyx. We have by (5.2)

plz,y)"
/X\B(x 5) pu(B(z, k’p(x,y)))f(y) dp(y)

= /B Pz, u)" fy) du(y)

= J/B(e.20)\B(,21-15) w(B(z, kp(z,y)))

Ji ; 1
Z o) B k) / mm)f(y) du(y)

Ji
< Z (276)"*(log(e 4 1/(276)))?
< Z/ 7 (log(e + 1/1))" —
=1 20-1§
2dx dt
<C 7= (log(e + 1/t))? - (5.3)

1)

Hence we find by n < «

p(z,y)" N ;
/X\Bu,a) W(Bla, kp(a.g))) ! W) dnly) = €O (log(e + 1/9))%

as required. O

LEMMA 5.3. Let 0 < n < . Let f be a nonnegative function on X satisfying (5.2).
Define

_ p(z,y)"
If(x) = /X u(B(:c,kop(x,y)))f<y) du(y).

Then there exists a constant C' > 0 such that

; T T =% (loe(e Y
p(B(z,20m)) /za(z,r) Iy f(x) dp(x) < Cr"=*(log(e + 1/1))

forall z€ X and 0 <r < dx.



Proof. Write
I, f(x)

p(x,y)" p(l‘,y)”
Ve o UL R O e v e AR

= ILi(z) + L(x).

Let a = a;(2%°ag + 1). By Fubini’s theorem, we have

[, nwut
B /B<z,2f0r> (/Bcz,r) M(B(z,(z;iz;y))) du(x)) S () dpaly)
< oo (/B@,m B e ) 70

3 p(z,y)"
0 /B(y,2jar)\3(y,2j1w) w(B(z, kop(z,y))) dM(:iC)) f(y) du(y)

j=

= (29 agar)"
< —— dp(z) | f(y) duly
\/B(z,2j0r) =0 /B(y,Qjar)\B(y,2j1ar) M(B(l’, 2_J_1a0 lkOGJT)) ( ) ( ) ( )
= (277 agar)"
< —— dp(z) | f(y)du(y
/B(Z,Qjor) =0 /B(y,Q—jar)\B(y,2_j_1ar) M(B(ya 27](17’)) ( ) ( ) ( )
< / | Z(Tjaoar)") fy) du(y),
B(Z,zjo’l") j:0

since B(y,2 7ar) C B(x,2 7 tay koar) by the fact that ky > 2agai(ag + 1). Using
n > 0 and (5.2), we have

Li(x)du(z) < C 9=J,\1 d
/B(z,r) ( ) ,u< ) /B(z,Qﬂ'Or) (z;( ) )f(y) M(y)

J]=

o [ )

Cru(B(z,277))(2r)~* (log (e + 1/(2%r)))’
Cr*(log(e + 1/r)) u(B(z, 2"r)).

For z € B(z,r) and y € X \ B(z, 2%r), we obtain

IN

IA A

a12]0
Pl2,y) < gr—=p(@,y)- (5:4)
and it
ot1
plz,2) < 55— alp(x,y) (5.5)

Indeed, we have
p(z,y) < ai(p(z,2) + p(z,y) < ar(r+ p(z,y)) < ar1(27°p(z,y) + p(z,y)),
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which yields (5.4). Also we have
pla,2) < aop(z,2) < agr < ap2™p(z,y),

which implies (5.5) by (5.4). In view of (5.4), (5.5) and the fact that kg > a?(ag +
2701y /(270 — ay), we have B(z,2p(z,y)) C B(x, kop(x,y)). Further, we note

p(z,y) < ar (ag277 +1) p(z,y)

for z € B(z,r) and y € X \ B(z,2%r). Therefore, we obtain

p(z,y)"
hiz) < C/X\B(z,m W(Ble, kopla, ) ¥ )

p(z,y)"
< C/X\B<Z,2jm W(Bz2p( ) W )

for x € B(z,r). Hence we have by Lemma 5.2

L(z) < Cr=*(log(e + 1/7))°.
Thus this lemma is proved. ]

Proof of Theorem 5.1. Let f be a nonnegative measurable function on X satisfying
11| Locr-owoa(xy < 1. Set g(y) = €’ f(y). Then we have by Lemma 3.2 and (5.1)

b
p(B(x,7))

Here we take ¢ = (p~ — 1)(log(e + 1/r))~! and obtain

[ awauty) s oro < ormeslnn
B(z,r)

-
u(B(w,r))

for all z € X and 0 < r < dy, which is nothing but (5.2). For =z € B(z,7), 6 >0
and 0 < n < «, we find

Uanof(Q?)

/B W) duly) < Or=(log(e + 1/ (5.6)

F(w) duly) + / Y i) du(y)

/B(x,é) n(B(z, kop X\B(z,0) M Bz, kop(z,9)))

< 0", f(x) + Us(x).
As in the proof of (5.3), it follows that
2 o dt 0+1
Us(z) <C (log(e +1/8))" = < C(log(e +1/8))™,
5

which gives
Ua o f(x) < C{8*7L, f(z) + (log(e + 1/6))""}.

Here, letting ,

§ = {I,f(x)} VD (log(e + I, f(x)))@+D/@=m),
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we have the inequality
Uaio f () < C(log(e + I, f(2)))"*.

Then, in view of Lemma 5.3, there exist constants ¢y, c3 > 0 such that
1
TR~ 900)) U, /(041 ¢4
u(B(z, 20or) /BW) xp (ko f(2) 1070 dp(z)
1
SC{—-/ L f(z) du(x +1}
BT Jy, )

< e (log(e + 1/7))°

for all z € X and 0 < r < dx. Since csr" *(log(e + 1/7))? < cor =« for all
0 < r < dx and some constant c; > 0 when 0 < 1’ < 7, the proof of the present
theorem is completed. O]

6 Continuity

In this section, we assume that there exist constants C; > 0 and 0 < o < 1 such
that

plz,y)*  pzy)° pz,2)\”  p(z,y)°
W(B e, 20(e.9) u(B(z,Qp(z,y)))‘Scl <p<x,y>) W(Ble (o)) OV

whenever p(z, z) < p(z,y)/2.
Let w(-) be a positive function on (0, 0o) satisfying the doubling condition

w(2r) < Cow(r) for all » > 0

and
w(s) < Csw(t) whenever 0 < s < t,

where Cy and Cj are positive constants. Then, in view of (2.2), one can find
constants () > 0 and Cg > 0 such that
w(r) > Cor® (6.2)

forall 0 < r < dx.
In this section, for § > 0, we consider the space LP)=0%9( X) of locally integrable
functions f on X satisfying

. w(r) 1/pe(x)
A1l o003y = weX,Oqji%@@__lg (m> [l £re ) (Baryy < 00
Set
Qu(z,r) = /7‘ t%w(t) VP (log(e + 1/t))’ %
and i

2dx dt
0 (2,7) = / 1 u(t) 7 log(e +1/6)"

forre X and 0 <r <dy.
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EXAMPLE 6.1. Let w(r) = r”(log(e+1/7))?. If p~ > v/a and esssup, x (—5/p(z)+
6 +1) <0, then

Qu(z,r) +r°Q" (2, r) < C(log(e + 1/7“))’5/1”@”9“
forx e X and 0 < r < dx.

Our final goal is to establish the following result, which deals with the continuity
for Riesz potentials of functions in grand Morrey spaces of variable exponents over
non-doubling measure spaces.

THEOREM 6.2. Suppose that (6.1) holds. Then there exists a constant C' > 0 such
that

Ua2f(#) = Uapf(2)] < C{Qu(2, p(2, 2)) + Qu(z, p(2, 2)) + pla, 2)7Q" (z, p(x, 2)) }

for all x,z € X, whenever f is a nonnegative measurable function on X satisfying
HfHLP(‘)*O,w,Q(X) < 1.

Before the proof of Theorem 6.2, we prepare some lemmas.
Since
u)(T)*Ifzz(w)*p(y)\ < Op~Qr@) -2l <

for all y € B(z,r) by (6.2) and (P2), we can show the following result in the same
manner as Lemma 3.2 and (5.6).

N
—

LEMMA 6.3. Let f be a nonnegative function on X such that || f|| 1e¢)-0w.e(x)
Then there exists a constant C' > 0 such that

o
p(B(z,7))

forallz € X and 0 <r < dx.

/B ) duly) < Ol e+ 1/

LEMMA 6.4. Let f be a nonnegative function on X such that HfHLp(.)fo,w,e(X) < 1.
Then there exists a constant C' > 0 such that

plz, y)*
/B(z,(s) M(B(x,Qp(x’y)))f(?/) du(y) < CQ.(x,0)

and

pl, y)* *
/G\B(x,a) Bz, 20 g W k) < O (w,9)

forallx € X and 0 < § < dx.
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Proof. Let f be a nonnegative function on X such that ||| p()-0w0x) < 1. We
show only the first case. As in the proof of (5.3), we have by Lemma 6.3

plz,y)”
/B(m,a) w(B(x,2p(z,y))) F(y) duly)

[e.e]

plz,y)”
/B(z -1\ B(z2-is) M B(,2p(7,y))) 1Y) dnly)

J=
o)

1
(2791 5)” d
< (Blz.2- ]+15))/$2H16)f(y) #(y)

J=1

< 0i(z—jﬂa)%(2—j+15)—1/1><z> (log(e +1/(277%14)))’

IN

1
C /0 £ (8) V7@ (log(e + 1/4))? Cff CQ.(x,6),

as required. O

Proof of Theorem 6.2. Let f be a nonnegative measurable function on X satisfying
”fHLp«)—o,w,e(X) < 1. Write

Ua,2f<x> - Ua,2f("7’)

= p<x7y)a _ p(Z,y)a
_ /B(x,Qp(m,z)) M(B(a:,2p(x,y)))f(y) dp(y) /19(1’2/)(172)) M(B(%Qp(z,y)))f(y) dp(y)
p(x’y)a B p(z, y)a
oy B SR ~ TG 100

for x, 2z € X. Using Lemma 6.4, we have

/ p(x, y)*
B(a.20(z,2)) M B(x,2p(2,9)))

and

/B PEYT ) du(y) < / PEYT ) du(y)

(@2p(z,2)) H(B(2,2p(2,9))) (zar(ao+2)p(z,2)) H(B(2,2p(2,9)))
< OQu(z,a1(ap + 2)p(z, 2)) < CQu(2, p(x, 2)).

f(y)dply) < CQL(x, 2p(z, 2)) < CQu(x, p(x, 2))

On the other hand, by (6.1) and Lemma 6.4, we have

p(r,y)” p(2,y)*
/X\B@,zp(x,zn ‘M(B(% 20(e0))  mBlzp(z g || Y W)
- p(z,y)* ™7
S GO [ B0 30 0
< Cp(z,2)"(z, 2p(x, 2))
< Cp(x,2)"Q(z, p(z, 2)).
Then we have the conclusion. O
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