Sobolev embeddings for Riesz potentials of functions in grand Morrey spaces of variable exponents over non-doubling measure spaces

Takao Ohno and Tetsu Shimomura

Abstract

In this paper, we are concerned with Sobolev embeddings for Riesz potentials of functions in grand Morrey spaces of variable exponents over nondoubling measure spaces.

1 Introduction

The space introduced by Morrey [37] in 1938 has become a useful tool of the study for the existence and regularity of partial differential equations (see also [39]). The maximal operator is a classical tool in harmonic analysis and studying Sobolev functions and partial differential equations and plays a central role in the study of differentiation, singular integrals, smoothness of functions and so on (see [4], [29], [44], etc.). Boundedness properties of the maximal operator and Riesz potentials of functions in Morrey spaces were investigated in [1], [5] and [38]. The same problem for the maximal operator and Riesz potentials of functions in Morrey spaces with non-doubling measure was studied in [41] (see also [23] and [40], etc.).

In the mean time, variable exponent Lebesgue spaces and Sobolev spaces were introduced to discuss nonlinear partial differential equations with non-standard growth condition. For a survey, see [9]. The boundedness of the maximal operator on variable exponent Lebesgue spaces $L^{p(\cdot)}$ was studied in [6], [7] and [24]. In [8], Sobolev's inequality for variable exponent Lebesgue spaces $L^{p(\cdot)}$ was studied. Then such properties were investigated on variable exponent Morrey spaces in [3], [21], [17], [22] and [35]. For variable exponent Morrey spaces with non-doubling measure in [30].

Grand Lebesgue spaces were introduced in [27] for the sake of study of the Jacobian. The grand Lebesgue spaces play an important role also in the theory of partial differential equations (see [19], [28] and [43], etc.). The generalized grand Lebesgue spaces appeared in [20], where the existence and uniqueness of the non-homogeneous

²⁰⁰⁰ Mathematics Subject Classification : Primary 31B15, 46E35

Key words and phrases : grand Morrey spaces, variable exponents, non-doubling measure, metric measure spaces, Riesz potentials, maximal operator, Sobolev's inequality, Trudinger's exponential inequality, continuity

N-harmonic equations div $(|\nabla u|^{N-2}\nabla u) = \mu$ were studied. The boundedness of the maximal operator on the grand Lebesgue spaces was studied in [14]. The boundedness of the maximal operator and Sobolev's inequality for grand Morrey spaces with doubling measure were also studied in [32]. See also [15] and [31], etc..

Our first aim in this paper is to establish the boundedness of the maximal operator on grand Morrey spaces of variable exponents over non-doubling measure spaces. As an application of the boundedness of the maximal operator by use of Hedberg's trick [25], we shall give Sobolev type inequalities for Riesz potentials of functions in these spaces.

A famous Trudinger inequality ([45]) insists that Sobolev functions in $W^{1,N}(G)$ satisfy finite exponential integrability, where G is an open bounded set in \mathbb{R}^N (see also [2] and [46]). Great progress on Trudinger type inequalities has been made for Riesz potentials of order α ($0 < \alpha < N$) in the limiting case $\alpha p = N$ (see e.g. [10], [11], [12], [13], [42]). Trudinger type exponential integrability was investigated on variable exponent Lebesgue spaces $L^{p(\cdot)}$ in [16], [17] and [18] and on variable exponent Morrey spaces in [35]. For related results, see e.g. [33], [34] and [36].

Our second aim in this paper is to establish Trudinger's type exponential integrability for Riesz potentials of functions in grand Morrey spaces of variable exponents over non-doubling measure spaces. Further, in the final section, we are concerned with the continuity for Riesz potentials in our setting.

2 Preliminaries

By a quasi-metric measure space, we mean a triple (X, ρ, μ) , where X is a set, ρ is a quasi-metric on X and μ is a complete measure on X. Here, we say that ρ is a quasi-metric on X if ρ satisfies the following conditions:

- $(\rho 1) \ \rho(x,y) \ge 0$ and $\rho(x,y) = 0$ if and only if x = y;
- $(\rho 2)$ there exists a constant $a_0 \ge 1$ such that $\rho(x, y) \le a_0 \rho(y, x)$ for all $x, y \in X$;
- (ρ 3) there exists a constant $a_1 > 0$ such that $\rho(x, y) \le a_1(\rho(x, z) + \rho(z, y))$ for all $x, y, z \in X$.

We denote $B(x,r) = \{y \in X : \rho(x,y) < r\}$ and $d_X = \sup\{\rho(x,y) : x, y \in X\}$. In this paper, we assume that $0 < d_X < \infty$ and $0 < \mu(B(x,r)) < \infty$ for all $x \in X$ and r > 0. This implies $\mu(X) < \infty$.

We say that a measure μ is lower Ahlfors q-regular if there exists a constant $c_0 > 0$ such that

$$\mu(B(x,r)) \ge c_0 r^q \tag{2.1}$$

for all $x \in X$ and $0 < r < d_X$. Further, μ is said to be a doubling measure if there exists a constant $c_1 > 0$ such that $\mu(B(x, 2r)) \leq c_1 \mu(B(x, r))$ for every $x \in X$ and $0 < r < d_X$. By the doubling property, if $0 < r \leq R < d_X$, then there exist constants $C_Q > 0$ and $Q \geq 0$ such that

$$\frac{\mu(B(x,r))}{\mu(B(x,R))} \ge C_Q \left(\frac{r}{R}\right)^Q \tag{2.2}$$

for all $x \in X$ (see e.g. [26]).

For $\alpha > 0, k \ge 1$ and a locally integrable function f on X, we define the Riesz potential $U_{\alpha,k}f$ of order α by

$$U_{\alpha,k}f(x) = \int_X \frac{\rho(x,y)^{\alpha}}{\mu(B(x,k\rho(x,y)))} f(y) \, d\mu(y).$$

Let $p(\cdot)$ be a measurable function on X such that

(P1) $1 < p^- := \inf_{x \in X} p(x) \le \sup_{x \in X} p(x) =: p^+ < \infty$ and

(P2) $p(\cdot)$ is log-Hölder continuous, namely

$$|p(x) - p(y)| \le \frac{c_p}{\log(e + 1/\rho(x, y))} \quad \text{for } x, y \in X$$

with a constant $c_p \ge 0$. Here note from $(\rho 2)$ that (P2')

$$|p(x) - p(y)| \le \frac{c'_p}{\log(e + 1/\rho(y, x))} \quad \text{for } x, y \in X$$

with a constant $c'_p \ge 0$.

For a locally integrable function f on X, set

$$\|f\|_{L^{p(\cdot)}(X)} = \inf\left\{\lambda > 0 : \int_X \left(\frac{|f(y)|}{\lambda}\right)^{p(y)} d\mu(y) \le 1\right\}.$$

For $0 < \varepsilon < p^- - 1$, set

$$p_{\varepsilon}(x) = p(x) - \varepsilon.$$

For $\nu > 0, \theta > 0$ and $k \ge 1$, we denote by $L^{p(\cdot)-0,\nu,\theta;k}(X)$ the class of locally integrable functions f on X satisfying

$$\|f\|_{L^{p(\cdot)-0,\nu,\theta;k}(X)} = \sup_{x \in X, 0 < r < d_X, 0 < \varepsilon < p^- - 1} \varepsilon^{\theta} \left(\frac{r^{\nu}}{\mu(B(x,kr))}\right)^{1/p_{\varepsilon}(x)} \|f\|_{L^{p_{\varepsilon}(\cdot)}(B(x,r))} < \infty.$$

Throughout this paper, let C denote various constants independent of the variables in question. $g \sim h$ means that $C^{-1}h \leq g \leq Ch$ for some constant C > 0.

LEMMA 2.1. Let $k \geq 1$. If μ is lower Ahlfors q-regular, then

$$\mu(B(x,kr))^{p_{\varepsilon}(y)} \sim \mu(B(x,kr))^{p_{\varepsilon}(x)}$$

whenever $y \in B(x, r)$.

Proof. Since $p_{\varepsilon}(\cdot)$ satisfies the condition (P2), we see from (2.1) that

$$\begin{split} \left(\frac{\mu(B(x,kr))}{\mu(X)}\right)^{-|p_{\varepsilon}(x)-p_{\varepsilon}(y)|} &\leq \exp\left(\frac{c_p}{\log(e+1/\rho(x,y))}\log\frac{\mu(X)}{\mu(B(x,kr))}\right) \\ &\leq \exp\left(\frac{c_p}{\log(e+1/r)}\log\frac{\mu(X)}{c_0(kr)^q}\right) \leq C \end{split}$$

whenever $y \in B(x, r)$. Hence, we obtain the required result.

LEMMA 2.2. Let $k \ge 1$. If μ is lower Ahlfors q-regular and $0 < \varepsilon_0 < p^- - 1$, then

$$\sup_{x \in X, 0 < r < d_X, 0 < \varepsilon < \varepsilon_0} \varepsilon^{\theta} \left(\frac{r^{\nu}}{\mu(B(x, kr))} \right)^{1/p_{\varepsilon}(x)} \|f\|_{L^{p_{\varepsilon}(\cdot)}(B(x, r))} \sim \|f\|_{L^{p(\cdot) - 0, \nu, \theta; k}(X)}$$

for all $f \in L^1_{loc}(X)$.

Proof. We may assume that

$$\sup_{x \in X, 0 < r < d_X, 0 < \varepsilon < \varepsilon_0} \varepsilon^{\theta} \left(\frac{r^{\nu}}{\mu(B(x, kr))} \right)^{1/p_{\varepsilon}(x)} \|f\|_{L^{p_{\varepsilon}(\cdot)}(B(x, r))} \le 1.$$

Then note from Lemma 2.1 that

$$\frac{1}{\mu(B(x,kr))} \int_{B(x,r)} f(y)^{p_{\varepsilon_0/2}(y)} d\mu(y) \le Cr^{-\nu}$$

for all $x \in X$ and $0 < r < d_X$. To end the proof, it is sufficient to show that there exists a constant C > 0 such that

$$\frac{1}{\mu(B(x,kr))} \int_{B(x,r)} f(y)^{p_{\varepsilon_1}(y)} d\mu(y) \le Cr^{-\nu}$$

for all $\varepsilon_0 \leq \varepsilon_1 < p^- - 1$. For this, we see that

$$\frac{1}{\mu(B(x,kr))} \int_{B(x,r)} f(y)^{p_{\varepsilon_1}(y)} d\mu(y)$$

$$\leq 1 + \frac{1}{\mu(B(x,kr))} \int_{B(x,r)} f(y)^{p_{\varepsilon_0/2}(y)} d\mu(y) \leq Cr^{-\nu}.$$

Thus the required result is proved.

LEMMA 2.3. If μ is lower Ahlfors q-regular, then

$$\|1\|_{L^{p_{\varepsilon}(\cdot)}(B(x,r))} \sim \mu(B(x,r))^{1/p_{\varepsilon}(x)}$$

for all $x \in X$, $0 < r < d_X$ and $0 < \varepsilon < p^- - 1$.

Proof. By Lemma 2.1, we have

$$\int_{B(x,r)} \left(\frac{1}{\mu(B(x,r))^{1/p_{\varepsilon}(x)}}\right)^{p_{\varepsilon}(y)} d\mu(y) \sim 1$$

for all $x \in X, 0 < r < d_X$ and $0 < \varepsilon < p^- - 1$, as required.

3 Boundedness of the maximal operator

From now on, we assume that μ is lower Ahlfors q-regular. For a locally integrable functions f on X, we consider the maximal function $M_2 f$ defined by

$$M_2 f(x) = \sup_{r>0} \frac{1}{\mu(B(x,2r))} \int_{B(x,r)} |f(y)| \, d\mu(y).$$

We first show the boundedness of the maximal operator on grand Morrey spaces of variable exponents over non-doubling measure spaces, as an extension of Meskhi [32, Theorem 3.1].

Let j_0 be the smallest integer satisfying $2^{j_0} > a_1$.

THEOREM 3.1. The maximal operator : $f \to M_2 f$ is bounded from $L^{p(\cdot)-0,\nu,\theta;2}(X)$ to $L^{p(\cdot)-0,\nu,\theta;2^{j_0+1}}(X)$, that is,

 $\|M_2 f\|_{L^{p(\cdot)-0,\nu,\theta;2^{j_0+1}}(X)} \le C \|f\|_{L^{p(\cdot)-0,\nu,\theta;2}(X)} \quad \text{for all } f \in L^{p(\cdot)-0,\nu,\theta;2}(X).$

To show Theorem 3.1, we need the following results.

LEMMA 3.2. Let $k \ge 1$. Let f be a nonnegative function on X such that $||f||_{L^{p(\cdot)-0,\nu,\theta;k}(X)} \le 1$. Then there exists a constant C > 0 such that

$$\frac{1}{\mu(B(x,kr))} \int_{B(x,r)} g(y) \, d\mu(y) \le Cr^{-\nu/p_{\varepsilon}(x)}$$

for all $x \in X, 0 < r < d_X$ and $0 < \varepsilon < p^- - 1$, where $g(y) = \varepsilon^{\theta} f(y)$.

Proof. Let f be a nonnegative function on X such that $||f||_{L^{p(\cdot)-0,\nu,\theta;k}(X)} \leq 1$. Then note that

$$\frac{1}{\mu(B(x,kr))} \int_{B(x,r)} g(y)^{p_{\varepsilon}(y)} d\mu(y) \le Cr^{-\nu}$$

for all $x \in X, 0 < r < d_X$ and $0 < \varepsilon < p^- - 1$. Hence, we find

$$\frac{1}{\mu(B(x,kr))} \int_{B(x,r)} g(y) d\mu(y) \\
\leq r^{-\nu/p_{\varepsilon}(x)} + \frac{1}{\mu(B(x,kr))} \int_{B(x,r)} g(y) \left(\frac{g(y)}{r^{-\nu/p_{\varepsilon}(x)}}\right)^{p_{\varepsilon}(y)-1} d\mu(y) \\
\leq r^{-\nu/p_{\varepsilon}(x)} + Cr^{\nu(p_{\varepsilon}(x)-1)/p_{\varepsilon}(x)} \frac{1}{\mu(B(x,kr))} \int_{B(x,r)} g(y)^{p_{\varepsilon}(y)} d\mu(y) \\
\leq Cr^{-\nu/p_{\varepsilon}(x)},$$

as required.

We denote by χ_E the characteristic function of E.

LEMMA 3.3. Let $j \ge j_0$. Let f be a nonnegative function on X such that $||f||_{L^{p(\cdot)-0,\nu,\theta;2}(X)} \le 1$. Set $g_j(y) = \varepsilon^{\theta} f(y) \chi_{B(x,2^{j+1}r)\setminus B(x,2^{j}r)}(y)$ for $0 < \varepsilon < p^- - 1$. Then there exists a constant C > 0 such that

$$M_2 g_j(z) \le C 2^{-\nu j/p^+} r^{-\nu/p_{\varepsilon}(x)}$$

for all $z \in B(x, r)$ and $0 < \varepsilon < p^{-} - 1$.

Proof. Let $z \in B(x, r)$. Noting that $g_j(y) = 0$ for $y \in B(z, (2^j/a_1 - 1)r)$, we have by Lemma 3.2 and (P2)

$$M_{2}g_{j}(z) = \sup_{t > (2^{j}/a_{1}-1)r} \frac{1}{\mu(B(z,2t))} \int_{B(z,t)} g_{j}(y) d\mu(y)$$

$$\leq C \sup_{t > (2^{j}/a_{1}-1)r} t^{-\nu/p_{\varepsilon}(z)}$$

$$\leq C 2^{-\nu j/p^{+}} r^{-\nu/p_{\varepsilon}(x)},$$

as required.

LEMMA 3.4 (cf. [30, Theorem 3.1]). Suppose that $p_0(\cdot)$ is a function on X such that

$$1 < p_0^- := \inf_{x \in X} p_0(x) \le \sup_{x \in X} p_0(x) =: p_0^+ < \infty$$

and

$$|p_0(x) - p_0(y)| \le \frac{c_{p_0}}{\log(e + 1/\rho(x, y))}$$

for all $x, y \in X$ and some constant $c_{p_0} \ge 0$. Then there exists a constant $c_0 > 0$ depending only on p_0^-, p_0^+, c_{p_0} and $\mu(X)$ such that

$$||M_2f||_{L^{p_0(\cdot)}(X)} \le c_0 ||f||_{L^{p_0(\cdot)}(X)}$$

for all $f \in L^{p_0(\cdot)}(X)$.

Proof of Theorem 3.1. Let f be a nonnegative function on X such that $||f||_{L^{p(\cdot)-0,\nu,\theta;2}(X)} \leq 1$. Let $x \in X, 0 < r < d_X$ and $0 < \varepsilon < (p^- - 1)/2$ be fixed. Set $g(y) = \varepsilon^{\theta} f(y)$.

For positive integers $j \ge j_0$, set

$$g_j = g\chi_{B(x,2^{j+1}r)\setminus B(x,2^jr)}(y)$$

and $g_0 = g\chi_{B(x,2^{j_0}r)}(y)$.

Here, we find by Lemmas 3.3 and 2.3

$$\begin{split} \|M_2 g_j\|_{L^{p_{\varepsilon}(\cdot)}(B(x,r))} &\leq C 2^{-\nu j/p^+} r^{-\nu/p_{\varepsilon}(x)} \|1\|_{L^{p_{\varepsilon}(\cdot)}(B(x,r))} \\ &\leq C 2^{-\nu j/p^+} r^{-\nu/p_{\varepsilon}(x)} \mu(B(x,r))^{1/p_{\varepsilon}(x)} \end{split}$$

for $j \ge j_0$. Since $p_{\varepsilon}^- > (p^- + 1)/2 > 1$, we see from Lemma 3.4 that

$$\begin{split} \|M_{2}g\|_{L^{p_{\varepsilon}(\cdot)}(B(x,r))} &\leq \|M_{2}g_{0}\|_{L^{p_{\varepsilon}(\cdot)}(B(x,r))} + \sum_{j=j_{0}}^{\infty} \|M_{2}g_{j}\|_{L^{p_{\varepsilon}(\cdot)}(B(x,r))} \\ &\leq C \left\{ \|g_{0}\|_{L^{p_{\varepsilon}(\cdot)}(B(x,2^{j_{0}}r))} + \mu(B(x,r))^{1/p_{\varepsilon}(x)}r^{-\nu/p_{\varepsilon}(x)}\sum_{j=j_{0}}^{\infty} 2^{-\nu j/p^{+}} \right\} \\ &\leq C \left\{ \mu(B(x,2^{j_{0}+1}r))^{1/p_{\varepsilon}(x)}(2^{j_{0}}r)^{-\nu/p_{\varepsilon}(x)} + \mu(B(x,r))^{1/p_{\varepsilon}(x)}r^{-\nu/p_{\varepsilon}(x)} \right\} \\ &\leq C \mu(B(x,2^{j_{0}+1}r))^{1/p_{\varepsilon}(x)}r^{-\nu/p_{\varepsilon}(x)}, \end{split}$$

so that

$$\sup_{x \in X, 0 < r < d_X, 0 < \varepsilon < (p^- - 1)/2} \varepsilon^{\theta} \left(\frac{r^{\nu}}{\mu(B(x, 2^{j_0 + 1}r))} \right)^{1/p_{\varepsilon}(x)} \|M_2 f\|_{L^{p_{\varepsilon}(\cdot)}(B(x, r))} \le C.$$

Hence, we obtain the required result by Lemma 2.2.

4 Sobolev's inequality

Now we show the Sobolev type inequality for Riesz potentials in grand Morrey spaces of variable exponents over non-doubling measure spaces, as an extension of Meskhi [32, Theorems 5.3 and 5.4].

THEOREM 4.1. Suppose $1/p^*(x) = 1/p(x) - \alpha/\nu \ge 1/p^+ - \alpha/\nu > 0$. Then there exists a constant C > 0 such that

$$\|U_{\alpha,4}f\|_{L^{p^*(\cdot)-0,\nu,\theta;2^{j_0+1}}(X)} \le C\|f\|_{L^{p(\cdot)-0,\nu,\theta;2}(X)}.$$

Proof. Let f be a nonnegative function on X such that $||f||_{L^{p(\cdot)-0,\nu,\theta;2}(X)} \leq 1$. Let $x \in X, 0 < r < d_X$ and $0 < \varepsilon < \min\{p^- - 1, ((p^*)^- - 1)/\gamma\}$ be fixed, where

$$\gamma = \sup_{z \in X, 0 < \varepsilon < p^{-}-1} (p_{\varepsilon})^{*}(z)p^{*}(z)/(p_{\varepsilon}(z)p(z))$$

For $z \in B(x, r)$ and $\delta > 0$, we write

$$U_{\alpha,4}f(z) = \int_{B(z,\delta)} \frac{\rho(z,y)^{\alpha}}{\mu(B(z,4\rho(z,y)))} f(y) \, d\mu(y) + \int_{X \setminus B(z,\delta)} \frac{\rho(z,y)^{\alpha}}{\mu(B(z,4\rho(z,y)))} f(y) \, d\mu(y)$$

= $U_1(z) + U_2(z).$

First we have

$$U_{1}(z) = \sum_{j=1}^{\infty} \int_{B(z,2^{-j+1}\delta) \setminus B(z,2^{-j}\delta)} \frac{\rho(z,y)^{\alpha}}{\mu(B(z,4\rho(z,y)))} f(y) \, d\mu(y)$$

$$\leq \sum_{j=1}^{\infty} \int_{B(z,2^{-j+1}\delta)} \frac{(2^{-j+1}\delta)^{\alpha}}{\mu(B(z,2^{-j+2}\delta))} f(y) \, d\mu(y)$$

$$\leq \sum_{j=1}^{\infty} (2^{-j+1}\delta)^{\alpha} M_{2}f(z)$$

$$\leq C\delta^{\alpha} M_{2}f(z).$$

To estimate U_2 , set $g(y) = \varepsilon^{\theta} f(y)$. Then we have by Lemma 3.2

$$\begin{split} \varepsilon^{\theta} U_2(z) &= \sum_{j=1}^{\infty} \int_{X \cap (B(z,2^{j}\delta) \setminus B(z,2^{j-1}\delta))} \frac{\rho(z,y)^{\alpha}}{\mu(B(z,4\rho(z,y)))} g(y) \, d\mu(y) \\ &\leq C \sum_{j=1}^{\infty} (2^{j}\delta)^{\alpha} \frac{1}{\mu(B(z,2^{j+1}\delta))} \int_{B(z,2^{j}\delta)} g(y) \, d\mu(y) \\ &\leq C \sum_{j=1}^{\infty} (2^{j}\delta)^{\alpha-\nu/p_{\varepsilon}(z)} \\ &\leq C \delta^{\alpha-\nu/p_{\varepsilon}(z)}. \end{split}$$

Hence

$$U_{\alpha,4}g(z) \le C\left\{\delta^{\alpha}M_2g(z) + \delta^{\alpha-\nu/p_{\varepsilon}(z)}\right\}.$$

Here, letting $\delta = M_2 g(z)^{-p_{\varepsilon}(z)/\nu}$, we establish

$$U_{\alpha,4}g(z) \le CM_2g(z)^{1-\alpha p_{\varepsilon}(z)/\nu}$$

Now Theorem 3.1 gives

$$\begin{aligned} &\frac{1}{\mu(B(x,2^{j_0+1}r))} \int_{B(x,r)} \{\varepsilon^{\theta} U_{\alpha,4}f(z)\}^{(p_{\varepsilon})^*(z)} d\mu(z) \\ &\leq \frac{C}{\mu(B(x,2^{j_0+1}r))} \int_{B(x,r)} \{M_2g(z)\}^{p_{\varepsilon}(z)} d\mu(z) \\ &\leq Cr^{-\nu}. \end{aligned}$$

Here one sees that

$$(p_{\varepsilon})^*(z) = p^*(z) - \frac{(p_{\varepsilon})^*(z)p^*(z)}{p_{\varepsilon}(z)p(z)}\varepsilon.$$

Setting $\tilde{\varepsilon} = \gamma \varepsilon$, we have

$$\frac{1}{\mu(B(x,2^{j_0+1}r))} \int_{B(x,r)} \{\tilde{\varepsilon}^{\theta} U_{\alpha,4}f(z)\}^{(p^*)_{\tilde{\varepsilon}}(z)} d\mu(z) \\
\leq C \left[\frac{1}{\mu(B(x,2^{j_0+1}r))} \int_{B(x,r)} \{\varepsilon^{\theta} U_{\alpha,4}f(z)\}^{(p_{\varepsilon})^*(z)} d\mu(z) + 1 \right] \\
\leq Cr^{-\nu}$$

for all $x \in X$, $0 < r < d_X$ and $0 < \varepsilon < \min\{p^- - 1, ((p^*)^- - 1)/\gamma\}$, so that we obtain the required result by Lemma 2.2.

5 Exponential integrability

In this section, we assume that

$$\operatorname{ess\,sup}_{x\in X} \left(1/p(x) - \alpha/\nu\right) \le 0. \tag{5.1}$$

Our aim in this section is to give an exponential integrability of Trudinger type. Recall that j_0 is the smallest integer satisfying $2^{j_0} > a_1$, where $a_1 > 0$ is the constant in $(\rho 3)$. Set

$$k_0 = \max\{2a_0a_1(a_0+1), a_1^2(a_0+2^{j_0+1})/(2^{j_0}-a_1), 2\}$$

where $a_0 \ge 1$ is the constant in $(\rho 2)$.

THEOREM 5.1. Let $0 < \eta < \alpha$. Suppose that (5.1) holds. Then there exist constants $c_1, c_2 > 0$ such that

$$\frac{1}{\mu(B(z,2^{j_0}r))} \int_{B(z,r)} \exp\left(c_1 U_{\alpha,k_0} f(x)^{1/(\theta+1)}\right) d\mu(x) \le c_2 r^{\eta-\alpha}$$

for all $z \in X$ and $0 < r < d_X$, whenever f is a nonnegative measurable function on X satisfying $\|f\|_{L^{p(\cdot)-0,\nu,\theta;1}(X)} \leq 1$.

To prove the theorem, we prepare some lemmas.

LEMMA 5.2. Let $k \ge 2, \theta > 0$ and $0 < \eta < \alpha$. Let f be a nonnegative function on X such that there exists a constant C > 0 such that

$$\frac{1}{\mu(B(x,r))} \int_{B(x,r)} f(y) \, d\mu(y) \le Cr^{-\alpha} (\log(e+1/r))^{\theta}.$$
(5.2)

Then there exists a constant C > 0 such that

$$\int_{X\setminus B(x,\delta)} \frac{\rho(x,y)^{\eta}}{\mu(B(x,k\rho(x,y)))} f(y) \, d\mu(y) \le C\delta^{\eta-\alpha} (\log(e+1/\delta))^{\theta}$$

for $x \in X$ and $\delta > 0$.

Proof. Let f be a nonnegative function on X satisfying (5.2). We choose the smallest integer j_1 such that $2^{j_1}\delta \ge d_X$. We have by (5.2)

$$\int_{X \setminus B(x,\delta)} \frac{\rho(x,y)^{\eta}}{\mu(B(x,k\rho(x,y)))} f(y) d\mu(y) \\
= \sum_{j=1}^{j_1} \int_{B(x,2^j\delta) \setminus B(x,2^{j-1}\delta)} \frac{\rho(x,y)^{\eta}}{\mu(B(x,k\rho(x,y)))} f(y) d\mu(y) \\
\leq \sum_{j=1}^{j_1} (2^j\delta)^{\eta} \frac{1}{\mu(B(x,2^{j-1}k\delta))} \int_{B(x,2^j\delta)} f(y) d\mu(y) \\
\leq C \sum_{j=1}^{j_1} (2^j\delta)^{\eta-\alpha} (\log(e+1/(2^j\delta)))^{\theta} \\
\leq C \sum_{j=1}^{j_1} \int_{2^{j-1}\delta}^{2^j\delta} t^{\eta-\alpha} (\log(e+1/t))^{\theta} \frac{dt}{t} \\
\leq C \int_{\delta}^{2^{d_X}} t^{\eta-\alpha} (\log(e+1/t))^{\theta} \frac{dt}{t}.$$
(5.3)

Hence we find by $\eta < \alpha$

$$\int_{X\setminus B(x,\delta)} \frac{\rho(x,y)^{\eta}}{\mu(B(x,k\rho(x,y)))} f(y) \, d\mu(y) \le C\delta^{\eta-\alpha} (\log(e+1/\delta))^{\theta},$$

d.

as required.

LEMMA 5.3. Let $0 < \eta < \alpha$. Let f be a nonnegative function on X satisfying (5.2). Define

$$I_{\eta}f(x) = \int_{X} \frac{\rho(x, y)^{\eta}}{\mu(B(x, k_{0}\rho(x, y)))} f(y) \, d\mu(y).$$

Then there exists a constant C > 0 such that

$$\frac{1}{\mu(B(z,2^{j_0}r))} \int_{B(z,r)} I_{\eta}f(x) \, d\mu(x) \le Cr^{\eta-\alpha} (\log(e+1/r))^{\theta}$$

for all $z \in X$ and $0 < r < d_X$.

Proof. Write

$$\begin{aligned} &I_{\eta}f(x) \\ &= \int_{B(z,2^{j_0}r)} \frac{\rho(x,y)^{\eta}}{\mu(B(x,k_0\rho(x,y)))} f(y) \, d\mu(y) + \int_{X \setminus B(z,2^{j_0}r)} \frac{\rho(x,y)^{\eta}}{\mu(B(x,k_0\rho(x,y)))} f(y) \, d\mu(y) \\ &= I_1(x) + I_2(x). \end{aligned}$$

Let $a = a_1(2^{j_0}a_0 + 1)$. By Fubini's theorem, we have

$$\begin{split} & \int_{B(z,r)} I_1(x) \, d\mu(x) \\ &= \int_{B(z,2^{j_0}r)} \left(\int_{B(z,r)} \frac{\rho(x,y)^{\eta}}{\mu(B(x,k_0\rho(x,y)))} \, d\mu(x) \right) f(y) \, d\mu(y) \\ &\leq \int_{B(z,2^{j_0}r)} \left(\int_{B(y,ar)} \frac{\rho(x,y)^{\eta}}{\mu(B(x,k_0\rho(x,y)))} \, d\mu(x) \right) f(y) \, d\mu(y) \\ &= \int_{B(z,2^{j_0}r)} \left(\sum_{j=0}^{\infty} \int_{B(y,2^{-j_ar}) \setminus B(y,2^{-j-1}ar)} \frac{\rho(x,y)^{\eta}}{\mu(B(x,2^{-j-1}a_0^{-1}k_0ar))} \, d\mu(x) \right) f(y) \, d\mu(y) \\ &\leq \int_{B(z,2^{j_0}r)} \left(\sum_{j=0}^{\infty} \int_{B(y,2^{-j_ar}) \setminus B(y,2^{-j-1}ar)} \frac{(2^{-j}a_0ar)^{\eta}}{\mu(B(y,2^{-j_ar}))} \, d\mu(x) \right) f(y) \, d\mu(y) \\ &\leq \int_{B(z,2^{j_0}r)} \left(\sum_{j=0}^{\infty} \int_{B(y,2^{-j_ar}) \setminus B(y,2^{-j-1}ar)} \frac{(2^{-j}a_0ar)^{\eta}}{\mu(B(y,2^{-j_ar}))} \, d\mu(x) \right) f(y) \, d\mu(y) \\ &\leq \int_{B(z,2^{j_0}r)} \left(\sum_{j=0}^{\infty} (2^{-j}a_0ar)^{\eta} \right) f(y) \, d\mu(y), \end{split}$$

since $B(y, 2^{-j}ar) \subset B(x, 2^{-j-1}a_0^{-1}k_0ar)$ by the fact that $k_0 \geq 2a_0a_1(a_0+1)$. Using $\eta > 0$ and (5.2), we have

$$\begin{split} \int_{B(z,r)} I_1(x) \, d\mu(x) &\leq C \int_{B(z,2^{j_0}r)} \left(\sum_{j=1}^{\infty} (2^{-j}r)^{\eta} \right) f(y) \, d\mu(y) \\ &\leq Cr^{\eta} \int_{B(z,2^{j_0}r)} f(y) \, d\mu(y) \\ &\leq Cr^{\eta} \mu(B(z,2^{j_0}r))(2^{j_0}r)^{-\alpha} (\log(e+1/(2^{j_0}r)))^{\theta} \\ &\leq Cr^{\eta-\alpha} (\log(e+1/r))^{\theta} \mu(B(z,2^{j_0}r)). \end{split}$$

For $x \in B(z,r)$ and $y \in X \setminus B(z, 2^{j_0}r)$, we obtain

$$\rho(z,y) \le \frac{a_1 2^{j_0}}{2^{j_0} - a_1} \rho(x,y).$$
(5.4)

and

$$\rho(x,z) \le \frac{a_0 a_1}{2^{j_0} - a_1} \rho(x,y) \tag{5.5}$$

Indeed, we have

$$\rho(z,y) \le a_1(\rho(z,x) + \rho(x,y)) \le a_1(r + \rho(x,y)) \le a_1(2^{-j_0}\rho(z,y) + \rho(x,y)),$$

which yields (5.4). Also we have

$$\rho(x,z) \le a_0 \rho(z,x) \le a_0 r \le a_0 2^{-j_0} \rho(z,y),$$

which implies (5.5) by (5.4). In view of (5.4), (5.5) and the fact that $k_0 \ge a_1^2(a_0 + 2^{j_0+1})/(2^{j_0} - a_1)$, we have $B(z, 2\rho(z, y)) \subset B(x, k_0\rho(x, y))$. Further, we note

$$\rho(x,y) \le a_1 \left(a_0 2^{-j_0} + 1 \right) \rho(z,y)$$

for $x \in B(z,r)$ and $y \in X \setminus B(z, 2^{j_0}r)$. Therefore, we obtain

$$I_{2}(x) \leq C \int_{X \setminus B(z,2^{j_{0}}r)} \frac{\rho(z,y)^{\eta}}{\mu(B(x,k_{0}\rho(x,y)))} f(y) d\mu(y)$$

$$\leq C \int_{X \setminus B(z,2^{j_{0}}r)} \frac{\rho(z,y)^{\eta}}{\mu(B(z,2\rho(z,y)))} f(y) d\mu(y)$$

for $x \in B(z, r)$. Hence we have by Lemma 5.2

$$I_2(x) \le Cr^{\eta - \alpha} (\log(e + 1/r))^{\theta}.$$

Thus this lemma is proved.

Proof of Theorem 5.1. Let f be a nonnegative measurable function on X satisfying $\|f\|_{L^{p(\cdot)-0,\nu,\theta;1}(X)} \leq 1$. Set $g(y) = \varepsilon^{\theta} f(y)$. Then we have by Lemma 3.2 and (5.1)

$$\frac{1}{\mu(B(x,r))} \int_{B(x,r)} g(y) \, d\mu(y) \le Cr^{-\nu/p_{\varepsilon}(x)} \le Cr^{-\alpha p(x)/p_{\varepsilon}(x)}$$

Here we take $\varepsilon = (p^- - 1)(\log(e + 1/r))^{-1}$ and obtain

$$\frac{1}{\mu(B(x,r))} \int_{B(x,r)} f(y) \, d\mu(y) \le Cr^{-\alpha} (\log(e+1/r))^{\theta}$$
(5.6)

for all $x \in X$ and $0 < r < d_X$, which is nothing but (5.2). For $x \in B(z, r)$, $\delta > 0$ and $0 < \eta < \alpha$, we find

$$U_{\alpha,k_0}f(x) = \int_{B(x,\delta)} \frac{\rho(x,y)^{\alpha}}{\mu(B(x,k_0\rho(x,y)))} f(y) \, d\mu(y) + \int_{X \setminus B(x,\delta)} \frac{\rho(x,y)^{\alpha}}{\mu(B(x,k_0\rho(x,y)))} f(y) \, d\mu(y) \\ \leq \delta^{\alpha-\eta} I_{\eta}f(x) + U_2(x).$$

As in the proof of (5.3), it follows that

$$U_2(x) \le C \int_{\delta}^{2d_X} (\log(e+1/t))^{\theta} \frac{dt}{t} \le C (\log(e+1/\delta))^{\theta+1},$$

which gives

$$U_{\alpha,k_0}f(x) \le C\left\{\delta^{\alpha-\eta}I_{\eta}f(x) + (\log(e+1/\delta))^{\theta+1}\right\}.$$

Here, letting,

$$\delta = \{I_{\eta}f(x)\}^{-1/(\alpha-\eta)} (\log(e+I_{\eta}f(x)))^{(\theta+1)/(\alpha-\eta)},$$

we have the inequality

$$U_{\alpha,k_0}f(x) \le C(\log(e + I_\eta f(x)))^{\theta+1}$$

Then, in view of Lemma 5.3, there exist constants $c_1, c_3 > 0$ such that

$$\frac{1}{\mu(B(z,2^{j_0}r))} \int_{B(z,r)} \exp\left(c_1 U_{\alpha,k_0} f(x)^{1/(\theta+1)}\right) d\mu(x)$$

$$\leq C \left\{ \frac{1}{\mu(B(z,2^{j_0}r))} \int_{B(z,r)} I_{\eta} f(x) d\mu(x) + 1 \right\}$$

$$\leq c_3 r^{\eta-\alpha} (\log(e+1/r))^{\theta}$$

for all $z \in X$ and $0 < r < d_X$. Since $c_3 r^{\eta-\alpha} (\log(e+1/r))^{\theta} \leq c_2 r^{\eta'-\alpha}$ for all $0 < r < d_X$ and some constant $c_2 > 0$ when $0 < \eta' < \eta$, the proof of the present theorem is completed.

6 Continuity

In this section, we assume that there exist constants $C_1 > 0$ and $0 < \sigma \le 1$ such that

$$\left|\frac{\rho(x,y)^{\alpha}}{\mu(B(x,2\rho(x,y)))} - \frac{\rho(z,y)^{\alpha}}{\mu(B(z,2\rho(z,y)))}\right| \le C_1 \left(\frac{\rho(x,z)}{\rho(x,y)}\right)^{\sigma} \frac{\rho(x,y)^{\alpha}}{\mu(B(x,2\rho(x,y)))}$$
(6.1)

whenever $\rho(x, z) \leq \rho(x, y)/2$.

Let $\omega(\cdot)$ be a positive function on $(0,\infty)$ satisfying the doubling condition

$$\omega(2r) \le C_2 \omega(r) \qquad \text{for all } r > 0$$

and

$$\omega(s) \le C_3 \omega(t)$$
 whenever $0 < s \le t$,

where C_2 and C_3 are positive constants. Then, in view of (2.2), one can find constants Q > 0 and $C_Q > 0$ such that

$$\omega(r) \ge C_Q r^Q \tag{6.2}$$

for all $0 < r < d_X$.

In this section, for $\theta > 0$, we consider the space $L^{p(\cdot)-0,\omega,\theta}(X)$ of locally integrable functions f on X satisfying

$$\|f\|_{L^{p(\cdot)-0,\omega,\theta}(X)} = \sup_{x \in X, 0 < r < d_X, 0 < \varepsilon < p^- - 1} \varepsilon^{\theta} \left(\frac{\omega(r)}{\mu(B(x,r))}\right)^{1/p_{\varepsilon}(x)} \|f\|_{L^{p_{\varepsilon}(\cdot)}(B(x,r))} < \infty.$$

Set

$$\Omega_*(x,r) = \int_0^r t^{\alpha} \omega(t)^{-1/p(x)} (\log(e+1/t))^{\theta} \frac{dt}{t}$$

and

$$\Omega^*(x,r) = \int_r^{2d_X} t^{\alpha-\sigma} \omega(t)^{-1/p(x)} (\log(e+1/t))^{\theta} \frac{dt}{t}$$

. .

for $x \in X$ and $0 < r < d_X$.

EXAMPLE 6.1. Let $\omega(r) = r^{\nu} (\log(e+1/r))^{\beta}$. If $p^- \ge \nu/\alpha$ and $\operatorname{ess\,sup}_{x \in X} (-\beta/p(x) + \theta + 1) < 0$, then

$$\Omega_*(x,r) + r^{\sigma} \Omega^*(x,r) \le C (\log(e+1/r))^{-\beta/p(x)+\theta+1}$$

for $x \in X$ and $0 < r < d_X$.

Our final goal is to establish the following result, which deals with the continuity for Riesz potentials of functions in grand Morrey spaces of variable exponents over non-doubling measure spaces.

THEOREM 6.2. Suppose that (6.1) holds. Then there exists a constant C > 0 such that

$$|U_{\alpha,2}f(x) - U_{\alpha,2}f(z)| \le C \{\Omega_*(x,\rho(x,z)) + \Omega_*(z,\rho(x,z)) + \rho(x,z)^{\sigma} \Omega^*(x,\rho(x,z))\}$$

for all $x, z \in X$, whenever f is a nonnegative measurable function on X satisfying $\|f\|_{L^{p(\cdot)-0,\omega,\theta}(X)} \leq 1.$

Before the proof of Theorem 6.2, we prepare some lemmas. Since

$$\omega(r)^{-|p(x)-p(y)|} \le Cr^{-Q|p(x)-p(y)|} \le C$$

for all $y \in B(x, r)$ by (6.2) and (P2), we can show the following result in the same manner as Lemma 3.2 and (5.6).

LEMMA 6.3. Let f be a nonnegative function on X such that $||f||_{L^{p(\cdot)-0,\omega,\theta}(X)} \leq 1$. Then there exists a constant C > 0 such that

$$\frac{1}{\mu(B(x,r))} \int_{B(x,r)} f(y) \, d\mu(y) \le C\omega(r)^{-1/p(x)} (\log(e+1/r))^{\theta}$$

for all $x \in X$ and $0 < r < d_X$.

LEMMA 6.4. Let f be a nonnegative function on X such that $||f||_{L^{p(\cdot)-0,\omega,\theta}(X)} \leq 1$. Then there exists a constant C > 0 such that

$$\int_{B(x,\delta)} \frac{\rho(x,y)^{\alpha}}{\mu(B(x,2\rho(x,y)))} f(y) \, d\mu(y) \le C\Omega_*(x,\delta)$$

and

$$\int_{G\setminus B(x,\delta)} \frac{\rho(x,y)^{\alpha-\sigma}}{\mu(B(x,2\rho(x,y)))} f(y) \, d\mu(y) \le C\Omega^*(x,\delta)$$

for all $x \in X$ and $0 < \delta < d_X$.

Proof. Let f be a nonnegative function on X such that $||f||_{L^{p(\cdot)-0,\omega,\theta}(X)} \leq 1$. We show only the first case. As in the proof of (5.3), we have by Lemma 6.3

$$\int_{B(x,\delta)} \frac{\rho(x,y)^{\alpha}}{\mu(B(x,2\rho(x,y)))} f(y) d\mu(y)$$

$$= \sum_{j=1}^{\infty} \int_{B(x,2^{-j+1}\delta) \setminus B(x,2^{-j}\delta)} \frac{\rho(x,y)^{\alpha}}{\mu(B(x,2\rho(x,y)))} f(y) d\mu(y)$$

$$\leq \sum_{j=1}^{\infty} (2^{-j+1}\delta)^{\alpha} \frac{1}{\mu(B(x,2^{-j+1}\delta))} \int_{B(x,2^{-j+1}\delta)} f(y) d\mu(y)$$

$$\leq C \sum_{j=1}^{\infty} (2^{-j+1}\delta)^{\alpha} \omega(2^{-j+1}\delta)^{-1/p(x)} (\log(e+1/(2^{-j+1}\delta)))^{\theta}$$

$$\leq C \int_{0}^{\delta} t^{\alpha} \omega(t)^{-1/p(x)} (\log(e+1/t))^{\theta} \frac{dt}{t} = C\Omega_{*}(x,\delta),$$

as required.

Proof of Theorem 6.2. Let f be a nonnegative measurable function on X satisfying $\|f\|_{L^{p(\cdot)-0,\omega,\theta}(X)} \leq 1$. Write

$$\begin{aligned} U_{\alpha,2}f(x) - U_{\alpha,2}f(z) \\ &= \int_{B(x,2\rho(x,z))} \frac{\rho(x,y)^{\alpha}}{\mu(B(x,2\rho(x,y)))} f(y) \, d\mu(y) - \int_{B(x,2\rho(x,z))} \frac{\rho(z,y)^{\alpha}}{\mu(B(z,2\rho(z,y)))} f(y) \, d\mu(y) \\ &+ \int_{X \setminus B(x,2\rho(x,z))} \left(\frac{\rho(x,y)^{\alpha}}{\mu(B(x,2\rho(x,y)))} - \frac{\rho(z,y)^{\alpha}}{\mu(B(z,2\rho(z,y)))} \right) f(y) \, d\mu(y) \end{aligned}$$

for $x, z \in X$. Using Lemma 6.4, we have

$$\int_{B(x,2\rho(x,z))} \frac{\rho(x,y)^{\alpha}}{\mu(B(x,2\rho(x,y)))} f(y) \, d\mu(y) \le C\Omega_*(x,2\rho(x,z)) \le C\Omega_*(x,\rho(x,z))$$

and

$$\begin{split} \int_{B(x,2\rho(x,z))} \frac{\rho(z,y)^{\alpha}}{\mu(B(z,2\rho(z,y)))} f(y) \, d\mu(y) &\leq \int_{B(z,a_1(a_0+2)\rho(x,z))} \frac{\rho(z,y)^{\alpha}}{\mu(B(z,2\rho(z,y)))} f(y) \, d\mu(y) \\ &\leq C\Omega_*(z,a_1(a_0+2)\rho(x,z)) \leq C\Omega_*(z,\rho(x,z)). \end{split}$$

On the other hand, by (6.1) and Lemma 6.4, we have

$$\begin{split} &\int_{X\setminus B(x,2\rho(x,z))} \left| \frac{\rho(x,y)^{\alpha}}{\mu(B(x,2\rho(x,y)))} - \frac{\rho(z,y)^{\alpha}}{\mu(B(z,2\rho(z,y)))} \right| f(y) \, d\mu(y) \\ &\leq C_1 \rho(x,z)^{\sigma} \int_{X\setminus B(x,2\rho(x,z))} \frac{\rho(x,y)^{\alpha-\sigma}}{\mu(B(x,2\rho(x,y)))} f(y) \, d\mu(y) \\ &\leq C\rho(x,z)^{\sigma} \Omega^*(x,2\rho(x,z)) \\ &\leq C\rho(x,z)^{\sigma} \Omega^*(x,\rho(x,z)). \end{split}$$

Then we have the conclusion.

References

- [1] D. R. Adams, A note on Riesz potentials, Duke Math. J. 42 (1975), 765–778.
- [2] D. R. Adams and L. I. Hedberg, Function spaces and potential theory, Springer-Verlag, Berlin, Heidelberg, 1996.
- [3] A. Almeida, J. Hasanov and S. Samko, Maximal and potential operators in variable exponent Morrey spaces, Georgian Math. J. 15 (2008), 195–208.
- [4] B. Bojarski and P. Hajłasz, Pointwise inequalities for Sobolev functions and some applications, Studia Math. 106(1) (1993), 77–92.
- [5] F. Chiarenza and M. Frasca, Morrey spaces and Hardy-Littlewood maximal function, Rend. Mat. Apple. 7(7) (1987), 273–279.
- [6] D. Cruz-Uribe, A. Fiorenza and C. J. Neugebauer, The maximal function on variable L^p spaces, Ann. Acad. Sci. Fenn. Math. 28 (2003), 223–238; Ann. Acad. Sci. Fenn. Math. 29 (2004), 247–249.
- [7] L. Diening, Maximal functions in generalized $L^{p(\cdot)}$ spaces, Math. Inequal. Appl. **7**(2) (2004), 245–254.
- [8] L. Diening, Riesz potentials and Sobolev embeddings on generalized Lebesgue and Sobolev spaces $L^{p(\cdot)}$ and $W^{k,p(\cdot)}$, Math. Nachr. **263**(1) (2004), 31–43.
- [9] L. Diening, P. Harjulehto, P. Hästö, M. Růžička, Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Mathematics, vol. 2017, Springer-Verlag, Heidelberg, 2011.
- [10] D. E. Edmunds, P. Gurka and B. Opic, Double exponential integrability, Bessel potentials and embedding theorems, Studia Math. 115 (1995), 151–181.
- [11] D. E. Edmunds, P. Gurka and B. Opic, Sharpness of embeddings in logarithmic Bessel-potential spaces, Proc. Royal Soc. Edinburgh. 126 (1996), 995–1009.
- [12] D. E. Edmunds and R. Hurri-Syrjänen, Sobolev inequalities of exponential type, Israel. J. Math. 123 (2001), 61–92.
- [13] D. E. Edmunds and M. Krbec, Two limiting cases of Sobolev imbeddings, Houston J. Math. 21 (1995), 119–128.
- [14] A. Fiorenza, B. Gupta and P. Jain, The maximal theorem in weighted grand Lebesgue spaces, Stud. Math. 188(2) (2008), 123–133.
- [15] A. Fiorenza and M. Krbec, On the domain and range of the maximal operator, Nagoya Math. J. 158 (2000), 43–61.
- [16] T. Futamura and Y. Mizuta, Continuity properties of Riesz potentials for functions in $L^{p(\cdot)}$ of variable exponent, Math. Inequal. Appl. 8(4) (2005), 619–631.

- [17] T. Futamura, Y. Mizuta and T. Shimomura, Sobolev embedding for variable exponent Riesz potentials on metric spaces, Ann. Acad. Sci. Fenn. Math. 31 (2006), 495–522.
- [18] T. Futamura, Y. Mizuta and T. Shimomura, Integrability of maximal functions and Riesz potentials in Orlicz spaces of variable exponent, J. Math. Anal. Appl. 366 (2010), 391–417.
- [19] A. Fiorenza and C. Sbordone, Existence and uniqueness results for solutions of nonlinear equations with right hand side in L^1 , Studia Math. **127**(3) (1998), 223–231.
- [20] L. Greco, T. Iwaniec and C. Sbordone, Inverting the *p*-harmonic operator, Manuscripta Math. **92** (1997), 249–258.
- [21] V. S. Guliyev, J. Hasanov and S. Samko, Boundedness of the maximal, potential and singular operators in the generalized variable exponent Morrey spaces, Math. Scand. 107 (2010), 285–304.
- [22] V. S. Guliyev, J. Hasanov and S. Samko, Boundedness of the maximal, potential and Singular integral operators in the generalized variable exponent Morrey type spaces, Journal of Mathematical Sciences 170 (2010), no. 4, 423–443.
- [23] H. Gunawan, Y. Sawano and I. Sihwaningrum, Fractional integral operators in nonhomogeneous spaces, Bull. Aust. Math. Soc. 80 (2009), no. 2, 324–334.
- [24] P. Harjulehto, P. Hästö and M. Pere, Variable exponent Lebesgue spaces on metric spaces: the Hardy-Littlezood maximal operator, Real Anal. Exchange 30 (2004/2005), 87–104.
- [25] L. I. Hedberg, On certain convolution inequalities, Proc. Amer. Math. Soc. 36 (1972), 505–510.
- [26] P. Hajłasz and P. Koskela, Sobolev met Poincaré, Mem. Amer. Math. Soc. 145, 2000.
- [27] T. Iwaniec and C. Sbordone, On the integrability of the Jacobian under minimal hypotheses, Arch. Rational Mech. Anal. 119 (1992), 129–143.
- [28] T. Iwaniec and C. Sbordone, Riesz Transforms and elliptic pde's with VMO coefficients, J. Analyse Math. 74 (1998), 183–212.
- [29] J. Kinnunen, The Hardy-Littlewood maximal function of a Sobolev function, Israel J. Math. 100 (1997), 117–124.
- [30] V. Kokilashvili and A. Meskhi, Maximal functions and potentials in variable exponent Morrey spaces with non-doubling measure, Complex Var. Elliptic Equ. 55 (2010), no. 8-10, 923–936.
- [31] V. Kokilashvili and S. Samko, Boundedness of weighted singular integral operators in grand Lebesgue spaces, Georgian Math. J. 18 (2011), no. 2, 259–269.

- [32] A. Meskhi, Maximal functions, potentials and singular integrals in grand Morrey spaces, Complex Var. Elliptic Equ. 56 (2011), no. 10-11, 1003–1019.
- [33] Y. Mizuta, E. Nakai, T. Ohno and T. Shimomura, Boundedness of fractional integral operators on Morrey spaces and Sobolev embeddings for generalized Riesz potentials, J. Math. Soc. Japan 62 (2010), 707–744.
- [34] Y. Mizuta, E. Nakai, T. Ohno and T. Shimomura, Riesz potentials and Sobolev embeddings on Morrey spaces of variable exponent, Complex Vari. Elliptic Equ. 56, No. 7-9, (2011), 671–695.
- [35] Y. Mizuta and T. Shimomura, Sobolev embeddings for Riesz potentials of functions in Morrey spaces of variable exponent, J. Math. Soc. Japan 60 (2008), 583–602.
- [36] Y. Mizuta and T. Shimomura, Continuity properties of Riesz potentials of Orlicz functions, Tohoku Math. J. 61 (2009), 225–240.
- [37] C. B. Morrey, On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc. 43 (1938), 126–166.
- [38] E. Nakai, Hardy-Littlewood maximal operator, singular integral operators and the Riesz potentials on generalized Morrey spaces, Math. Nachr. 166 (1994), 95–103.
- [39] J. Peetre, On the theory of $L_{p,\lambda}$ spaces, J. Funct. Anal. 4 (1969), 71–87.
- [40] Y. Sawano, Generalized Morrey spaces for non-doubling measures, NoDEA Nonlinear Differential Equations Appl. 15 (2008), no. 4-5, 413–425.
- [41] Y. Sawano and H. Tanaka, Morrey spaces for non-doubling measures, Acta Math. Sin. (Engl. Ser.) 21 (2005), 1535–1544.
- [42] J. Serrin, A remark on Morrey potential, Contemp. Math. 426 (2007), 307–315.
- [43] C. Sbordone, Grand Sobolev spaces and their applications to variational problems, Le Matematiche LI(2) (1996), 335–347.
- [44] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, 1970.
- [45] N. Trudinger, On imbeddings into Orlicz spaces and some applications, J. Math. Mech. 17 (1967), 473–483.
- [46] W. P. Ziemer, Weakly differentiable functions, Springer-Verlag, New York, 1989.

Faculty of Education and Welfare Science Oita University Dannoharu Oita-city 870-1192, Japan E-mail : t-ohno@oita-u.ac.jp and Department of Mathematics Graduate School of Education Hiroshima University Higashi-Hiroshima 739-8524, Japan E-mail : tshimo@hiroshima-u.ac.jp