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Abstract

In this paper, we are concerned with Sobolev embeddings for Riesz po-
tentials of functions in grand Morrey spaces of variable exponents over non-
doubling measure spaces.

1 Introduction

The space introduced by Morrey [37] in 1938 has become a useful tool of the study
for the existence and regularity of partial differential equations (see also [39]). The
maximal operator is a classical tool in harmonic analysis and studying Sobolev
functions and partial differential equations and plays a central role in the study of
differentiation, singular integrals, smoothness of functions and so on (see [4], [29],
[44], etc.). Boundedness properties of the maximal operator and Riesz potentials of
functions in Morrey spaces were investigated in [1], [5] and [38]. The same problem
for the maximal operator and Riesz potentials of functions in Morrey spaces with
non-doubling measure was studied in [41] (see also [23] and [40], etc.).

In the mean time, variable exponent Lebesgue spaces and Sobolev spaces were
introduced to discuss nonlinear partial differential equations with non-standard
growth condition. For a survey, see [9]. The boundedness of the maximal oper-
ator on variable exponent Lebesgue spaces Lp(·) was studied in [6], [7] and [24]. In
[8], Sobolev’s inequality for variable exponent Lebesgue spaces Lp(·) was studied.
Then such properties were investigated on variable exponent Morrey spaces in [3],
[21], [17], [22] and [35]. For variable exponent Morrey spaces with non-doubling
measure in [30].

Grand Lebesgue spaces were introduced in [27] for the sake of study of the Jaco-
bian. The grand Lebesgue spaces play an important role also in the theory of partial
differential equations (see [19], [28] and [43], etc.). The generalized grand Lebesgue
spaces appeared in [20], where the existence and uniqueness of the non-homogeneous
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N -harmonic equations div (|∇u|N−2∇u) = µ were studied. The boundedness of the
maximal operator on the grand Lebesgue spaces was studied in [14]. The bound-
edness of the maximal operator and Sobolev’s inequality for grand Morrey spaces
with doubling measure were also studied in [32]. See also [15] and [31], etc..

Our first aim in this paper is to establish the boundedness of the maximal
operator on grand Morrey spaces of variable exponents over non-doubling measure
spaces. As an application of the boundedness of the maximal operator by use of
Hedberg’s trick [25], we shall give Sobolev type inequalities for Riesz potentials of
functions in these spaces.

A famous Trudinger inequality ([45]) insists that Sobolev functions in W 1,N(G)
satisfy finite exponential integrability, where G is an open bounded set in RN (see
also [2] and [46]). Great progress on Trudinger type inequalities has been made
for Riesz potentials of order α (0 < α < N) in the limiting case αp = N (see e.g.
[10], [11], [12], [13], [42]). Trudinger type exponential integrability was investigated
on variable exponent Lebesgue spaces Lp(·) in [16], [17] and [18] and on variable
exponent Morrey spaces in [35]. For related results, see e.g. [33], [34] and [36].

Our second aim in this paper is to establish Trudinger’s type exponential integra-
bility for Riesz potentials of functions in grand Morrey spaces of variable exponents
over non-doubling measure spaces. Further, in the final section, we are concerned
with the continuity for Riesz potentials in our setting.

2 Preliminaries

By a quasi-metric measure space, we mean a triple (X, ρ, µ), where X is a set, ρ is
a quasi-metric on X and µ is a complete measure on X. Here, we say that ρ is a
quasi-metric on X if ρ satisfies the following conditions:

(ρ1) ρ(x, y) ≥ 0 and ρ(x, y) = 0 if and only if x = y;

(ρ2) there exists a constant a0 ≥ 1 such that ρ(x, y) ≤ a0ρ(y, x) for all x, y ∈ X;

(ρ3) there exists a constant a1 > 0 such that ρ(x, y) ≤ a1(ρ(x, z) + ρ(z, y)) for all
x, y, z ∈ X.

We denote B(x, r) = {y ∈ X : ρ(x, y) < r} and dX = sup{ρ(x, y) : x, y ∈ X}. In
this paper, we assume that 0 < dX < ∞ and 0 < µ(B(x, r)) < ∞ for all x ∈ X and
r > 0. This implies µ(X) < ∞.

We say that a measure µ is lower Ahlfors q-regular if there exists a constant
c0 > 0 such that

µ(B(x, r)) ≥ c0r
q (2.1)

for all x ∈ X and 0 < r < dX . Further, µ is said to be a doubling measure if
there exists a constant c1 > 0 such that µ(B(x, 2r)) ≤ c1µ(B(x, r)) for every x ∈ X
and 0 < r < dX . By the doubling property, if 0 < r ≤ R < dX , then there exist
constants CQ > 0 and Q ≥ 0 such that

µ(B(x, r))

µ(B(x,R))
≥ CQ

( r

R

)Q
(2.2)
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for all x ∈ X (see e.g. [26]).
For α > 0, k ≥ 1 and a locally integrable function f on X, we define the Riesz

potential Uα,kf of order α by

Uα,kf(x) =

∫
X

ρ(x, y)α

µ(B(x, kρ(x, y)))
f(y) dµ(y).

Let p(·) be a measurable function on X such that

(P1) 1 < p− := infx∈X p(x) ≤ supx∈X p(x) =: p+ < ∞
and

(P2) p(·) is log-Hölder continuous, namely

|p(x) − p(y)| ≤ cp
log(e + 1/ρ(x, y))

for x, y ∈ X

with a constant cp ≥ 0. Here note from (ρ2) that

(P2’)

|p(x) − p(y)| ≤
c′p

log(e + 1/ρ(y, x))
for x, y ∈ X

with a constant c′p ≥ 0.
For a locally integrable function f on X, set

∥f∥Lp(·)(X) = inf

{
λ > 0 :

∫
X

(
|f(y)|
λ

)p(y)

dµ(y) ≤ 1

}
.

For 0 < ε < p− − 1, set
pε(x) = p(x) − ε.

For ν > 0, θ > 0 and k ≥ 1, we denote by Lp(·)−0,ν,θ;k(X) the class of locally
integrable functions f on X satisfying

∥f∥Lp(·)−0,ν,θ;k(X) = sup
x∈X,0<r<dX ,0<ε<p−−1

εθ
(

rν

µ(B(x, kr))

)1/pε(x)

∥f∥Lpε(·)(B(x,r)) < ∞.

Throughout this paper, let C denote various constants independent of the vari-
ables in question. g ∼ h means that C−1h ≤ g ≤ Ch for some constant C > 0.

Lemma 2.1. Let k ≥ 1. If µ is lower Ahlfors q-reqular, then

µ(B(x, kr))pε(y) ∼ µ(B(x, kr))pε(x)

whenever y ∈ B(x, r).

Proof. Since pε(·) satisfies the condition (P2), we see from (2.1) that(
µ(B(x, kr))

µ(X)

)−|pε(x)−pε(y)|

≤ exp

(
cp

log(e + 1/ρ(x, y))
log

µ(X)

µ(B(x, kr))

)
≤ exp

(
cp

log(e + 1/r)
log

µ(X)

c0(kr)q

)
≤ C

whenever y ∈ B(x, r). Hence, we obtain the required result.
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Lemma 2.2. Let k ≥ 1. If µ is lower Ahlfors q-regular and 0 < ε0 < p− − 1, then

sup
x∈X,0<r<dX ,0<ε<ε0

εθ
(

rν

µ(B(x, kr))

)1/pε(x)

∥f∥Lpε(·)(B(x,r)) ∼ ∥f∥Lp(·)−0,ν,θ;k(X)

for all f ∈ L1
loc(X).

Proof. We may assume that

sup
x∈X,0<r<dX ,0<ε<ε0

εθ
(

rν

µ(B(x, kr))

)1/pε(x)

∥f∥Lpε(·)(B(x,r)) ≤ 1.

Then note from Lemma 2.1 that

1

µ(B(x, kr))

∫
B(x,r)

f(y)pε0/2(y) dµ(y) ≤ Cr−ν

for all x ∈ X and 0 < r < dX . To end the proof, it is sufficient to show that there
exists a constant C > 0 such that

1

µ(B(x, kr))

∫
B(x,r)

f(y)pε1 (y) dµ(y) ≤ Cr−ν

for all ε0 ≤ ε1 < p− − 1. For this, we see that

1

µ(B(x, kr))

∫
B(x,r)

f(y)pε1 (y) dµ(y)

≤ 1 +
1

µ(B(x, kr))

∫
B(x,r)

f(y)pε0/2(y) dµ(y) ≤ Cr−ν .

Thus the required result is proved.

Lemma 2.3. If µ is lower Ahlfors q-regular, then

∥1∥Lpε(·)(B(x,r)) ∼ µ(B(x, r))1/pε(x)

for all x ∈ X, 0 < r < dX and 0 < ε < p− − 1.

Proof. By Lemma 2.1, we have∫
B(x,r)

(
1

µ(B(x, r))1/pε(x)

)pε(y)

dµ(y) ∼ 1

for all x ∈ X, 0 < r < dX and 0 < ε < p− − 1, as required.

3 Boundedness of the maximal operator

From now on, we assume that µ is lower Ahlfors q-regular. For a locally integrable
functions f on X, we consider the maximal function M2f defined by

M2f(x) = sup
r>0

1

µ(B(x, 2r))

∫
B(x,r)

|f(y)| dµ(y).

We first show the boundedness of the maximal operator on grand Morrey spaces
of variable exponents over non-doubling measure spaces, as an extension of Meskhi
[32, Theorem 3.1].

Let j0 be the smallest integer satisfying 2j0 > a1.
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Theorem 3.1. The maximal operator : f → M2f is bounded from Lp(·)−0,ν,θ;2(X)
to Lp(·)−0,ν,θ;2j0+1

(X), that is,

∥M2f∥Lp(·)−0,ν,θ;2j0+1
(X)

≤ C∥f∥Lp(·)−0,ν,θ;2(X) for all f ∈ Lp(·)−0,ν,θ;2(X).

To show Theorem 3.1, we need the following results.

Lemma 3.2. Let k ≥ 1. Let f be a nonnegative function onX such that ∥f∥Lp(·)−0,ν,θ;k(X) ≤
1. Then there exists a constant C > 0 such that

1

µ(B(x, kr))

∫
B(x,r)

g(y) dµ(y) ≤ Cr−ν/pε(x)

for all x ∈ X, 0 < r < dX and 0 < ε < p− − 1, where g(y) = εθf(y).

Proof. Let f be a nonnegative function on X such that ∥f∥Lp(·)−0,ν,θ;k(X) ≤ 1. Then
note that

1

µ(B(x, kr))

∫
B(x,r)

g(y)pε(y) dµ(y) ≤ Cr−ν

for all x ∈ X, 0 < r < dX and 0 < ε < p− − 1. Hence, we find

1

µ(B(x, kr))

∫
B(x,r)

g(y) dµ(y)

≤ r−ν/pε(x) +
1

µ(B(x, kr))

∫
B(x,r)

g(y)

(
g(y)

r−ν/pε(x)

)pε(y)−1

dµ(y)

≤ r−ν/pε(x) + Crν(pε(x)−1)/pε(x)
1

µ(B(x, kr))

∫
B(x,r)

g(y)pε(y) dµ(y)

≤ Cr−ν/pε(x),

as required.

We denote by χE the characteristic function of E.

Lemma 3.3. Let j ≥ j0. Let f be a nonnegative function onX such that ∥f∥Lp(·)−0,ν,θ;2(X) ≤
1. Set gj(y) = εθf(y)χB(x,2j+1r)\B(x,2jr)(y) for 0 < ε < p− − 1. Then there exists a
constant C > 0 such that

M2gj(z) ≤ C2−νj/p+r−ν/pε(x)

for all z ∈ B(x, r) and 0 < ε < p− − 1.

Proof. Let z ∈ B(x, r). Noting that gj(y) = 0 for y ∈ B(z, (2j/a1 − 1)r), we have
by Lemma 3.2 and (P2)

M2gj(z) = sup
t>(2j/a1−1)r

1

µ(B(z, 2t))

∫
B(z,t)

gj(y) dµ(y)

≤ C sup
t>(2j/a1−1)r

t−ν/pε(z)

≤ C2−νj/p+r−ν/pε(x),

as required.
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Lemma 3.4 (cf. [30, Theorem 3.1]). Suppose that p0(·) is a function on X such that

1 < p−0 := inf
x∈X

p0(x) ≤ sup
x∈X

p0(x) =: p+0 < ∞

and
|p0(x) − p0(y)| ≤ cp0

log(e + 1/ρ(x, y))

for all x, y ∈ X and some constant cp0 ≥ 0. Then there exists a constant c0 > 0
depending only on p−0 , p

+
0 , cp0 and µ(X) such that

∥M2f∥Lp0(·)(X) ≤ c0∥f∥Lp0(·)(X)

for all f ∈ Lp0(·)(X).

Proof of Theorem 3.1. Let f be a nonnegative function on X such that ∥f∥Lp(·)−0,ν,θ;2(X) ≤
1. Let x ∈ X, 0 < r < dX and 0 < ε < (p− − 1)/2 be fixed. Set g(y) = εθf(y).

For positive integers j ≥ j0, set

gj = gχB(x,2j+1r)\B(x,2jr)(y)

and g0 = gχB(x,2j0r)(y).
Here, we find by Lemmas 3.3 and 2.3

∥M2gj∥Lpε(·)(B(x,r)) ≤ C2−νj/p+r−ν/pε(x)∥1∥Lpε(·)(B(x,r))

≤ C2−νj/p+r−ν/pε(x)µ(B(x, r))1/pε(x)

for j ≥ j0. Since p−ε > (p− + 1)/2 > 1, we see from Lemma 3.4 that

∥M2g∥Lpε(·)(B(x,r))

≤ ∥M2g0∥Lpε(·)(B(x,r)) +
∞∑

j=j0

∥M2gj∥Lpε(·)(B(x,r))

≤ C

{
∥g0∥Lpε(·)(B(x,2j0r)) + µ(B(x, r))1/pε(x)r−ν/pε(x)

∞∑
j=j0

2−νj/p+

}
≤ C

{
µ(B(x, 2j0+1r))1/pε(x)(2j0r)−ν/pε(x) + µ(B(x, r))1/pε(x)r−ν/pε(x)

}
≤ Cµ(B(x, 2j0+1r))1/pε(x)r−ν/pε(x),

so that

sup
x∈X,0<r<dX ,0<ε<(p−−1)/2

εθ
(

rν

µ(B(x, 2j0+1r))

)1/pε(x)

∥M2f∥Lpε(·)(B(x,r)) ≤ C.

Hence, we obtain the required result by Lemma 2.2.
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4 Sobolev’s inequality

Now we show the Sobolev type inequality for Riesz potentials in grand Morrey
spaces of variable exponents over non-doubling measure spaces, as an extension of
Meskhi [32, Theorems 5.3 and 5.4].

Theorem 4.1. Suppose 1/p∗(x) = 1/p(x) − α/ν ≥ 1/p+ − α/ν > 0. Then there
exists a constant C > 0 such that

∥Uα,4f∥Lp∗(·)−0,ν,θ;2j0+1
(X)

≤ C∥f∥Lp(·)−0,ν,θ;2(X).

Proof. Let f be a nonnegative function on X such that ∥f∥Lp(·)−0,ν,θ;2(X) ≤ 1. Let
x ∈ X, 0 < r < dX and 0 < ε < min{p− − 1, ((p∗)− − 1)/γ} be fixed, where

γ = sup
z∈X,0<ε<p−−1

(pε)
∗(z)p∗(z)/(pε(z)p(z)).

For z ∈ B(x, r) and δ > 0, we write

Uα,4f(z) =

∫
B(z,δ)

ρ(z, y)α

µ(B(z, 4ρ(z, y)))
f(y) dµ(y) +

∫
X\B(z,δ)

ρ(z, y)α

µ(B(z, 4ρ(z, y)))
f(y) dµ(y)

= U1(z) + U2(z).

First we have

U1(z) =
∞∑
j=1

∫
B(z,2−j+1δ)\B(z,2−jδ)

ρ(z, y)α

µ(B(z, 4ρ(z, y)))
f(y) dµ(y)

≤
∞∑
j=1

∫
B(z,2−j+1δ)

(2−j+1δ)α

µ(B(z, 2−j+2δ))
f(y) dµ(y)

≤
∞∑
j=1

(2−j+1δ)αM2f(z)

≤ CδαM2f(z).

To estimate U2, set g(y) = εθf(y). Then we have by Lemma 3.2

εθU2(z) =
∞∑
j=1

∫
X∩(B(z,2jδ)\B(z,2j−1δ))

ρ(z, y)α

µ(B(z, 4ρ(z, y)))
g(y) dµ(y)

≤ C
∞∑
j=1

(2jδ)α
1

µ(B(z, 2j+1δ))

∫
B(z,2jδ)

g(y) dµ(y)

≤ C

∞∑
j=1

(2jδ)α−ν/pε(z)

≤ Cδα−ν/pε(z).

Hence
Uα,4g(z) ≤ C

{
δαM2g(z) + δα−ν/pε(z)

}
.
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Here, letting δ = M2g(z)−pε(z)/ν , we establish

Uα,4g(z) ≤ CM2g(z)1−αpε(z)/ν .

Now Theorem 3.1 gives

1

µ(B(x, 2j0+1r))

∫
B(x,r)

{εθUα,4f(z)}(pε)∗(z) dµ(z)

≤ C

µ(B(x, 2j0+1r))

∫
B(x,r)

{M2g(z)}pε(z) dµ(z)

≤ Cr−ν .

Here one sees that

(pε)
∗(z) = p∗(z) − (pε)

∗(z)p∗(z)

pε(z)p(z)
ε.

Setting ε̃ = γε, we have

1

µ(B(x, 2j0+1r))

∫
B(x,r)

{ε̃θUα,4f(z)}(p∗)ε̃(z) dµ(z)

≤ C

[
1

µ(B(x, 2j0+1r))

∫
B(x,r)

{εθUα,4f(z)}(pε)∗(z) dµ(z) + 1

]
≤ Cr−ν

for all x ∈ X, 0 < r < dX and 0 < ε < min{p−−1, ((p∗)−−1)/γ}, so that we obtain
the required result by Lemma 2.2.

5 Exponential integrability

In this section, we assume that

ess sup
x∈X

(1/p(x) − α/ν) ≤ 0. (5.1)

Our aim in this section is to give an exponential integrability of Trudinger type.
Recall that j0 is the smallest integer satisfying 2j0 > a1, where a1 > 0 is the constant
in (ρ3). Set

k0 = max{2a0a1(a0 + 1), a21(a0 + 2j0+1)/(2j0 − a1), 2},

where a0 ≥ 1 is the constant in (ρ2).

Theorem 5.1. Let 0 < η < α. Suppose that (5.1) holds. Then there exist constants
c1, c2 > 0 such that

1

µ(B(z, 2j0r))

∫
B(z,r)

exp
(
c1Uα,k0f(x)1/(θ+1)

)
dµ(x) ≤ c2r

η−α

for all z ∈ X and 0 < r < dX , whenever f is a nonnegative measurable function on
X satisfying ∥f∥Lp(·)−0,ν,θ;1(X) ≤ 1.
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To prove the theorem, we prepare some lemmas.

Lemma 5.2. Let k ≥ 2, θ > 0 and 0 < η < α. Let f be a nonnegative function on
X such that there exists a constant C > 0 such that

1

µ(B(x, r))

∫
B(x,r)

f(y) dµ(y) ≤ Cr−α(log(e + 1/r))θ. (5.2)

Then there exists a constant C > 0 such that∫
X\B(x,δ)

ρ(x, y)η

µ(B(x, kρ(x, y)))
f(y) dµ(y) ≤ Cδη−α(log(e + 1/δ))θ

for x ∈ X and δ > 0.

Proof. Let f be a nonnegative function on X satisfying (5.2). We choose the smallest
integer j1 such that 2j1δ ≥ dX . We have by (5.2)∫

X\B(x,δ)

ρ(x, y)η

µ(B(x, kρ(x, y)))
f(y) dµ(y)

=

j1∑
j=1

∫
B(x,2jδ)\B(x,2j−1δ)

ρ(x, y)η

µ(B(x, kρ(x, y)))
f(y) dµ(y)

≤
j1∑
j=1

(2jδ)η
1

µ(B(x, 2j−1kδ))

∫
B(x,2jδ)

f(y) dµ(y)

≤ C

j1∑
j=1

(2jδ)η−α(log(e + 1/(2jδ)))θ

≤ C

j1∑
j=1

∫ 2jδ

2j−1δ

tη−α(log(e + 1/t))θ
dt

t

≤ C

∫ 2dX

δ

tη−α(log(e + 1/t))θ
dt

t
. (5.3)

Hence we find by η < α∫
X\B(x,δ)

ρ(x, y)η

µ(B(x, kρ(x, y)))
f(y) dµ(y) ≤ Cδη−α(log(e + 1/δ))θ,

as required.

Lemma 5.3. Let 0 < η < α. Let f be a nonnegative function on X satisfying (5.2).
Define

Iηf(x) =

∫
X

ρ(x, y)η

µ(B(x, k0ρ(x, y)))
f(y) dµ(y).

Then there exists a constant C > 0 such that

1

µ(B(z, 2j0r))

∫
B(z,r)

Iηf(x) dµ(x) ≤ Crη−α(log(e + 1/r))θ

for all z ∈ X and 0 < r < dX .
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Proof. Write

Iηf(x)

=

∫
B(z,2j0r)

ρ(x, y)η

µ(B(x, k0ρ(x, y)))
f(y) dµ(y) +

∫
X\B(z,2j0r)

ρ(x, y)η

µ(B(x, k0ρ(x, y)))
f(y) dµ(y)

= I1(x) + I2(x).

Let a = a1(2
j0a0 + 1). By Fubini’s theorem, we have∫

B(z,r)

I1(x) dµ(x)

=

∫
B(z,2j0r)

(∫
B(z,r)

ρ(x, y)η

µ(B(x, k0ρ(x, y)))
dµ(x)

)
f(y) dµ(y)

≤
∫
B(z,2j0r)

(∫
B(y,ar)

ρ(x, y)η

µ(B(x, k0ρ(x, y)))
dµ(x)

)
f(y) dµ(y)

=

∫
B(z,2j0r)

(
∞∑
j=0

∫
B(y,2−jar)\B(y,2−j−1ar)

ρ(x, y)η

µ(B(x, k0ρ(x, y)))
dµ(x)

)
f(y) dµ(y)

≤
∫
B(z,2j0r)

(
∞∑
j=0

∫
B(y,2−jar)\B(y,2−j−1ar)

(2−ja0ar)η

µ(B(x, 2−j−1a−1
0 k0ar))

dµ(x)

)
f(y) dµ(y)

≤
∫
B(z,2j0r)

(
∞∑
j=0

∫
B(y,2−jar)\B(y,2−j−1ar)

(2−ja0ar)η

µ(B(y, 2−jar))
dµ(x)

)
f(y) dµ(y)

≤
∫
B(z,2j0r)

(
∞∑
j=0

(2−ja0ar)η

)
f(y) dµ(y),

since B(y, 2−jar) ⊂ B(x, 2−j−1a−1
0 k0ar) by the fact that k0 ≥ 2a0a1(a0 + 1). Using

η > 0 and (5.2), we have∫
B(z,r)

I1(x) dµ(x) ≤ C

∫
B(z,2j0r)

(
∞∑
j=1

(2−jr)η

)
f(y) dµ(y)

≤ Crη
∫
B(z,2j0r)

f(y) dµ(y)

≤ Crηµ(B(z, 2j0r))(2j0r)−α(log(e + 1/(2j0r)))θ

≤ Crη−α(log(e + 1/r))θµ(B(z, 2j0r)).

For x ∈ B(z, r) and y ∈ X \B(z, 2j0r), we obtain

ρ(z, y) ≤ a12
j0

2j0 − a1
ρ(x, y). (5.4)

and
ρ(x, z) ≤ a0a1

2j0 − a1
ρ(x, y) (5.5)

Indeed, we have

ρ(z, y) ≤ a1(ρ(z, x) + ρ(x, y)) ≤ a1(r + ρ(x, y)) ≤ a1(2
−j0ρ(z, y) + ρ(x, y)),
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which yields (5.4). Also we have

ρ(x, z) ≤ a0ρ(z, x) ≤ a0r ≤ a02
−j0ρ(z, y),

which implies (5.5) by (5.4). In view of (5.4), (5.5) and the fact that k0 ≥ a21(a0 +
2j0+1)/(2j0 − a1), we have B(z, 2ρ(z, y)) ⊂ B(x, k0ρ(x, y)). Further, we note

ρ(x, y) ≤ a1
(
a02

−j0 + 1
)
ρ(z, y)

for x ∈ B(z, r) and y ∈ X \B(z, 2j0r). Therefore, we obtain

I2(x) ≤ C

∫
X\B(z,2j0r)

ρ(z, y)η

µ(B(x, k0ρ(x, y)))
f(y) dµ(y)

≤ C

∫
X\B(z,2j0r)

ρ(z, y)η

µ(B(z, 2ρ(z, y)))
f(y) dµ(y)

for x ∈ B(z, r). Hence we have by Lemma 5.2

I2(x) ≤ Crη−α(log(e + 1/r))θ.

Thus this lemma is proved.

Proof of Theorem 5.1. Let f be a nonnegative measurable function on X satisfying
∥f∥Lp(·)−0,ν,θ;1(X) ≤ 1. Set g(y) = εθf(y). Then we have by Lemma 3.2 and (5.1)

1

µ(B(x, r))

∫
B(x,r)

g(y) dµ(y) ≤ Cr−ν/pε(x) ≤ Cr−αp(x)/pε(x).

Here we take ε = (p− − 1)(log(e + 1/r))−1 and obtain

1

µ(B(x, r))

∫
B(x,r)

f(y) dµ(y) ≤ Cr−α(log(e + 1/r))θ (5.6)

for all x ∈ X and 0 < r < dX , which is nothing but (5.2). For x ∈ B(z, r), δ > 0
and 0 < η < α, we find

Uα,k0f(x)

=

∫
B(x,δ)

ρ(x, y)α

µ(B(x, k0ρ(x, y)))
f(y) dµ(y) +

∫
X\B(x,δ)

ρ(x, y)α

µ(B(x, k0ρ(x, y)))
f(y) dµ(y)

≤ δα−ηIηf(x) + U2(x).

As in the proof of (5.3), it follows that

U2(x) ≤ C

∫ 2dX

δ

(log(e + 1/t))θ
dt

t
≤ C(log(e + 1/δ))θ+1,

which gives
Uα,k0f(x) ≤ C

{
δα−ηIηf(x) + (log(e + 1/δ))θ+1

}
.

Here, letting ,

δ = {Iηf(x)}−1/(α−η)(log(e + Iηf(x)))(θ+1)/(α−η),

11



we have the inequality

Uα,k0f(x) ≤ C(log(e + Iηf(x)))θ+1.

Then, in view of Lemma 5.3, there exist constants c1, c3 > 0 such that

1

µ(B(z, 2j0r))

∫
B(z,r)

exp
(
c1Uα,k0f(x)1/(θ+1)

)
dµ(x)

≤ C

{
1

µ(B(z, 2j0r))

∫
B(z,r)

Iηf(x) dµ(x) + 1

}
≤ c3r

η−α(log(e + 1/r))θ

for all z ∈ X and 0 < r < dX . Since c3r
η−α(log(e + 1/r))θ ≤ c2r

η′−α for all
0 < r < dX and some constant c2 > 0 when 0 < η′ < η, the proof of the present
theorem is completed.

6 Continuity

In this section, we assume that there exist constants C1 > 0 and 0 < σ ≤ 1 such
that∣∣∣∣ ρ(x, y)α

µ(B(x, 2ρ(x, y)))
− ρ(z, y)α

µ(B(z, 2ρ(z, y)))

∣∣∣∣ ≤ C1

(
ρ(x, z)

ρ(x, y)

)σ
ρ(x, y)α

µ(B(x, 2ρ(x, y)))
(6.1)

whenever ρ(x, z) ≤ ρ(x, y)/2.
Let ω(·) be a positive function on (0,∞) satisfying the doubling condition

ω(2r) ≤ C2ω(r) for all r > 0

and
ω(s) ≤ C3ω(t) whenever 0 < s ≤ t,

where C2 and C3 are positive constants. Then, in view of (2.2), one can find
constants Q > 0 and CQ > 0 such that

ω(r) ≥ CQr
Q (6.2)

for all 0 < r < dX .
In this section, for θ > 0, we consider the space Lp(·)−0,ω,θ(X) of locally integrable

functions f on X satisfying

∥f∥Lp(·)−0,ω,θ(X) = sup
x∈X,0<r<dX ,0<ε<p−−1

εθ
(

ω(r)

µ(B(x, r))

)1/pε(x)

∥f∥Lpε(·)(B(x,r)) < ∞.

Set

Ω∗(x, r) =

∫ r

0

tαω(t)−1/p(x)(log(e + 1/t))θ
dt

t

and

Ω∗(x, r) =

∫ 2dX

r

tα−σω(t)−1/p(x)(log(e + 1/t))θ
dt

t

for x ∈ X and 0 < r < dX .
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Example 6.1. Let ω(r) = rν(log(e+1/r))β. If p− ≥ ν/α and ess supx∈X(−β/p(x)+
θ + 1) < 0, then

Ω∗(x, r) + rσΩ∗(x, r) ≤ C(log(e + 1/r))−β/p(x)+θ+1

for x ∈ X and 0 < r < dX .

Our final goal is to establish the following result, which deals with the continuity
for Riesz potentials of functions in grand Morrey spaces of variable exponents over
non-doubling measure spaces.

Theorem 6.2. Suppose that (6.1) holds. Then there exists a constant C > 0 such
that

|Uα,2f(x) − Uα,2f(z)| ≤ C {Ω∗(x, ρ(x, z)) + Ω∗(z, ρ(x, z)) + ρ(x, z)σΩ∗(x, ρ(x, z))}

for all x, z ∈ X, whenever f is a nonnegative measurable function on X satisfying
∥f∥Lp(·)−0,ω,θ(X) ≤ 1.

Before the proof of Theorem 6.2, we prepare some lemmas.
Since

ω(r)−|p(x)−p(y)| ≤ Cr−Q|p(x)−p(y)| ≤ C

for all y ∈ B(x, r) by (6.2) and (P2), we can show the following result in the same
manner as Lemma 3.2 and (5.6).

Lemma 6.3. Let f be a nonnegative function on X such that ∥f∥Lp(·)−0,ω,θ(X) ≤ 1.
Then there exists a constant C > 0 such that

1

µ(B(x, r))

∫
B(x,r)

f(y) dµ(y) ≤ Cω(r)−1/p(x)(log(e + 1/r))θ

for all x ∈ X and 0 < r < dX .

Lemma 6.4. Let f be a nonnegative function on X such that ∥f∥Lp(·)−0,ω,θ(X) ≤ 1.
Then there exists a constant C > 0 such that∫

B(x,δ)

ρ(x, y)α

µ(B(x, 2ρ(x, y)))
f(y) dµ(y) ≤ CΩ∗(x, δ)

and ∫
G\B(x,δ)

ρ(x, y)α−σ

µ(B(x, 2ρ(x, y)))
f(y) dµ(y) ≤ CΩ∗(x, δ)

for all x ∈ X and 0 < δ < dX .
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Proof. Let f be a nonnegative function on X such that ∥f∥Lp(·)−0,ω,θ(X) ≤ 1. We
show only the first case. As in the proof of (5.3), we have by Lemma 6.3∫

B(x,δ)

ρ(x, y)α

µ(B(x, 2ρ(x, y)))
f(y) dµ(y)

=
∞∑
j=1

∫
B(x,2−j+1δ)\B(x,2−jδ)

ρ(x, y)α

µ(B(x, 2ρ(x, y)))
f(y) dµ(y)

≤
∞∑
j=1

(2−j+1δ)α
1

µ(B(x, 2−j+1δ))

∫
B(x,2−j+1δ)

f(y) dµ(y)

≤ C
∞∑
j=1

(2−j+1δ)αω(2−j+1δ)−1/p(x)(log(e + 1/(2−j+1δ)))θ

≤ C

∫ δ

0

tαω(t)−1/p(x)(log(e + 1/t))θ
dt

t
= CΩ∗(x, δ),

as required.

Proof of Theorem 6.2. Let f be a nonnegative measurable function on X satisfying
∥f∥Lp(·)−0,ω,θ(X) ≤ 1. Write

Uα,2f(x) − Uα,2f(z)

=

∫
B(x,2ρ(x,z))

ρ(x, y)α

µ(B(x, 2ρ(x, y)))
f(y) dµ(y) −

∫
B(x,2ρ(x,z))

ρ(z, y)α

µ(B(z, 2ρ(z, y)))
f(y) dµ(y)

+

∫
X\B(x,2ρ(x,z))

(
ρ(x, y)α

µ(B(x, 2ρ(x, y)))
− ρ(z, y)α

µ(B(z, 2ρ(z, y)))

)
f(y) dµ(y)

for x, z ∈ X. Using Lemma 6.4, we have∫
B(x,2ρ(x,z))

ρ(x, y)α

µ(B(x, 2ρ(x, y)))
f(y) dµ(y) ≤ CΩ∗(x, 2ρ(x, z)) ≤ CΩ∗(x, ρ(x, z))

and∫
B(x,2ρ(x,z))

ρ(z, y)α

µ(B(z, 2ρ(z, y)))
f(y) dµ(y) ≤

∫
B(z,a1(a0+2)ρ(x,z))

ρ(z, y)α

µ(B(z, 2ρ(z, y)))
f(y) dµ(y)

≤ CΩ∗(z, a1(a0 + 2)ρ(x, z)) ≤ CΩ∗(z, ρ(x, z)).

On the other hand, by (6.1) and Lemma 6.4, we have∫
X\B(x,2ρ(x,z))

∣∣∣∣ ρ(x, y)α

µ(B(x, 2ρ(x, y)))
− ρ(z, y)α

µ(B(z, 2ρ(z, y)))

∣∣∣∣ f(y) dµ(y)

≤ C1ρ(x, z)σ
∫
X\B(x,2ρ(x,z))

ρ(x, y)α−σ

µ(B(x, 2ρ(x, y)))
f(y) dµ(y)

≤ Cρ(x, z)σΩ∗(x, 2ρ(x, z))

≤ Cρ(x, z)σΩ∗(x, ρ(x, z)).

Then we have the conclusion.
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2000.

[27] T. Iwaniec and C. Sbordone, On the integrability of the Jacobian under minimal
hypotheses, Arch. Rational Mech. Anal. 119 (1992), 129–143.

[28] T. Iwaniec and C. Sbordone, Riesz Transforms and elliptic pde’s with VMO
coefficients, J. Analyse Math. 74 (1998), 183–212.

[29] J. Kinnunen, The Hardy-Littlewood maximal function of a Sobolev function,
Israel J. Math. 100 (1997), 117–124.

[30] V. Kokilashvili and A. Meskhi, Maximal functions and potentials in variable
exponent Morrey spaces with non-doubling measure, Complex Var. Elliptic
Equ. 55 (2010), no. 8-10, 923–936.

[31] V. Kokilashvili and S. Samko, Boundedness of weighted singular integral oper-
ators in grand Lebesgue spaces, Georgian Math. J. 18 (2011), no. 2, 259–269.

16



[32] A. Meskhi, Maximal functions, potentials and singular integrals in grand Mor-
rey spaces, Complex Var. Elliptic Equ. 56 (2011), no. 10-11, 1003–1019.

[33] Y. Mizuta, E. Nakai, T. Ohno and T. Shimomura, Boundedness of fractional
integral operators on Morrey spaces and Sobolev embeddings for generalized
Riesz potentials, J. Math. Soc. Japan 62 (2010), 707–744.

[34] Y. Mizuta, E. Nakai, T. Ohno and T. Shimomura, Riesz potentials and Sobolev
embeddings on Morrey spaces of variable exponent, Complex Vari. Elliptic Equ.
56, No. 7-9, (2011), 671–695.

[35] Y. Mizuta and T. Shimomura, Sobolev embeddings for Riesz potentials of func-
tions in Morrey spaces of variable exponent, J. Math. Soc. Japan 60 (2008),
583–602.

[36] Y. Mizuta and T. Shimomura, Continuity properties of Riesz potentials of
Orlicz functions, Tohoku Math. J. 61 (2009), 225–240.

[37] C. B. Morrey, On the solutions of quasi-linear elliptic partial differential equa-
tions, Trans. Amer. Math. Soc. 43 (1938), 126–166.

[38] E. Nakai, Hardy-Littlewood maximal operator, singular integral operators and
the Riesz potentials on generalized Morrey spaces, Math. Nachr. 166 (1994),
95–103.

[39] J. Peetre, On the theory of Lp,λ spaces, J. Funct. Anal. 4 (1969), 71–87.

[40] Y. Sawano, Generalized Morrey spaces for non-doubling measures, NoDEA
Nonlinear Differential Equations Appl. 15 (2008), no. 4-5, 413–425.

[41] Y. Sawano and H. Tanaka, Morrey spaces for non-doubling measures, Acta
Math. Sin. (Engl. Ser.) 21 (2005), 1535–1544.

[42] J. Serrin, A remark on Morrey potential, Contemp. Math. 426 (2007), 307–315.

[43] C. Sbordone, Grand Sobolev spaces and their applications to variational prob-
lems, Le Matematiche LI(2) (1996), 335–347.

[44] E. M. Stein, Singular integrals and differentiability properties of functions,
Princeton Univ. Press, Princeton, 1970.

[45] N. Trudinger, On imbeddings into Orlicz spaces and some applications, J.
Math. Mech. 17 (1967), 473–483.

[46] W. P. Ziemer, Weakly differentiable functions, Springer-Verlag, New York,
1989.

17



Faculty of Education and Welfare Science
Oita University

Dannoharu Oita-city 870-1192, Japan
E-mail : t-ohno@oita-u.ac.jp

and
Department of Mathematics
Graduate School of Education

Hiroshima University
Higashi-Hiroshima 739-8524, Japan

E-mail : tshimo@hiroshima-u.ac.jp

18


