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Abstract

In this paper we are concerned with Trudinger’s inequality and continuity
for Riesz potentials of functions in grand Musielak-Orlicz-Morrey spaces over
non-doubling metric measure spaces.

1 Introduction

Grand Lebesgue spaces were introduced in [9] for the study of Jacobian. They
play important roles also in the theory of partial differential equations (see [5],
[10] and [28], etc.). The generalized grand Lebesgue spaces appeared in [7], where
the existence and uniqueness of the non-homogeneous N -harmonic equations were
studied.

For 0 < α < N , we define the Riesz potential of order α for a locally integrable
function f on RN by

Iαf(x) =

∫
RN

|x− y|α−Nf(y) dy.

The classical Trudinger’s inequality for Riesz potentials of Lp-functions (see, e.g.
[2, Theorem 3.1.4 (c)]) has been also extended to various function spaces; see [17]
and [20] for Morrey spaces of variable exponent, [6] for grand Morrey spaces of
variable exponent, [24] for Musielak-Orlicz spaces and [14] for Musielak-Orlicz-
Morrey spaces. See also [26] and [27]. Recently, Trudinger’s inequality has been
extended to an inequality for Riesz potentials of functions in grand Musielak-Orlicz-
Morrey spaces (see [15]).

We denote by (X, d, µ) a metric measure spaces, where X is a bounded set, d
is a metric on X and µ is a nonnegative complete Borel regular outer measure on
X which is finite in every bounded set. For simplicity, we often write X instead of
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(X, d, µ). For x ∈ X and r > 0, we denote by B(x, r) the open ball centered at x
with radius r and dX = sup{d(x, y) : x, y ∈ X}. We assume that 0 < dX < ∞,

µ({x}) = 0

for x ∈ X and µ(B(x, r)) > 0 for x ∈ X and r > 0 for simplicity. In the present
paper, we do not postulate on µ the “so called” doubling condition. Recall that a
Radon measure µ is said to be doubling if there exists a constant C > 0 such that
µ(B(x, 2r)) ≤ Cµ(B(x, r)) for all x ∈ supp(µ)(= X) and r > 0. Otherwise µ is
said to be non-doubling.

For α > 0 and τ > 0, we define the Riesz potential of order α for a locally
integrable function f on X by

Iα,τf(x) =

∫
X

d(x, y)αf(y)

µ(B(x, τd(x, y)))
dµ(y)

(e.g. see [8] and [22]). Observe that this naturally extends the Riesz potential
operator Iαf(x) when (X, d) is the N -dimensional Euclidean space and µ = dx.

Our first aim in this paper is to give a general version of Trudinger type ex-
ponential integrability for Riesz potentials Iα,τf of functions in grand Musielak-

Orlicz-Morrey spaces L̃Φ,κ
η,ξ (X) over non-doubling metric measure spaces X (see

e.g., Corollary 5.5) as an extension of [15, Corollary 6.12] (see Sections 2 and 3 for

the definitions of Φ, κ, η, ξ and L̃Φ,κ
η,ξ (X)). Since we discuss the Morrey version, our

strategy is to find an estimate of Riesz potentials Iα,τf by use of another Riesz-type
potentials Iγ,τf of order γ (< α), which plays a role of the maximal functions (see
Section 4). What is new about this paper is that we can pass our results to the
non-doubling metric measure setting; the technique developed in [14] still works.

On the other hand, beginning with Sobolev’s embedding theorem (see e.g. [1],
[2]), continuity properties of Riesz potentials or Sobolev functions have been stud-
ied by many authors. See [18] and [19] for generalized Morrey spaces L1,φ, [21] for
Orlicz-Morrey spaces, [21] for variable exponent Morrey spaces and [17] for two
variable exponent Morrey spaces.

Our second aim in this paper is to give a general version of continuity for
Riesz potentials Iα,τf of functions in grand Musielak-Orlicz-Morrey spaces over
non-doubling metric measure spaces (see e.g., Corollary 6.6), whose counterpart in
the Euclidean setting was not considered in [15]. The result is new even for the
Euclidean case.

2 Preliminaries

Throughout this paper, let C denote various constants independent of the variables
in question.

In this paper, we assume that X is a bounded set, that is dX < ∞. This implies
that µ(X) < ∞.

We consider a function

Φ(x, t) = tϕ(x, t) : X × [0,∞) → [0,∞)

satisfying the following conditions (Φ1) – (Φ4):
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(Φ1) ϕ( · , t) is measurable on X for each t ≥ 0 and ϕ(x, · ) is continuous on [0,∞)
for each x ∈ X;

(Φ2) there exists a constant A1 ≥ 1 such that

A−1
1 ≤ ϕ(x, 1) ≤ A1 for all x ∈ X;

(Φ3) there exists a constant ε0 > 0 such that t 7→ t−ε0ϕ(x, t) is uniformly almost
increasing, namely there exists a constant A2 ≥ 1 such that

t−ε0ϕ(x, t) ≤ A2s
−ε0ϕ(x, s)

for all x ∈ X whenever 0 < t < s;

(Φ4) there exists a constant A3 ≥ 1 such that

ϕ(x, 2t) ≤ A3ϕ(x, t) for all x ∈ X and t > 0.

Note that (Φ3) implies that

t−εϕ(x, t) ≤ A2s
−εϕ(x, s)

for all x ∈ X and 0 < ε ≤ ε0 whenever 0 < t < s.
Also note that (Φ2), (Φ3) and (Φ4) imply

0 < inf
x∈X

ϕ(x, t) ≤ sup
x∈X

ϕ(x, t) < ∞

for each t > 0 and there exists ω > 1 such that

(A1A2)
−1t1+ε0 ≤ Φ(x, t) ≤ A1A2A3t

ω (2.1)

for t ≥ 1; in fact we can take ω ≥ 1 + logA3/ log 2.

We shall also consider the following condition:

(Φ5) for every γ1, γ2 > 0, there exists a constant Bγ1,γ2 ≥ 1 such that

ϕ(x, t) ≤ Bγ1,γ2ϕ(y, t)

whenever d(x, y) ≤ γ1t
−1/γ2 and t ≥ 1.

Let ϕ̄(x, t) = sup0≤s≤t ϕ(x, s) and

Φ(x, t) =

∫ t

0

ϕ̄(x, r) dr

for x ∈ X and t ≥ 0. Then Φ(x, ·) is convex and

1

2A3

Φ(x, t) ≤ Φ(x, t) ≤ A2Φ(x, t)

for all x ∈ X and t ≥ 0.

3



Example 2.1. Let p(·) and qj(·), j = 1, . . . , k be measurable functions on X such
that

1 < p− := inf
x∈X

p(x) ≤ sup
x∈X

p(x) =: p+ < ∞

and
−∞ < q−j := inf

x∈X
qj(x) ≤ sup

x∈X
qj(x) =: q+j < ∞ j = 1, . . . k.

Set L(t) := log(e + t), L(1)(t) = L(t) and L(j)(t) = L(L(j−1)(t)), j = 2, . . .. Then,

Φp(·),{qj(·)}(x, t) = tp(x)
k∏

j=1

(
L(j)(t)

)qj(x)
satisfies (Φ1), (Φ2), (Φ3) with 0 < ε0 < p− − 1 and (Φ4). (2.1) holds for any
ω > p+. Φp(·),{qj(·)}(x, t) satisfies (Φ5) if p(·) is log-Hölder continuous, namely

|p(x) − p(y)| ≤ Cp

L(1/d(x, y))
(x ̸= y)

and qj(·) is (j + 1)-log-Hölder continuous, namely

|qj(x) − qj(y)| ≤
Cqj

L(j+1)(1/d(x, y))
(x ̸= y)

for j = 1, . . . , k (cf. [13, Example 2.1]).

We also consider a function κ(x, r) : X × (0, dX) → (0,∞) satisfying the fol-
lowing conditions:

(κ1) κ(x, ·) is continuous on (0, dX) for each x ∈ X and satisfies the uniform
doubling condition: there is a constant Q1 ≥ 1 such that

Q−1
1 κ(x, r) ≤ κ(x, r′) ≤ Q1κ(x, r)

for all x ∈ X whenever 0 < r ≤ r′ ≤ 2r < dX ;

(κ2) r 7→ r−δκ(x, r) is uniformly almost increasing for some δ > 0, namely there is
a constant Q2 > 0 such that

r−δκ(x, r) ≤ Q2s
−δκ(x, s)

for all x ∈ X whenever 0 < r < s < dX ;

(κ3) there are constants Q > 0 and Q3 ≥ 1 such that

Q−1
3 min(1, rQ) ≤ κ(x, r) ≤ Q3

for all x ∈ X and 0 < r < dX .

Example 2.2. Let ν(·) and β(·) be functions on X such that ν− := infx∈X ν(x) > 0,
ν+ := supx∈X ν(x) ≤ Q and −c(Q − ν(x)) ≤ β(x) ≤ c for all x ∈ X and some
constant c > 0. Then κ(x, r) = rν(x)(log(e+ 1/r))β(x) satisfies (κ1), (κ2) and (κ3);
we can take any 0 < δ < ν− for (κ2).
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We say that f is a locally integrable function on X if f is an integrable function
on all balls B in X. Given Φ(x, t) satisfying (Φ1), (Φ2), (Φ3) and (Φ4) and κ(x, r)
satisfying (κ1), (κ2) and (κ3), we define the Musielak-Orlicz-Morrey space LΦ,κ(X)
by

LΦ,κ(X) =

{
f ∈ L1

loc(X) ; sup
x∈X, 0<r<dX

κ(x, r)

µ(B(x, r))

∫
B(x,r)∩X

Φ
(
y, |f(y)|

)
dµ(y) < ∞

}
.

It is a Banach space with respect to the norm

∥f∥Φ,κ;X = inf

{
λ > 0 ; sup

x∈X, 0<r<dX

κ(x, r)

µ(B(x, r))

∫
B(x,r)∩X

Φ
(
y, |f(y)|/λ

)
dµ(y) ≤ 1

}
(cf. [23]).

3 Grand Musielak-Orlicz-Morrey space

For ε ≥ 0, set Φε(x, t) := t−εΦ(x, t) = t1−εϕ(x, t). Then, Φε(x, t) satisfies (Φ1),
(Φ2) with the same A1 and (Φ4) with the same A3. If Φ(x, t) satisfies (Φ5), then
so does Φε(x, t) with the same {Bγ1,γ2}γ1,γ2>0.

If 0 ≤ ε < ε0, then Φε(x, t) satisfies (Φ3) with ε0 replaced by ε0 − ε and the
same A2. It follows that

1

2A3

Φε(x, t) ≤ Φε(x, t) ≤ A2Φε(x, t) (3.1)

for all x ∈ X, t ≥ 0 and 0 ≤ ε ≤ ε0.
Let

σ̃ = sup{σ ≥ 0 : rQ−σκ(x, r)−1 is bounded on X × (0,min(1, dX))}.

By (κ2) and (κ3), 0 ≤ σ̃ ≤ Q. If σ̃ = 0, then let σ0 = 0; otherwise fix any
σ0 ∈ (0, σ̃). We also take δ0 such that 0 < δ0 < δ for δ in (κ2).

For −δ0 ≤ σ ≤ σ0, set
κσ(x, r) = rσκ(x, r)

for x ∈ X and 0 < r < dX . Then κσ(x, r) satisfies (κ1), (κ2) and (κ3) with
constants independent of σ.

Lemma 3.1 ([15, Proposition 3.2]). Assume that Φ(x, t) satisfies (Φ5). If 0 ≤ ε1 ≤
ε2 ≤ ε0, −δ0 ≤ σj ≤ σ0, j = 1, 2 and

σ1 +
δ − δ0
ω

ε1 ≤ σ2 +
δ − δ0
ω

ε2,

then LΦε1 ,κσ1 (X) ⊂ LΦε2 ,κσ2 (X) and

∥f∥Φε2 ,κσ2 ;X
≤ C∥f∥Φε1 ,κσ1 ;X

for all f ∈ LΦε1 ,κσ1 (X) with C > 0 independent of ε1, ε2, σ1, σ2.
In particular,

LΦ,κ(X) ⊂ LΦε,κσ(X)

if 0 ≤ ε ≤ ε0, −δ0 ≤ σ ≤ σ0 and σ + ((δ − δ0)/ω)ε ≥ 0.
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Let η(ε) be an increasing positive function on (0,∞) such that η(0+) = 0. Let
ξ(ε) be a function on (0, ε1] with some ε1 ∈ (0, ε0/2] such that −δ0 ≤ ξ(ε) ≤ σ0

for 0 < ε ≤ ε1, ξ(0+) = 0 and ε 7→ ξ(ε) + ((δ − δ0)/ω)ε is non-decreasing; in
particular, ξ(ε) + ((δ − δ0)/ω)ε ≥ 0 for 0 < ε ≤ ε1.

Given Φ(x, t), κ(x, r), η(ε) and ξ(ε), the associated (generalized) grand Musielak-
Orlicz-Morrey space is defined by (cf. [11] for generalized grand Morrey space)

L̃Φ,κ
η,ξ (X) =

{
f ∈

∩
0<ε≤ε1

LΦε,κξ(ε)(X) ; ∥f∥Φ,κ;η,ξ;X < ∞

}
,

where
∥f∥Φ,κ;η,ξ;X = sup

0<ε≤ε1

η(ε)∥f∥Φε,κξ(ε);X .

L̃Φ,κ
η,ξ (X) is a Banach space with the norm ∥f∥Φ,κ;η,ξ;X . Note that, in view of Lemma

3.1, this space is determined independent of the choice of ε1.

Remark 3.2. If µ(B(x, r)) satisfies (κ1), (κ2) and (κ3), then the associated (gener-

alized) grand Musielak-Orlicz-Morrey space L̃Φ,κ
η,ξ (X) include the following spaces:

• generalized grand Lebesgue spaces introduced in [3] if κ(x, r) = µ(B(x, r))
and ξ(ε) ≡ 0;

• grand Orlicz spaces introduced in [12] if κ(x, r) = µ(B(x, r)), ξ(ε) ≡ 0,Φ(x, t) =
Φ(t) and

sup
0<ε≤ε0

η(ε)

∫ ∞

1

t−N−εΦ(t)
dt

t
< ∞

(see also [4]);

• grand Morrey spaces introduced in [16] if ξ(ε) ≡ 0;

• grand grand Morrey spaces introduced in [25] and generalized grand Morrey
spaces introduced in [11] if ξ(ε) is an increasing positive function on (0,∞).

4 Lemmas

Lemma 4.1 ([13, Lemma 5.1]). Let F (x, t) be a positive function on X × (0,∞)
satisfying the following conditions:

(F1) F (x, · ) is continuous on (0,∞) for each x ∈ X;

(F2) there exists a constant K1 ≥ 1 such that

K−1
1 ≤ F (x, 1) ≤ K1 for all x ∈ X;

(F3) t 7→ t−εF (x, t) is uniformly almost increasing for some ε > 0; namely there
exists a constant K2 ≥ 1 such that

t−εF (x, t) ≤ K2s
−εF (x, s) for all x ∈ X whenever 0 < t < s.
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Set
F−1(x, s) = sup{t > 0 ; F (x, t) < s}

for x ∈ X and s > 0. Then:

(1) F−1(x, ·) is non-decreasing.

(2)
F−1(x, λt) ≤ (K2λ)1/εF−1(x, t) (4.1)

for all x ∈ X, t > 0 and λ ≥ 1.

(3)
F (x, F−1(x, t)) = t (4.2)

for all x ∈ X and t > 0.

(4)

K
−1/ε
2 t ≤ F−1(x, F (x, t)) ≤ K

2/ε
2 t

for all x ∈ X and t > 0.

(5)

min

{
1,

(
s

K1K2

)1/ε
}

≤ F−1(x, s) ≤ max{1, (K1K2s)
1/ε} (4.3)

for all x ∈ X and s > 0.

Remark 4.2. F (x, t) = Φ(x, t) satisfies (F1), (F2) and (F3) with K1 = A1, K2 =
A2 and ε = 1.

By (κ3) and (4.3), we have the following result.

Lemma 4.3. There exists a constant C > 0 such that

C−1 ≤ Φ−1(x, κ(x, r)−1) ≤ Cr−Q (4.4)

for all x ∈ X and 0 < r ≤ dX , where Q is a constant appearing in (κ3).

Lemma 4.4 (cf. [15, Lemma 3.1]). There exist constants C ≥ 1 and r0 ∈ (0,min(1, dX))
such that κσ(x, r) ≤ Crδ−δ0 and

C−1r−(δ−δ0)/ω ≤ Φ−1
ε

(
x, κσ(x, r)−1

)
≤ Cr−Q

for all x ∈ X, 0 < r ≤ r0, −δ0 ≤ σ ≤ σ0 and 0 < ε ≤ ε0, where Q is a constant
appearing in (κ3).

Proof. In view of the proof of [15, Lemma 3.1], we have only to prove that there
exists a constant C ≥ 1 such that

Φ−1
ε

(
x, κσ(x, r)−1

)
≤ Cr−Q

for all x ∈ X, 0 < r ≤ r0, −δ0 ≤ σ ≤ σ0 and 0 < ε ≤ ε0. First note from (Φ3) that
there exists a constant C ≥ 1 such that

t−ε′Φε(x, t) ≤ Cs−ε′Φε(x, s)
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for all x ∈ X and 0 < ε′ ≤ ε0 − ε + 1 whenever 0 < t < s. By Lemma 4.1(5) with
ε′ = 1 and (κ3), we have

Φ−1
ε

(
x, κσ(x, r)−1

)
≤ Cκσ(x, r)−1 ≤ Cr−Q

for all x ∈ X, 0 < r ≤ r0, −δ0 ≤ σ ≤ σ0 and 0 < ε ≤ ε0, as required.

From now on, we assume:

(Ξ) ξ(ε) ≤ aε for 0 < ε ≤ ε1 with some a ≥ 0.

Recall that ξ(ε) ≥ −((δ − δ0)/ω)ε by assumption.
Let

ε(r) = (log(e + 1/r))−1

for r > 0 and let r1 ∈ (0,min(1, dX)) be such that ε(r) ≤ ε1 for 0 < r ≤ r1.

Lemma 4.5 ([15, Lemma 6.2]). There exists a constant C ≥ 1 such that

C−1Φ−1(x, κ(x, r)−1) ≤ Φ−1
ε(r)(x, κξ(ε(r))(x, r)−1) ≤ CΦ−1(x, κ(x, r)−1)

for all x ∈ X and 0 < r ≤ r1.

Lemma 4.6. Assume that Φ(x, t) satisfies (Φ5). Then there exists a constant C > 0
such that

1

µ(B(x, r))

∫
B(x,r)∩X

f(y) dµ(y) ≤ CΦ−1(x, κ(x, r)−1)η
(
(log(e + 1/r))−1

)−1

for all x ∈ X, 0 < r < dX and nonnegative f ∈ L̃Φ,κ
η,ξ (X) with ∥f∥Φ,κ;η,ξ;X ≤ 1.

Proof. Let f be a nonnegative function with ∥f∥Φ,κ;η,ξ;X ≤ 1. Then note from (3.1)
that

κξ(ε)(x, r)

µ(B(x, r))

∫
B(x,r)∩X

Φε (y, η(ε)f(y)) dµ(y) ≤ 2A3

for x ∈ X, 0 < r < dX and 0 < ε < ε1, so that

κξ(ε(r))(x, r)

µ(B(x, r))

∫
B(x,r)∩X

Φε(r) (y, η(ε(r))f(y)) dµ(y) ≤ 2A3

for x ∈ X and 0 < r ≤ r1. Let gr(y) = η(ε(r))f(y) and

K(x, r) = Φ−1
ε(r)(x, κξ(ε(r))(x, r)−1).

Since there exist constants C ≥ 1 and r0 ∈ (0,min(1, dX)) such that

1 ≤ K(x, r) ≤ Cr−Q

for all x ∈ X and 0 < r ≤ min{r0, r1} by Lemma 4.4, we see from (Φ5) and (4.2)
that

Φε(r) (y,K(x, r)) ≥ CΦε(r) (x,K(x, r)) = Cκξ(ε(r))(x, r)−1
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for all y ∈ B(x, r) and 0 < r ≤ min{r0, r1}. Therefore, we have by (Φ3)　

1

µ(B(x, r))

∫
B(x,r)∩X

gr(y) dµ(y)

≤ K(x, r) +
A2

µ(B(x, r))

∫
B(x,r)∩X

gr(y)
gr(y)−1Φε(r) (y, gr(y))

K(x, r)−1Φε(r) (y,K(x, r))
dµ(y)

≤ CK(x, r)

{
1 +

κξ(ε(r))(x, r)

µ(B(x, r))

∫
B(x,r)∩X

Φε(r) (y, gr(y)) dµ(y)

}
≤ CK(x, r)

for x ∈ X and 0 < r ≤ min{r0, r1}. Hence, we find by Lemma 4.5

1

µ(B(x, r))

∫
B(x,r)∩X

gr(y) dµ(y) ≤ CΦ−1(x, κ(x, r)−1)

for all x ∈ X and 0 < r ≤ min{r0, r1}.
In case min{r0, r1} < r < dX , we have by (4.4)

1

µ(B(x, r))

∫
B(x,r)∩X

f(y) dµ(y) ≤ C ≤ CΦ−1(x, κ(x, r)−1)η
(
(log(e + 1/r))−1

)−1
,

as required.

Set

Γ(x, s) =

∫ dX

1/s

ραΦ−1
(
x, κ(x, ρ)−1

)
η
(
(log(e + 1/ρ))−1

)−1 dρ

ρ

for s ≥ 2/dX and x ∈ X. For 0 ≤ s < 2/dX and x ∈ X, we set Γ(x, s) =
Γ(x, 2/dX)(dX/2)s. Then note that Γ(x, ·) is strictly increasing and continuous for
each x ∈ X.

Lemma 4.7 (cf. [14, Lemma 3.5] ). There exists a positive constant C ′ such that
Γ(x, 2/dX) ≥ C ′ for all x ∈ X.

Lemma 4.8. Assume that Φ(x, t) satisfies (Φ5). Let τ > 1. Then there exists a
constant C > 0 such that∫

X\B(x,δ)

d(x, y)αf(y)

µ(B(x, τd(x, y)))
dµ(y) ≤ CΓ

(
x,

1

δ

)
for all x ∈ X, 0 < δ ≤ dX/2 and nonnegative f ∈ L̃Φ,κ

η,ξ (X) with ∥f∥Φ,κ;η,ξ;X ≤ 1.

Proof. Let j0 be the smallest positive integer such that τ j0δ ≥ dX . By Lemma 4.6,
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we have ∫
X\B(x,δ)

d(x, y)αf(y)

µ(B(x, τd(x, y)))
dµ(y)

=

j0∑
j=1

∫
X∩(B(x,τ jδ)\B(x,τ j−1δ))

d(x, y)αf(y)

µ(B(x, τd(x, y)))
dµ(y)

≤
j0∑
j=1

(τ jδ)α
1

µ(B(x, τ jδ))

∫
X∩B(x,τ jδ)

f(y) dµ(y)

≤ C

(j0−1∑
j=1

(τ jδ)αΦ−1(x, κ(x, τ jδ)−1)η
(
(log(e + 1/(τ jδ)))−1

)−1

+dαXΦ−1(x, κ(x, dX)−1)η
(
(log(e + 1/dX))−1

)−1
)
,

where we assume that
∑0

j=1 aj = 0 for aj ∈ R. By (κ2) and (4.1), we have∫ τ jδ

τ j−1δ

tαΦ−1(x, κ(x, t)−1)η
(
(log(e + 1/t))−1

)−1 dt

t

≥ (τ j−1δ)αΦ−1(x,Q−1
2 κ(x, τ jδ)−1)η

(
(log(e + 1/(τ jδ)))−1

)−1
log τ

≥ (τ jδ)α log τ

ταA2Q2

Φ−1(x, κ(x, τ jδ)−1)η
(
(log(e + 1/(τ jδ)))−1

)−1

= C(τ jδ)α log τ Φ−1(x, κ(x, τ jδ)−1)η
(
(log(e + 1/(τ jδ)))−1

)−1

and ∫ dX

dX/2

tαΦ−1(x, κ(x, t)−1)η
(
(log(e + 1/t))−1

)−1 dt

t

≥ dαX log 2

2αA2Q2

Φ−1(x, κ(x, dX)−1)η
(
(log(e + 1/dX))−1

)−1

= CdαXΦ−1(x, κ(x, dX)−1)η
(
(log(e + 1/dX))−1

)−1
.

Hence, we obtain∫
X\B(x,δ)

d(x, y)αf(y)

µ(B(x, τd(x, y)))
dµ(y)

≤ C

log τ

(
j0−1∑
j=1

∫ τ jδ

τ j−1δ

tαΦ−1(x, κ(x, t)−1)η
(
(log(e + 1/t))−1

)−1 dt

t

+

∫ dX

dX/2

tαΦ−1(x, κ(x, t)−1)η
(
(log(e + 1/t))−1

)−1 dt

t

)
≤ C

log τ
Γ

(
x,

1

δ

)
,

as required.
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Lemma 4.9. Assume that Φ(x, t) satisfies (Φ5). Let τ > 2 and ϑ > 1 such that
τ > (ϑ + 1)/(ϑ− 1). Let γ > 0 and define

λγ(z, r) =
1

1 +

∫ dX

r

ργΦ−1(z, κ(z, ρ)−1)η
(
(log(e + 1/ρ))−1

)−1 dρ

ρ

for z ∈ X and 0 < r < dX . Then there exists a constant CI,γ > 0 such that

λγ(z, r)

µ(B(z, ϑr))

∫
X∩B(z,r)

Iγ,τf(x) dµ(x) ≤ CI,γ

for all z ∈ X, 0 < r < dX and nonnegative f ∈ L̃Φ,κ
η,ξ (X) with ∥f∥Φ,κ;η,ξ;X ≤ 1.

Proof. Let z ∈ X and 0 < r < dX . Write

Iγ,τf(x) =

∫
X∩B(z,ϑr)

d(x, y)γf(y)

µ(B(x, τd(x, y)))
dµ(y) +

∫
X\B(z,ϑr)

d(x, y)γf(y)

µ(B(x, τd(x, y)))
dµ(y)

= I1(x) + I2(x)

for x ∈ B(z, r). By Fubini’s theorem,∫
X∩B(z,r)

I1(x) dµ(x)

=

∫
X∩B(z,ϑr)

(∫
X∩B(z,r)

d(x, y)γ

µ(B(x, τd(x, y)))
dµ(x)

)
f(y) dµ(y)

≤
∫
X∩B(z,ϑr)

(∫
X∩B(y,(ϑ+1)r)

d(x, y)γ

µ(B(x, τd(x, y)))
dµ(x)

)
f(y) dµ(y).

Hence ∫
X∩B(z,r)

I1(x) dµ(x)

≤
∫
X∩B(z,ϑr)

(
∞∑
j=1

∫
X∩(B(y,Rj)\B(y,Rj+1))

d(x, y)γ

µ(B(x, τd(x, y)))
dµ(x)

)
f(y) dµ(y)

≤
∫
X∩B(z,ϑr)

(
∞∑
j=1

∫
X∩(B(y,Rj)\B(y,Rj+1))

Rγ
j

µ(B(x, τRj+1))
dµ(x)

)
f(y) dµ(y)

≤
∫
X∩B(z,ϑr)

(
∞∑
j=1

∫
X∩(B(y,Rj)\B(y,Rj+1))

Rγ
j

µ(B(y,Rj))
dµ(x)

)
f(y) dµ(y)

≤
∫
X∩B(z,ϑr)

(
∞∑
j=1

Rγ
j

)
f(y) dµ(y)

=
(ϑ + 1)γ(τ/2)γ

(τ/2)γ − 1
rγ
∫
X∩B(z,ϑr)

f(y) dµ(y),

11



where Rj = (ϑ + 1)(τ/2)−j+1r. Now, by Lemma 4.6, (κ2) and (4.1), we have

rγ
∫
X∩B(z,ϑr)

f(y) dµ(y)

≤ Crγµ(B(z, ϑr))Φ−1(z, κ(z, ϑr)−1)η
(
(log(e + 1/(ϑr)))−1

)−1

≤ C

log ϑ
µ(B(z, ϑr))

∫ ϑr

r

ργΦ−1(z, κ(z, ρ)−1)η
(
(log(e + 1/ρ))−1

)−1 dρ

ρ

if 0 < r ≤ dX/ϑ and, by Lemma 4.6 and (4.4), we have

rγ
∫
X∩B(z,ϑr)

f(y) dµ(y) = rγ
∫
B(z,dX)

f(y) dµ(y)

≤ CdX
γµ(B(z, dX))Φ−1(z, κ(z, dX)−1)η

(
(log(e + 1/dX))−1

)−1

≤ Cµ(B(z, ϑr))

if dX/ϑ < r < dX . Therefore∫
X∩B(z,r)

I1(x) dµ(x) ≤ C

((τ/2)γ − 1) log ϑ

µ(B(z, ϑr))

λγ(z, r)

for all 0 < r < dX .
Set c = (τ(ϑ − 1) − 1)/ϑ > 1. For I2, first note that I2(x) = 0 if x ∈ X and

r ≥ dX/ϑ. Let 0 < r < dX/ϑ. Let j0 be the smallest positive integer such that
ϑcj0r ≥ dX . Here we claim that x ∈ B(z, r) and y ∈ X \B(z, ϑr) imply that

d(y, z) ≤ ϑ

ϑ− 1
d(x, y) (4.5)

and
B(z, cd(z, y)) ⊂ B(x, τd(x, y)). (4.6)

Indeed, we have d(x, z) < r and d(y, z) ≥ ϑr. Hence it follows that

d(y, z) ≤ d(x, y) + d(x, z) ≤ d(x, y) +
1

ϑ
d(y, z),

which yields (4.5). Also observe that when w ∈ B(z, cd(z, y)), we have by (4.5)

d(w, x) ≤ d(z, x)+d(w, z) ≤ 1

ϑ
d(z, y)+cd(z, y) ≤

(
c +

1

ϑ

)
ϑ

ϑ− 1
d(x, y) = τd(x, y),

which yields (4.6).
Consequently it follows from (4.6) that

I2(x) ≤ C

∫
X\B(z,ϑr)

d(z, y)γf(y)

µ(B(z, cd(z, y)))
dµ(y) for x ∈ X ∩B(z, r).

12



By Lemma 4.6, we have

I2(x) ≤ C

j0∑
j=1

∫
B(z,ϑcjr)\B(z,ϑcj−1r)

d(z, y)γ

µ(B(z, cd(z, y)))
f(y) dµ(y)

≤ C

j0∑
j=1

(ϑcjr)γ
1

µ(B(z, ϑcjr))

∫
X∩B(z,ϑcjr)

f(y) dµ(y)

≤ C

(j0−1∑
j=1

(ϑcjr)γΦ−1(x, κ(x, ϑcjr)−1)η
(
(log(e + 1/(ϑcjr)))−1

)−1

+dγXΦ−1(x, κ(x, dX)−1)η
(
(log(e + 1/dX))−1

)−1
)
,

where we assume that
∑0

j=1 aj = 0 for aj ∈ R. As in the proof of Lemma 4.8, we
obtain

I2(x) ≤ C

log c

(
j0−1∑
j=1

∫ ϑcjr

ϑcj−1r

ργΦ−1(x, κ(x, ρ)−1)η
(
(log(e + 1/ρ))−1

)−1 dρ

ρ

+

∫ dX

dX/2

ργΦ−1(x, κ(x, ρ)−1)η
(
(log(e + 1/ρ))−1

)−1 dρ

ρ

)
≤ C

∫ dX

r

ργΦ−1(z, κ(z, ρ)−1)η
(
(log(e + 1/ρ))−1

)−1 dρ

ρ

≤ C

log c

1

λγ(z, r)

for all x ∈ X ∩B(z, r). Hence∫
X∩B(z,r)

I2(x) dµ(x) ≤ C

log c

µ(B(z, r))

λγ(z, r)
≤ C

log c

µ(B(z, ϑr))

λγ(z, r)
.

Thus this lemma is proved.

5 Trudinger’s inequality for grand Musielak-Orlicz-

Morrey spaces

In this section, we deal with the case Γ(x, t) satisfies the uniform log-type condition:

(Γlog) there exists a constant cΓ > 0 such that

Γ(x, t2) ≤ cΓΓ(x, t)

for all x ∈ X and t ≥ 1.
By (Γlog), together with Lemma 4.7, we see that Γ(x, t) satisfies the uniform

doubling condition in t:

Lemma 5.1 (cf. [14, Lemma 4.2] ). Suppose Γ(x, t) satisfies (Γlog). For every
a > 1, there exists b > 0 such that Γ(x, at) ≤ bΓ(x, t) for all x ∈ X and t > 0.

13



Theorem 5.2. Assume that Φ(x, t) satisfies (Φ5) and Γ(x, t) satisfies (Γlog). For
each x ∈ X, let γ(x) = sups>0 Γ(x, s). Suppose Ψ(x, t) : X × [0,∞) → [0,∞]
satisfies the following conditions:

(Ψ1) Ψ(·, t) is measurable on X for each t ∈ [0,∞) and Ψ(x, ·) is continuous on
[0,∞) for each x ∈ X;

(Ψ2) there is a constant A′
1 ≥ 1 such that Ψ(x, t) ≤ Ψ(x,A′

1s) for all x ∈ X
whenever 0 < t < s;

(Ψ3) Ψ(x,Γ(x, t)/A′
2) ≤ A′

3t for all x ∈ X and t > 0 with constants A′
2, A′

3 ≥ 1
independent of x.

Let τ > 2 and ϑ > 1 such that τ > (ϑ + 1)/(ϑ − 1). Then, for 0 < γ < α, there
exists a constant C∗ > 0 such that Iα,τf(x)/C∗ < γ(x) for a.e. x ∈ X and

λγ(z, r)

µ(B(z, ϑr))

∫
X∩B(z,r)

Ψ

(
x,

Iα,τf(x)

C∗

)
dµ(x) ≤ 1

for all z ∈ X, 0 < r < dX and nonnegative f ∈ L̃Φ,κ
η,ξ (X) with ∥f∥Φ,κ;η,ξ;X ≤ 1.

Proof. Let f ≥ 0 and ∥f∥Φ,κ;η,ξ;X ≤ 1. Fix x ∈ X. For 0 < δ ≤ dX/2, Lemma 4.8
implies

Iα,τf(x) ≤
∫
X∩B(x,δ)

d(x, y)αf(y)

µ(B(x, τd(x, y)))
dµ(y) + CΓ

(
x,

1

δ

)
=

∫
X∩B(x,δ)

d(x, y)α−γ d(x, y)γf(y)

µ(B(x, τd(x, y)))
dµ(y) + CΓ

(
x,

1

δ

)
≤ C

{
δα−γIγ,τf(x) + Γ

(
x,

1

δ

)}
with constants C > 0 independent of x.

If Iγ,τf(x) ≤ 2/dX , then we take δ = dX/2. Then, by Lemma 4.7

Iα,τf(x) ≤ CΓ

(
x,

2

dX

)
.

By Lemma 5.1, there exists C∗
1 > 0 independent of x such that

Iα,τf(x) ≤ C∗
1Γ

(
x,

1

2A′
3

)
if Iγ,τf(x) ≤ 2/dX . (5.1)

Next, suppose 2/dX < Iγ,τf(x) < ∞. Let m = sups≥2/dX ,x∈X Γ(x, s)/s. By
(Γlog), m < ∞. Define δ by

δα−γ =
(dX/2)α−γ

m
Γ(x, Iγ,τf(x))(Iγ,τf(x))−1.

Since Γ(x, Iγ,τf(x))(Iγ,τf(x))−1 ≤ m, 0 < δ ≤ dX/2. Then by Lemma 4.7

1

δ
≤ CΓ(x, Iγ,τf(x))−1/(α−γ)(Iγ,τf(x))1/(α−γ)

≤ CΓ(x, 2/dX)−1/(α−γ)(Iγ,τf(x))1/(α−γ) ≤ C(Iγ,τf(x))1/(α−γ).
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Hence, using (Γlog) and Lemma 5.1, we obtain

Γ

(
x,

1

δ

)
≤ Γ

(
x,C(Iγ,τf(x))1/(α−γ)

)
≤ CΓ(x, Iγ,τf(x)).

By Lemma 5.1 again, we see that there exists a constant C∗
2 > 0 independent of x

such that

Iα,τf(x) ≤ C∗
2Γ

(
x,

1

2CI,γA′
3

Iγ,τf(x)

)
if 2/dX < Iγ,τf(x) < ∞, (5.2)

where CI,γ is the constant given in Lemma 4.9.
Now, let C∗ = A′

1A
′
2 max(C∗

1 , C
∗
2). Then, by (5.1) and (5.2),

Iα,τf(x)

C∗ ≤ 1

A′
1A

′
2

max

{
Γ

(
x,

1

2A′
3

)
, Γ

(
x,

1

2CI,γA′
3

Iγ,τf(x)

)}
whenever Iγ,τf(x) < ∞. Since Iγ,τf(x) < ∞ for a.e. x ∈ X by Lemma 4.9,
Iα,τf(x)/C∗ < γ(x) a.e. x ∈ X, and by (Ψ2) and (Ψ3), we have

Ψ

(
x,

Iα,τf(x)

C∗

)
≤ max

{
Ψ

(
x,Γ

(
x,

1

2A′
3

)
/A′

2

)
, Ψ

(
x,Γ

(
x,

1

2CI,γA′
3

Iγ,τf(x)

)
/A′

2

)}
≤ 1

2
+

1

2CI,γ

Iγ,τf(x)

for a.e. x ∈ X. Thus, noting that λγ(z, r) ≤ 1 and using Lemma 4.9, we have

λγ(z, r)

µ(B(z, ϑr))

∫
X∩B(z,r)

Ψ

(
x,

Iα,τf(x)

C∗

)
dµ(x)

≤ 1

2
λγ(z, r) +

1

2CI,γ

λγ(z, r)

µ(B(z, ϑr))

∫
X∩B(z,r)

Iγ,τf(x) dµ(x)

≤ 1

2
+

1

2
= 1

for all z ∈ X and 0 < r < dX .

Remark 5.3. If Γ(x, s) is bounded, that is,

sup
x∈X

∫ dX

0

ραΦ−1
(
x, κ(x, ρ)−1

)
η
(
(log(e + 1/ρ))−1

)−1
dρ < ∞,

then by Lemma 4.8 we see that Iα,τ |f | is bounded for every f ∈ L̃Φ,κ
η,ξ (X).

Remark 5.4. We can not take γ = α in Theorem 5.2. For details, see [18, Remark
2.8].

As in the proof of [14, Corollary 4.6], we obtain the following corollary applying
Theorem 5.2 to special Φ and κ given in Examples 2.1 and 2.2.
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Corollary 5.5. Let κ be as in Example 2.2 and let p(x) and q(x) = q1(x) be as
in Examples 2.1. Let τ > 2 and ϑ > 1 such that τ > (ϑ+ 1)/(ϑ− 1). Set η(t) = tθ

for θ > 0 and Φ(x, t) = tp(x)(log(e + t))q(x).
Assume that

α− ν(x)/p(x) = 0 for all x ∈ X.

(1) Suppose
inf
x∈X

(−q(x)/p(x) − β(x)/p(x) + θ + 1) > 0.

Then for 0 < γ < α there exist constants C∗ > 0 and C∗∗ > 0 such that

rν(z)/p(z)−γ

µ(B(z, ϑr))

∫
B(z,r)∩X

exp

((
Iα,τf(x)

C∗

)p(x)/(p(x)+θp(x)−β(x)−q(x))
)

dµ(x) ≤ C∗∗

for all z ∈ X, 0 < r ≤ dX and nonnegative f ∈ L̃Φ,κ
η,ξ (X) with ∥f∥Φ,κ;η,ξ;X ≤ 1.

(2) If
sup
x∈X

(−q(x)/p(x) − β(x)/p(x) + θ + 1) ≤ 0,

then for 0 < γ < α there exist constants C∗ > 0 and C∗∗ > 0 such that

rν(z)/p(z)−γ

µ(B(z, ϑr))

∫
B(z,r)∩X

exp

(
exp

(
Iα,τf(x)

C∗

))
dµ(x) ≤ C∗∗

for all z ∈ X, 0 < r < dX and nonnegative f ∈ L̃Φ,κ
η,ξ (X) with ∥f∥Φ,κ;η,ξ;X ≤ 1.

6 Continuity for grand Musielak-Orlicz-Morrey

spaces

In this section, we discuss the continuity of Riesz potentials Iα,τf of functions
in grand Musielak-Orlicz-Morrey spaces under the condition: there are constants
θ > 0, ι > 1 and C0 > 0 such that∣∣∣∣ d(x, y)α

µ(B(x, τd(x, y)))
− d(z, y)α

µ(B(z, τd(z, y)))

∣∣∣∣ ≤ C0

(
d(x, z)

d(x, y)

)θ
d(x, y)α

µ(B(x, ιd(x, y)))
(6.1)

whenever d(x, z) ≤ d(x, y)/2.
We consider the functions

ω(x, r) =

∫ r

0

ραΦ−1
(
x, κ(x, ρ)−1

)
η
(
(log(e + 1/ρ))−1

)−1 dρ

ρ

and

ωθ(x, r) = rθ
∫ dX

r

ρα−θΦ−1
(
x, κ(x, ρ)−1

)
η
(
(log(e + 1/ρ))−1

)−1 dρ

ρ

for θ > 0 and 0 < r ≤ dX .
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Lemma 6.1 (cf. [14, Lemma 5.1] ). Let E ⊂ X. If ω(x, r) → 0 as r → 0+
uniformly in x ∈ E, then ωθ(x, r) → 0 as r → 0+ uniformly in x ∈ E.

Lemma 6.2 (cf. [14, Lemma 5.2] ). There exists a constant C > 0 such that

ω(x, 2r) ≤ Cω(x, r)

for all x ∈ X and 0 < r ≤ dX/2.

Theorem 6.3. Assume that Φ(x, t) satisfies (Φ5). Let τ > 1. Then there exists a
constant C > 0 such that

|Iα,τf(x) − Iα,τf(z)| ≤ C{ω(x, d(x, z)) + ω(z, d(x, z)) + ωθ(x, d(x, z))}

for all x, z ∈ X with d(x, z) ≤ dX/4 and nonnegative f ∈ L̃Φ,κ
η,ξ (X) with ∥f∥Φ,κ;η,ξ;X ≤

1.

Before giving a proof of Theorem 6.3, we prepare two more lemmas.

Lemma 6.4. Assume that Φ(x, t) satisfies (Φ5). Let τ > 1 and let f be a nonneg-
ative function on X such that ∥f∥Φ,κ;η,ξ;X ≤ 1. Then there exists a constant C > 0
such that ∫

X∩B(x,δ)

d(x, y)αf(y)

µ(B(x, τd(x, y)))
dµ(y) ≤ Cω(x, δ)

for all x ∈ X and 0 < δ ≤ dX .

Proof. Let f be a nonnegative function on X with ∥f∥Φ,κ;η,ξ;X ≤ 1. As usual we
start by decomposing B(x, δ) dyadically:∫

X∩B(x,δ)

d(x, y)αf(y)

µ(B(x, τd(x, y)))
dµ(y)

=
∞∑
j=1

∫
X∩(B(x,τ−j+1δ)\B(x,τ−jδ))

d(x, y)αf(y)

µ(B(x, τd(x, y)))
dµ(y)

≤
∞∑
j=1

(τ−j+1δ)α
1

µ(B(x, τ−j+1δ))

∫
B(x,τ−j+1δ)

f(y) dµ(y).

By Lemma 4.6, we have∫
X∩B(x,δ)

d(x, y)αf(y)

µ(B(x, τd(x, y)))
dµ(y)

≤ C

∞∑
j=1

(τ−j+1δ)αΦ−1(x, κ(x, τ−j+1δ)−1)η
(
(log(e + 1/(τ−j+1δ)))−1

)−1

≤ C

log τ

∫ δ

0

ραΦ−1
(
x, κ(x, ρ)−1

)
η
(
(log(e + 1/ρ))−1

)−1 dρ

ρ

= Cω(x, δ).
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The following lemma can be proved on the same manner as Lemma 4.8.

Lemma 6.5. Assume that Φ(x, t) satisfies (Φ5). Let θ ∈ R and let τ > 1. Let f
be a nonnegative function on X such that ∥f∥Φ,κ;η,ξ;X ≤ 1. Then there exists a
constant C > 0 such that∫

X\B(x,δ)

d(x, y)α−θf(y)

µ(B(x, τd(x, y)))
dµ(y) ≤ Cδ−θωθ(x, δ)

for all x ∈ X and 0 < δ ≤ dX/2.

Proof of Theorem 6.3. Let f be a nonnegative function on X with ∥f∥Φ,κ;η,ξ;X ≤ 1
and let x, z ∈ X with d(x, z) ≤ dX/4. Write

Iα,τf(x) − Iα,τf(z)

=

∫
X∩B(x,2d(x,z))

d(x, y)αf(y)

µ(B(x, τd(x, y)))
dµ(y) −

∫
X∩B(x,2d(x,z))

d(z, y)αf(y)

µ(B(z, τd(z, y)))
dµ(y)

+

∫
X\B(x,2d(x,z))

(
d(x, y)α

µ(B(x, τd(x, y)))
− d(z, y)α

µ(B(z, τd(z, y)))

)
f(y) dµ(y).

Using Lemmas 6.2 and 6.4, we have∫
X∩B(x,2d(x,z))

d(x, y)αf(y)

µ(B(x, τd(x, y)))
dµ(y) ≤ Cω(x, 2d(x, z)) ≤ Cω(x, d(x, z))

and∫
X∩B(x,2d(x,z))

d(z, y)αf(y)

µ(B(z, τd(z, y)))
dµ(y) ≤

∫
X∩B(z,3d(x,z))

d(z, y)αf(y)

µ(B(z, τd(z, y)))
dµ(y)

≤ Cω(z, 3d(x, z)) ≤ Cω(z, d(x, z)).

On the other hand, by (6.1) and Lemma 6.5, we have∫
X\B(x,2d(x,z))

∣∣∣∣ d(x, y)α

µ(B(x, τd(x, y)))
− d(z, y)α

µ(B(z, τd(z, y)))

∣∣∣∣ f(y) dµ(y)

≤ Cd(x, z)θ
∫
X\B(x,2d(x,z))

d(x, y)α−θf(y)

µ(B(x, ιd(x, y)))
dµ(y)

≤ Cωθ(x, 2d(x, z)) ≤ Cωθ(x, d(x, z)).

Then we have the conclusion.

In view of Lemma 6.1, we obtain the following corollary.

Corollary 6.6. Assume that Φ(x, t) satisfies (Φ5). Let τ > 1.

(a) Let x0 ∈ X and suppose ω(x, r) → 0 as r → 0+ uniformly in x ∈ X∩B(x0, δ)

for some δ > 0. Then Iα,τf is continuous at x0 for every f ∈ L̃Φ,κ
η,ξ (X).

(b) Suppose ω(x, r) → 0 as r → 0+ uniformly in x ∈ X. Then Iα,τf is uniformly

continuous on X for every f ∈ L̃Φ,κ
η,ξ (X).
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