An elementary proof of Sobolev embeddings for Riesz potentials of functions in Morrey spaces
 $$
L^{1, \nu, \beta}(G)
$$

Yoshihiro Mizuta, Eiichi Nakai, Takao Ohno and Tetsu Shimomura

Abstract

Our aim is to give an elementary proof of Sobolev embeddings for Riesz potentials of functions in Morrey spaces $L^{1, \nu, \beta}(G)$, as an extension of Serrin [13]. We are mainly concerned with Trudinger's type exponential integrability for Riesz potentials.

1 Introduction

Let G be a bounded open set in \mathbf{R}^{n}. For $0<\alpha<n$, we define the Riesz potential of order α for an integrable function f on G by

$$
I_{\alpha} f(x)=\int_{G}|x-y|^{\alpha-n} f(y) d y
$$

In what follows we assume that $f=0$ outside G.
For an integrable function u on a measurable set $E \subset \mathbf{R}^{n}$ of positive measure, we define the integral mean over E by

$$
f_{E} u(x) d x=\frac{1}{|E|} \int_{E} u(x) d x
$$

where $|E|$ denotes the Lebesgue measure of E.
In the present paper, f is assumed to satisfy the Morrey condition : if $0 \leq \nu \leq n$ and β are real numbers, then

$$
\begin{equation*}
f_{B(x, r)}|f(y)| d y \leq r^{-\nu}\left(\log \left(2+r^{-1}\right)\right)^{-\beta} \tag{1.1}
\end{equation*}
$$

for all $x \in G$ and $0<r<d_{G}$, where $B(x, r)$ denotes the open ball centered at x of radius $r>0$ and d_{G} denotes the diameter of G. It is worth pointing out that (1.1) is essentially equivalent to

$$
\begin{equation*}
f_{B(x, r)}|f(y)| d y \leq r^{-\nu}\left(\log \left(r^{-1}\right)\right)^{-\beta} \tag{1.2}
\end{equation*}
$$

[^0]for all $x \in G$ and $0<r<\min \left\{2^{-1}, d_{G}\right\}$. We denote by $L^{1, \nu, \beta}(G)$ the family of all measurable functions f on G satisfying condition (1.1) or (1.2); for Morrey spaces, we refer to [8] and [12].

The famous Trudinger's inequality ([15]) insists that Sobolev functions in $W^{1, n}$ satisfy finite exponential integrability (see also [2], [4] and [16]). Recently Serrin [13] gave an elementary proof of Trudinger's inequality ([15]), which relies on Hölder's inequality and integration by parts.

Our first aim in this note is to give a local Morrey version of Trudinger's type exponential integrability and continuity for Riesz potentials of functions satisfying (1.1), as an extension of [13] and [15].

Theorem 1.1 Let f be a nonnegative measurable function on G satisfying (1.1) with $\nu=\alpha$ and a real number β. If $\alpha / 2 \leq \varepsilon<\alpha$, then there exist constants $c_{1}, c_{2}>0$ such that
(1) in case $\beta<1$,

$$
\begin{equation*}
f_{B(z, r)} \exp \left(\frac{\left(I_{\alpha} f(x)\right)^{1 /(1-\beta)}}{c_{1}}\right) d x \leq c_{2} r^{-\alpha+\varepsilon}\left(\log \left(2+r^{-1}\right)\right)^{-\beta} \tag{1.3}
\end{equation*}
$$

for all $z \in G$ and $0<r<d_{G}$;
(2) in case $\beta=1$,

$$
\begin{equation*}
f_{B(z, r)} \exp \left(\frac{1}{c_{1}} \exp \left(\frac{I_{\alpha} f(x)}{C}\right)\right) d x \leq c_{2} r^{-\alpha+\varepsilon}\left(\log \left(2+r^{-1}\right)\right)^{-1} \tag{1.4}
\end{equation*}
$$

for all $z \in G$ and $0<r<d_{G}$;
(3) in case $\beta>1$,

$$
\begin{equation*}
\left|I_{\alpha} f(x)-I_{\alpha} f(z)\right| \leq C\left(\log \left(2+|x-z|^{-1}\right)\right)^{-\beta+1} \tag{1.5}
\end{equation*}
$$

for all $x, z \in G$. Here we can take

$$
c_{1}=C(\alpha-\varepsilon)^{-1}
$$

and

$$
c_{2}=C(\alpha-\varepsilon)^{-\beta_{+}-1},
$$

where $\beta_{+}=\max \{\beta, 0\}$ and $C=C\left(n, \alpha, \beta, d_{G}\right)$ denotes a various constant depending on n, α, β and d_{G}.

We also give the following Morrey version of Sobolev's type inequality for Riesz potentials of functions satisfying (1.1), as an extension of [13].

Theorem 1.2 Let f be a nonnegative measurable function on G satisfying (1.1) with $\alpha<\nu \leq n$ and a real number β. If $p=\nu /(\nu-\alpha)$ and $\gamma>1$, then there exists a constant $C=C\left(n, \alpha, \nu, \beta, \gamma, d_{G}\right)>0$ such that

$$
\begin{equation*}
\left(f_{B(z, r)}\left(I_{\alpha} f(x)\right)^{p}\left(\log \left(2+I_{\alpha} f(x)\right)\right)^{-\gamma+\alpha \beta p / \nu} d x\right)^{1 / p} \leq C r^{\alpha-\nu}\left(\log \left(2+r^{-1}\right)\right)^{(1-\gamma-\beta) / p} \tag{1.6}
\end{equation*}
$$

for all $z \in G$ and $0<r<d_{G}$.

For related results, we also refer to Adams [1], Chiarenza-Frasca [3] and the authors [5, 6, 7, 10, 11].

2 Proof of Theorem 1.1

Throughout this paper, let C denote various positive constants independent of the variables in question and $C(a, b, \cdots)$ be a constant which may depend on a, b, \cdots.

When $\gamma>0$, note that

$$
\begin{equation*}
\int|x-y|^{-\gamma} f(y) d y=\int_{0}^{\infty}\left(\int_{B(x, t)} f(y) d y\right) d\left(-t^{-\gamma}\right) \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{r}\left(\log \frac{1}{t}\right)^{-\gamma-1} \frac{d t}{t}=\frac{1}{\gamma}\left(\log \frac{1}{r}\right)^{-\gamma} \tag{2.2}
\end{equation*}
$$

for $0<r<1$.
Lemma 2.1 Suppose $0<a \leq R_{0}$ and $0<b \leq R_{0}$. Then there exists a constant $C\left(R_{0}\right)>0$ such that

$$
\int_{\delta}^{1 / 2} t^{-a}(\log (1 / t))^{-b} \frac{d t}{t} \leq C\left(R_{0}\right) a^{-b-1} \delta^{-a}(\log (1 / \delta))^{-b}
$$

for all $0<\delta<1 / 2$.

Proof. Note that $u_{a}(s)=s^{-a}(\log (1 / s))^{-b}$ attains a minimum value of $e^{b} b^{-b} a^{b}$ at $s=e^{-b / a}$ for $0<s<1$. If $1 / 2 \leq e^{-b / a}$, then u_{a} is decreasing on $(0,1 / 2]$. Hence

$$
u_{a}(t) \leq u_{a}(\delta) \quad \text { for } \quad 0<\delta \leq t<1 / 2
$$

If $e^{-b / a}<1 / 2$, then u_{a} is decreasing on $\left(0, e^{-b / a}\right]$ and increasing on $\left[e^{-b / a}, 1 / 2\right]$. Hence, in the case $e^{-b / a} \leq \delta$ we have

$$
u_{a}(t) \leq \frac{u_{a}(1 / 2)}{u_{a}\left(e^{-b / a}\right)} u_{a}(\delta)=\frac{2^{a}(\log 2)^{-b}}{e^{b} b^{-b} a^{b}} u_{a}(\delta) \quad \text { for } \quad 0<\delta \leq t<1 / 2
$$

and, in the case $0<\delta<e^{-b / a}$ we have

$$
\begin{aligned}
u_{a}(t) \leq u_{a}(\delta) & \text { for } \quad 0<\delta \leq t<e^{-b / a} \\
u_{a}(t) \leq \frac{2^{a}(\log 2)^{-b}}{e^{b} b^{-b} a^{b}} u_{a}(\delta) & \text { for } \quad e^{-b / a} \leq t<1 / 2
\end{aligned}
$$

Therefore, we obtain

$$
\begin{equation*}
u_{a}(t) \leq C\left(R_{0}\right) a^{-b} u_{a}(\delta) \quad \text { for } \quad 0<\delta \leq t<1 / 2, \tag{2.3}
\end{equation*}
$$

so that

$$
\begin{aligned}
\int_{\delta}^{1 / 2} t^{-a}(\log (1 / t))^{-b} \frac{d t}{t} & \leq C\left(R_{0}\right)(a / 2)^{-b} u_{a / 2}(\delta) \int_{\delta}^{1 / 2} t^{-a / 2} \frac{d t}{t} \\
& \leq C\left(R_{0}\right) 2^{b+1} a^{-b-1} \delta^{-a}(\log (1 / \delta))^{-b}
\end{aligned}
$$

for all $0<\delta<1 / 2$, as required.

Lemma 2.2 Let $\alpha / 2 \leq \varepsilon \leq \alpha$. Let f be a nonnegative measurable function on G satisfying (1.1) with $\nu=\alpha$.
(1) If $\alpha / 2 \leq \varepsilon<\alpha$, then

$$
\int_{G \backslash B(x, \delta)}|x-y|^{\varepsilon-n} f(y) d y \leq C(\alpha-\varepsilon)^{-\beta_{+}-1} \delta^{\varepsilon-\alpha}\left(\log \left(2+\delta^{-1}\right)\right)^{-\beta}
$$

(2) if $\varepsilon=\alpha$ and $\beta<1$, then

$$
\int_{G \backslash B(x, \delta)}|x-y|^{\varepsilon-n} f(y) d y \leq C\left(\log \left(2+\delta^{-1}\right)\right)^{-\beta+1}
$$

(3) if $\varepsilon=\alpha$ and $\beta=1$, then

$$
\int_{G \backslash B(x, \delta)}|x-y|^{\varepsilon-n} f(y) d y \leq C \log \left(2+\left(\log \left(2+\delta^{-1}\right)\right)\right)
$$

for $x \in G$ and $\delta>0$, where $C=C\left(n, \beta, d_{G}\right)$.

Proof. If $\alpha / 2 \leq \varepsilon<\alpha$, then we have by (2.1) and (1.1)

$$
\begin{aligned}
\int_{G \backslash B(x, \delta)}|x-y|^{\varepsilon-n} f(y) d y & \leq \int_{\delta}^{2 d_{G}}\left(\int_{B(x, r)} f(y) d y\right) d\left(-r^{\varepsilon-n}\right) \\
& \leq C \int_{\delta}^{\infty} r^{\varepsilon-\alpha}\left(\log \left(2+r^{-1}\right)\right)^{-\beta} \frac{d r}{r}
\end{aligned}
$$

When $\beta>0$, Lemma 2.1 gives

$$
\int_{\delta}^{\infty} r^{\varepsilon-\alpha}\left(\log \left(2+r^{-1}\right)\right)^{-\beta} \frac{d r}{r} \leq C(\beta)(\alpha-\varepsilon)^{-\beta-1} \delta^{\varepsilon-\alpha}\left(\log \left(2+\delta^{-1}\right)\right)^{-\beta}
$$

and when $\beta \leq 0$,

$$
\begin{aligned}
\int_{\delta}^{\infty} r^{\varepsilon-\alpha}\left(\log \left(2+r^{-1}\right)\right)^{-\beta} \frac{d r}{r} & \leq\left(\log \left(2+\delta^{-1}\right)\right)^{-\beta} \int_{\delta}^{\infty} r^{\varepsilon-\alpha} \frac{d r}{r} \\
& \leq(\alpha-\varepsilon)^{-1} \delta^{\varepsilon-\alpha}\left(\log \left(2+\delta^{-1}\right)\right)^{-\beta}
\end{aligned}
$$

Thus it follows that

$$
\int_{G \backslash B(x, \delta)}|x-y|^{\varepsilon-n} f(y) d y \leq C(\alpha-\varepsilon)^{-\beta_{+}-1} \delta^{\varepsilon-\alpha}\left(\log \left(2+\delta^{-1}\right)\right)^{-\beta}
$$

where C is a positive constant depending on β.
The remaining cases can be proved similarly.

Lemma 2.3 Let $\alpha<\nu \leq n$. Let f be a nonnegative measurable function on G satisfying (1.1). Then

$$
\int_{G \backslash B(x, \delta)}|x-y|^{\alpha-n} f(y) d y \leq C \delta^{\alpha-\nu}\left(\log \left(2+\delta^{-1}\right)\right)^{-\beta}
$$

for $x \in G$ and $\delta>0$, where $C=C(n, \alpha, \nu, \beta)$.

Lemma 2.4 Let $\alpha / 2 \leq \varepsilon<\alpha$ and $\alpha \leq \nu$. Let f be a nonnegative measurable function on G satisfying (1.1). Then

$$
\int_{B(z, \delta)} I_{\varepsilon} f(x) d x \leq C(\nu-\varepsilon)^{-\beta_{+}-1} \delta^{\varepsilon-\nu+n}\left(\log \left(2+\delta^{-1}\right)\right)^{-\beta}
$$

for $z \in G$ and $\delta>0$, where $C=C(n, \alpha, \beta)$.

Proof. Write

$$
I_{\varepsilon} f(x)=\int_{B(z, 2 \delta)}|x-y|^{\varepsilon-n} f(y) d y+\int_{G \backslash B(z, 2 \delta)}|x-y|^{\varepsilon-n} f(y) d y=I_{1}(x)+I_{2}(x) .
$$

By Fubini's theorem, we have by (1.1) and the fact that $\int_{B(z, \delta)}|x-y|^{\varepsilon-n} d x$ attains its maximum at $y=z$

$$
\begin{aligned}
\int_{B(z, \delta)} I_{1}(x) d x & \leq \int_{B(z, 2 \delta)}\left(\int_{B(z, \delta)}|x-y|^{\varepsilon-n} d x\right) f(y) d y \\
& \leq C \delta^{\varepsilon} \int_{B(z, 2 \delta)} f(y) d y \leq C \delta^{\varepsilon-\nu+n}\left(\log \left(2+\delta^{-1}\right)\right)^{-\beta}
\end{aligned}
$$

For I_{2}, note that

$$
I_{2}(x) \leq C \int_{G \backslash B(z, 2 \delta)}|z-y|^{\varepsilon-n} f(y) d y
$$

for $x \in B(z, \delta)$. Hence the proof of Lemma 2.2 gives

$$
\int_{B(z, \delta)} I_{2}(x) d x \leq C(\nu-\varepsilon)^{-\beta_{+}-1} \delta^{n+\varepsilon-\nu}\left(\log \left(2+\delta^{-1}\right)\right)^{-\beta}
$$

since $\alpha / 2 \leq \varepsilon<\alpha$. Thus this lemma is proved.
Proof of Theorem 1.1. Let f be a nonnegative measurable function on G satisfying (1.1).

First suppose $\beta<1$. For $\alpha / 2 \leq \varepsilon<\alpha$, by Lemma 2.2, we have

$$
\begin{aligned}
I_{\alpha} f(x) & =\int_{B(x, \delta)}|x-y|^{\alpha-n} f(y) d y+\int_{G \backslash B(x, \delta)}|x-y|^{\alpha-n} f(y) d y \\
& \leq \delta^{\alpha-\varepsilon} \int_{B(x, \delta)}|x-y|^{\varepsilon-n} f(y) d y+C\left(\log \left(2+\delta^{-1}\right)\right)^{-\beta+1} \\
& \leq \delta^{\alpha-\varepsilon} I_{\varepsilon} f(x)+C\left(\log \left(2+\delta^{-1}\right)\right)^{-\beta+1}
\end{aligned}
$$

for $\delta>0$. Considering $\delta=\left(I_{\varepsilon} f(x)\right)^{-1 /(\alpha-\varepsilon)}\left(\log \left(2+I_{\varepsilon} f(x)\right)\right)^{(1-\beta) /(\alpha-\varepsilon)}$ when $I_{\varepsilon} f(x)$ is large enough, we see that

$$
I_{\alpha} f(x) \leq C(\alpha-\varepsilon)^{\beta-1}\left(\log \left(2+I_{\varepsilon} f(x)\right)\right)^{-\beta+1}
$$

so that

$$
f_{B(z, r)} \exp \left(\frac{\left(I_{\alpha} f(x)\right)^{1 /(1-\beta)}}{c_{1}}\right) d x \leq f_{B(z, r)}\left\{2+I_{\varepsilon} f(x)\right\} d x
$$

for $z \in G$ and $0<r<d_{G}$, where $c_{1}=C(\alpha-\varepsilon)^{-1}$. Hence Lemma 2.4 with $\nu=\alpha$ gives

$$
f_{B(z, r)} \exp \left(\frac{\left(I_{\alpha} f(x)\right)^{1 /(1-\beta)}}{c_{1}}\right) d x \leq C(\alpha-\varepsilon)^{-\beta_{+}-1} r^{-\alpha+\varepsilon}\left(\log \left(2+r^{-1}\right)\right)^{-\beta}
$$

for such z and r, which implies (1.3).
Next suppose $\beta=1$. For $\alpha / 2 \leq \varepsilon<\alpha$, by Lemma 2.2, we have

$$
\begin{aligned}
I_{\alpha} f(x) & =\int_{B(x, \delta)}|x-y|^{\alpha-n} f(y) d y+\int_{G \backslash B(x, \delta)}|x-y|^{\alpha-n} f(y) d y \\
& \leq \delta^{\alpha-\varepsilon} I_{\varepsilon} f(x)+C \log \left(2+\log \left(2+\delta^{-1}\right)\right)
\end{aligned}
$$

for $\delta>0$. Considering $\delta=\left(I_{\varepsilon} f(x)\right)^{-1 /(\alpha-\varepsilon)}\left(\log \left(2+\log \left(2+I_{\varepsilon} f(x)\right)\right)\right)^{1 /(\alpha-\varepsilon)}$ when $I_{\varepsilon} f(x)$ is large enough, we see that

$$
I_{\alpha} f(x) \leq C \log \left(2+\frac{\log \left(2+I_{\varepsilon} f(x)\right)}{\alpha-\varepsilon}\right)
$$

so that

$$
f_{B(z, r)} \exp \left(\frac{1}{c_{1}} \exp \left(\frac{I_{\alpha} f(x)}{C}\right)\right) d x \leq f_{B(z, r)}\left\{2+I_{\varepsilon} f(x)\right\} d x
$$

for $z \in G$ and $0<r<d_{G}$, where $c_{1}=C(\alpha-\varepsilon)^{-1}$. Hence Lemma 2.4 with $\nu=\alpha$ gives

$$
f_{B(z, r)} \exp \left(\frac{1}{c_{1}} \exp \left(\frac{I_{\alpha} f(x)}{C}\right)\right) d x \leq c_{2} r^{-\alpha+\varepsilon}\left(\log \left(2+r^{-1}\right)\right)^{-1}
$$

with $c_{2}=C(\alpha-\varepsilon)^{-2}$ for such z and r, which implies (1.4).
Finally suppose $\beta>1$. Write

$$
\begin{aligned}
I_{\alpha} f(x)-I_{\alpha} f(z)= & \int_{B(x, 2|x-z|)}|x-y|^{\alpha-n} f(y) d y-\int_{B(x, 2|x-z|)}|z-y|^{\alpha-n} f(y) d y \\
& +\int_{G \backslash B(x, 2|x-z|)}\left(|x-y|^{\alpha-n}-|z-y|^{\alpha-n}\right) f(y) d y
\end{aligned}
$$

As in the proof of Lemma 2.2, we have

$$
\int_{B(x, 2|x-z|)}|x-y|^{\alpha-n} f(y) d y \leq C\left(\log \left(2+|x-z|^{-1}\right)\right)^{-\beta+1}
$$

and

$$
\begin{aligned}
\int_{B(x, 2|x-z|)}|z-y|^{\alpha-n} f(y) d y & \leq \int_{B(z, 3|x-z|)}|z-y|^{\alpha-n} f(y) d y \\
& \leq C\left(\log \left(2+|x-z|^{-1}\right)\right)^{-\beta+1}
\end{aligned}
$$

for $x, z \in G$. On the other hand, by the mean value theorem for analysis, we have by Lemma 2.3

$$
\begin{aligned}
& \int_{G \backslash B(x, 2|x-z|)}| | x-\left.y\right|^{\alpha-n}-|z-y|^{\alpha-n} \mid f(y) d y \\
\leq & C|x-z| \int_{G \backslash B(x, 2|x-z|)}|x-y|^{\alpha-n-1} f(y) d y \\
\leq & C\left(\log \left(2+|x-z|^{-1}\right)\right)^{-\beta} .
\end{aligned}
$$

As a consequence we obtain

$$
\left|I_{\alpha} f(x)-I_{\alpha} f(z)\right| \leq C\left(\log \left(2+|x-z|^{-1}\right)\right)^{-\beta+1}
$$

for $x, z \in G$, which implies (1.5).
REMARK 2.5 Let f be a nonnegative measurable function on G satisfying

$$
\left(f_{B(x, r)} f(y)^{p} d y\right)^{1 / p} \leq r^{-\alpha}\left(\log \left(2+r^{-1}\right)\right)^{-\beta}
$$

for all $x \in G$ and $0<r<d_{G}$, where $p>1$ and a real number β. Then Jensen's inequality yields

$$
f_{B(x, r)} f(y) d y \leq r^{-\alpha}\left(\log \left(2+r^{-1}\right)\right)^{-\beta}
$$

Hence we can apply Theorem 1.1.

Remark 2.6 In Theorem 1.1 (1), if $\beta=0$ and $\varepsilon=\alpha / 2$, then we can find constants $C_{1}, C_{2}>0$ depending on n, α and d_{G} such that

$$
f_{B(z, r)} \exp \left(\frac{I_{\alpha} f(x)}{C_{1}}\right) d x \leq C_{2} r^{-\alpha / 2}
$$

for all $z \in G$ and $0<r<d_{G}$. If $\alpha / 2<\varepsilon<\alpha$, then Jensen's inequality gives

$$
f_{B(z, r)} \exp \left(\frac{2(\alpha-\varepsilon) I_{\alpha} f(x)}{C_{1} \alpha}\right) d x \leq C_{2}^{2(\alpha-\varepsilon) / \alpha} r^{-\alpha+\varepsilon},
$$

so that

$$
f_{B(z, r)} \exp \left(\frac{I_{\alpha} f(x)}{c_{1}}\right) d x \leq c_{2} r^{-\alpha+\varepsilon}
$$

for all $z \in G$ and $0<r<d_{G}$. Here $c_{1}=C(\alpha-\varepsilon)^{-1}$ and $c_{2} \rightarrow 1$ as $\varepsilon \rightarrow \alpha$.

Remark 2.7 Theorem 1.1 (3) can also be proved by using Nakai [10, Theorem 3.3] and Spanne [14, p.601] (see also [9, p.521]). However our discussions are straightforward.

REmark 2.8 In Theorem 1.1 (1), one can not find positive constants \tilde{c}_{1} and \tilde{c}_{2} such that

$$
f_{B(z, r)} \exp \left(\frac{\left(I_{\alpha} f(x)\right)^{1 /(1-\beta)}}{\tilde{c}_{1}}\right) d x \leq \tilde{c}_{2}\left(\log \left(2+r^{-1}\right)\right)^{-\beta}
$$

holds for all $z \in G$ and $0<r<d_{G}$.
To show this, consider

$$
f(y)=|y|^{-\alpha}\left(\log \left(|y|^{-1}\right)\right)^{-\beta}
$$

for $y \in B(0,1 / 2)$ with $\beta<1$; set $f=0$ elsewhere. Then

$$
f_{B(x, r)}|f(y)| d y \leq C r^{-\alpha}\left(\log \left(2+r^{-1}\right)\right)^{-\beta}
$$

for $x \in \mathbf{B}=B(0,1)$. Further,

$$
\begin{aligned}
I_{\alpha} f(x) & \geq \int_{B(0,1 / 2) \backslash B(0,2|x|)}|x-y|^{\alpha-n} f(y) d y \\
& \geq C \int_{B(0,1 / 2) \backslash B(0,2|x|)}|y|^{-n}\left(\log \left(|y|^{-1}\right)\right)^{-\beta} d y \\
& \geq C\left(\log \left(|x|^{-1}\right)\right)^{-\beta+1}
\end{aligned}
$$

for $x \in B(0,1 / 8)$. Hence it follows that

$$
f_{B(0, r)} \exp \left(\frac{I_{\alpha} f(x)^{1 /(1-\beta)}}{C^{1 /(1-\beta)} c}\right) d x \geq f_{B(0, r)}|x|^{-1 / c} d x=C^{\prime} r^{-1 / c}
$$

for $0<r<1 / 8$, where $1 / c<n$.

3 Proof of Theorem 1.2

For $\gamma>0$, let

$$
\rho_{\gamma}(r)=r^{-n}\left(\log \left(2+r^{-1}\right)\right)^{-\gamma} .
$$

The following lemma can be proved in the same way as Lemma 2.4.

Lemma 3.1 Let $\alpha<\nu \leq n$ and $\gamma>1$. If f is a nonnegative measurable function on G satisfying (1.1), then

$$
\int_{B(z, r)}\left(\int_{G} \rho_{\gamma}(|x-y|) f(y) d y\right) d x \leq C r^{n-\nu}\left(\log \left(2+r^{-1}\right)\right)^{-\gamma-\beta+1}
$$

whenever $B(z, r) \subset G$, where $C=C\left(n, \alpha, \nu, \beta, \gamma, d_{G}\right)$.
Proof of Theorem 1.2. Let f be a nonnegative measurable function on G satisfying (1.1). Let

$$
J_{\gamma}(x)=\int_{G} \rho_{\gamma}(|x-y|) f(y) d y
$$

and

$$
p=\frac{\nu}{\nu-\alpha} .
$$

We find by Lemma 2.3

$$
\begin{aligned}
I_{\alpha} f(x) & =\int_{B(x, \delta)}|x-y|^{\alpha-n} f(y) d y+\int_{G \backslash B(x, \delta)}|x-y|^{\alpha-n} f(y) d y \\
& \leq C \delta^{\alpha}\left(\log \left(2+\delta^{-1}\right)\right)^{\gamma} J_{\gamma}(x)+C \delta^{\alpha-\nu}\left(\log \left(2+\delta^{-1}\right)\right)^{-\beta}
\end{aligned}
$$

for $\delta>0$. Considering $\delta=J_{\gamma}(x)^{-1 / \nu}\left(\log \left(2+J_{\gamma}(x)\right)\right)^{-(\gamma+\beta) / \nu}$, we see that

$$
\begin{aligned}
I_{\alpha} f(x) & \leq C J_{\gamma}(x)^{(\nu-\alpha) / \nu}\left(\log \left(2+J_{\gamma}(x)\right)\right)^{\gamma(\nu-\alpha) / \nu-\alpha \beta / \nu} \\
& =C J_{\gamma}(x)^{1 / p}\left(\log \left(2+J_{\gamma}(x)\right)\right)^{\gamma / p-\alpha \beta / \nu},
\end{aligned}
$$

so that

$$
\int_{B(z, r)}\left\{I_{\alpha} f(x)\left(\log \left(2+I_{\alpha} f(x)\right)\right)^{-\gamma / p+\alpha \beta / \nu}\right\}^{p} d x \leq C \int_{B(z, r)} J_{\gamma}(x) d x
$$

whenever $B(z, r) \subset G$. Hence Lemma 3.1 gives

$$
f_{B(z, r)}\left\{I_{\alpha} f(x)\left(\log \left(2+I_{\alpha} f(x)\right)\right)^{-\gamma / p+\alpha \beta / \nu}\right\}^{p} d x \leq C r^{-\nu}\left(\log \left(2+r^{-1}\right)\right)^{-\gamma-\beta+1}
$$

for such z and r, which completes the proof of Theorem 1.2.
REmARK 3.2 The case when $\beta=0, \alpha=1$ and $1 \leq p \leq 1 /\{2(\nu-1)\}$ was also discussed by Serrin [13] in a different manner.

Remark 3.3 In general, (1.6) does not hold when $\gamma<1$.
To show this when $n=2$, we consider

$$
f(y)=f\left(y_{1}, y_{2}\right)=\left|y_{2}\right|^{-1}\left(\log \left(2+\left|y_{2}\right|^{-1}\right)\right)^{-\beta-1}
$$

with $\beta>0$. Then (2.2) gives

$$
f_{B(x, r)}|f(y)| d y \leq \frac{C}{r} \int_{0}^{r}\left|y_{2}\right|^{-1}\left(\log \left(2+\left|y_{2}\right|^{-1}\right)\right)^{-\beta-1} d y_{2} \leq C r^{-1}\left(\log \left(2+r^{-1}\right)\right)^{-\beta}
$$

for $x \in \mathbf{B}=B(0,1)$. For $0<\alpha<1$, consider the potential

$$
I_{\alpha} f(x)=\int_{\mathbf{B}}|x-y|^{\alpha-2} f(y) d y .
$$

Here we may assume that $x_{2} \neq 0$. Setting $Q(x)=\left\{y=\left(y_{1}, y_{2}\right) \in \mathbf{B}:\left|x_{1}-y_{1}\right|<\right.$ $\left.\left|x_{2}\right|,\left|y_{2}\right|<\left|x_{2}\right|\right\}$, we note that

$$
\begin{aligned}
I_{\alpha} f(x) & \geq \int_{Q(x)}|x-y|^{\alpha-2} f(y) d y \\
& \geq C\left|x_{2}\right|^{\alpha-2} \int_{Q(x)} f(y) d y \\
& \geq C\left|x_{2}\right|^{\alpha-1} \int_{0}^{\left|x_{2}\right|}\left|y_{2}\right|^{-1}\left(\log \left(2+\left|y_{2}\right|^{-1}\right)\right)^{-\beta-1} d y_{2} \\
& \geq C\left|x_{2}\right|^{\alpha-1}\left(\log \left(2+\left|x_{2}\right|^{-1}\right)\right)^{-\beta},
\end{aligned}
$$

so that

$$
\begin{aligned}
& \int_{B(0,1)}\left(I_{\alpha} f(x)\right)^{p}\left(\log \left(2+I_{\alpha} f(x)\right)^{-\gamma+\alpha \beta p / \nu} d x\right. \\
\geq & C \int_{B(0,1)}\left|x_{2}\right|^{-1}\left(\log \left(2+\left|x_{2}\right|^{-1}\right)\right)^{-\gamma-\beta} d x=\infty
\end{aligned}
$$

when $p=1 /(1-\alpha), \nu=1$ and $0<\beta<1-\gamma$.
Acknowledgement. We would like to express our hearty thanks to the referee for his/her kind comments.

References

[1] D. R. Adams, A note on Riesz potentials, Duke Math. J. 42 (1975), 765-778.
[2] D. R. Adams and L. I. Hedberg, Function spaces and potential theory, SpringerVerlag, Berlin, Heidelberg, 1996.
[3] F. Chiarenza and M. Frasca, Morrey spaces and Hardy-Littlewood maximal function, Rend. Mat. Appl. (7) 7 (1987), 273-279.
[4] Y. Mizuta, Potential theory in Euclidean spaces, Gakkōtosho, Tokyo, 1996.
[5] Y. Mizuta and T. Shimomura, Sobolev's inequality for Riesz potentials of functions in Morrey spaces of integral form, to appear in Math. Nachr.
[6] Y. Mizuta and T. Shimomura, Sobolev embeddings for Riesz potentials of functions in Morrey spaces of variable exponent, to appear in J. Math. Soc. Japan.
[7] Y. Mizuta and T. Shimomura, Continuity properties for Riesz potentials of functions in Morrey spaces of variable exponent, to appear in Math. Inequal. Appl.
[8] C. B. Morrey, On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc. 43 (1938), 126-166.
[9] E. Nakai, On the restriction of functions of bounded mean oscillation to the lower-dimensional space, Arch. Math. (Basel) 43 (1984), 519-529.
[10] E. Nakai, On generalized fractional integrals on the weak Orlicz spaces, $B M O_{\phi}$, the Morrey spaces and the Campanato spaces, Function spaces, interpolation theory and related topics (Lund, 2000), 389-401, Walter de Gruyter, Berlin, New York, 2002.
[11] E. Nakai, Generalized fractional integrals on Orlicz-Morrey spaces, Banach and function spaces, 323-333, Yokohama Publ., Yokohama, 2004.
[12] J. Peetre, On the theory of $L_{p, \lambda}$ spaces, J. Funct. Anal. 4 (1969), 71-87.
[13] J. Serrin, A remark on Morrey potential, Contemp. Math. 426 (2007), 307-315.
[14] S. Spanne, Some function spaces defined using the mean oscillation over cubes, Ann. Scuola Norm. Sup. Pisa (3) 19 (1965), 593-608.
[15] N. Trudinger, On imbeddings into Orlicz spaces and some applications, J. Math. Mech. 17 (1967), 473-483.
[16] W. P. Ziemer, Weakly differentiable functions, Springer-Verlag, New York, 1989.

The Division of Mathematical and Information Sciences
Faculty of Integrated Arts and Sciences
Hiroshima University
Higashi-Hiroshima 739-8521, Japan
E-mail : mizuta@mis.hiroshima-u.ac.jp and
Department of Mathematics
Osaka Kyoiku University
Kashiwara, Osaka 582-8582, Japan
E-mail : enakai@cc.osaka-kyoiku.ac.jp and
General Arts
Hiroshima National College of Maritime Technology
Higashino Oosakikamijima Toyotagun 725-0231, Japan
E-mail : ohno@hiroshima-cmt.ac.jp and
Department of Mathematics
Graduate School of Education
Hiroshima University
Higashi-Hiroshima 739-8524, Japan
E-mail: tshimo@hiroshima-u.ac.jp

[^0]: 2000 Mathematics Subject Classification : Primary 31B15, 46E35
 Key words and phrases : Riesz potentials, Sobolev's inequality, Trudinger's exponential inequality, Morrey space

