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Abstract
Our aim is to give an elementary proof of Sobolev embeddings for Riesz

potentials of functions in Morrey spaces L1,ν,β(G), as an extension of Serrin
[13]. We are mainly concerned with Trudinger’s type exponential integrability
for Riesz potentials.

1 Introduction

Let G be a bounded open set in Rn. For 0 < α < n, we define the Riesz potential of
order α for an integrable function f on G by

Iαf(x) =

∫
G

|x − y|α−nf(y)dy.

In what follows we assume that f = 0 outside G.
For an integrable function u on a measurable set E ⊂ Rn of positive measure, we

define the integral mean over E by

−
∫

E

u(x) dx =
1

|E|

∫
E

u(x) dx,

where |E| denotes the Lebesgue measure of E.
In the present paper, f is assumed to satisfy the Morrey condition : if 0 ≤ ν ≤ n

and β are real numbers, then

−
∫

B(x,r)

|f(y)|dy ≤ r−ν(log(2 + r−1))−β (1.1)

for all x ∈ G and 0 < r < dG, where B(x, r) denotes the open ball centered at x of
radius r > 0 and dG denotes the diameter of G. It is worth pointing out that (1.1)
is essentially equivalent to

−
∫

B(x,r)

|f(y)|dy ≤ r−ν(log(r−1))−β (1.2)
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for all x ∈ G and 0 < r < min{2−1, dG}. We denote by L1,ν,β(G) the family of all
measurable functions f on G satisfying condition (1.1) or (1.2); for Morrey spaces,
we refer to [8] and [12].

The famous Trudinger’s inequality ([15]) insists that Sobolev functions in W 1,n

satisfy finite exponential integrability (see also [2], [4] and [16]). Recently Serrin [13]
gave an elementary proof of Trudinger’s inequality ([15]), which relies on Hölder’s
inequality and integration by parts.

Our first aim in this note is to give a local Morrey version of Trudinger’s type
exponential integrability and continuity for Riesz potentials of functions satisfying
(1.1), as an extension of [13] and [15].

Theorem 1.1 Let f be a nonnegative measurable function on G satisfying (1.1)
with ν = α and a real number β. If α/2 ≤ ε < α, then there exist constants
c1, c2 > 0 such that

(1) in case β < 1,

−
∫

B(z,r)

exp

(
(Iαf(x))1/(1−β)

c1

)
dx ≤ c2r

−α+ε(log(2 + r−1))−β (1.3)

for all z ∈ G and 0 < r < dG ;

(2) in case β = 1,

−
∫

B(z,r)

exp

(
1

c1

exp

(
Iαf(x)

C

))
dx ≤ c2r

−α+ε(log(2 + r−1))−1 (1.4)

for all z ∈ G and 0 < r < dG ;

(3) in case β > 1,

|Iαf(x) − Iαf(z)| ≤ C(log(2 + |x − z|−1))−β+1 (1.5)

for all x, z ∈ G. Here we can take

c1 = C(α − ε)−1

and
c2 = C(α − ε)−β+−1,

where β+ = max{β, 0} and C = C(n, α, β, dG) denotes a various constant depending
on n, α, β and dG.

We also give the following Morrey version of Sobolev’s type inequality for Riesz
potentials of functions satisfying (1.1), as an extension of [13].

Theorem 1.2 Let f be a nonnegative measurable function on G satisfying (1.1)
with α < ν ≤ n and a real number β. If p = ν/(ν − α) and γ > 1, then there exists
a constant C = C(n, α, ν, β, γ, dG) > 0 such that(

−
∫

B(z,r)

(Iαf(x))p (log (2 + Iαf(x)))−γ+αβp/ν dx

)1/p

≤ Crα−ν(log(2 + r−1))(1−γ−β)/p

(1.6)
for all z ∈ G and 0 < r < dG.
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For related results, we also refer to Adams [1], Chiarenza-Frasca [3] and the
authors [5, 6, 7, 10, 11].

2 Proof of Theorem 1.1

Throughout this paper, let C denote various positive constants independent of the
variables in question and C(a, b, · · ·) be a constant which may depend on a, b, · · ·.

When γ > 0, note that∫
|x − y|−γf(y)dy =

∫ ∞

0

(∫
B(x,t)

f(y)dy

)
d(−t−γ) (2.1)

and ∫ r

0

(
log

1

t

)−γ−1
dt

t
=

1

γ

(
log

1

r

)−γ

(2.2)

for 0 < r < 1.

Lemma 2.1 Suppose 0 < a ≤ R0 and 0 < b ≤ R0. Then there exists a constant
C(R0) > 0 such that∫ 1/2

δ

t−a(log(1/t))−b dt

t
≤ C(R0)a

−b−1δ−a(log(1/δ))−b

for all 0 < δ < 1/2.

Proof. Note that ua(s) = s−a(log(1/s))−b attains a minimum value of ebb−bab at
s = e−b/a for 0 < s < 1. If 1/2 ≤ e−b/a, then ua is decreasing on (0, 1/2]. Hence

ua(t) ≤ ua(δ) for 0 < δ ≤ t < 1/2.

If e−b/a < 1/2, then ua is decreasing on (0, e−b/a] and increasing on [e−b/a, 1/2].
Hence, in the case e−b/a ≤ δ we have

ua(t) ≤
ua(1/2)

ua(e−b/a)
ua(δ) =

2a(log 2)−b

ebb−bab
ua(δ) for 0 < δ ≤ t < 1/2,

and, in the case 0 < δ < e−b/a we have

ua(t) ≤ ua(δ) for 0 < δ ≤ t < e−b/a,

ua(t) ≤
2a(log 2)−b

ebb−bab
ua(δ) for e−b/a ≤ t < 1/2.

Therefore, we obtain

ua(t) ≤ C(R0)a
−bua(δ) for 0 < δ ≤ t < 1/2, (2.3)

so that ∫ 1/2

δ

t−a(log(1/t))−b dt

t
≤ C(R0)(a/2)−bua/2(δ)

∫ 1/2

δ

t−a/2dt

t

≤ C(R0)2
b+1a−b−1δ−a(log(1/δ))−b

for all 0 < δ < 1/2, as required. ¤
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Lemma 2.2 Let α/2 ≤ ε ≤ α. Let f be a nonnegative measurable function on G
satisfying (1.1) with ν = α.

(1) If α/2 ≤ ε < α, then∫
G\B(x,δ)

|x − y|ε−nf(y)dy ≤ C(α − ε)−β+−1δε−α(log(2 + δ−1))−β;

(2) if ε = α and β < 1, then∫
G\B(x,δ)

|x − y|ε−nf(y)dy ≤ C(log(2 + δ−1))−β+1;

(3) if ε = α and β = 1, then∫
G\B(x,δ)

|x − y|ε−nf(y)dy ≤ C log(2 + (log(2 + δ−1)))

for x ∈ G and δ > 0, where C = C(n, β, dG).

Proof. If α/2 ≤ ε < α, then we have by (2.1) and (1.1)∫
G\B(x,δ)

|x − y|ε−nf(y)dy ≤
∫ 2dG

δ

(∫
B(x,r)

f(y)dy

)
d(−rε−n)

≤ C

∫ ∞

δ

rε−α(log(2 + r−1))−β dr

r
.

When β > 0, Lemma 2.1 gives∫ ∞

δ

rε−α(log(2 + r−1))−β dr

r
≤ C(β)(α − ε)−β−1δε−α(log(2 + δ−1))−β

and when β ≤ 0,∫ ∞

δ

rε−α(log(2 + r−1))−β dr

r
≤ (log(2 + δ−1))−β

∫ ∞

δ

rε−α dr

r

≤ (α − ε)−1δε−α(log(2 + δ−1))−β.

Thus it follows that∫
G\B(x,δ)

|x − y|ε−nf(y)dy ≤ C(α − ε)−β+−1δε−α(log(2 + δ−1))−β,

where C is a positive constant depending on β.
The remaining cases can be proved similarly. ¤

Lemma 2.3 Let α < ν ≤ n. Let f be a nonnegative measurable function on G
satisfying (1.1). Then∫

G\B(x,δ)

|x − y|α−nf(y)dy ≤ Cδα−ν(log(2 + δ−1))−β

for x ∈ G and δ > 0, where C = C(n, α, ν, β).
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Lemma 2.4 Let α/2 ≤ ε < α and α ≤ ν. Let f be a nonnegative measurable
function on G satisfying (1.1). Then∫

B(z,δ)

Iεf(x)dx ≤ C(ν − ε)−β+−1δε−ν+n(log(2 + δ−1))−β

for z ∈ G and δ > 0, where C = C(n, α, β).

Proof. Write

Iεf(x) =

∫
B(z,2δ)

|x − y|ε−nf(y)dy +

∫
G\B(z,2δ)

|x − y|ε−nf(y)dy = I1(x) + I2(x).

By Fubini’s theorem, we have by (1.1) and the fact that

∫
B(z,δ)

|x − y|ε−ndx attains

its maximum at y = z∫
B(z,δ)

I1(x)dx ≤
∫

B(z,2δ)

(∫
B(z,δ)

|x − y|ε−ndx

)
f(y)dy

≤ Cδε

∫
B(z,2δ)

f(y)dy ≤ Cδε−ν+n(log(2 + δ−1))−β.

For I2, note that

I2(x) ≤ C

∫
G\B(z,2δ)

|z − y|ε−nf(y)dy

for x ∈ B(z, δ). Hence the proof of Lemma 2.2 gives∫
B(z,δ)

I2(x)dx ≤ C(ν − ε)−β+−1δn+ε−ν(log(2 + δ−1))−β

since α/2 ≤ ε < α. Thus this lemma is proved. ¤

Proof of Theorem 1.1. Let f be a nonnegative measurable function on G satis-
fying (1.1).

First suppose β < 1. For α/2 ≤ ε < α, by Lemma 2.2, we have

Iαf(x) =

∫
B(x,δ)

|x − y|α−nf(y)dy +

∫
G\B(x,δ)

|x − y|α−nf(y)dy

≤ δα−ε

∫
B(x,δ)

|x − y|ε−nf(y)dy + C(log(2 + δ−1))−β+1

≤ δα−εIεf(x) + C(log(2 + δ−1))−β+1

for δ > 0. Considering δ = (Iεf(x))−1/(α−ε)(log(2 + Iεf(x)))(1−β)/(α−ε) when Iεf(x)
is large enough, we see that

Iαf(x) ≤ C(α − ε)β−1(log(2 + Iεf(x)))−β+1,
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so that

−
∫

B(z,r)

exp

(
(Iαf(x))1/(1−β)

c1

)
dx ≤ −

∫
B(z,r)

{2 + Iεf(x)}dx

for z ∈ G and 0 < r < dG, where c1 = C(α − ε)−1. Hence Lemma 2.4 with ν = α
gives

−
∫

B(z,r)

exp

(
(Iαf(x))1/(1−β)

c1

)
dx ≤ C(α − ε)−β+−1r−α+ε(log(2 + r−1))−β

for such z and r, which implies (1.3).
Next suppose β = 1. For α/2 ≤ ε < α, by Lemma 2.2, we have

Iαf(x) =

∫
B(x,δ)

|x − y|α−nf(y)dy +

∫
G\B(x,δ)

|x − y|α−nf(y)dy

≤ δα−εIεf(x) + C log(2 + log(2 + δ−1))

for δ > 0. Considering δ = (Iεf(x))−1/(α−ε)(log(2 + log(2 + Iεf(x))))1/(α−ε) when
Iεf(x) is large enough, we see that

Iαf(x) ≤ C log

(
2 +

log(2 + Iεf(x))

α − ε

)
,

so that

−
∫

B(z,r)

exp

(
1

c1

exp

(
Iαf(x)

C

))
dx ≤ −

∫
B(z,r)

{2 + Iεf(x)}dx

for z ∈ G and 0 < r < dG, where c1 = C(α − ε)−1. Hence Lemma 2.4 with ν = α
gives

−
∫

B(z,r)

exp

(
1

c1

exp

(
Iαf(x)

C

))
dx ≤ c2r

−α+ε(log(2 + r−1))−1

with c2 = C(α − ε)−2 for such z and r, which implies (1.4).
Finally suppose β > 1. Write

Iαf(x) − Iαf(z) =

∫
B(x,2|x−z|)

|x − y|α−nf(y)dy −
∫

B(x,2|x−z|)
|z − y|α−nf(y)dy

+

∫
G\B(x,2|x−z|)

(|x − y|α−n − |z − y|α−n)f(y)dy.

As in the proof of Lemma 2.2, we have∫
B(x,2|x−z|)

|x − y|α−nf(y)dy ≤ C(log(2 + |x − z|−1))−β+1

and ∫
B(x,2|x−z|)

|z − y|α−nf(y)dy ≤
∫

B(z,3|x−z|)
|z − y|α−nf(y)dy

≤ C(log(2 + |x − z|−1))−β+1
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for x, z ∈ G. On the other hand, by the mean value theorem for analysis, we have
by Lemma 2.3 ∫

G\B(x,2|x−z|)
||x − y|α−n − |z − y|α−n|f(y)dy

≤ C|x − z|
∫

G\B(x,2|x−z|)
|x − y|α−n−1f(y)dy

≤ C(log(2 + |x − z|−1))−β.

As a consequence we obtain

|Iαf(x) − Iαf(z)| ≤ C(log(2 + |x − z|−1))−β+1

for x, z ∈ G, which implies (1.5). ¤

Remark 2.5 Let f be a nonnegative measurable function on G satisfying(
−
∫

B(x,r)

f(y)pdy

)1/p

≤ r−α(log(2 + r−1))−β

for all x ∈ G and 0 < r < dG, where p > 1 and a real number β. Then Jensen’s
inequality yields

−
∫

B(x,r)

f(y)dy ≤ r−α(log(2 + r−1))−β.

Hence we can apply Theorem 1.1.

Remark 2.6 In Theorem 1.1 (1), if β = 0 and ε = α/2, then we can find constants
C1, C2 > 0 depending on n, α and dG such that

−
∫

B(z,r)

exp

(
Iαf(x)

C1

)
dx ≤ C2r

−α/2

for all z ∈ G and 0 < r < dG. If α/2 < ε < α, then Jensen’s inequality gives

−
∫

B(z,r)

exp

(
2(α − ε)Iαf(x)

C1α

)
dx ≤ C

2(α−ε)/α
2 r−α+ε,

so that

−
∫

B(z,r)

exp

(
Iαf(x)

c1

)
dx ≤ c2r

−α+ε

for all z ∈ G and 0 < r < dG. Here c1 = C(α − ε)−1 and c2 → 1 as ε → α.

Remark 2.7 Theorem 1.1 (3) can also be proved by using Nakai [10, Theorem 3.3]
and Spanne [14, p.601] (see also [9, p.521]). However our discussions are straightfor-
ward.
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Remark 2.8 In Theorem 1.1 (1), one can not find positive constants c̃1 and c̃2 such
that

−
∫

B(z,r)

exp

(
(Iαf(x))1/(1−β)

c̃1

)
dx ≤ c̃2(log(2 + r−1))−β

holds for all z ∈ G and 0 < r < dG .
To show this, consider

f(y) = |y|−α(log(|y|−1))−β

for y ∈ B(0, 1/2) with β < 1; set f = 0 elsewhere. Then

−
∫

B(x,r)

|f(y)|dy ≤ Cr−α(log(2 + r−1))−β

for x ∈ B = B(0, 1). Further,

Iαf(x) ≥
∫

B(0,1/2)\B(0,2|x|)
|x − y|α−nf(y)dy

≥ C

∫
B(0,1/2)\B(0,2|x|)

|y|−n(log(|y|−1))−βdy

≥ C(log(|x|−1))−β+1

for x ∈ B(0, 1/8). Hence it follows that

−
∫

B(0,r)

exp

(
Iαf(x)1/(1−β)

C1/(1−β)c

)
dx ≥ −

∫
B(0,r)

|x|−1/cdx = C ′r−1/c

for 0 < r < 1/8, where 1/c < n.

3 Proof of Theorem 1.2

For γ > 0, let
ργ(r) = r−n(log(2 + r−1))−γ.

The following lemma can be proved in the same way as Lemma 2.4.

Lemma 3.1 Let α < ν ≤ n and γ > 1. If f is a nonnegative measurable function
on G satisfying (1.1), then∫

B(z,r)

(∫
G

ργ(|x − y|)f(y)dy

)
dx ≤ Crn−ν(log(2 + r−1))−γ−β+1

whenever B(z, r) ⊂ G, where C = C(n, α, ν, β, γ, dG).

Proof of Theorem 1.2. Let f be a nonnegative measurable function on G satis-
fying (1.1). Let

Jγ(x) =

∫
G

ργ(|x − y|)f(y)dy
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and
p =

ν

ν − α
.

We find by Lemma 2.3

Iαf(x) =

∫
B(x,δ)

|x − y|α−nf(y)dy +

∫
G\B(x,δ)

|x − y|α−nf(y)dy

≤ Cδα(log(2 + δ−1))γJγ(x) + Cδα−ν(log(2 + δ−1))−β

for δ > 0. Considering δ = Jγ(x)−1/ν(log(2 + Jγ(x)))−(γ+β)/ν , we see that

Iαf(x) ≤ CJγ(x)(ν−α)/ν(log(2 + Jγ(x)))γ(ν−α)/ν−αβ/ν

= CJγ(x)1/p(log(2 + Jγ(x)))γ/p−αβ/ν ,

so that ∫
B(z,r)

{Iαf(x)(log(2 + Iαf(x)))−γ/p+αβ/ν}pdx ≤ C

∫
B(z,r)

Jγ(x)dx

whenever B(z, r) ⊂ G. Hence Lemma 3.1 gives

−
∫

B(z,r)

{Iαf(x)(log(2 + Iαf(x)))−γ/p+αβ/ν}pdx ≤ Cr−ν(log(2 + r−1))−γ−β+1

for such z and r, which completes the proof of Theorem 1.2. ¤

Remark 3.2 The case when β = 0, α = 1 and 1 ≤ p ≤ 1/{2(ν − 1)} was also
discussed by Serrin [13] in a different manner.

Remark 3.3 In general, (1.6) does not hold when γ < 1.
To show this when n = 2, we consider

f(y) = f(y1, y2) = |y2|−1(log(2 + |y2|−1))−β−1

with β > 0. Then (2.2) gives

−
∫

B(x,r)

|f(y)|dy ≤ C

r

∫ r

0

|y2|−1(log(2 + |y2|−1))−β−1dy2 ≤ Cr−1(log(2 + r−1))−β

for x ∈ B = B(0, 1). For 0 < α < 1, consider the potential

Iαf(x) =

∫
B

|x − y|α−2f(y)dy.

Here we may assume that x2 6= 0. Setting Q(x) = {y = (y1, y2) ∈ B : |x1 − y1| <
|x2|, |y2| < |x2|}, we note that

Iαf(x) ≥
∫

Q(x)

|x − y|α−2f(y)dy

≥ C|x2|α−2

∫
Q(x)

f(y)dy

≥ C|x2|α−1

∫ |x2|

0

|y2|−1(log(2 + |y2|−1))−β−1dy2

≥ C|x2|α−1(log(2 + |x2|−1))−β,
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so that ∫
B(0,1)

(Iαf(x))p(log(2 + Iαf(x))−γ+αβp/νdx

≥ C

∫
B(0,1)

|x2|−1(log(2 + |x2|−1))−γ−βdx = ∞

when p = 1/(1 − α), ν = 1 and 0 < β < 1 − γ.

Acknowledgement. We would like to express our hearty thanks to the referee
for his/her kind comments.
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